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The detection of tumoural cells from whole slide images is an essential task in medical 
diagnosis and research. In this article, we propose and analyse a novel approach that combines 
computer vision-based models with graph neural networks to improve the accuracy of automated 
tumoural cell detection in lung tissue. Our proposal leverages the inherent structure and 
relationships between cells in the tissue. Experimental results on our own curated dataset show 
that modelling the problem with graphs gives the model a clear advantage over just working 
at pixel level. This change in perspective provides extra information that makes it possible 
to improve the performance. The reduction of dimensionality that comes from working with 
the graph also allows us to increase the field of view with low computational requirements. 
Code is available at https://github .com /Jerry -Master /lung -tumour -study, models are uploaded 
to https://huggingface .co /Jerry -Master /Hovernet -plus -Graphs, and the dataset is published on 
Zenodo https://zenodo .org /doi /10 .5281 /zenodo .8368122.

1. Introduction

Lung cancer is a prevalent type of cancer, along with breast, colon, rectum and prostate cancers. It is also the leading cause of 
cancer-related deaths worldwide with almost two million deaths per year [1]. The early detection of any type of cancer is vital for 
increasing the survival probability and the effectiveness of the applied treatments. Tissue samples obtained via biopsy are used to 
diagnose cancer. These samples are fixed in fomalin, embedded in paraffin, sliced and stained with Hematoxylin and Eosin (H&E) 
and/or special stains to easily identify the different cells and patterns of the tumour. Pathologists then analyse the slides obtained 
from the samples and make their final diagnosis.

Digital Pathology (DP) emerges from the digitisation of pathology slides into high-resolution images. It has revolutionised how 
histology related diagnosis is addressed, shifting the paradigm from the traditional microscope to software computing. Computer 
aided diagnosis (CAD) methods aim at employing machine learning algorithms to reduce the time expert pathologists spend manually 
inspecting histology slides to make a diagnosis and hence, to reduce their daily workload on repetitive tasks.

In the context of Digital Pathology, the Catalan Health Institute (Institut Català de la Salut, ICS) launched in 2020 the so-called 
DigiPatICS project [2]. This project aims at deploying digital pathology in an integrative way within a network of eight hospitals in 
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Catalonia, Spain, giving service to over 168 pathologists and processing over 1 million slides each year. The project creates a network 
among ICS centres allowing the eight hospitals to work as one. The DigiPatICS project includes the development and sharing of image 
processing and deep learning tools to recognise tissue patterns, to select tumour areas, and to quantify them, among other tasks. The 
tools are required to cover a large range of pathologies and the project started tackling the breast and lung cancer cases. This paper 
presents research works done for the latter case.

In this paper, our primary application is cell nuclei classification into normal and tumoural on lung tissue. Most of the deep 
learning architectures that tackle this kind of problems rely on Convolution Neural Networks (CNNs). The main objective of this paper 
is to demonstrate that combining a CNN with a cell-based Graph Neural Network allows us to improve the final classification results. 
The CNN segments the cell and generates their initial classification and the Graph Neural Network post-processes this information to 
create an improved classification. The first tool we used is HoVer-Net [3]. It is a Convolutional Neural Network-based architecture 
developed for both cell segmentation and classification that has achieved state-of-the-art performance in popular benchmarks [3–

7]. The architecture is fed with small image patches of size 270 × 270 pixels and simultaneously outputs the segmentation and 
classification maps. In practice, the field of view involved in these input patches is so small that only a low number of cells can 
be observed. As a result, the architecture prevents the method to capture inter-nuclei interactions information and therefore the 
classification essentially depends on the nuclei characteristics and narrow pixel context. However, although cell classification depends 
indeed on individual cell specific features, it is also influenced by the other nearby cells. Hence, we propose to employ cell graphs and 
a Graph Neural Network-based classifier on top of HoVer-Net to boost the classification of tumour cells on lung tissue tiles extracted 
from whole-slide images (WSIs) from patients with cancer diagnosis.

In this work, we have created a dataset of 85 tiles of size 1024 × 1024 pixels with cell level annotations extracted from 9 lung 
WSIs. The annotations define the cells’ nuclei shape and classify each cell as either cancerous or non-cancerous. Then, we have 
developed an architecture sequentially composed of a Convolutional Neural Network (CNN), specifically the Hover-Net, and a Graph 
Neural Network (GNN) to address the cell nuclei segmentation and classification tasks. We show that this approach significantly 
outperforms the baseline classification obtained by using only the HoVer-Net.

The main contributions of our work can be summarised as follows:

• An incremental procedure to facilitate the annotation of WSIs at the finest granularity level.

• An annotated dataset of H&E stained lung tissue following that procedure and manually reviewed by the expert Irene Sansano 
Valero.

• A novel method for improving classification of tumoural cells by leveraging computer vision models and graph neural networks.

