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Abstract
The development pace of high-resolution displays has been so fast in the recent
years that many images acquired with low-end capture devices are already outdated
or will be shortly in time. Super Resolution is central to match the resolution of
the already existing image content to that of current and future high resolution
displays and applications. This dissertation is focused on learning how to upscale
images from the statistics of natural images. We build on a sparsity model that uses
learned coupled low- and high-resolution dictionaries in order to upscale images.
Firstly, we study how to adaptively build coupled dictionaries so that their content

is semantically related with the input image. We do so by using a Bayesian selection
stage which finds the best-fitted texture regions from the training dataset for each
input image. The resulting adapted subset of patches is compressed into a coupled
dictionary via sparse coding techniques.
We then shift from `1 to a more efficient `2 regularization, as introduced by Timo-

fte et al. [74]. Instead of using their patch-to-dictionary decomposition, we propose
a fully collaborative neighbor embedding approach. In this novel scheme, for each
atom in the dictionary we create a densely populated neighborhood from an exten-
sive training set of raw patches (i.e. in the order of hundreds of thousands). This
generates more accurate regression functions.
We additionally propose using sublinear search structures such as spherical hash-

ing and trees to speed up the nearest neighbor search involved in regression-based
Super Resolution. We study the positive impact of antipodally invariant metrics for
linear regression frameworks, and we propose two efficient solutions: (a) the Half
Hypersphere Confinement, which enables antipodal invariance within the Euclidean
space, and (b) the bimodal tree, whose split functions are designed to be antipodally
invariant and which we use in the context of a Bayesian Super Resolution forest.
In our last contribution, we extend antipodal invariance by also taking into con-

sideration the dihedral group of transforms (i.e. rotations and reflections). We study
them as a group of symmetries within the high-dimensional manifold. We obtain
the respective set of mirror-symmetry axes by means of a frequency analysis, and we
use them to collapse the redundant variability, resulting in a reduced manifold span
which, in turn, greatly improves quality performance and reduces the dictionary
sizes.
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Kurzfassung
In den letzten Jahren ist die Entwicklung von hochauflösenden Displays so rasant
verlaufen, dass viele niedrigauflösende Bildaufnahmegeräte entweder schon überholt
sind oder es bald sein werden. Super Resolution ist essentiell, um die Auflösung der
existierenden Bilder, bzw. Bildinhalte auf die aktuellen und zukünftigen hochauf-
lösenden Displays und Apps zu übertragen. Diese Dissertation beschäftigt sich mit
dem lernen des Upscalings von Bildern aus Statistiken realer Bilder. Die Basis hier-
bei bildet ein sparsity-Modell, dass bereits gelernte, gekoppelte hoch- und niedrig
auflösende Wörterbücher verwendet, um damit Bilder hochzuskalieren.
Als erstes beschäftigt sich diese Arbeit damit, wie man gekoppelte Wörterbücher

adaptativ aufbaut, so, dass ihr Inhalt semantisch mit dem jeweiligen Eingangsbild
verknüpft wird. Dies geschieht, indem eine Bayes-Auswahlstufe verwendet wird, wel-
che die am besten passenden Texturbereiche aus dem Trainings-Datensatz für jedes
neue Eingangsbild auswählt. Das daraus resultierende angepasste Untermenge von
Patches wird anschließend über das Sparse-Coding Techniken in ein gekoppeltes
Wörterbuch komprimiert.
Statt einer `1 Regularisierung, nutzen wir die effizientere `2 Regularisierung, wie

von Timofte et al. [74] vorgeschlagen. Anstatt ihrer patch-to-dictionary-Zerlegung,
wird ein vollstandig kollaborativer Ansatz zur Nachbarschaftseinbettung vorgeschla-
gen. In diesem neuen Modell schaffen wir für jedes Atom des Wörterbuchs eine dicht
besetzte Nachbarschaft die sich aus dem vorherigen umfangreichen Trainingsdaten-
satz der Roh-Patches ergibt. Dies generiert genauere Regressionsfunktionen.
Zusätzlich wird vorgeschlagen eine sublineare Suchstruktur, z. B. sperical hashing

und Bäume zu nutzen, um die Suche nach dem nächsten Nachbarn zu beschleu-
nigen, die in der regressions-basierten Super-Resolution genutzt wird. Wir analy-
sieren die positiven Auswirkungen der antipodal invarianten Metriken für lineare
Regression-frameworks und zwei effiziente Lösungen werden vorgeschlagen: a) das
Half-Hypersphere Confinement, was die antipode Invarianz innerhalb des Euklidi-
schen Raums ermöglicht sowie b) den bimodal Baum, dessen gesplittete Funktionen
so angelegt sind, dass sie antipodal invariant sind. Diese werden im dann im Kontext
eines „Bayeschen Super Resolution forest“ angewendet.
Als letzten Beitrag wird die antipodale Invarianz ausgeweitet, indem die Dieder-

gruppe der Transformationen (d.h. Rotationen und Reflexionen) ebenso mit einbezo-
gen werden. Diese werden als eine Symmetriegruppe in der hochdimensionalen Man-
nigfaltigkeit der Patches genauer betrachtet. Die jeweiligen Spiegelsymmetrieachsen
werden durch eine Frequenzanalyse bestimmt und anschließend verwendet, um die
redundanten Variabilitäten zusammenzufassen. Dies mündet in einer Reduktion des
Spannraums der Mannigfaltigkeit, was in einer verbesserten Performanzqualität re-
sultiert und gleichzeitig die Größe des Wörterbuchs verkleinert.
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Chapter 1Introduction

1.1 Problem statement
Applications delivering low resolution images are diverse (e.g. surveillance, satellite,
live streaming) and there is also abundant multimedia content whose resolution is
not up-to-date with current display capabilities. To fill in this gap, Super Resolu-
tion (SR) techniques are used. SR aims to obtain a high-resolution image from its
degraded low-resolution observation, eventually surpassing the limits of the original
capture device. SR deals with a deeply ill-posed problem, and therefore requires
further constraints or prior knowledge in order to make the problem tractable.

SR is usually differentiated from other simpler upscaling methods (e.g. bilinear,
bicubic [38], Lanczos [80] interpolation) by its high-quality performance, which yields
not only lower objective error measurements, but also more natural and pleasant
images. Therefore, we can arguably state that quality is the leading characteristic of
SR. Nonetheless, there are also other factors of major importance for the successful
wide adoption of these techniques. SR as an end application requires processing
considerable amounts of data due to the ongoing shift to higher frame rates and
spatial resolutions in video content. When used as a pre-processing step in other
computer vision problems (e.g. object detection, object classification [12, 50]), the
access to computing resources is limited and the processing times should not cause
great impact in the overall pipeline. For both situations, speed and memory size
becomes crucial.
In this thesis we tackle the single-image SR problem aiming to improve the afore-

mentioned three-fold defining factors: quality, speed and memory usage.

1.2 Motivation
The application of SR to images has been a very active research field in the recent
years, with multiple applications involving diverse fields. As of today, it has been
used in cinema production business when there is a need to adapt content to dif-
ferent cinema specifications (i.e. different resolutions and frame rates [69, 72]), in
video-games live streaming [71], in microscopy imaging [34], in photography post-
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Figure 1.1: SR is an ill-posed problem, i.e. the High-Resolution (HR) patch has fewer
constraints than unknown variables and therefore has not a unique solution.

processing [18, 23, 27, 35, 53, 55] and in Magnetic Resonance Imaging [81], just to
name a few. We show some examples of the improved quality obtained with SR in
Figure 1.2.
Not only SR is useful as an end application, but also it can help other computer

vision problems whenever the resolution is not sufficient for e.g. object detection,
scene understanding or feature extraction [50, 12]. Even content which is broadcast
today by major television channels requires further upscaling, as they can not match
the latest displays capabilities (e.g. 4k displays). This tendency is as of today a
reality and it is not uncommon to find displays which are already equipped with
SR algorithms.

1.3 Challenges
Super Resolution presents many challenges due to its ill-posed nature, i.e. there is
not a unique solution for the unknown pixel values of the HR image (see Figure 1.1).
The ground of such behavior can be explained by means of the Nyquist-Shannon
sampling theorem [46], in which the sampling rate fs for a perfect reconstruction
should be at least two times the maximum frequency of the signal, i.e. fs > 2fmax.
If this sampling frequency is not fulfilled and the non-compliant frequencies are not
filtered out, the resulting image might contain aliasing. Downscaling an image can
be seen as a lowering the sampling of frequency f ′s < fs. Even when the image does
not contain aliased frequencies, if there has been a downscaling operation, a new
Nyquist frequency f ′max has been imposed and as a result some frequencies from the
upper bands have been lost.
When we upscale a previously downscaled degraded image Y , we are not able to

recover the data loss that occurred during the downscaling, as those frequencies are
beyond the f ′max. The common approach in classic image processing is to assume
a smooth prior in the reconstruction. This usually translates into averaging over
neighboring samples (e.g. bilinear, bicubic functionals), which as expected, produces



1.4 Related work 3

Bicubic Super Resolution Ground Truth

Figure 1.2: Image upscaling using bicubic interpolation and one our proposed SR
algorithms (see details in Chapter 8).

overly smooth solutions, which highly differ from the original image X. We show
an illustrative example of such behavior in Figure 1.3.

SR aims to improve the prediction of that unknown data by the progressive sophis-
tication of priors. By learning the correspondence between degraded Low-Resolution
(LR) and ground truth (HR) patches we are able to infer the missing frequencies from
the available cues. As other machine learning approaches, example-based SR shares
some of the fundamental challenges of statistical learning: designing a learning
scheme that does not under- or over-fit and that generalizes properly for all possible
patch variations.

1.4 Related work
Early approaches to SR showed that it was possible to reconstruct higher-resolution
images by registering and fusing multiple images [79], thus pioneering a vast amount
of approaches on multi-image SR, often called reconstruction-based SR. This idea was
further refined, among others, with the introduction of iterative back-projection for
improved registration by Irani and Peleg [37], although further analysis by Baker
and Kanade [2, 3] and Lin and Shum [42, 43, 84] showed fundamental limits on
this type of SR, mainly conditioned by registration accuracy. Learning-based SR,
also known as example-based, overcame some of the aforementioned limitations by
avoiding the necessity of a registration process and by building the priors from image
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Figure 1.3: Spectrum magnitude for several images containing only horizontal fre-
quencies from an the original image X (top left), the downscaled image Y (bottom
left) and the reconstructed HR images via bicubic and SR (right). Due to the new
Nyquist frequency imposed during downsampling (f ′max) there is several informa-
tion loss. Bicubic interpolation can not properly reconstruct all that information
and generates distorsion in the upper band of frequencies. SR, however, manages to
correctly recover several harmonics with lesser distortions.

statistics. The original work by Freeman et al. [25, 24] aims to learn from patch- or
feature-based examples to produce effective magnification well beyond the practical
limits of multi-image SR.
Example-based SR approaches using dictionaries are usually divided into two

categories: internal and external dictionary-based SR. The first exploits the strong
self-similarity prior. This prior is learnt directly from the relationship of image
patches across different scales of the input image [28].
External dictionary-based SR uses other images to build their dictionaries. A

representative widely used approach is the one based on sparse decomposition. The
main idea behind this approach is the decomposition of each patch in the input
image into a combination of a sparse subset of entries in a compact dictionary. The
work of Yang et al. [95] uses an external database composed of related low and
high-resolution patches to jointly learn a compact dictionary pair. During testing,
each image patch is decomposed into a sparse linear combination of the entries in
the LR dictionary and the same weights are used to generate the HR patch as a
linear combination of the HR entries. The work presented in this thesis builds on
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the sparsity model of Yang et al. [95] and regression-based approaches described in
more detail in Chapters 2 and 3.

