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Abstract—This paper presents a fast Super-Resolution (SR)
algorithm based on a selective patch processing. Motivated by
the observation that some regions of images are smooth and
unfocused and can be properly upscaled with fast interpolation
methods, we locally estimate the probability of performing a
degradation-free upscaling. Our proposed framework explores
the usage of supervised machine learning techniques and tackles
the problem using binary boosted tree classifiers. The applied
upscaler is chosen based on the obtained probabilities: (1) A
fast upscaler (e.g. bicubic interpolation) for those regions which
are smooth or (2) a linear regression SR algorithm for those
which are ill-posed. The proposed strategy accelerates SR by
only processing the regions which benefit from it, thus not
compromising quality. Furthermore all the algorithms composing
the pipeline are naturally parallelizable and further speed-ups
could be obtained.

I. INTRODUCTION

The desire for higher resolutions has been constantly present
in digital imaging, producing a fast succession of de facto stan-
dards with increasing resolutions. Nyquist for unidimensional
signals and Petersen–Middleton for multidimensional signals
(e.g. images) [1] theorems point out that, ideally, there is a
maximum frequency we are able to reconstruct for each given
lattice used in the sampling process. Violating this constraint
would incur into aliasing, thus having to filter out those non-
compliant frequencies.

While increasing resolution enables a wider bandwidth,
capturing devices do not ensure acquiring a signal that exploits
it. Two of the most common approaches to improve resolution
in the capture side are: (a) Increasing the size of the sensor and
(b) increasing the density of photodetectors. Although both
of them will yield a greater pixel count, for the same lens
conditions in the case of (a) the larger size of the sensor results
in a wider field of view, which can be bypassed applying
a certain magnification. This will result in shallower depth
of field, and therefore, more content of the image unfocused
and blurry. In industry, 4K cameras using 35mm full-frame
sensors are a good example of this first approach. For (b),
the amount of sensed light per pixel decreases, having to deal
with a noisier output or correcting it with a larger lens aperture,
resulting again in a shallower depth of field. In addition, when
dealing with moving scenes (e.g. video sequences) usually a
certain motion blur is introduced by the exposure time of the
camera.

Super-resolution (SR) algorithms have improved the quality
of upscaled images compared to the early interpolation-based
methods (e.g. bicubic, Lanczos). We refer the reader to [2] for
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(b) SJTU dataset

Fig. 1: Example of how the output of the classifier α is
distributed in two images from two different datasets. Higher
values of α (red colors) indicate higher likelihood of degra-
dation appearing when moving to different scales, whereas
low values (blue color) indicate the likelihood of realizing a
degradation-free scaling.

a current state of the art overview of SR methods. However,
SR quality improvements come at a higher computational cost,
which limits SR usage in fast applications. Relating this SR
higher computational cost to the previously exposed optical
and technological limitations in the capture side, whenever
those unfocused and blurry areas are upscaled with SR there
is little or no benefit. Such areas are oversampled enough to
be well-posed for the common fast interpolation methods.

In this paper we introduce an algorithm that tackles this
problem by learning how to recognize which regions of
an image do benefit from more complex SR methods and
which regions can be upscaled with common fast interpolation
methods without compromising quality. We propose a fast,
probabilistic machine learning framework to efficiently select
the areas of the image to apply SR. Exploiting the widely
used example-based prior [3], [4], we train a system able
to recognize which patches of an image can be properly
upscaled with a fast upscaler, modeled as a certain probability
obtained in testing time, as shown in Figure 1. The proposed
framework is flexible and allows to adapt the training for
different applications and scenarios. It is also fast, applicable
to any SR technique and easily parallelizable.

II. PROPOSED METHOD

Let C denote a continuous-space image with limited-band-
width spectrum F(C), from which we obtain a discrete high
resolution image X whose discrete Fourier transform F(X)
is analogous to F(C). Let a given image Y denote a degraded
version of X which can be modeled as a downsampled and
low-pass filtered image Y = ↓ (X ∗ hs). There are several fac-
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Fig. 2: Overview of the proposed method. For each patch in the testing image, a probability of potential degradation is estimated
through a boosted tree classifier. Depending on this probability, a fast bicubic upscaler or a linear regressor is applied.

tors undermining the proper recovering of X from Y , the most
remarkable being the shrinkage of spectral support due to the
new sampling lattice, but also the attenuation of frequencies
close to the Nyquist limit due to the non-ideal shape of hs and
the upscaling method υ(Y ) used at the reconstruction stage.
Outside the ideal mathematical framework, these factors are
flexible, changing, and most importantly, unknown. Estimating
them can be challenging since the observed image Y has
already suffered the loss of information.

