Search Publication

Export 90 results:
[ Author(Asc)] Title Type Year
Filters: First Letter Of Last Name is P  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
P
Pina O, Vilaplana V. Self-supervised graph representations of WSIs. In Geometric Deep Learning in Medical Image Analysis. 2022.
Pina O, Vilaplana V. Unsupervised Domain Adaptation for Multi-Stain Cell Detection in Breast Cancer with Transformers. In IEEE/CVF Conference on Computer Vision and Pattern Recognition (DEF-AI-MIA workshop). 2024.
Pina O, Vilaplana V. Layer-wise self-supervised learning on graphs. In KDD 2023 Workshop on Deep Learning on Graphs: Methods and Applications (DLG-KDD 2023). Long Beach, USA; 2023.
Petrone P, Casamitjana A, Falcon C, Artigues M, Operto G, Skouras S, et al.. Characteristic Brain Volumetric Changes in the AD Preclinical Signature. Alzheimer's & Dementia: The Journal of the Alzheimer's Association. 2018;14(7):P1235.
Petrone P, Vilaplana V, Casamitjana A, Tucholka A, Falcon C, Cacciaglia R, et al.. Magnetic Resonance Imaging as a valuable tool for Alzheimer's disease screening. In Alzheimer’s Association International Conference, London, 2017. 2017.
Petrone P, Casamitjana A, Falcon C, Cànaves MArtigues, Operto G, Cacciaglia R, et al.. Prediction of amyloid pathology in cognitively unimpaired individuals using voxelwise analysis of longitudinal structural brain MRI. Alzheimer's Research & Therapy. 2019;11(1).
Petrone P, Casamitjana A, Falcon C, Artigues M, Operto G, Skouras S, et al.. Characteristic Brain Volumetric Changes in the AD Preclinical Signature. In Alzheimer's Association International Conference. Chicago, USA; 2018.
Petrone P, Vilaplana V, Casamitjana A, Sanchez-Escobedo D, Tucholka A, Cacciaglia R, et al.. Magnetic Resonance Imaging as a valuable tool for Alzheimer's disease screening. Alzheimer's & Dementia: The Journal of the Alzheimer's Association. 2017;13(7):P1245.
Petras I, Beleznai C, Dedeoglu Y, Pardàs M, Kovács L, Szlávik Z, et al.. Flexible test-bed for unusual behavior detection. In 6th ACM International Conference on Image and Video Retrieval. 2007. pp. 105–108.
Perez-Pellitero E, Salvador J, Ruiz-Hidalgo J, Rosenhahn B. Antipodally Invariant Metrics For Fast Regression-Based Super-Resolution. IEEE Transactions on Image Processing. 2016;25(6):2468.  (5.48 MB)
Perez-Pellitero E, Salvador J, Ruiz-Hidalgo J, Rosenhahn B. Accelerating Super-Resolution for 4K Upscaling. In IEEE International Conference on Consumer Electronics. Las Vegas, NV, USA; 2015.  (1.07 MB)
Perez-Pellitero E. Manifold Learning for Super Resolution. Rosenhahn B, Ruiz-Hidalgo J. [Hannover]: Leibniz Universität Hannover; 2017.  (18.6 MB)
Perez-Pellitero E, Salvador J, Torres-Xirau I, Ruiz-Hidalgo J, Rosenhahn B. Fast Super-Resolution via Dense Local Training and Inverse Regressor Search. In Asian Conference in Computer Vision (ACCV). Singapore; 2014.  (19.06 MB)
Perez-Pellitero E, Salvador J, Ruiz-Hidalgo J, Rosenhahn B. PSyCo: Manifold Span Reduction for Super Resolution. In IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, Nevada, USA; 2016.  (1.56 MB)
Perez-Pellitero E, Salvador J, Ruiz-Hidalgo J, Rosenhahn B. Half Hypersphere Confinement for Piecewise Linear Regression. In IEEE Winter Conference on Applications of Computer Vision. Lake Placid, NY, USA; 2016.  (7.01 MB)
Perez-Pellitero E, Salvador J, Ruiz-Hidalgo J, Rosenhahn B. Method for upscaling an image and apparatus for upscaling an image. US 20170132759 A1; 2018.
Perez-Pellitero E, Salvador J, Ruiz-Hidalgo J, Rosenhahn B. Bayesian region selection for adaptive dictionary-based Super-Resolution. In British Machine Vision Conference. 2013.  (2.59 MB)
Pérez-Granero P. 2D to 3D body pose estimation for sign language with Deep Learning. McGuinness K, Giró-i-Nieto X. 2020.  (2.97 MB)
Perez-Cano J, Valero ISansano, Anglada D, Pina O, Salembier P, Marqués F. Combining graph neural networks and computer vision methods for cell nuclei classification in lung tissue. Heliyon. 2024;10(7).  (4.05 MB)
Perera M. Ancestry-conditioned Generative Models for Genotyping. Mas-Montserrat D, Giró-i-Nieto X, Ioannidis AG. 2022 .
Pelegrí JBustos. Clasificación de imágenes histológicas mediante redes neuronales convolucionales. Combalia M, Vilaplana V. 2018.
Pedersen TSunn, et al, Casas J, Salembier P. Experimental confirmation of efficient island divertor operation and successful neoclassical transport optimization in Wendelstein 7-X. Nuclear Fusion. 2022;62(4).  (2.24 MB)
Pareto D, Vidal P, Alberich M, Lopez C, Auger C, Tintoré M, et al.. Prediction of a second clinical event in CIS patients by combining lesion and brain features. In Congress of the European Comitee for Treatment and Research in Multiple Sclerosis (ECTRIMS 2019). 2019.
Pardàs M, Pandzic I, Cannella M, Davoine F, Forchheimer R, Lavagetto F, et al.. The InterFace Software Platform for Interactive Virtual Characters. In Mpeg-4 facial animation: the standard, implementation and applications. 2004. pp. 169–183.
Pardàs M, Salembier P. Joint region and motion estimation with morphological tools. In International Symposium on Mathematical Morphology, ISMM 1994. Fontainebleau, France; 1994.

Pages