1.5 Contributions
The contributions of this thesis are:

1. We propose an algorithm to build semantically adaptive dictionaries based on
the Naive Bayes assumption (Chapter 4).

2. We introduce a dense, local, collaborative `2-regularized training scheme for
regression-based SR which results in improved quality (Chapter 5).

3. We adapt the use of Spherical Hashing to the nearest neighbor search problem
of piece-wise linear regression for SR (Chapter 5).

4. We study the positive impact of antipodally invariant metrics for linear re-
gression models and recommend its usage. We propose the efficient Half Hy-
persphere Confinement transform which embeds antipodal invariant metrics
in the Euclidean space and thus enables other search algorithms, e.g. Spherical
Hashing, to be antipodally invariant (Chapter 6).

5. We propose a bimodal tree split function which can be used both for unsu-
pervised clustering and fast inference in regression-based SR. We propose to
use those bimodal trees within a regression forest, which adaptively selects
the best tree for each patch through a Naive Bayes efficient selection stage
(Chapter 7).

6. We analyze the patch-manifold symmetries induced by the dihedral group of
transforms (i.e. reflections and rotations) and design a low-complexity trans-
form that collapses the symmetries induced by both the dihedral group and
the antipodes (Chapter 8).

1.6 Overview
This thesis is organized following an incremental line of contributions. The fun-
damentals are described in Chapters 2 and 3. The contributions of the thesis are
presented in Chapters 4-8.
Each chapter has an introduction and a closing summary and discussion. All the

experimental results are included in a single chapter at the end of the dissertation.
Some minor validation tests are included in each chapter when necessary for the
context of the method description.
The thesis outline is:
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• Chapter 1: Introduction. Problem statement, motivation, challenges, re-
lated work and contributions.

• Chapter 2: Sparse dictionaries for SR. We describe the sparse SR model of
Yang et al. [94, 95] and how Zeyde et al. [97] improved some of its complexity
bottlenecks. This thesis builds on top of the dictionary model presented in
this chapter.

• Chapter 3: Anchored Neighborhood Regression. We discuss the work
of Timofte et al.[74] which is highly relevant to the rest of contributions of this
thesis.

• Chapter 4: Bayesian approach to adaptive dictionaries. We intro-
duce our first contribution. We propose a Bayesian model to adaptively train
sparse dictionaries [60]. This idea is later adapted to be used within a Forest
(Chapter 7).

• Chapter 5: Dense Local Training and Spherical Hashing. We present
a novel training approach based on dense local neighborhoods and a sublinear
spherical hashing nearest neighbor search [62].

• Chapter 6: Half Hypersphere Confinement. We introduce the impor-
tance of antipodally invariant metrics, and propose how to embeds them in the
Euclidean space through a half hypersphere confinement transform [54, 53].

• Chapter 7: Naive Bayes SR Forest. We present a novel SR algorithm based
on regression forest whose split functions are antipodally invariant (i.e. bimodal
tree). We adapt the Naive Bayes selection stage of Chapter 4 to be able to
select a tree within the forest [65].

• Chapter 8: Dihedral Symmetry Collapse. We present our latest work
on dihedral symmetries of patch manifolds. We propose the Patch Symmetry
Collapse in order to reduce the span of the patch manifold in order to have a
better-posed learning problem [55].

• Chapter 9: Results. We explain our experimental methology, the eval-
uation metrics used and the testing datasets. Each method is then assessed
separately: we discuss its parameters and we compare them to their other rele-
vant methods. In our last section we do a more comprehensive state-of-the-art
comparison.

• Chapter 10: Conclusions. We close this thesis with a summary of the
contributions and some future work lines.

We show a graphical overview of the contents of this thesis in Figure 1.4.
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Figure 1.4: Outline of this dissertation.



8 Chapter 1 Introduction

1.7 Author’s papers
The following papers have been published during the lapse of this dissertation and
are relevant to it.

[55] E. Pérez-Pellitero, J. Salvador, J. Ruiz-Hidalgo, and B. Rosenhahn.
PSyCo: Manifold span reduction for super resolution. In CVPR, 2016.
The main challenge in Super Resolution (SR) is to discover the mapping
between the low- and high-resolution manifolds of image patches, a com-
plex ill-posed problem which has recently been addressed through piecewise
linear regression with promising results. In this paper we present a novel
regression-based SR algorithm that benefits from an extended knowledge
of the structure of both manifolds. We propose a transform that col-
lapses the 16 variations induced from the dihedral group of transforms
(i.e. rotations, vertical and horizontal reflections) and antipodality (i.e.
di- ametrically opposed points in the unitary sphere) into a single prim-
itive. The key idea of our transform is to study the different dihedral
elements as a group of symmetries within the high-dimensional mani-
fold. We obtain the respective set of mirror-symmetry axes by means of
a frequency anal- ysis of the dihedral elements, and we use them to col-
lapse the redundant variability through a modified symmetry dis- tance.
The experimental validation of our algorithm shows the effectiveness of
our approach, which obtains competi- tive quality with a dictionary of as
little as 32 atoms (reduc- ing other methods’ dictionaries by at least a
factor of 32) and further pushing the state-of-the-art with a 1024 atoms
dictionary.

[53] E. Pérez-Pellitero, J. Salvador, J. Ruiz-Hidalgo, and B. Rosenhahn.
Antipodally invariant metrics for fast regression-based super-resolution.
IEEE Trans. Image Processing, 25(6):2456–2468, 2016.
Dictionary-based Super-Resolution algorithms usually select dictionary
atoms based on distance or similarity metrics. Although the optimal se-
lection of nearest neighbors is of central importance for such methods,
the impact of using proper metrics for Super-Resolution (SR) has been
overlooked in literature, mainly due to the vast usage of Euclidean dis-
tance. In this paper we present a very fast regression-based algorithm
which builds on densely populated anchored neighborhoods and sublinear
search structures. We perform a study of the nature of the features com-
monly used for SR, observing that those features usually lie in the uni-
tary hypersphere, where every point has a diametrically opposite one, i.e.
its antipode, with same module and angle, but opposite direction. Even
though we validate the benefits of using antipodally invariant metrics,
most of the binary splits use Euclidean distance, which does not handle
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antipodes optimally. In order to benefit from both worlds, we propose
a simple yet effective Antipodally Invariant Transform (AIT) that can
be easily included in the Euclidean distance calculation. We modify the
original Spherical Hashing algorithm with this metric in our Antipodally
Invariant Spherical Hashing scheme, obtaining the same performance as
a pure antipodally invariant metric. We round up our contributions with
a novel feature transform that obtains a better coarse approximation of
the input image thanks to Iterative Back Projection. The performance
of our method, which we named Antipodally Invariant Super-Resolution
(AIS), improves quality (PSNR) and it is faster than any other state-of-
the-art method.

[54] E. Pérez-Pellitero, J. Salvador, J. Ruiz-Hidalgo, and B. Rosenhahn.
Half hypersphere confinement for piecewise linear regression. InWACV,
2016.
Recent research in piecewise linear regression for Super-Resolution has
shown the positive impact of training regressors with densely populated
clusters whose datapoints are tight in the Euclidean space. In this pa-
per we further research how to improve the locality condition during the
training of regressors and how to better select them during testing time.
We study the characteristics of the metrics best suited for the piecewise
regression algorithms, in which comparisons are usually made between
normalized vectors that lie on the unitary hypersphere. Even though
Euclidean distance has been widely used for this purpose, it is subopti-
mal since it does not handle antipodal points (i.e. diametrically opposite
points) properly, as vectors with same module and angle but opposite
directions are, for linear regression purposes, identical. Therefore, we
propose the usage of antipodally invariant metrics and introduce the Half
Hypersphere Confinement (HHC), a fast alternative to Multidimensional
Scaling (MDS) that allows to map antipodally invariant distances in the
Euclidean space with very little approximation error. By doing so, we
enable the usage of fast search structures based on Euclidean distances
without undermining their speed gains with complex distance transforma-
tions. The performance of our method, which we named HHC Regres-
sion (HHCR), applied to Super-Resolution (SR) improves both in quality
(PSNR) and it is faster than any other state-of-the-art method. Addi-
tionally, under an application-agnostic interpretation of our regression
framework, we also test our algorithm for denoising and depth upscaling
with promising results.

[65] J. Salvador and E. Pérez-Pellitero. Naive Bayes Super-Resolution
Forest. In ICCV, 2015.
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This paper presents a fast, high-performance method for super resolution
with external learning. The first contribution leading to the excellent
performance is a bimodal tree for clustering, which successfully exploits
the antipodal invariance of the coarse-to-high-res mapping of natural im-
age patches and provides scalability to finer partitions of the underlying
coarse patch space. During training an ensemble of such bimodal trees is
computed, providing different linearizations of the mapping. The second
and main contribution is a fast inference algorithm, which selects the
most suitable mapping function within the tree ensemble for each patch
by adopting a Local Naive Bayes formulation. The resulting method is
beyond one order of magnitude faster and performs objectively and sub-
jectively better than the current state of the art.

[62] E. Pérez-Pellitero, J. Salvador, I. Torres, Javier Ruiz-Hidalgo, and
Bodo Rosenhahn. Fast super-resolution via dense local training and in-
verse regressor search. In ACCV, 2014.
Regression-based Super-Resolution (SR) addresses the upscaling problem
by learning a mapping function (i.e. regressor) from the low-resolution
to the high-resolution manifold. Under the locally linear assumption,
this complex non-linear mapping can be properly modeled by a set of lin-
ear regressors distributed across the manifold. In such methods, most
of the testing time is spent searching for the right regressor within this
trained set. In this paper we propose a novel inverse-search approach for
regression-based SR. Instead of performing a search from the image to
the dictionary of regressors, the search is done inversely from the regres-
sors’ dictionary to the image patches. We approximate this framework
by applying spherical hashing to both image and regressors, which reduces
the inverse search into computing a trained function. Additionally, we
propose an improved training scheme for SR linear regressors which im-
proves perceived and objective quality. By merging both contributions we
improve speed and quality compared to the state-of-the-art.