This paper tackles this problem by relying in learning to
blindly detect (i.e. without the source image X) degradation
in Y . By training the system with real-world examples where a
good reconstruction is possible, we learn the sampling limits of
our whole degradation-sampling-reconstruction pipeline X̃ =
υ( ↓ (X ∗ hs)).

A. Boosted Tree Classifier

Among the diverse machine learning approaches, we ad-
dress the problem as a binary classification one, i.e. we must
detect whether degradation is present or not. We find in
recent object-detection literature the growing use of boosting
algorithms when speed is an important concern [5]. This is a
convenient choice since they have few parameters to tune and
offer a simple and fast scheme while still providing state-of-
the-art classification performance. Boosting algorithms create
an ensemble of several weak learners (i.e. learners which are
slightly better than random guessing) which are trained using
weighted samples to focus on difficult examples and have a
weighted classifier vote. From within the boosting algorithm
family, we selected a modified Adaboost (see details in [6],
[7]) with depth-2 decision trees as weak learners.

Let lower case letters (e.g. x, y) denote patches ex-
tracted from images in high case letters (e.g. X,Y ). The
training algorithm takes the training pairs {(yj , xj)} =
(y1, x1), . . . , (ym, xm) as input. In order to transform the
training pairs {(yj , xj)} into labeled training instances
{(yj ,Λj)} where Λj = {−1, +1}, a comparison with a
certain threshold ε is performed:

X̃ = υ(Y )

Λj =

{
−1, ‖xj − x̃j‖22 ≤ ε
1, ‖xj − x̃j‖22 > ε

(1)

The Adaboost classifier can be trained at the input scale
(i.e. the example pairs {(yj ,Λj)}) or at the upper scale (i.e.
the upscaled pairs {(x̃j ,Λj)}):

Input scale: By training the Adaboost classifier with the
labeled input scale patches, we are able to work with a smaller
patch size Lp and a lower number of image pixels. The main
drawback of this approach is that subpixel shifts might occur
when converting coordinates and patch sizes across scales.

Upper scale: On the other hand, if the Adaboost classifier
is trained with upscaled patches (e.g. patches upscaled via
bicubic interpolation) the training takes place in the same scale
grid. This also means that, for a given upscaling factor s, the
dimensionality of the classification problem increases to L2

ps
2.

The choice of scale should be consistent with the application
requirements, e.g. some applications as the cross-scale self-
similarity SR usually work in the upscaled grid.

In testing time, the probability distribution p(Λ | y) is
obtained thanks to the leaf predictors of the boosted trees,
and the decision rule is defined as the logarithmic ratio
α = log p(Λ=1|y)

p(Λ=−1|y) > Ω, where α values above threshold Ω
indicate degradation in the scaling process and values below
Ω indicate a proper scaling output.

B. Upscaling and Super-Resolution

A simple and fast upscaler υ1 is applied then to regions
of the image which are smooth and well-posed and the more
computationally costly SR upscaler υ2 only for textured re-
gions where there is significant expected improvement. Figure
2 shows an overview of the complete process. As for the choice
of the computationally inexpensive upscaler υ1, we find in
the bicubic kernel upscaler a fast and vastly used solution.
Regarding the more costly SR upscaler υ2, we select a linear
regression-based SR approach [8] . In such approaches, the
objective of training a given regressor R is to obtain a certain
mapping function from LR to HR patches. From a more
general perspective, low-resolution (LR) patches form an input
manifold M of dimension m and high-resolution (HR) patches
form a target manifold N of dimension n. Formally, for
training pairs (xi, yi) with xi ∈ M and yi ∈ N , we would
like to infer a mapping Ψ : M ⊆ Rm → N ⊆ Rn. We obtain
the regressor by solving the following minimization:
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(a) Kodak dataset
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(b) Leibniz dataset
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(c) SJTU 4k dataset