• The weights of all the models from our method trained on our dataset.

• A Python library that implements our method and many preprocessing utilities to facilitate the work of future researchers.

2. Related work

Deep learning techniques have been used in a wide variety of applications within the field of Digital Pathology (DP) such as cell 
segmentation and classification, tumour detection and subtyping, tissue phenotyping and diagnosis from gigapixel WSIs [3,8,9]. Due 
to the revolution that Convolutional Neural Networks (CNNs) caused in the vision domain, they are naturally the de facto standard 
to tackle DP challenges from a deep learning perspective. Nonetheless, CNNs operate on raw images, which are signals defined on 
the pixel space and therefore ignore the concept of biological entity such as cell, gland or tissue, which is the main subject of study 
of medical practitioners. Additionally, CNNs fail at capturing the hierarchical structure of the tissue and their fixed input patch size 
limits their ability to represent larger scale relationships.

Alternatively, graph representations of histology slides have been proposed to overcome the aforementioned CNN failure 
cases [10–19]. Specifically, Cell Graphs (CGs) can be constructed by detecting with a CNN the cell nuclei in images. These cell 
nuclei form the nodes of the graph and can be associated with categorical information [16,17]. The edges of the graph can be created 
based on nearest neighbours [12,14] or using the Delaunay triangulation to obtain a planar graph [16,17]. Moreover, because of 
their recent success for graph-structured data analysis, Graph Neural Networks (GNNs) have been applied to process these CGs. Some 
works choose the architecture of GraphSAGE [12,16] while others employ the Graph Isomorphism Network (GIN) [14]. We test 
both on our dataset and expand the comparison to graph convolution and attention [20,21]. Intuitively, the combination of CGs and 
GNNs enables both working on the biological entity space of cells and the contextualization of these entities with their environment. 
Indeed, GNNs fed with cell nuclei data have shown promising results in cell applications, tumour subtyping and grading from image 
tiles [12,14,17]. However, due to the difficulty of obtaining cell-level labels many works resort to WSI classification as in [12,14]

or simplify the labelling process by identifying high-level structures such as the basement membrane of the oral mucosa [16]. We 
extend on that corpus of research by showing that the usage of a GNN on top of a CNN can improve the original CNN classification 
for lung tissue. To the best of our knowledge our work is the first to apply CNN and GNN for cell classification in lung tissue on a 
database that was manually reviewed at each cell individually.

3. Material

To develop and validate our proposed architecture, we needed a dataset of lung cancer samples that were previously stained with 
Hematoxylin and Eosin (H&E). Our first task was to search for possible publicly available datasets of lung cancer samples with proper 
2

annotation and similar scanning process as the one that is currently implemented in the hospitals of the DigiPatICS project. Colour 
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Fig. 1. Overview of our method. An initial segmentation and classification of the cells is obtained using HoVer-Net. Then, we create a graph using the cells as nodes 
and apply graph neural networks to improve the classification made by HoVer-Net using the relationships between nodes.

and intensity variations resulting from different scanning procedures among hospitals/scanning hardware represent a very significant 
challenge, as the performance of models trained on one database may not generalise well to other hospitals’ data. Moreover, our goal 
was to work with a dataset that could represent a wide range of medical conditions and tissue types and that had a precise annotation 
at the cell level. That is, we were requiring the annotation to precisely represent each cell shape and to associate to each cell its class 
(cancerous or non-cancerous). As we did not find any dataset fulfilling all these requirements and were willing to develop models 
that had optimal performances for the staining and scanning protocols of the DigiPatICS hospitals, we decided to create a specific 
dataset. Note that all the DigiPatICS hospitals follow a similar staining and scanning protocol and use the same scanning devices 
with a predefined configuration.

The WSIs were obtained from the Vall d’Hebron Hospital in Barcelona and scanned with PANNORAMIC 1000 Flash DX scanners 
of 3DHISTECH with resolution 0.25 μm /pixel, single layer, and 40x magnification. Working directly with WSIs is an unfeasible task 
due to their large size between 8 ⋅ 104 and 2 ⋅ 105 pixels by side, so we opted instead to work with subimages called tiles. The dataset 
is composed of 85 tiles of size 1024x1024 pixels. The tiles were manually extracted from WSIs of 9 different lung cancer patients. 
They were extracted from specific regions of interest of WSIs indicated by pathologists. The goal was to capture the widest possible 
variety of situations with a limited number of tiles.

This dataset had to be annotated by expert pathologists. The pathologists essentially evaluated the nucleus-cytoplasm ratio, the 
cell colour, the nuclei regularity, the presence of papillae acini or solid nests as well as the characteristics of nearby cells. This is 
a very tedious and time consuming task as tiles may involve between 100 and 1000 cells. It was felt that asking pathologists to 
annotate the set of tiles without any prior help was unrealistic. As a result, we used an incremental strategy relying on a combination 
of tools from mathematical morphology and deep learning models to efficiently produce accurate annotations for our Lung Cancer 
dataset.