[60] E. Pérez-Pellitero, J. Salvador, J. Ruiz-Hidalgo, and B. Rosenhahn.
Bayesian region selection for adaptive dictionary-based super-resolution.
In BMVC, 2013.
The performance of dictionary-based super-resolution (SR) strongly de-
pends on the contents of the training dataset. Nevertheless, many dic-
tionary-based SR methods randomly select patches from of a larger set of
training images to build their dictionaries, thus relying on patches being
diverse enough. This paper describes a dictionary building method for
SR based on adaptively selecting an optimal subset of patches out of the
training images. Each training image is divided into sub-image entities,
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named regions, of such a size that texture consistency is preserved and
high-frequency (HF) energy is present. For each input patch to super-
resolve, the best-fitting region is found through a Bayesian selection. In
order to handle the high number of regions in the training dataset, a local
Naive Bayes Nearest Neighbor (NBNN) approach is used. Trained with
this adapted subset of patches, sparse coding SR is applied to recover the
high-resolution image. Experimental results demonstrate that using our
adaptive algorithm produces an improvement in SR performance with
respect to non-adaptive training.

Other papers have been published during the thesis with lesser relevance to this
dissertation:

[61] E. Pérez-Pellitero, J. Salvador, J. Ruiz-Hidalgo, and B. Rosenhahn.
Accelerating super- resolution for 4k upscaling. In ICCE, 2015.
This paper presents a fast Super-Resolution (SR) algorithm based on a
selective patch processing. Motivated by the observation that some re-
gions of images are smooth and unfocused and can be properly upscaled
with fast interpolation methods, we locally estimate the probability of per-
forming a degradation-free upscaling. Our proposed framework explores
the usage of supervised machine learning techniques and tackles the prob-
lem using binary boosted tree classifiers. The applied upscaler is chosen
based on the obtained probabilities: (1) A fast upscaler (e.g. bicubic in-
terpolation) for those regions which are smooth or (2) a linear regression
SR algorithm for those which are ill-posed. The proposed strategy ac-
celerates SR by only processing the regions which benefit from it, thus
not compromising quality. Furthermore all the algorithms composing the
pipeline are naturally parallelizable and further speed-ups could be ob-
tained.

[77] I. Torres, J. Salvador, andE. Pérez-Pellitero. Fast approximate nearest-
neighbor field by cascaded spherical hashing. In ACCV, 2014.
We present an efficient and fast algorithm for computing approximate
nearest neighbor fields between two images. Our method builds on the
concept of Coherency-Sensitive Hashing (CSH), but uses a recent hashing
scheme, Spherical Hashing (SpH), which is known to be better adapted
to the nearest-neighbor problem for natural images. Cascaded Spheri-
cal Hashing concatenates different configurations of SpH to build larger
Hash Tables with less elements in each bin to achieve higher selectivity.
Our method is able to amply outperform existing techniques like Patch-
Match and CSH. The parallelizable scheme has been straightforwardly
implemented in OpenCL, and the experimental results show that our al-
gorithm is faster and more accurate than existing methods.
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[66] J. Salvador, E. Pérez-Pellitero, and A. Kochale. Robust Single-Image
Super-Resolution using Cross-Scale Self-Similarity. In ICIP, 2014.
We present a noise-aware single-image super-resolution (SI-SR) algo-
rithm, which automatically cancels additive noise while adding detail
learned from lower-resolution scales. In contrast with most SI-SR tech-
niques, we do not assume the input image to be a clean source of ex-
amples. Instead, we adapt the recent and efficient in-place cross-scale
self-similarity prior for both learning fine detail examples and reducing
image noise. Our experiments show a promising performance, despite
the relatively simple algorithm. Both objective evaluations and subjec-
tive validations show clear quality improvements when upscaling noisy
images.

[9] I. Bosch, J. Salvador, E. Pérez-Pellitero, and J. Ruiz-Hidalgo. An
epipolar-constrained prior for efficient search in multi-view scenarios. In
EUSIPCO, 2014.
In this paper we propose a novel framework for fast exploitation of multi-
view cues with applicability in different image processing problems. In or-
der to bring our proposed framework into practice, an epipolar-constrained
prior is presented, onto which a random search algorithm is proposed to
find good matches among the different views of the same scene. This
algorithm includes a generalization of the local coherency in 2D images
for multi-view wide-baseline cases. Experimental results show that the
geometrical constraint allows a faster initial convergence when finding
good matches. We present some applications of the proposed framework
on classical image processing problems.

[67] J. Salvador, E. Pérez-Pellitero, and A. Kochale. Fast single-image
super-resolution with filter selection. In ICIP, 2013.
This paper presents a new method for estimating a super-resolved ver-
sion of an observed image by exploiting cross-scale self-similarity. We
extend prior work on single-image super-resolution by introducing an
adaptive selection of the best fitting upscaling and analysis filters for
example learning. This selection is based on local error measurements
obtained by using each filter with every image patch, and contrasts with
the common approach of a constant metric in both dictionary-based and
internal learning super-resolution. The proposed method is suitable for
interactive applications, offering low computational load and a paralleliz-
able design that allows straight-forward GPU implementations. Experi-
mental results also show how our method generalizes better to different
datasets than dictionary-based super-resolution and comparably to inter-
nal learning with adaptive post-processing.
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Chapter 2Sparse dictionaries for SR

2.1 Introduction
Within the familiy of example-based SR algorithms, the notion of using a set of two
related dictionaries (LR and HR dictionaries) has been extensively adopted in order
to capture the relationship between the LR and HR patches. In recent years, one of
the algorithm that popularized dictionaries the most has been the one based on the
sparsity prior, first introduced by Yang et al. [94, 95].
These algorithms are based on the sparse signal representation research, i.e.

patches can be represented as a sparse linear combination of properly selected
atoms from an overcomplete dictionary [41]. The impact of both algorithms in
the research community has been notable, as they triggered several strict follow-ups
[60, 97, 99, 45], but also because they laid the ground for other dictionary- and
regression-based methods that depart from the sparsity prior while still keeping cer-
tain common elements [62, 53, 54, 55, 74, 76]. In this section we review the original
sparse SR algorithm of Yang et al. [95] and the Zeyde et al. [97] follow-up that
addressed some of the limiting factors of its predecessor.

2.2 Model for Sparse SR
Given a LR image Y the single-image SR algorithm of Yang et al. [94, 95] aims to
recover a higher-resolution image X by means of two constrains: the reconstruction
constraint (also named generation model constraint) and the sparsity prior. In the
first one, the observed LR image Y is obtained through a downsampling and blurring
of the original image X:

Y = S ↓ (H ∗X), (2.1)

where S ↓ denotes a downsampling operator of factor S and H is a blurring filter
(which could be estimated, but is normally assumed to be bicubic filtering [94, 95,
92, 93, 97, 74, 76, 75]). We show an schematic of the reconstruction constrain and
how SR fits on it in Figure 2.1.
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Ground truth Input image

Super Resolution

Estimated
Figure 2.1: Reconstruction constrain of Equation (2.1). The original image X is
downscaled and blurred (Y image). Super Resolutions aims at reverting this degra-
dation and estimates X̃.



2.2 Model for Sparse SR 15

Low Resolution dictionary High Resolution dictionary

Sparse decomposition Sparse HR reconstruction

input output

Figure 2.2: Working principle of sparse dictionary-based SR. Left side figure shows
how the patch c is sparsely decomposed with respect to Dl. Right side figure shows
how the HR upscaled patch is reconstructed with α and Dh.

As briefly noted in the introduction, the upscaling process is highly ill-posed as
an infinity of potential HR images respect the reconstruction constraint of Equa-
tion (2.1). To further alleviate the problem the the sparsity prior is introduced.
The core idea of sparse signal representation is that linear relationships between

signals can be precisely reconstructed from their low-dimensional projections [41]:

x = Dhα for some α ∈ Rk with ‖α‖0 � k, (2.2)

where α is the sparse representation with reduced non-zero entries (� k) and
Dh an overcomplete dictionary containing HR patches. To recover x, the sparse
representation α will be calculated from LR patches c with respect to a dictionary
containing the correspondent LR patches Dl. This can be formulated as follows:

min ‖α‖0 s.t. ‖Dlα− c‖2
2 ≤ ε. (2.3)

In Figure 2.2 we show an illustrative example of the principles described by Equa-
tion (2.2) and (2.3). The optimization in Equation (2.3) is NP-hard, however the
works in [19] propose a `1-norm relaxation in order to recovers the α coefficients:

min ‖α‖1 s.t. ‖Dlα− c‖2
2 ≤ ε, (2.4)

which the following equivalent formulation for Lagrange multipliers:

min
α
‖Dlα− c‖2

2 + λ ‖α‖1, (2.5)
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SR via Sparse Representation

Sparse regularizer:Sparse dictionary obtained via    -minimization:

Online sparse decomposition via    -minimization:

Figure 2.3: Overview of the sparse SR of Yang et al. [95] and the dimensionality of
the matrices involved. Firstly, the sparse representation α is obtained through a
minimization function with `1 regularization. Secondly, the sparse weight vector is
applied within the HR dictionary to obtain the HR patch x.

where λ weights the sparsity of the solution against the first fidelity term. We show
an overview of the sparse SR approach of Yang et al. [95] in Figure 2.3. It is important
to note that this is essentially a linear regression with `1-norm regularization. We
explore other regularization options, and their effects in the upcoming chapters.
In order to guarantee a certain compatibility between the current processed patch

and the previously reconstructed patches, a high-resolution fidelity term can be
added in the overlap areas:

min
α

∥∥∥D̃α− c̃
∥∥∥2

2
+ λ ‖α‖1, (2.6)

where D̃ =
[

Dl
ODh

]
and c̃ =

[
c
w

]
, O is a mask describing the overlap between

the current patch and the previously computed patches, w denotes the previously
calculated patches in the area of overlap.
Once the optimal solution α∗ to Equation (2.6) is obtained, the HR patch can be

reconstructed as the linear composition x = Dhα
∗.

2.3 Global Reconstruction Constrain
In the previous section we studied a sparse model for image reconstruction, however
the equations presented do not enforce coherency between the LR image and the
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obtained upscaled image in terms of the generation model in Equation (2.1). In
order to correct potential deviations from the observed LR image, we project back
the image obtained through sparse reconstruction Xs into the solution space Y =
S ↓ (H ∗X):

X∗ = arg min
X

‖S ↓ (H ∗X)− Y ‖2
2 + ‖X −Xs‖2

2 , (2.7)

where the second term enforces a solution which is closer to the initial SR estimated
image Xs. The kernel H is normally assumed to be low-pass bicubic filter, even
though it could be estimated as well. If addressed through gradient descent, the
update equation reads:

Xt+1 = Xt + ν(S ↑ (Y − S ↓ (H ∗X)) + (X −Xs)), (2.8)
where Xt represents the upscaled image after the t-th iteration, and ν is the step
size of the gradient descent. The convergence is fast and there is little or no change
after a reduced number of iterations. It is, therefore, a convenient and efficient post-
processing stage. However, we also propose the usage of this algorithm as a first
coarse estimator (i.e. as a preprocessing step) with promising results (see Chapter 6).