Fig. 3: Recall, precision, F measure and positive rate averages for different decision rule thresholds Ω tested in three different
datasets. The recall measure can be interpreted as a quality measure while the positive rate can be interpreted as a computational
cost measurement (e.g. number of patches processed by the SR upscaler). The desired trade-off between these two measurements
can be selected with the decision rule Ω. Note also that the presence of sharp content, represented by the GT positive rate,
decreases fastly for increasing resolutions.

min
β
‖y −Dlβ‖22 + λ ‖β‖2 , (2)

where Dl is the LR dictionary selected for the training, from
which a HR counterpart Dh is known. This minimization
problem has a closed-form solution β = (DT

l Dl+λI)−1DT
l y,

which we can furthermore apply to the HR dictionary Dh to
obtain a matrix-shaped linear regressor

R = Dh(DT
l Dl + λI)−1DT

l , (3)

which in testing time only needs to be multiplied by every
input patch as x = R y.

III. RESULTS

In this section we present experimental results of the
classification performance in order to support the viability of
the chosen Adaboost approach. We also illustrate the benefits
of our proposed SR algorithm, providing running times and
objective quality measures of our method and comparing
it to the well-known Sparse SR work of Yang. et al. [9].
Additionally, we present the usage of the framework as a
tool to better understand and assess the performance of SR
algorithms by plotting a map of the probabilities pi(Λ | y) in
the upscaled image.

A. Cross-validation

We train the Adaboost classifier with 256 depth-2 trees with
60 images from the Berkeley Segmentation Dataset [10], using
the full resolution as the original references {X}, applying a
bicubic downscale by s = 2 to obtain the degraded versions
{Y } and generating the training labels with a threshold ε
corresponding to a PSNR of 34 dB, which we obtained
experimentally, i.e. the reconstruction quality is still good but
some degradation can be observed. The patch size is Lp = 5
and the training and testing is performed on the input scale
with the example pairs {(yj ,Λj)}, setting as positive training

Recall Pos rate GT pos. rate time (s)

Kodak 0.71 0.43 0.50 0.02

Leibniz 0.80 0.33 0.23 0.04

SJTU 0.85 0.19 0.07 0.13

TABLE I: Cross validation and execution time. See Section
III-A for more details.

examples those which can not be properly reconstructed using
bicubic as the upscaling method υ(Y ). All the experiments
were run on a Intel Xeon E5-1620 (10M Cache, 3.60 GHz),
with a MATLAB and C++ implementation [7], where only the
Adaboost code and the matrix multiplication are parallel. The
training process with about 2M patches takes 50s. In order to
support the generalization of the method we extract ground-
truth (GT) labels from three different datasets: (a) Kodak
dataset, (b) 9 sharp images obtained from the internet with a
resolution of 1920x1080 (referred as Leibniz dataset) and (c)
10 images from the Rush Hour sequence of SJTU 4k dataset
[11].

Figure 3 shows the difference in performance for differ-
ent probability ratio thresholds. The recall measure can be
interpreted as a quality measure (i.e. how many degraded
patches are actually classified as such) while the positive rate
can be interpreted as a computational cost measurement. The
logarithmic probability ratio threshold Ω should be selected
application-wise as a trade-off between these two measures.
It is important to remark that as stated in the introduction,
when increasing the image resolution, the presence of sharp
content decreases (less than 10% in Figure 3c) and higher
recalls are obtained at little computational cost. Setting the
probability ratio threshold to Ω = 0 is a good trade-off across
the three datasets, specially for our goal application which is
4k upscaling. Table I shows recall, positive rates and execution
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PSNR (dB) time (s) PSNR (dB) time (s) % of υ2 (SR) patches speed up

SJTU 4k dataset 40.93 7085.6 42.50 5.98 19.07% ×1184.88

TABLE II: Running times and PSNR for SJTU dataset (2K to 4K upconversion).

Fig. 4: Results of an interactive ×2 zooming for a 4K image
from the SJTU dataset (shown in the left red rectangle),
accompanied by the upscaler decision mask (shown in the right
red rectangle, black is bicubic and white is SR). Better viewed
zoomed in.

times for this configuration.