The first step involved using a tool from mathematical morphology called the maxtree representation [22]. The use of the maxtree 
allowed us to efficiently detect the shape of candidate cells, to study the colour distribution of the pixels belonging to these cells as 
well as to extract geometrical features (size, elongation, etc.). By manually setting threshold values on the colour and the geometrical 
features, we were able to generate an initial annotation. To improve the quality of the annotations, we relied on the help of an 
expert pathologist from the Vall d’Hebron Hospital: Irene Sansano Valero. The pathologist reviewed and corrected the whole initial 
annotation. This work was still very time consuming but the fact that preliminary cell candidates were already defined and classified 
was an important help. The pathologist had to either reject erroneous cells or create the missing ones. Moreover, if necessary, she 
had to correct the class assignment (cancerous and non-cancerous). The annotations correction itself was done using the QuPath [23]

software which is a cross-platform tool for digital pathology image analysis.

With this initial corrected annotation, we trained a deep learning model, specifically a HoVer-Net model, to predict annotations 
over the entire set of images in the dataset. This process allowed us to produce again a set of images with a preliminary annotation 
but this time over the entire dataset. This preliminary annotation was again corrected and improved with the help of the pathologist 
to ensure its accuracy.

By following this process, we have been able to produce the annotations for the mentioned 85 tiles. The use of morphological tools 
in an initial phase, followed by the predictions of a deep learning model in a more advanced annotation phase, proved to be effective 
in reducing the workload of the pathologist and in improving the accuracy of the annotations. At the end, the dataset includes 85 tiles 
involving 8360 cancerous cells, 22542 non-cancerous cells and 153 uncertain cells. The tiles themselves represent a wide variability 
of lung tissues and cells. They contain cartilages, macrophages, erythrocytes, lymphocytes, inflammatory and necrotic cells among 
others. All cells were initially classified as either healthy or tumoural based on the criterion of the expert although, in some cases 
there was not enough information to decide and those cells were classified as unknown. Finally, the train / validation/ test partition 
was made based on whether the patient did not have any single unknown cell. Those patients where the doctor was sure about the 
label of every cell were included in the test set.

4. Method

An overview of our proposal can be seen in Fig. 1. This figure shows how the original image is initially processed by the computer 
vision method, HoVer-Net. This CNN segments the cells and defines their shapes and classes. Then, a graph is formed by associating 
each cell to a graph node. The graph topology is defined through heuristic rules. The GNN itself is used in the last step to take 
3

into account the interaction between cells and to improve their classification. In this section, we discuss the details of the proposed 
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Fig. 2. High level overview of the HoVer-Net computer vision approach. Three different predictions are made. The NP and HV branches are combined using the 
watershed algorithm to create the segmentation and finally the labels are obtained using majority voting between the segmentation and the TP branch.

processing approach, together with some necessary background to understand it. Specifically, subsection 4.1 defines the problem 
and expresses the main notation. Then, subsection 4.2 and subsection 4.3 describe the two stages of our proposed method, the first 
subsection focuses on the computer vision approach and the second one on the graph creation and processing.

4.1. Problem formulation

We denote the training data by  = {(𝐗𝑖, 𝐭𝑖) ∶ 𝑖 ∈ [𝑁]} where 𝑁 is the number of different samples, 𝐗𝑖 are histological images 
and 𝐭𝑖 are the target values we are interested in predicting from 𝐗𝑖. These target values can be referred to all elements in the image, 
and therefore be pixel classes, or to the nuclei detected in the image, and therefore be cell classes. In our problem, the classification of 
the nuclei is more important than their segmentation since physicians require a percentage of tumoural nuclei, without considering 
any cell-level information like the area or the perimeter of the cell. For that reason, we will refer to 𝐭𝑖 equally as images and as sets 
of nuclei 𝐭𝑖 = {(𝑥𝑖

𝑗
, 𝑦𝑖

𝑗
, 𝑐𝑖

𝑗
) ∶ 𝑗 ∈ [𝑁𝑖]}, each of them represented by their coordinates (𝑥𝑖

𝑗
, 𝑦𝑖

𝑗
) and class 𝑐𝑖

𝑗
. Each image can contain 

a different number of cells 𝑁𝑖. When dealing with cell classification we consider a binary classification problem 𝑐𝑖
𝑗
∈ {0, 1}, where 

the label 0 means a healthy cell and the label 1 means a tumoural cell. When considering 𝐭𝑖 as an image, thus being a pixel-wise 
classification problem, each pixel can have value 0, 1 or 2 meaning background, non tumour and tumour respectively.