2.4 Training coupled dictionaries
The sparse prior decomposes the input patches with respect to two coupled LR and
HR dictionaries. An straightforward approach to obtain the two coupled dictionar-
ies is to directly sample them from training images, thus taking advantage of the
already present LR-to-HR correspondence. This approach coincides with the initial
approximation of Yang et al. to sparse SR, where they used extensive raw patch pairs
directly extracted from images. The main problem of such approach is that good
generalization capabilities come at the cost of very large dictionaries and results in
prohibitive computational cost when solving the minimization in Equation (2.6).
Sparse coding has tackled this problem by proposing algorithms that create com-

pact, overcomplete dictionaries suitable for sparse reconstruction. The information
contained in them is, therefore, more representative than direct raw samples and
has better generalization capabilities given the same dictionary size. A well-known
formulation to obtain such dictionaries requires minimizing over the sparse codes
but also over the dictionary itself [41, 51, 49] :

D = arg min
D, A

‖X−DA‖2
2 + λ ‖A‖1 s.t. ‖di‖

2
2 ≤ 1, i = 1, 2, . . . , k. (2.9)

The `2-norm fidelity term enforces an optimal dictionary, while the `1-norm term
enforces sparsity (as in Equation (2.6)). The constrains in the columns of D remove
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the scaling ambiguity necessary for a correct cost minimization. Although this
minimization is not convex in both D and A (i.e. matrix in which each column is a
different α), it is convex if they are addressed separately (i.e. is convex in one while
the other one is fixed). In [95], Yang et al. proposed to proceed with an alternating
minimization:

1. Initialize D with a Gaussian normalized matrix.

2. Fix D, update A as follows (via linear programming):

A = arg min
A

‖X−DA‖2
2 + λ ‖A‖1 . (2.10)

3. Fix A, update as follows:

D = arg min
D

‖X −DA‖2
2 s.t. ‖Di‖2

2 ≤ 1, i = 1, 2, . . . , k, (2.11)

as it does no longer have the sparsity `1-norm term, it can be solved by many
optimization packages, e.g. Quadratically Constrained Quadratic Program-
ming [57].

4. Repeat steps 2. and 3. until convergence.

In the specific case of SR sparse dictionary learning, there are two classes of dictio-
naries to be learnt: LR and HR. The approach that Yang et al. proposes consists in a
coupled learning, where the cost functions includes both the cost of LR reconstruc-
tion and HR reconstruction, so that the dictionaries can be different, but share the
same codes:

min
Dh,Dl,, A

1
N
‖X−DhA‖2

2 + 1
M
‖Y −DlA‖2

2 + λ( 1
N

+ 1
M

) ‖A‖1 . (2.12)

This training procedure that allows different but coupled dictionaries implies an
increase of complexity, as we need to minimize over double the dimensionality when
compared to a single dictionary.

2.5 Efficient sparse SR
Some efforts have been done in order to alleviate the aforementioned limitations, spe-
cially in terms of computational times, of sparse SR. The work of Zeyde et al. [97] is
remarkable as it represents a mature SR method based on sparsity, in which efforts
to optimize the whole pipeline synergize with accuracy of the upscaled images. In
terms of computational complexity, Zeyde et al. [97] proposes mainly three modifica-
tions to the original Yang et al. method [95]: (1) It obtains the LR sparse dictionary
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through k-Singular Value Decomposition (SVD), (2) obtains the HR dictionary Dh
by utilizing the same encoding as in Dl and (3) prefers Orthogonal Matching Pursuit
(OMP) to `1-optimization-based methods (e.g. Least Absolute Shrinkage and Selec-
tion Operator (LASSO)). We consider important to briefly introduce the foundation
of the mechanism of k-SVD and the way that Zeyde et al. use it for SR.

2.5.1 k-SVD

The problems of clustering and sparse representation are inherently related, as they
both target Vector Quantization (VQ) [20, 40]. Clustering finds a set of descriptive
vectors {dk}Kk=1 that are representative of K diverse groups in such a way that any
sample can be represented by one of those vectors (i.e. normally the closest in `2
distance). In sparse coding, each sample is represented by a linear combination of
several vectors within the dictionary, and thus can be explained as an extension or
generalization of the clustering analysis. In a similar way the k-SVD algorithm of
Aharon et al. [1] builds and generalizes the original k-Means algorithm [44, 15]. In
Equation (2.9) we show a formulation for dictionary optimization based on `1-norm
minimization. A different approach to enforce sparsity consists in establishing a
sparsity constrain T0 of maximum number of nonzero entries:

D = arg min
D, A

‖Y −DA‖2
z + s.t. ‖xi‖0 ≤ T0. (2.13)

Again, the minimization problem is addressed in an iterative way, alternating be-
tween the minimization over A and the minimization over D. First, we fix D and
obtain the optimal A with any approximation pursuit method that allow a solution
with a fixed and predetermined number of nonzero entries, e.g. OMP [78, 63]. The
second stage consists on the search of a better suited dictionary for sparse decom-
position. In this stage, the approach of k-SVD differs greatly from aforementioned
coupled dictionary training. This two steps are repeated until the desired stopping
rule is satisfied.
In k-SVD the dictionary optimization is tackled by updating one column at a

time, fixing all columns in D but one, du. A new column du and the new related
coefficients αu (i.e. αu is the u-th row vector in A) are found so that they best reduce
the Mean Squared Error (MSE). Note that, in other approaches, the coefficients A
are completely fixed during minimization over D, whereas k-SVD approach allows
to modify the relevant coefficients αu, which accelerates convergence. Updating a
single column per iteration has a known solution using SVD. More formally, we can
decompose the penalty term between the fixed elements and those which are going
to be updated:
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‖Y −DA‖2
F =

∥∥∥∥∥∥Y −
K∑
j=1

djαj
∥∥∥∥∥∥

2

z∥∥∥∥∥∥
Y −∑

j 6=u
djαj

− duαu
∥∥∥∥∥∥

2

z

‖Eu − duαu‖2
z . (2.14)

The matrix Eu contains the error accumulated by all training samples when the
u-th sample is removed. If we only change one column at a time, Eu is therefore
fixed and only duαu remains in question. We could find a suitable solution that
minimizes the reconstruction error by means of SVD, however this solution is not
likely to be sparse, as we do not enforce the sparsity constrain in any way.
In order to do so, Aharon et al. [1] propose an intuitive solution which consists

on enforcing always the same representation support, i.e. the examples that make
use of the new u-th dictionary atom stay constant so that the maximum sparsity T0
selected during the previous approximation pursuit stage is respected. Let us define
a group of indices describing which examples {yi} use the atom du:

ωu = {i | 1 ≤ i ≤ K, αu(i) 6= 0} , (2.15)
from which we can derive a matrix Ωu with ones on the (ωu(i),i)th entries and zeros
elsewhere. This matrix can be seen as a shrinking operator, as the multiplication
αuR = αuΩu discards all the zero entries and thus leave only the elements of the
training set that are affected by a modification in du. We can apply this shrinking
multiplication to the error ER

u = EuΩu, selecting thus only the error columns that
are relevant to a change in atom du. Now we can force the solution to have constant
support by including Ωu in Equation (2.14):

‖EuΩu − duαuΩu‖2
z =

∥∥∥ER
u = duαuR

∥∥∥2

z
. (2.16)

SVD decomposes it to ER
u = U∆Vᵀ, where the solution du is approximated by

the first column of U, and the solution for the weights αuR by the first column of V
multiplied by ∆(1,1).
The k-SVD algorithm repeat the previous SVD decomposition for each of the

columns within the dictionary, always incorporating the modifications of the pre-
vious steps. Once the algorithm updated all the columns of the dictionary, the
codebook stage is over. The sparse coding stage and the codebook stage are re-
peated until the stopping criteria is met.
As for SR, Zeyde et al. used a de-coupled dictionary training based only on

LR training data. The Dl is obtained through Equation (2.13), and then the HR dic-
tionary is obtained with the same LR sparse codes:
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Zeyde et al. Sparse SR

Sparse representation 
(fixed sparsity level):

Sparse dictionary obtained via k-SVD:

Online sparse decomposition via OMP:

Figure 2.4: Overview of Zeyde et al. Sparse SR. The functioning is similar to the algo-
rithm presented by Yang et al. [95], however OMP methods and k-SVD are preferred
over other iterative optimization methods.

Dh = XA−1, (2.17)

which can be calculated in a more memory efficient way as Dh = XAᵀ(AAᵀ)−1. We
show an overview of Zeyde et al. SR in Figure (2.4).The combination of k-SVD to-
gether with Equation (2.17) is substantially faster than the previous approach pre-
sented in Section 2.4, and has been widely adopted by several follow-ups, including
the work presented in this thesis.

2.6 Summary and discussion
In the work on sparse SR of Yang et al. [94, 95] they firstly proposed a SR model
based on the sparsity prior which functions with a set of two coupled dictionaries,
and also a procedure on how to train them. They proposed as well a reconstruction
constrain or generation constrain that has been widely adopted. Their algorithm
outperforms and is notably faster than some of its learning-based predecessors [25,
11]. Despite that, the computational complexity is still high, mainly due to the
iterative minimizations that `1 regularization terms require: Training the coupled
dictionaries takes several hours, and the upscaling of a single frame takes several
minutes. As a follow-up, Zeyde et al. [97] designed a sparse model that substitutes
some of the bottlenecks in terms of computational time for more efficient approaches,
e.g. k-SVD or OMP, together with an uncoupled dictionary training scheme. This
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results in training times of less than an hour, and testing times in the order of
seconds per frame.
Both algorithms are fundamental to the understanding of this dissertation as they

lay the ground and the terminology on which we build our contributions.
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Chapter 3Anchored Neighborhood
Regression

3.1 Introduction
Some of the most defining limitations of the sparse SR family of methods are related
to the high computational cost inherent to the sparsity constrain.
In the sparse SR of [95] complex optimization schemes have to be adopted in order

to jointly obtain Dh and Dl, resulting in great computational cost. During testing
time, they minimize the following function:

min
α
‖c−Dlα‖2

2 + λ ‖α‖1 , (3.1)

where the first term ensures a good LR reconstruction and the `1-norm regularization
term enforces sparsity in the solution. The sparse decomposition α is then applied
to Dh to obtain the HR patch. This decomposition is computed for all the patches
C in the image. Due to the `1-norm regularization term, there is no closed-form
solution for such minimization, and thus they require the usage of expensive iterative
procedures.
Later work on sparse SR by Zeyde et al. [97] introduced faster algorithms for

dictionary optimization (e.g. k-SVD [1]) and a different optimization scheme: the
dictionaries are learned separately, obtaining first Dl independently from Dh, and
afterwards the latter is generated with the sparse encoding of Dl. The execution
time is improved with respect to the original work of Yang et al. [95].
Despite alleviating some of the most time-consuming processing of its predeces-

sor, the sparse decomposition in [97] is still the bottleneck during inference time.
As a natural solution for that, Timofte et al. proposed the Anchored Neighborhood
Regression (ANR) [74] where there is no sparse decomposition during inference time,
but instead a selection within a discrete set of points (i.e. anchor points) for which
a linear ridge regressor has been trained off-line. This method coincided with other
similar regression-based SR algorithms such as [92, 93], and also triggered several
follow-ups, e.g. [62, 76, 68]. The motivation and functioning of the ANR SR algo-
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rithms is fundamental to the understanding of the contributions that conform this
thesis.