B. Super-Resolution performance
In this section we test the performance of the proposed SR

algorithm, using the presented selective patch processing stage
based in boosting trees, linear regression and bicubic inter-
polation. We compare the advantages of using our selective
scheme against the well-known sparse SR method of Yang et
al. [9], which is a computationally intense method. We select
the SJTU 4k dataset in an attempt to better represent a realistic
scenario of high-resolution images. An upscaling step of s = 2
is performed, showing the current problem of upscaling legacy
cinema content from 2K to 4K.

In Table II we show the PSNR and execution times.

C. Probability-ratio map
In Figure 1 we show the color mapping of the classifier

output α for two images for a visual qualitative evaluation. The
images have been processed in the same conditions stated in
Section III-A and they are consistent and directly comparable
with the results shown in Figure 3. Smooth and blurry regions
appear with low values of α, while the sharp edges and
textured areas show higher values.

This probability-ratio maps could be accompanied with
PSNR values of an upscaled image in order to better un-
derstand where the method is performing better or the most
challenging regions of the image and how the algorithm
performs at such regions. In a similar way, a new metric can
be obtained by weighting in a pixel basis the PSNR by the
correspondent probability value, shifted to a range of (0, 1)
for this purpose.

IV. CONCLUSIONS

We proposed a new resolution assessment framework which
learns to blindly discern if a patch will be degraded when
converting it to an upper scale. We train binary boosted tree
classifiers with examples of patches, evaluating their similarity
when moving across scales and labeling them accordingly. By
learning from examples, the framework additionally covers
degradations which are complex to model analytically. Thanks
to boosting classifiers’ simple scheme, the classification stage
runs in about 0.15s for a 2Mpixels image (e.g. industry
standards FullHD, 2K), which makes it suitable for fast
applications. We then select between a bicubic upscaler and a
linear regression-based SR algorithm. The experimental results
reflect the viability of the selected machine learning approach
and the flexibility obtained by modifying the threshold Ω,
which controls a trade-off between speed and quality. The
obtained PSNRs are competitive, and the measured times are
orders of magnitudes faster, enabling interactive zoom-in for
2K images.

REFERENCES

[1] D. P. Petersen and D. Middleton, “Sampling and reconstruction of wave-
number-limited functions in n-dimensional euclidean spaces,” Informa-
tion and control, vol. 5, pp. 279–323, 1962.

[2] C. Dong, C. Loy, K. He, and X. Tang, “Learning a deep convolutional
network for image super-resolution,” in ECCV 2014, ser. Lecture Notes
in Computer Science, 2014, vol. 8692.

[3] W. Freeman, T. Jones, and E. Pasztor, “Example-based super-resolution,”
Computer Graphics and Applications, IEEE, vol. 22, no. 2, pp. 56–65,
2002.

[4] J. Yang, Z. Lin, and S. Cohen, “Fast image super-resolution based on
in-place example regression.” 2013, pp. 1059–1066.

[5] R. Benenson, M. Mathias, R. Timofte, and L. Van Gool, “Pedestrian
detection at 100 frames per second,” CVPR, 2012.

[6] C. Zhang and P. Viola, “Multiple-instance pruning for learning efficient
cascade detectors,” in Advances in Neural Information Processing Sys-
tems, 2008, pp. 1681–1688.

[7] P. Dollár, “Piotr’s Image and Video Matlab
Toolbox (PMT),” http://vision.ucsd.edu/
∼pdollar/toolbox/doc/index.html.

[8] R. Timofte, V. D. Smet, and L. V. Goool, “Anchored neighborhood
regression for fast example-based super-resolution,” in Proceedings
IEEE International Conference on Computer Vision, 2013, pp. 1920–
1927.

[9] J. Yang, J. Wright, T. S. Huang, and Y. Ma, “Image super-resolution
via sparse representation,” IEEE Trans. on Image Processing, vol. 19,
no. 11, 2010.

[10] D. Martin, C. Fowlkes, D. Tal, and J. Malik, “A database of human
segmented natural images and its application to evaluating segmentation
algorithms and measuring ecological statistics,” in Proc. 8th Int’l Conf.
Computer Vision, vol. 2, 2001, pp. 416–423.

[11] L. Song, X. Tang, W. Zhang, X. Yang, and P. Xia, “The SJTU 4k video
sequence dataset,” QoMEX, 2013.