4.2. The image processing module

Convolutional Neural Networks (CNNs) are widely adopted in the field of image processing. However, training a simple CNN to 
predict the pixel labels 𝐭𝑖 from 𝐗𝑖 commonly does not manage to fully split nearby instances and often merges neighbouring cells 
into large connected components [24–26]. As a result, postprocessing algorithms are often applied to the CNN raw predictions. A 
typical solution involves the watershed algorithm [27]. We selected a state of the art CNN approach, the HoVer-Net [3], as the first 
stage of our method.

4.2.1. The HoVer-Net three branches

To tackle the challenge of improving the cell segmentation and classification, the HoVer-Net involves three branches. To maintain 
the nomenclature of the HoVer-Net article [3] we will refer to the branch that predicts the raw class of each pixel as the type 
prediction (TP) branch. The second branch distinguishes the cells from the background and it is referred to as the nuclear prediction 
(NP) branch. The last branch predicts the horizontal and vertical distances from each pixel to the centroid of the cell and is named 
the horizontal and vertical branch (HV).

The process is visualized in Fig. 2. Internally each branch is composed by an encoder-decoder architecture. The encoder is com-

posed of residual networks with downsampling while the decoder is composed of convolutional and dense networks with upsampling. 
One key aspect of this approach is that the encoder is shared by all three branches, while each branch has a different decoder. This 
enables the network to learn useful features for all three tasks at the same time.

4.2.2. Loss function

The loss function used to train the HoVer-Net is a linear combination of two different losses per branch, six losses in total. For the 
TP branch and the NP branch the binary cross-entropy and the dice loss are used [28], while the HV branch uses the mean square 
4

error [29] and the mean square gradient error [3]. Formally,
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Fig. 3. Example of an image and its associated graph. At the middle we have the nodes located at their corresponding centroids. However, a graph is an abstraction, 
so it may also be viewed as in the right image, since it only encodes relationships, not absolute positions. Visualization of the graph was made using Gephi [31].
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Where 𝜆𝑇 𝑃
𝑏𝑐𝑒

, 𝜆𝑇 𝑃
𝑑𝑖𝑐𝑒

, 𝜆𝑁𝑃
𝑏𝑐𝑒

, 𝜆𝑁𝑃
𝑑𝑖𝑐𝑒

, 𝜆𝐻𝑉
𝑚𝑠𝑒

, 𝜆𝐻𝑉
𝑚𝑠𝑔𝑒

are hyperparameters. Using this loss function, the three branches are trained simultane-

ously.

4.2.3. Postprocessing

When the three branches are trained, the output of the NP and HV branches are combined to create the cell segmentations. To 
decide the label of each cell, the segmentation result is combined with the TP branch output; that is, the class of a cell is predicted 
by taking the majority voting of the pixel predicted types inside the cell.

More concretely, the watershed algorithm [30] is used to improve the result of the NP branch. The algorithm requires an energy 
landscape and a marker. The energy is defined as follows

𝐸 = (1 − 𝑚(𝐗))⊙ 𝑓𝑁𝑃 (𝐗) (2)

where ⊙ denotes element-wise multiplication and 𝑚(𝐗) =max(𝐻𝑥 ∗ 𝑓𝐻𝑉
𝑥

(𝐗), 𝐻𝑦 ∗ 𝑓𝐻𝑉
𝑦

(𝐗)) is an estimation of the gradient magni-

tude of the HV branch applying horizontal and vertical Sobel operators to the horizontal and vertical components of the HV branch 
respectively. In turn, the marker is defined as

𝑀 = ReLU(𝑓𝑁𝑃 (𝐗) − 𝑚(𝐗)) (3)

Based on empirical results, 𝑓𝑁𝑃 and 𝑚 were thresholded prior to computing the energy and the marker images [3]. Finally, 𝑀
and 𝐸 are used as the marker and energy landscape respectively to split 𝑓𝑁𝑃 (𝐗) with the watershed algorithm.

As previously commented, once the segmentations have been computed, the output of TP determines the class of each cell by 
taking the majority vote. For each cell, we also estimate the probability of the given class by taking the proportion of pixels with the 
majority label with respect to the other pixels in the cell that are not classified as background by the TP branch. This is to ensure that 
the probability of the predicted class is always greater than 0.5 since we are dealing with a binary classification problem. Otherwise, 
after thresholding the prediction, incoherent results may appear.

4.3. The graph processing module

Now that the cells segmentation task has been described, this subsection explains how to formulate the problem as a node classifi-

cation problem. subsubsection 4.3.1 discusses how to define a graph from a patch. Later, the graph neural network architectures used 
here for node classification are described in subsubsection 4.3.2 and subsubsection 4.3.3. We have chosen them for their popularity 
and good performance, but notice that there are many other possible architectures that could be used.

4.3.1. From images to graphs

Once cells are defined and localized, they can be interpreted as nodes in a graph and they can be connected based on their 
distances. This approach has its intuition on how expert pathologists diagnose: the criteria for telling if a cell is tumoural or not is 
based not only on the cell information itself but on that of the cells in its surroundings.