3.2 Collaborative Norm Relaxation
As discussed previously, Equation (3.1) does not have a closed-form solution and
requires iterative algorithm in order to find meaningful minima. Timofte et al. pro-
posed a relaxation of the `1-norm regularization commonly used in most of the
neighbor embedding and sparse coding approaches, reformulating the problem as a
least squares `2-norm regularized minimization, also known as Ridge Regression.
While solving `1-norm constrained minimization problems is computationally de-

manding, when relaxing it to a `2-norm, a closed-form solution can be used. Their
proposed minimization problem reads

min
β
‖cF −Dlβ‖2

2 + λ ‖β‖2 , (3.2)

where cF is a feature extracted from a interpolated image C. The algebraic solution
is

β = (Dᵀ
l Dl + λI)−1Dᵀ

l cF . (3.3)

The coefficients of vector β are applied to the corresponding HR dictionary Dh
to reconstruct the HR patch, i.e. x = Dhβ. This can also be written as the matrix
multiplication x = R cF , where the projection matrix (i.e. regressor R) reads:

R = Dh(Dᵀ
l Dl + λI)−1Dᵀ

l , (3.4)

and can be calculated off-line during training time.
The advantage of this norm relaxation is that a closed-form solution exists, and

additionally, it can be computed off-line. This reduce the testing time greatly as
only a matrix multiplication needs to be performed for each input patch cF with a
single unique regressor R that the authors name as Global Regressor (GR). However,
this approach shows very little adaptation to the input patches, as R stays always
the same regardless of the diversity of input patches.
In order to improve a finer linearization of the regression function, Timofte et

al. [74] also propose using a non-fixed dictionary support, namely neighborhood,
allowing different subsets of pair examples for each minimization.

3.3 Neighborhood Embedding
In order to extend the global regressor R to a set of regressors {Ri}, Timofte et
al. [74] introduced a modification to Equation (3.2) by substituting Dl by a different
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Sparse dictionary obtained through k-SVD: Collaborative regularization: 

Global Regression

Only one regressor, ridge regression:

Figure 3.1: Overview of the GR matrices dimensionality.

dictionary support, namely the neighborhood Nl:

min
β
‖cF −Nlβ‖2

2 + λ ‖β‖2
2 , (3.5)

where the neighborhood Nl is a subset of the original sparse dictionary Dl(i.e.
Nl ⊆ Dl), and is constructed based on the distance of the input patch or features
cF to each of the dictionary atoms, more formally:

Nl = kNN(c,Dl) = arg min
di∈Dl

∑
k

δ(c,di), (3.6)

where Nl columns contain the k-Nearest Neighbor (NN) atoms of c against the
dataset Dl with respect to a distance measure δ.
During testing time we should first obtain the corresponding neighborhood with

Equation (3.6), and then use it to find the minimum to Equation (3.5) as follows:

x = Nh(Nᵀ
l Nl + λI)−1Nᵀ

l cF (3.7)
which is specific to each input patch, and therefore, can not be computed offline.
Although this minimization is substantially faster than solving iteratively a `1 reg-
ularized problem (see Equation (3.1)), the computation time has an impact to the
overall processing, specially when using large neighborhoods.
As a natural solution to that, they propose a discretization of the testing scheme,

so that instead of finding a neighborhood for each input patch, it is done during
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Anchored Neighborhood Regression

Sparse dictionary obtained through K-SVD: Collaborative regularizer:

Set of regressors trained offline, selected during testing:

Exhaustive search

Figure 3.2: Overview of ANR.

training time for a fixed set of points, i.e. anchor points, for which a regressor is
trained.
A regressor Rj is anchored to each atom dj in Dl, and the neighborhood Nl is

selected from a k-NN subset of Dl:

Nlj
= kNN(dj,Dl), (3.8)

and later use to train a set of regressors

Rj = Nhj
(Nᵀ

lj
Nlj

+ λI)−1Nᵀ
lj
, (3.9)

The SR problem can be addressed by finding the NN atom dj of every input patch
feature cF and applying the associated Rj to it. This case is referred in the original
publication of Timofte et al. [74] as ANR.

3.4 Summary and discussion
The ANR and GR methods of Timofte et al. [74] introduce a `2-norm relaxation that
alleviates the most significant bottleneck of previous sparse algorithms. Additionally,
it introduces the idea of using neighbor embeddings within the sparse dictionaries in
order to obtain ridge regressors that map LR feature points to the HR domain. By
precomputing a regression function anchored to each of the dictionary atoms they
avoid the patch-to-dictionary decomposition during testing time. As a result, the
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execution time is greatly reduced while still obtaining competitive quality results.
Although ANR is still an hybrid between sparse and neighbor embedding approaches,
it represents the foundation for piece-wise linear regression-based SR. The remaining
contributions of this thesis share a similar framework.
In the next chapter we discuss how to further speed up piece-wise linear regression

SR, and how to improve the training scheme of ANR, which is not fully optimized to
pure collaborative representations.
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Chapter 4Bayesian approach to
adaptive dictionaries

4.1 Introduction

In [94] the dictionary is built by randomly sampling raw patches from a large set of
images regardless of the image to be recovered, hence relying on gathering sufficiently
diverse patches so that they can generalize for any patch to be super-resolved. Other
follow-up works [95, 45] keep using the same strategy for the training, although these
raw patches are compressed in a smaller number of patches through sparse coding
techniques. In the Neighbor Embedding SR work of [27], a clustering in the training
set is performed based on geometrical structure of patches. The k-NN query of the
input LR patch is then carried out within the closest cluster, thus showing some
adaptive behavior. Nevertheless, the patches to be included in the clustering are
also randomly selected out of a larger set of training patches.
Intuitively, a SR system trained with semantically similar images can adapt bet-

ter and learn a more specialized dictionary, which correlates better with the content
of the image. However, this is a hard problem as images usually contain a non-
predictable group of different elements with their characteristic textures and edges
(e.g. grass, rocks, fur, sand). In this chapter we present our work on adaptive dictio-
nary building through Bayes theory. We divide our training dataset into sub-image
entities which we call regions, and extract descriptors in order to characterize them.
The key idea is that, being these regions smaller, they have more consistent tex-
ture or edge content. For every patch to be super-resolved we find its best-fitting
texture region from the training images by using the efficient local Naive Bayes
Nearest Neighbor (NBNN), thus ensuring that the obtained example pairs are highly
correlated with the input LR patches. Furthermore, our method is not only appli-
cable to the original sparse SR [94], but to all other SR methods using a reduced
patch pair subset from the larger training image dataset, hence including dictionary
optimization processes [45].
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4.2 Adaptive Training Set
The performance of sparse SR methods highly depends on the content of Dh and
Dl and those in turn are determined by the contents of the training examples Xt
and Ct, thus being these subsets of capital importance for the whole SR process.
In contrast to previous methods that build dictionaries selecting randomly patches
from the training images [95, 94, 27, 45], in our approach we include a stage which
adaptively selects the regions of the training images which better represent each of
the input image patches without doing any manual image pre-selection.
The key idea is to extract training pair patches only from the regions likely to

contain similar textures to the ones present in the image. By doing so, we can feed
to the SR dictionary training algorithm (refer to Section 2) a new training set of
patches Xa and Ca which are highly correlated with the content of the input image
Y .

4.3 Bayesian Formulation
The problem we are addressing is that of finding a training subset Ca for a given
test image Y adaptively. Each training image Ct is split in square regions Q of size
LQ. Given a input patch y from image Y , we find its training texture region Q.
Assuming a uniform region prior over Q this can be achieved through a Maximum
Likelihood (ML) decision rule:

Q̂ = arg max
Q

p(Q | y) = arg max
Q

p(y | Q). (4.1)

Let {f} = f1,f2, . . . ,fl denote the descriptors extracted from patch y or its coarsely
approximated version c. We use the Naive Bayes assumption, i.e. descriptors are
independent, identically distributed [87]:

p(y | Q) = p(f1,f2, . . . ,fl | Q) =
l∏

i=1
p(fi | Q), (4.2)

then, the log likehood reads:

Q = arg max
Q

l∑
i=1

log p(fi | Q). (4.3)

This Maximum-a-posteriori (MAP) decision requires computing the probability
density p(f | Q), which can be obtained through a NN approximation of a Parzen
density estimation pNN(f | Q) [52], as proposed by [7]. For that purpose, let then{
fQ
}

= fQ1 ,f
Q
2 , . . . ,f

Q
L be all the descriptors of a region Q, where fQj is the jth

descriptor. The Parzen kernel K(fi − fQj ) = exp( 1
2σ2

∥∥∥fi − fQj ∥∥∥2
) yields negligible
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Algorithm 4.1 AdaptiveTraining(Y,R)
Input: A Nearest Neighbor index containing all descriptors from all regions, queried
by NN(d,#neighbors).

Input: Region lookup function Region(descriptor) that retrieves the region to
which descriptor belongs to.

Input: Sampling patches function SampPatches(Region) which extracts patches
with a certain overlap.
for all patches y ∈ Y do
for all descriptors fi ∈ y do
{p1,p2, . . . ,pk+1} ← NN(fi,k + 1)
for all regions Q found in the k nearest neighbors do
distQ = min{pj |Region(pj)} ‖di − pj‖2

end for
totals[Q]← totals[Q] + distQ − distB

end for
Selected[y]← arg minQ totals[Q]

end for
for all Selected unique regions do
T ← SampPatches(Selected[Q])

end for
return Ca

values for very distant descriptors since K exponentially decreases with distance.
Therefore, using only the r NN of descriptor f will accurately approximate the
Parzen estimation:

pNN(fi | Q) = 1
L

r∑
j=1

K(fi − jNNQ(fi)) (4.4)

In [7] a minor decrease in performance is observed when using as little as r = 1 NN
compared to the full Parzen window estimation, whereas this choice considerably
simplifies Equation (4.3):

Q̂ = arg min
Q

n∑
i=1
‖fi −NNQ(fi)‖2. (4.5)

Solving (4.5) requires calculating the distance from the patch to all existing regions
in the training dataset. This might be computationally prohibitive since usual train-
ing sets can contain hundreds of images which translates in a number of regions in
the order of thousands. Recent research in NBNN classifiers proposed local NBNN
[47] which seizes this problem by only exploring the local neighborhood of each de-
scriptor fi. The runtime grows with the log of the number of categories rather than
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linearly as in [7], which results in sensitive speed-ups for large numbers of categories
(results in [47] show a ×100 speed-up for 256 categories) while still outperforming
the original method [7] in classification accuracy.
Let Q be some region and Q the set of all other regions. If we reformulate the

NBNN updates as adjustments to the posterior log-odds, the alternative decision rule
will be:

Q̂ = arg max
Q

n∑
i=1

log P (fi | Q)
P (fi | Q)

+ log P (Q)
P (Q)

(4.6)

Again, the prior can be dropped if assumed uniform over Q. The benefit of
this alternative formulation as log-odds increments is that we can select the region
posteriors which give a positive contribution on the sum in (4.6). The main contri-
bution of local NBNN consists in (a) only using the closest member from the regions
whose descriptors are within the k nearest neighbors of each fi and (b) modeling
the distance to the rest of the regions P (fi | Q) as the distance to the k+ 1 nearest
neighbor.
After finding a region Q for every patch y, we will sample patches of size ps

with a certain overlap inside the selected regions and include them in LR and HR
training sets Ca and Xa, which will be used for training the sparse dictionaries
and the sparse SR recovery as seen in Section 2. A summary including further
implementation details can be found in Algorithm 4.1.

4.4 Rejecting Non-Informative Regions
Some regions extracted from the training images might not be useful since they
do not contain high frequency (e.g. blurry unfocused backgrounds, uniform colors).
In order to reject these regions, we apply a high-pass filter whose frequency cut
is related to the magnification factor MF intuitively requiring higher frequency
content when a higher magnification factor is selected, according to:

fc = 1− γ

MF
, (4.7)

where γ weights the impact of the second addend. The energy per pixel is computed
in the filtered region Q′, defined as E = ‖Q′‖2

2 /L
2
Q. We reject a given region Q when

its energy E is lower than a given threshold ε. Some examples of selected regions
are shown in Figure 4.1.

4.5 Feature Space
We use Scale Invariant Feature Transform (SIFT) descriptors for our region selection
stage. This is independent of the features that are later used by the SR algorithm



4.6 Summary and discussion 33

Figure 4.1: Appearance of 50x50 regions extracted from the training images. From
left to right and top to bottom: rope, stones, sand, bear fur, tree bark, hair. Super-
resolution performance can be improved by selecting a meaningful set of regions for
every input image.

itself (e.g. concatenated gradients, mean-subtracted patches), as it only affects the
region selection procedure.

SIFT descriptors show improved resilience to changes in image scale and rotation,
and they are robust to changes in illumination, noise and viewpoint. They have been
extensively used for detection, classification and matching across different scenes and
object appearances [7, 47, 98]. We use dense SIFT extraction instead of the original
SIFT detector since we are dealing with small patches and we need to force a certain
number of features per patch.

4.6 Summary and discussion
We introduce a novel sparse SR method which focuses in adaptively selecting the
optimal patches for the dictionary training. The method divides the training images
into sub-image regions of sizes that preserve texture consistency, which are purged to
reject those without high-frequency content. The best-representing region for each
input LR patch is found through a Bayesian selection stage. In this selection process,
SIFT descriptors are extracted densely from both input LR patches and regions and a
local NBNN approach is used in order to efficiently handle the high number of different
regions in the training set. The resulting adapted subset of patches is compressed
using sparse coding techniques and used to recover HR images by exploiting the
sparsity prior. Experimental results (we refer the reader to Chapter 9) show that
our method improves performance with respect to using generic dictionaries, however
it requires training new dictionaries for each new image or consistence sequence. In
Chapter 7 we discuss how to use this Naive Bayes assumption as a tree selection
criterion within a regression forest.
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Chapter 5Dense Local Training and
Spherical Hashing
5.1 Introduction
The relaxation to `2-norm introduced by Timofte et al. in their ANR [74] differs
greatly from the previous sparse `1-regularized minimization, nonetheless ANR shares
some of the training practices of sparse methods as it directly inherits the same
framework. ANR mimics the sparse behavior by fixing the set of atoms involved in
the minimization to a relatively small, non-fixed set of neighboring atoms Nl. Those
atoms, however, are not chosen based on sparse-representation criterion, but rather
based on the distance to the given anchor point (see Equation (3.6)).
In this section we propose a purely collaborative, dense training approach, moving

away from the hybrid sparse neighbor embedding performed in ANR. By doing so,
we obtain substantial quality gains. We also propose a sublinear search scheme that
address one of the remaining most time-consuming factors during testing time: the
nearest neighbor search.

5.2 Linear Regression Framework
In regression-based SR, the objective of training a given regressor R is to obtain a
certain mapping function from LR to HR patches. From a more general perspective,
LR patches form an input manifoldM of dimension m and HR patches form a target
manifold N of dimension n. Formally, for training pairs {cFi, xi} with cF ∈M and
xi ∈ N , we would like to infer a mapping Ψ : M ⊆ Rm → N ⊆ Rn.
Linear Regression is the most simple regression scheme, i.e. for each output vari-

able it performs a linear weighted sum of the input variables. This is an oversim-
plification of the upscaling problem if we only consider one linear regressor, as the
mapping Ψ is highly non linear [56]. Instead, several linear regressors are anchored to
different points of the manifold, obtaining a finer piecewise linear regression model.
In such strategies, data have to be split in training time and during testing time the
proper regressor has to be selected.
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For the SR problem, the regression is applied to the input features and aims to
recover certain components of the patch, e.g. missing high frequency. We model the
linear regression framework in a general way as:

x = c +Ri cF , s.t. Ri, s.t. i = arg min
di∈{Dl}

δ(di, cF ), (5.1)

where c is a coarse first approximation of the HR patch x, δ(·) is a metric evaluating
the distance from the input features to the ith regressor cluster or anchor point di
with an associated regressor Ri. Note that we are explicitly recovering the residual
error (x− c) rather than the HR patch itself.

5.3 Neighborhoods and training
In our proposed Dense Local Training (DLT) we analyze the effect of the distri-
bution of the regression functions in the manifold (i.e. the anchor points) and the
importance of properly choosing Nl in Equation (3.6), concluding on a new training
approach.
In the work of Timofte et al. [74], an overcomplete sparse representation is ob-

tained from the initial LR training patches using kSVD [1]. This new reduced dic-
tionary Dl is used both as anchor points to the manifold and datapoints for the
regression training. In their GR, a unique regressor is trained with all elements
of the dictionary, therefore accepting higher regression errors due to the single lin-
earization of the manifold. For a more fine-tuned regression reconstruction they also
propose the ANR, where they use as anchor points the dictionary atoms and they
build for each one of those atoms a variable neighborhood Nl of k-NN within the
same sparse dictionary Dl.
Performing a sparse decomposition of a high number of patches efficiently com-

presses data in a much smaller dictionary, yielding atoms which are representative of
the whole training dataset, i.e. the whole manifold. For this reason they are suitable
to be used as anchor points, but also sub-optimal for the neighborhood embedding.
They are sub-optimal since the necessary local condition for the linearity assumption
is likely to be violated. Due to the `1-norm reconstruction minimization imposed in
sparse dictionaries, atoms in the dictionary are not close in the Euclidean space, as
shown in Figure 5.2 (a).
This observation leads us to propose a different approach when training linear

regressors for SR: Using sparse representations as anchor points to the manifold, but
forming the neighborhoods from a broader pool of raw manifold samples (e.g. patches
or features). We propose to form Nl as a subset of the initial set of training patches
Ct instead of Dl(i.e. Nl ⊆ Ct):

Nlj
= kNN(dj,Ct), (5.2)
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Figure 5.1: A normalized degree 3 polynomial manifold illustrating the proposed
approach compared to the one in [74]. (a) Bidimensional manifold samples. (b)
The manifold (blue) and the sparse representation obtained with K-SVD algorithm
(green) of 8 atoms. (c) Linear regressors (red) trained with the neighborhoods
(k = 1) obtained within the sparse dictionary, as in [74]. (d) Linear regressors (red)
obtained using our proposed approach: The neighborhoods are obtained within the
samples from the manifold (k = 10).
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Figure 5.2: (a) Mean euclidean distance between atoms and its neighborhood for
different neighborhood sizes. (b) Quality improvement measured in PSNR (dB) for
a reconstruction using ANR [74] together with our proposed training. 1024 anchor
points were used for this experiment.

In Figure 5.2(a) we show how, by doing so, we find closer nearest neighbors and,
therefore, fulfill better the local condition. Additionally, a higher number of local
independent measurements is available (e.g. mean distance for 1000 neighbors in
the raw-patch approach is comparable to a 40 atom neighborhood in the sparse ap-
proach) and we can control the number of kNN selected, i.e. it is not upper-bounded
by the dictionary size. We show a low-dimensional example of our proposed training
scheme in Figure 5.1. Building dense and compact clusters through this methodol-
ogy is a key contribution as it boosts performance at no complexity cost. Timofte et
al. also presented a similar idea in their A+ [76] concurrent to our publication [62].

5.4 Search Strategy
When aiming at a fine modeling of the mapping between LR and HR manifolds,
several linear regressors are trained to better represent the non-linear problem. Al-
though state-of-the art regression-based SR has already pushed forward the compu-
tational speed with regard to other dictionary-based SR [97, 95], finding the right
regressor for each patch is still consuming most of the execution time. In the work
of [74], most of the encoding time (i.e. time left after subtracting shared processing
time, including bicubic interpolations, patch extractions, etc.) is spent in this task
(i.e. ∼ 96% of the time).
We propose a novel search strategy designed to benefit from the training outcome

presented in Section 5.3, i.e. anchor points of the dictionary and their neighborhoods
are obtained independently and ahead from the search structure.
In order to improve the search efficiency, search structures of sublinear complexity
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Figure 5.3: Spherical hashing applied for the anchor point search of our algorithm.
Certain hashing functions are optimized on feature patch statistics creating a set of
hyperspheres intersections that are directly labeled with a hash code. In training
time, anchor points fill this intersections (i.e. bins) and in testing time the hashing
function is applied to each patch, which will directly map it to a regressor.

are often built, usually in the form of binary splits, e.g. trees, hashing schemes
[83, 36, 31, 10]. One might consider determining the search partitions with the
set of anchor points, since those are the elements to retrieve. However, the small
cardinality of this set leads to an imprecise partitioning due to a shortage of sampling
density.
We propose to train our Spherical Hashing (SpH) functions with natural-image

patches and later on label both anchor points and input patches, as we show in
Figure 5.3. By doing so, we have a dense sampling (i.e. all training patches) at our
disposal, which results in meaningful partitions.
Hashing schemes provide low memory usage (the number of splitting functions

in hashing-based structures is O(log2(ds)) while in tree-based structures is O(ds),
where ds represents the number of clusters) and are highly parallelizable.
Binary hashing techniques aim to embed high-dimensional points in binary codes,

providing a compact representation of high-dimensional data. Among their vast
range of applications, they can be used for efficient similarity search, including ap-
proximate nearest neighbor retrieval, since hashing codes preserve relative distances.
There has recently been active research in data-dependent hashing functions opposed
to hashing methods such as [36] which are data-independent. Data-dependent meth-
ods intend to better fit the hashing function to the data distribution [88, 83] through
an off-line training stage.
Among the data-dependent state-of-the-arts methods, we select the Spherical