Formally, we denote a graph by 𝐺𝑖 = (𝑉𝑖, 𝐸𝑖) where 𝑉𝑖 is the set of nodes associated with the image 𝐗𝑖 and 𝐸𝑖 the set of associated 
edges. Nodes are further identified by their coordinates and a series of attributes 𝐡𝑗 : 𝑉𝑖 = {(𝑥𝑗 , 𝑦𝑗 , 𝐡𝑗 ) ∈ ℝ2 × ℝ𝑑 ∶ 𝑗 ∈ [𝑁𝑖]}. In 
turn, the edges are constructed based on a distance threshold and limiting the degree of the nodes: 𝐸𝑖 = {(𝑗1, 𝑗2) ∈ [𝑁𝑖] × [𝑁𝑖] ∶‖(𝑥𝑗1

, 𝑦𝑗1
) − (𝑥𝑗2

, 𝑦𝑗2
)‖2 ≤ 𝐷, 𝑗2 ∈ 𝑀

𝑗1
}. Where 𝑀

𝑗1
are the 𝑀 closest cells to node 𝑗1. The number of edges resulting from this 

procedure is linear in the number of nodes: |𝐸𝑖| ∈(|𝑉𝑖|). In the experiments reported in section 5, the distance threshold was set to 
200 pixels and the maximum node degree was 10. These values were used so that the graphs only involve one connected component 
and are almost planar (that is, with Euler characteristic close to 2.) Fig. 3 shows an example of such a graph construction. Note that 
the graph is undirected.

It remains to clarify how the attributes 𝐡𝑗 are extracted. Given a cell, several handcrafted features are computed from the cell 
5

contour and its interior. The features we have used are (i) the area of the cell, measured in pixels, (ii) the perimeter of the contour, 
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also measured in pixels, (iii) the standard deviation of the pixel gray level values, and (iv) the RGB histogram quantized into 5 bins 
for each channel. In order to use the predictions of the HoVer-Net TP branch, the probability as described in subsubsection 4.2.3

is also included. The decision of using such features is mainly driven by their simplicity and computational efficiency. We thought 
about using some internal activations of HoVer-Net as extracted features, but HoVer-Net is not trained specifically to extract features 
of each of the cells. It works at pixel level, therefore, to extract features from HoVer-Net activations we would need to train in an 
end to end manner so that the extracted features are learned for each cell. A possible solution would be to use a specific CNN for this 
task or even to add a new branch in HoVer-Net. Moreover, classical computer vision features such as SIFT, SURF or BRIEF could also 
be used. These areas of improvement are left as future work.

4.3.2. Graph convolutional networks

Graph convolutional networks are a type of propagation module [32] which computes the forward pass as an average of the 
nearby nodes. As expressed in [20] the forward pass of a single layer of the graph convolutional network can be defined as

𝐡(𝑙+1)
𝑗

= 𝜎

⎛⎜⎜⎝𝐛
(𝑙) +

∑
𝑘∈𝑗

1
𝑐𝑗𝑘

𝐖(𝑙)𝐡(𝑙)
𝑘

⎞⎟⎟⎠ (4)

where 𝐛(𝑙) ∈ ℝ𝑑 , 𝐖(𝑙) ∈ ℝ𝑑×𝑑 are the bias and weights of the layer, 𝑗 is the set of neighbours of node 𝑗, 𝑐𝑗𝑘 =
√|𝑗 | ⋅ |𝑘| is a 

normalisation factor and 𝜎 is an activation function. The vectors 𝐡(𝑙)
𝑘

are the hidden embeddings of the network for each layer, being 
𝐡(0)

𝑘
= 𝐡𝑘 the initial vector of attributes defined in subsubsection 4.3.1. In the last layer, the weight matrix is of dimensions 2 × 𝑑, the 

bias is a scalar instead of a vector and the activation function is the softmax, since we are dealing with a classification problem.

That describes one layer and to construct the full model we stack several layers. In addition, we use dropout and batch normal-

isation after each layer activation. Since that introduces several hyperparameters, we perform a grid search and choose the set of 
values with the best result in the validation set. The reader can find more details in subsection 5.3. In all cases, the cross-entropy loss 
was used for the optimization.