Hashing algorithm of Heo et al. [31], which is able to define closed regions in Rm

with as few as one splitting function.
Spherical hashing differs from previous approaches by setting hyperspheres to

define hashing functions on behalf of the previously used hyperplanes. A given
hashing function SH(cF ) = (h1(cF ), . . . ,hc(cF )) maps points from Rm to a base 2
Ns, i.e. {0,1}s. Every hashing function shk(cF ) indicates whether the point cF is
inside kth hypersphere, modeled for this purpose as a pivot pk ∈ Rm and a distance
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threshold (i.e. radius of the hypersphere) tk ∈ R+ as:

shk(cF ) =
0 when δ(pk,cF ) > tk

1 when δ(pk,cF ) ≤ tk
, (5.3)

where δ(pk,yF ) denotes a distance metric between two points in Rm (e.g. Euclidean
distance). The advantages of using hyperspheres instead of hyperplanes is the ability
to define closed tighter sub-spaces in Rm as intersection of hyperspheres. An iterative
optimization training process is proposed in [31] to obtain the set {pk,tk}, aiming
a balanced partitioning of the training data and independence between hashing
functions.
We perform this mentioned iterative hashing-function optimization in a set of

input patch features from training images, so that SH(cF ) adapts to the natural
image distribution in the feature space. Our proposed spherical hashing search
scheme becomes symmetrical as we can see in Figure 5.3, i.e. both image and anchor
points have to be labeled with binary codes. This can be intuitively understood as
creating NN subspace groups (normally referred as bins), which we label with a
regressor by applying the same hashing functions to the anchor points. Relating a
hash code with a regressor can be done during training time.
This search returns kNN for each anchor point, thus it does not ensure that all the

input image patches have a related regressor (i.e. whenever the patch is not within
the kNN of any of the anchor points). Two solutions are proposed: (a) use a general
regressor for the patches which are not in the kNN of any anchor point or (b) use the
regressor of the closest labeled hash code calculated with the spherical Hamming
distance, defined by [31] as dSH(a,b) =

∑
(a⊕b)∑
(a∧b) , where ⊕ is the XOR bit operation

and ∧ is the AND bit operation. Note that although not being guaranteed, it rarely
happens that a patch is not within any of the kNN regressors (e.g. for the selected
parameter of 6 hyperspheres it never occurs).
In a similar way, this search might also assign two or more regressors to a single

patch. It is common in the literature to do a re-ranking strategy to deal with this
issue [30].
With our proposed search strategy, the complexity of the search is O(log2(ds))

where ds is the number of atoms in the sparse dictionary Dl. With previous exhaus-
tive search approaches, the complexity grow linearly as in O(ds).

5.5 Summary and discussion
In this chapter we introduced a novel scheme to train regressors based on pure collab-
orative neighbor embedding, which fits better the `2-norm regularization behaviour.
For each atom in the sparse dictionary we create a densely populated neighbor-
hood from an extensive training set of raw patches (i.e. in the order of hundreds
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of thousands), thus constructing highly populated dense neighborhoods. Training
regressors with those neighborhoods results in better fitted regression functions,
which in turn improve greatly the performance in terms of reconstruction quality.
We also propose a Spherical Hashing sublinear search strategy in order to avoid the
exhaustive search necessary to find the closest anchor point to each of the input
patches. By combining both contributions, DLT obtains highly competitive quality
performance and faster execution times.
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Chapter 6Half-Hypersphere
Confinement

6.1 Introduction
The mapping of the manifold is assumed to be locally linear and therefore several
linear regressors are used and anchored to the manifold as a piecewise linearization.
The key observation of performing the neighbor embedding just for a predefined set
of anchor points allowed to preprocess them during training time, thus lessening
substantially the testing time complexity. Our work on dense local regression [62]
puts light in how to properly create the neighborhoods in such methods, obtaining
sizable benefits in terms of reconstruction quality. In addition to that, we also
included sublinear search structures for the regressor nearest neighbor search, as
this takes a significant quota of the running time from within the processing of the
whole SR pipeline.
In this chapter we further study and provide insight about the behavior of distance

metrics used during the regression process. Even though Euclidean distance has been
widely used for this purpose, it is suboptimal since it does not handle antipodal
points (i.e. diametrically opposite points) properly, as vectors with same module
and angle but opposite directions are, for linear regression purposes, identical (see
Figure 6.1). We propose the usage of antipodally invariant metrics and introduce
the Half-Hypersphere Confinement (HHC), a fast alternative to Multidimensional
Scaling (MDS) that allows to map antipodally invariant distances in the Euclidean
space with very little approximation error. By doing so, we enable the usage of fast
search structures based on Euclidean distances without undermining their speed
gains with complex distance transformations.

6.2 Metrics for linear regression
The linear regression scheme is, as we have seen, very straightforward. One of the
most fundamental aspects of the system is how we choose the best-suited regressor,
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Figure 6.1: Behaviour of Euclidean distance and angular distance for points A, B
and C. Although A and C have very similar structures, Euclidean distance fails to
group them together.

i.e. the metric δ(= di,cF ) used to compare the input patch to the ith centroid in
Equation (5.1).
This metric is not only important during testing time, but also during training

time to asses which observations are used to train which regressor. It is recurrent in
literature the use of Euclidean distance for this purpose. If we are aiming a nearest
neighbor search for a regression system, Euclidean space without any transformation
is suboptimal as it is not further exploiting the intrinsic characteristics of linear
regression.
The scalar matrix multiplication gives us some information about the ambiguous

variations that the metric we want to define should ignore, i.e. for a given scalar λ
we obtain λx = R(cλ). The regressor R and the associated linear operations are
not changed by this scaling operation. Therefore, performing a vector normalization
is a good practice as it solves partially the undesired variability derived from scalar
multiplication. Unitary vectors collapse all positive scalar variations into a single
unitary vector, thus holding more training examples available for a certain vector
type and being able to use them efficiently. During testing time, although the
regression must be done with the original non-normalized vector y, the search should
be done with the normalized version ĉ = y

‖y‖ for the same principles.
However, there are still certain cases which are not properly managed by just a

normalization, as the norms are strictly positive, i.e. ‖c‖ ε R+, and therefore can
not compensate for all those scalar values λ ε R−. In a unitary sphere composed by
normalized vectors, the case of a negative λ represents its antipode (i.e. the point
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that is diametrically opposed in the unitary sphere).
The antipode of a point is one of the two closest possible nearest neighbor, however

in the Euclidean space they are the most far away possible points (i.e. at a diameter
distance) as it can be appreciated in Figure 6.1.
Training and assigning different regressors for two antipodal points does not in-

crease the performance by a better specialization, as the sign change is in both sides
of the equality and the regressor and the associated linear operations are identical
for two antipodal points (i.e. x = R(c) and −x = R(−c)). Each regressor is as-
sociated with an anchor point, which describes a certain mode in the structure of
patches, regardless of this structure being a positive or negative change (e.g. positive
or negative change in the gradient), which is described by the sign of the normalized
vector. The metric utilized for selecting the best regressor should therefore be able
to associate two antipodal points to the same anchor point, thus having antipodal
invariance. In the same way, when building the neighborhoods during training, this
observation also applies. A good metric for regression should be therefore antipodally
invariant.
We define an antipodal invariant metric as:

δ(a, b) = δ(−a, b) = δ(a, − b) = δ(−a, − b). (6.1)

We propose a metric based on the Cosine Similarity (CS) as a native antipodally
invariant similarity metric which is well adapted for regressors’ nearest neighbor
search:

ς(c, y) = |ĉ · ŷ| = |cos θ| , (6.2)

where the hat in ĉ denotes unitary vectors. The output of Equation (6.2) is bounded
in the [0, 1] range (1 denotes maximum similarity) and measures the absolute value
of the cosine of the angle θ between the two vectors c and y. The equivalent distance
metric, which we denote as angular distance reads:

δθ(c, y) = 2
Π arccos(ς(c, y)) (6.3)

and is normalized to be in the range [0,1] range (1 denotes maximum distance).
When there is no time nor metric space constrains (e.g. during training), using the

similarity calculation of Equation (6.2) is the best option. However, during testing
time if a binary split is used, and this split is making use of Euclidean space (such
as the one used in [92, 62]), the adaptation is not straightforward. Rather than
trying to design a split-specific metric, as in our antipodally invariant naive Bayes
forest SR [65] (described in Chapter 7), we study the embedding of datapoints in the
Euclidean space in such a way that antipodally invariant distances (i.e. Equation
(6.3)) are preserved.



46 Chapter 6 Half-Hypersphere Confinement

-1 0 1

-1

0

1

Antipodal points

(a) Input points
-1 0 1

-1

0

1

Transformed 
antipodal points

(b) MDS transformation
-1 0 1

-1

0

1

Transformed 
antipodal points

(c) Proposed transformation

Figure 6.2: 2D example of our HHC compared to MDS. (a) Input points distributed
on the unitary sphere (each point has its own color label), circles/triangles denote
positive/negative y-axis coordinate. (b) Points obtained with MDS and angular
distance. (c) Points obtained with our proposed fast transformation. To guide the
reader there is a group of antipodally invariant nearest neighbors highlighted in a
box across the three figures. Note how both MDS and our proposed transformed put
close together antipodal nearest neighbors as opposed to the input data, where they
are located at maximum distance.