4.3.3. Graph attention networks

Similar to the graph convolutional network, the graph attention network is also a propagation module [32]. The difference is that 
the weights are computed using the attention mechanism [33]. Mathematically, it was described in [21] as

𝐡(𝑙+1)
𝑗

= 𝜎

⎛⎜⎜⎝
∑

𝑘∈𝑗

𝛼𝑗𝑘𝐖(𝑙)𝐡(𝑙)
𝑘

⎞⎟⎟⎠ (5)

where 𝐖𝑙 ∈ℝ𝑑×𝑑 are the layer weights and 𝛼𝑗𝑘 ∈ℝ are the attention weights which are defined by the following formula

𝛼𝑗𝑘 =
exp(LeakyReLU(𝐚 ⋅ [𝐖𝐡𝑗 ||𝐖𝐡𝑘]))∑

𝑟∈𝑗
exp(LeakyReLU(𝐚 ⋅ [𝐖𝐡𝑗 ||𝐖𝐡𝑟]))

(6)

being 𝐚 ∈ ℝ2𝑑′ , 𝐖 ∈ ℝ𝑑′×𝑑 two learnable projection matrices and || the concatenation operation. The similarity function 𝐚 ⋅
[𝐖𝐡𝑗 ||𝐖𝐡𝑘] can be computed in a space with a different dimensionality 𝑑′ from the embedding space dimensionality 𝑑. Inspired by 
the multi-head attention mechanism proposed in [34], the previous attention mechanism can be extended to 𝐻 heads

𝐡(𝑙+1)
𝑗

=
𝐻�

ℎ=1
𝜎

⎛⎜⎜⎝
∑

𝑘∈𝑗

𝛼𝑗𝑘𝐖
(𝑙)
ℎ
𝐡(𝑙)

𝑘

⎞⎟⎟⎠ (7)

where now 𝐖(𝑙)
ℎ

∈ ℝ𝑑×𝐻𝑑 and in the final layer heads are averaged instead of concatenated, as explained in [21]. Again, as with 
the graph convolution we use several layers, dropout and batch normalisation. We do not optimise the number of heads as it would 
exponentially increase the number of configurations to train.

5. Experiments

5.1. Evaluation metrics

Prior to benchmarking our method we need to address one problem. Segmentation tasks are normally evaluated using pixel-wise 
metrics like the Dice score. However, physicians are interested in counting cells, not pixels. For that reason, our metrics should 
reflect that. The problem comes when the prediction contains cells that were not in the ground truth (GT) or when it misses some 
important cells. Depending on whether we take into account those cells we get two different sets of metrics. One that evaluates the 
quality of the classified cells by ignoring missing cells (without missing cells) and another that tells us how good the classification is 
by acknowledging them (with missing cells).

For the classification metrics without missing cells to be properly computed we have to establish a mechanism for linking every 
6

GT cell with a unique predicted cell. Since the prediction may not be perfect, all the pixels may not be exactly the same as in the 
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Table 1

Comparison of our method with the HoVer-Net baseline on the test set. Upper table: Classi-

fication metrics without missing cells. Lower table: Classification metrics with missing cells. 
The best result is highlighted in bold. The results shown here come from the configuration 
that performed best in the validation set. Convolutional architecture is called GCN, attention 
mechanism is ATT, graph isomorphism network is GIN and graphsage is SAGE. The metrics in 
the ATT model correspond to a constant prediction.

F1 (↑) Acc (↑) AUC (↑) % ERR (↓)

HoVer-Net 57.69% 82.39% 70.48% 11.89%

HoVer-Net+GCN 71.70% 85.15% 80.44% 1.04%

HoVer-Net+ATT 0% 73.24% 50% 26.76%

HoVer-Net+GIN 70.14% 84.85% 79.02% 2.78%

HoVer-Net+SAGE 61.40% 81.73% 73.02% 6.18%

Macro F1 (↑) Weighted F1 (↑) Micro F1 (↑) % ERR (↓)

HoVer-Net 66.06% 72.11% 66.12% 10.22%

HoVer-Net+GCN 72.54% 75.88% 68.33% 0.87%

HoVer-Net+ATT 44.79% 37.19% 58.76% 25.00%

HoVer-Net+GIN 71.86% 75.48% 68.09% 0.96%

HoVer-Net+SAGE 67.18% 72.31% 65.59% 4.49%

GT. For that reason we look at the distance between the centroids of the cells. We match a pair of GT 𝑛𝑗 = (𝑥𝑗 , 𝑦𝑗 , 𝐡𝑗 ) and prediction 
𝑛̂𝑗 = (𝑥̂𝑗 , 𝑦̂𝑗 , ̂𝐡𝑗 ) cells only if 𝑛𝑗 is the closest GT cell to 𝑛̂𝑗 and vice versa. We will refer to these pairings as 1-1 matchings. These 1-1 
matchings are efficiently computed using KD-trees [35].

For the classification metrics with missing cells we construct the confusion matrix from the 1-1 matchings and add one row and 
one column corresponding to an extra class, the background class. The column shows how many cells were missing and the row 
how many extra cells are predicted that should not be there. Note that the use of a GNN cannot change that extra column but it can 
modify the extra row, as it will be further discussed in subsection 5.4.

Finally, given the 1-1 matchings and the extended confusion matrix, both types of classification metrics are computed to fairly 
compare the different networks. We consider the F1 score (F1), accuracy (ACC) and the area under the ROC curve (AUC) because of 
their extended usage as binary classification metrics, since we only have healthy and tumoural cells. Apart from that we include an 
additional metric: the error percentage (% ERR). The error percentage is the absolute difference between the predicted percentage 
of tumoural cells and the real percentage. This metric is computed for both classification metrics and, in the case with missing cells, 
it ignores cells that do not belong to a 1-1 matching. We include this specific metric because it is the main metric of interest for our 
expert pathologists. For the classification metrics without missing cells we compute the Macro, Weighted and Micro F1 score using 
the confusion matrix, since we are trying to assess that our method improves in several aspects.

5.2. Performance evaluation

The result of the comparison can be seen in Table 1. We split the dataset into training, validation and test subsets (60% / 20% / 
20%). The validation set is used for tuning the hyperparameters and the test set for evaluating the best validation model. The metrics 
are reported from the test dataset only and the analysis in the next section is done on the validation set. The test set was chosen 
so that it included patients in which the expert pathologist was most certain of the labels. And all the patches for each patient only 
appeared in one split. Our method clearly outperforms the HoVer-Net baseline showing it has benefited from formulating the problem 
as a node classification problem. The attention mechanism does not perform so well and, by looking at the validation metrics that 
are available in the sequel, it is clear that the model is overfitting.

In order to try and compare with previous methods we also tested GraphSAGE [36] and GIN [37] since they are the architectures 
used in other similar articles that apply GNNs on medical problems. We could not compare directly with those methods because they 
were used for different problems, like WSI classification instead of cell classification, and because their datasets are not public. For 
those reasons we provided our own implementation and evaluated on our own dataset. Our results suggest that the convolutional 
architecture outperforms the GraphSAGE architecture while being similar to the graph isomorphism network. In all the cases except 
for the attention network the GNNs are proven to be beneficial over simply using HoVer-Net.

5.3. Hyperparameter analysis

The exact graph neural network architecture depends on three hyperparameters: number of layers, dropout ratio and batch 
normalisation. We performed a grid search on the validation set to obtain the best configuration. The result of such optimisation 
is visualised in Fig. 4 and Fig. 5. We can observe in Fig. 4 that the usage of batch normalisation after each layer activation is only 
beneficial for the convolutional and GraphSAGE architectures and not always for the attention and GIN mechanisms. However, the 
impact of batch normalisation is not decisive on the result, it only slightly alters the performance. In Fig. 5 we can also see the 
variance of the model when using different dropout ratios. In the convolutional architecture dropout does not have a big effect, 
7

but in the attention architecture an excessive amount of dropout can cause a large drop in performance similar to what happens 
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Fig. 4. Comparison of the effect that applying batch normalisation has on the result for the four graph architectures on the validation set. Plots show the maximum 
value that was obtained on the validation set across all the different dropout ratios. X-axis shows the number of layers of the model.

with GraphSAGE. The GIN architecture lies in the middle, it is affected but not drastically. Graph convolution performs well for all 
the different combinations of hyperparameters but the other networks can be more difficult to train appropriately. Overall the best 
configurations were
8

• Number of layers: 5 (GCN), 15 (ATT), 5 (GIN), 1 (SAGE)
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Fig. 5. Comparison of the effect that different dropout ratios have on the result for the four graph architectures on the validation set. X-axis shows the different 
dropout ratios. The box plots display the variance of the model with respect to the other hyperparameters, which are the number of layers and the usage of batch 
9

normalisation.
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Table 2

Result of training an extra head to correct cells predicted by HoVer-Net that do not exist. The GCN trained with that extra head is called 2-heads. Left table: 
Classification metrics without missing cells. Right table: Classification metrics with missing cells.

F1 (↑) Acc (↑) AUC (↑) % ERR (↓)

HoVer-Net 57.69% 82.39% 70.48% 11.89%

HoVer-Net+GCN 71.70% 85.15% 80.44% 1.04%

2-heads 66.95% 84.29% 76.41% 5.98%

Macro F1 (↑) Weighted F1 (↑) Micro F1 (↑) ERR (↓)

HoVer-Net 66.06% 72.11% 66.12% 10.22%

HoVer-Net+GCN 72.54% 75.88% 68.33% 0.87%

2-heads 70.34% 74.70% 67.64% 3.96%

Fig. 6. Comparison of the result of our method with respect to the HoVer-Net baseline and the ground truth. Cell classes are blended into the image. Blue means 
tumoural and green means healthy.

• Dropout ratio: 0.9 (GCN), 0 (ATT), 0.6 (GIN), 0 (SAGE)

• Batch normalisation: True (GCN), False (ATT), False (GIN), True (SAGE)

5.4. Correcting segmentation

We have shown that by stacking a GNN on top of HoVer-Net we can improve the classification of the cells. In theory, it is 
also possible to improve the segmentation. Although it is impossible to generate new cells we can train an extra head in the last 
layer to predict if a given cell is real or not. As mentioned in subsection 5.1 we can modify the first row of the confusion matrix 
corresponding to extra cells but not the first column corresponding to missing cells. This way we can eliminate cells that were 
predicted by HoVer-Net but in reality do not exist. The result of such experiment is on Table 2. Unfortunately our approach did 
not work. The problem here is that the extra head added is trying to solve a highly imbalanced problem. There are very few extra 
cells that need to be removed. Since we are training the two heads simultaneously, the head in charge of the classification ends up 
dominating the training and the head in charge of detecting extra cells just predicts every cell as a valid one. For that reason the 
result is just slightly worse.

5.5. Computational cost

All the experiments were carried out using a NVIDIA RTX 3090 GPU. The experiments on Table 1 took 3 hours and 48 minutes 
to complete. The majority of the computation comes from training the HoVer-Net backbone and from trying many different graph 
configurations. Note however that training a single GNN configuration takes just a few minutes. The reduction of dimensionality that 
comes from only working with node features makes the algorithm more memory and computationally efficient. With 24GB of RAM 
the HoVer-Net could only be trained by dividing the 1024 by 1024 patches into even smaller images. However, we could train 32 
GNNs at the same time in parallel with the whole graph without needing to split it into subgraphs. This makes our method more 
scalable than previous convolutional neural network based algorithms.

6. Discussion

6.1. Qualitative study

Graph neural networks introduce a different inductive bias to the problem, this means that the model has a different type of 
invariant and, therefore, it is taking advantage of a different symmetry. The purpose of this section is to illustrate how that bias 
is affecting the solution. By modelling the problem with a graph and applying a message passing network to it, we are implicitly 
assuming one hypothesis. We are assuming that if a cell lives surrounded by tumoural cells it is quite likely that it is also a tumoural 
cell. A method that takes that hypothesis into account should try to form groups of cells and not predict any isolated cell; that is, a 
healthy cell surrounded by tumoural cells of vice versa. In Fig. 6 we can see the effect of using GNNs. In that image there are three 
clearly separated groups of cells. HoVer-Net does not internally model that structure and simply tries to classify each pixel based on 
10

their surroundings. The GCN on the other hand operates directly over the graph. That graph contains three subgraphs where cells in 



Heliyon 10 (2024) e28463J. Pérez-Cano, I. Sansano Valero, D. Anglada-Rotger et al.

Fig. 7. Comparison of the results in a patch containing a cilium. The cilium is the thin vertical line that is located at the left of the biggest group of cells.

Fig. 8. Patch containing a cilium. It has the graph representation overlayed on top. The cilium is the vertical purple filament at the centre left of the image.

a given subgraph are more connected among them than with other cells outside this subgraph. That piece of information gives the 
model the advantage to better classify the cells.

A second example involving cilium can be seen in Fig. 7. The cilium is a filament that mediates the critical function of mucociliary 
clearance, cleansing the airways of inhaled particles and pathogens [38]. This structure is specially difficult to classify by HoVer-Net 
because the cells are visually very similar to other tumoural cells. The reason they are healthy is because of the presence of the 
cilium. HoVer-Net misclassifies them because it misses contextual information. Fig. 8 illustrates why the GCN has an advantage in 
this situation. We can see that the free space left by the bronchiole (the white space) has created a particular graph structure. Even 
though the cilium itself is not present in the graph directly, it interacts with the rest of the tissue affecting the graph topology 
indirectly. Therefore, the graph provides more information than the initial pixel-level analysis of the image, and therefore the GNN 
can better classify the cells.

7. Conclusions

In this paper we have introduced a new way of modelling the cell nuclei classification problem for lung tissue. We have validated 
the idea that the property of being a tumoural cell highly depends on the surrounding cells and shown that our method outperforms 
previous state of the art models. However, not every graph architecture performs equally well. Graph convolutions work well 
independently from the hyperparameters chosen while the attention mechanism tends to overfit.

For the sake of reproducibility we provide the source code used to obtain the results, which is available on GitHub, the pretrained 
models which are uploaded to Hugging Face and the dataset which is uploaded at Zenodo.

As future work it remains to find an efficient way to train everything end to end. Some of the challenges to overcome are 
the efficiency of running the CNN per each cell at each iteration and how to backpropagate the gradient over the intermediate 
morphological steps. One possible approach could be to parallelise the computation using techniques similar to that of anchor points 
and to approximate the morphological operations by some differentiable functions. It is also left as future work the problem of 
training an extra head of the graph network to remove extra cells predicted by the backbone segmentation model.

Finally, we would like to mention that it is worthwhile investigating the application of this approach of cell nuclei segmentation 
11

and classification to other types of cancer.
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