6.3 Embedding in the Euclidean Space

MDS is a well known statistical method that transforms an l× l matrix D containing
pairwise distances between all l observations into a set of coordinates such that the
Euclidean distances derived from them preserve the relative distances specified in
D. MDS is widely applied as a metric-preserving dimensionality reduction method,
as the dimension of the output coordinates is user specified [58].
Although MDS can map appropriately antipodally invariant distances into Eu-

clidean space, it is unusable as not only the optimization process is computationally
intense when the number of points is very large ( its complexity is O(ml2), where m
is the dimensionality), but additionally the input matrix D requires performing an
exhaustive search point-to-point for all l elements. The Landmark MDS of Silva and
Tenenbaum [13] introduced a more efficient transformation based on an approximate
anchored MDS.
Silva and Tenenbaum [13] propose to divide the algorithm in two steps: a first

step in which a classical MDS is performed with a smaller set of points, i.e. landmark
points ls � l, and a second step that applies a distance-based triangulation in order
to obtain the embedding of the complete l elements. The first step can be done
beforehand in a training stage, selecting an optimal set of landmark points, whose
minimum size is m+ 1 landmarks for a m-dimensional embedding. The embedding
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vectors for each of the points can be obtained as:

qa = −1
2(Lᵀ

m)+(dista − distµ), (6.4)

where dista is a vector with the squared distances from point a to all the landmarks,
distµ is a vector with the mean square distances from the i-th landmark to all
the landmarks (it is obtained in step 1) and (Lᵀ

m)+ is the pseudoinverse transpose
of Lm (it is obtained in step 1, we refer the reader to [13] for further details).
Landmark MDS only requires calculating the distances for ls × l. Nevertheless,
although substantially faster than the original MDS, Landmark MDS is still causing
a big impact in the processing time in algorithms which have an emphasis in low
complexity, such as it is our proposed work.
As a fast alternative to the MDS family of algorithms we propose a simple deter-

ministic transformation designed to mimic the MDS behavior when it is used with
angular distances. Figure 6.2 (a) and (b) show the coordinates obtained with MDS
with a D matrix constructed with angular distances. If we analyze the transforma-
tion in the y-axis, the MDS transformation stretches the positive half-space points to
occupy the whole sphere, and it maps likewise the negative half space. The resulting
mapping contains both original half-spaces mixed in such a way that the angular
distances are preserved. The intuition behind our transformation is to make use of
the inverse projection (λ = −1, which is neutral for the regressor search) to com-
press all the data in the positive half space rather than stretching both half-spaces,
as it can be seen in Figure 6.2 (c).
Several conditions need to be met for our proposed transformation to be effective.

It takes advantage of the characteristics of normalized features (i.e. observations in
the unitary sphere Sm−1). It also requires them to be distributed in both positive
and negative half-spaces in a balanced way at least in one dimension.
The desired function must map two (antipodal) points in Sm−1 into a single point.

In order to do that, we enforce a forbidden space region, corresponding to the
negative half-space of the qth dimension, i.e. the observations must be c · eq ∈ R+,
where eq is the qth standard basis in the Euclidean m space:

c = −c, if c · eq < 0. (6.5)

In our training (around 500K feature vectors), all the dimensions were highly and
similarly balanced, so any of them could be chosen. Whenever this is not the case,
the most balanced dimension should be selected to create the hyperplane.
The outcome is a HHC instead of the initial unitary hypersphere, where the Eu-

clidean distances respect also the angular distances.
The proposed HHC is created from an hyperplane c · eq = 0 which is the bound

of the confinement. The performance of our proposed transform depends on the
distance to this hyperplane, as points which are very close to the hyperplane loose
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Figure 6.3: Histogram of the similarity ratio vs distance to the folding hyperplane.
We evaluate the well-functioning of our proposed transformation by searching the
1-st nearest neighbor from 10k points to 1024 centroids (i.e. the testing case of
our regression ensemble). We first obtain the NN both with cosine similarity (i.e.
best solution) and with our proposed transformation of the Euclidean space (i.e.
approximation). We recalculate the cosine similarity for both NN and compute the
ratio η = ζHHC/ζ (when η ≈ 1 the approximation is very close to the best solution).
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connection to the points immediately below the hyperplane, which are projected
to the upper half hypersphere. As shown in Figure 6.2, MDS has a continuous
distribution of points while our proposed transform is truncated in the c · eq = 0
hyperplane. However, in Figure 6.3 we quantify the low incidence of this behavior
by measuring a similarity ratio η = ζHHC/ζ vs the distance to the hyperplane and
observing its frequency. Although there is indeed a certain degradation for small
distances to the hyperplane, the frequency is very low and most of the similarities
obtained with HHC are highly reliable (99.2% of the total amount of points have a
similarity ratio higher than 0.85).
We place a Spherical Hashing search split [31] on top of our piecewise linear

regression using the HHC to embed our points in the Euclidean space. If rather than
transforming the points we just want to use an antipodally invariant metric which
can operate in the Euclidean space, Equation (6.5) is applied in both vectors during
the Euclidean distance calculation:

δHHC(pk,yF ) =
√∑

m

(pkHHC
,cFHHC

)2, (6.6)

and then used in the distance metric δ(pk,yF ) of Equation (5.3). Thanks to this
we obtain an Antipodally Invariant Spherical Hashing which is optimal for the SR
regression problem and can be used for any other problem which shares the same
feature characteristics.

6.4 Feature Space and coarse approximation
SR algorithms are usually performed in a feature space other than that of the raw
luminance pixel values. In the literature, a common rule for this feature transforma-
tion is to enforce mid and high frequencies of LR patches, under the observation that
similarity between LR and HR patch structures is somehow improved and therefore
the prediction is easier. As for the HR feature space (i.e. the output feature space),
the same principle of enforcing high frequencies also applies, in this case under
the assumption that the high frequency bands are conditionally independent of the
lower frequency bands, and thus suppressing low-frequency bands from the HR fea-
ture space collapses the training data for all possible low-frequency values into one
value [24]. Differently from the input LR feature space, in the HR feature space we
need to be able to reverse the features into pixel-based values for the final image
reconstruction.
Several features have been proposed: The early work of Freeman et al. [24] al-

ready used a simple high-pass filter which consisted in the subtraction of a low-pass
filter. In the same direction, [11] and [95] used concatenated first- and second-order
gradients, as an inexpensive solution to the same high-pass filter approximation.
This type of feature was further refined by Zeyde et al. [97] by introducing Principal
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Component Analysis (PCA) compression in order to reduce the feature dimension-
ality.
It is important to remark that most feature transformations are computed from a

first coarse approximation, i.e. the upscaled image C and not directly from the LR
image Y . We observed that the effect of this first approximation has been unnoticed
in the literature, in which using bicubic interpolation or the patch-mean value is a
common practice. In this section we propose a new feature transform which takes
advantage of a better coarse approximation to obtain the input features, which we
denote with cF .
The main idea is to obtain an image approximation C better than that obtained

with bicubic interpolation but which is still within certain low-complexity bound-
aries. We present a feature transform based the Global Reconstruction Constrain of
[95] (described in Section 2.3), together with unidimensional vertical and horizontal,
1-st and 2-nd order gradients. We refer to this novel feature transform as Gradient
Iterative Back Projection (GIBP).
Starting with an initial guess C(0) of the HR image, Iterative Back Projection (IBP)

simulates the imaging process to obtain a LR image Ỹ (0) which can be compared to
the observed input image Y . The difference image E(0) =↑ (Y − Ỹ (0)) is computed
and used to improve the initial guess by back-projecting each error value onto the
corresponding field in X̃(0), namely X̃(1) = X̃(0) + E(0). This process is repeated
iteratively:

X̃(n) = X̃(0) +
n∑
j=1

E(j−1) (6.7)

In our low-complexity approach, we model our downscaling and error upscaling
with the simple and effective bicubic downscaling and upscaling kernel. With as few
as n = 2 iterations the coarse approximation improves greatly when compared to
bicubic. We filter this upscaled image C(2) with 1-st and 2-nd order unidimensional
gradient filters (two vertical and two horizontal). At this point overlapping patches
are extracted from each of the gradient images, and all the 4 gradient patches cor-
responding to the same patch position are concatenated together in a feature vector
cF . Note that dimensionality of this feature is four times the patch size. If this even-
tually becomes a memory problem, a PCA compression can be applied with barely
no information loss [97].
As for the HR feature space, we consistently use IBP, without the non-reversible

gradient step and PCA compression. During training, we form our HR features
simply by the subtraction of the the first coarse approximation to the ground-truth
patch x−c(2), so that our regression stage is specialized in correcting the errors that
characterize IBP. During testing, this HR feature transform requires substituting c
by c(2) in Equation (5.1).
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Set5 Set14
PSNR time PSNR time

bic. gradients 32.55 0.216 23.27 0.407
GIBP 32.65 0.222 32.33 0.419

Table 6.1: Average performance in terms of PSNR (dB) and time (s) for bicubic gra-
dients features and our GIBP features, run on Set14 and Set5 on a ×2 magnification
factor.

6.5 Validation

In Figure 6.4(a), we confirm that neighborhoods created after HHC metric have
lower average distances than without transformation, hence obtaining a better local
condition and having a higher number of samples available for a given maximum
distance. In Figure 6.4(b), we asses the resilience to antipodal variance of HHC: The
average angular distances obtained with HHC neighborhoods (Equation (6.6)) are
approaching those created with a pure antipodally invariant metric (i.e. CS). This
is further validated by the results shown in Table 6.2, where HHC and CS obtain
similar PSNR performance.

In Figure 6.5 we show how the improvements of antipodality affect with respect
the dictionary size and the features utilized. We show the good performance of HHC
applied within SR upscaling, which approximates closely the performance obtained
with CS, specially from 128 atoms on. Note that in our previous DLT SR [62], when
placing a sublinear search structure based on the Euclidean distance we introduced
a substantial quality drop with respect to exhaustive search. Differently, in our
proposed scheme of SpH together with HHC, the drop in quality is very reduced or
even nonexistent (see Chapter 9).

We compare the performance of our proposed GIBP features with the features pro-
posed by Zeyde et al. [97] which are based on the gradients of the bicubic interpola-
tion. We compress both features with PCA in order to reduce the dimensionality, so
that not only the features are more compact, but specially the regressors. In Table
6.1 we show how by using our proposed features we consistently improve in quality
(i.e. from 0.06dB to 0.10dB) with respect the previously used features. We also
asses that, as expected, the computation time of the whole SR algorithm increases
as GIBP requires the computation of more bicubic interpolations (three interpolation
against a single one). Nevertheless the increase in running time has low incidence
with respect the whole SR pipeline (i.e. about 3% of the total SR time).
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Figure 6.4: Average distance of the neighborhoods to their anchor points for increas-
ing neighborhood sizes. (a) shows the Euclidean distance of neighborhoods created
before and afterHHC of the features and (b) shows angular distance (i.e. the distance
derived from cosine similarity) for the neighborhoods obtained with different met-
rics: Euclidean distance, Euclidean distance after HHC and CS. In (a) we show how
thanks to our HHC the clusters are tighter in the Euclidean space. In (b) we assess
how we improve the invariance to antipodality with respect to Euclidean distance,
being very close to the curve obtained with a pure antipodally invariant metric (i.e.
CS).
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tionary size for different metrics and coarse approximations. All the configurations
use exhaustive search.

Testing

Training
Cosine Euclidean AIT

Cosine 32.33 32.21 32.33
Euclidean 32.27 32.15 32.26

Table 6.2: Performance of different metrics for training and testing run on Set14 and
×2 magnification factor.
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6.6 Summary and discussion
We follow-up the DLT upscaler by studying how to improve the metrics involved in
the regression nearest neighbor search both during testing and training. We detect
the importance of antipodal invariance in our search space, proposing the use of the
CS for exhaustive search whenever time is not a constrain (i.e. during training).
We propose a novel transform which we denote as HHC which boosts the antipodal

invariance in the Euclidean space, and that we embed in the Spherical Hashing algo-
rithm of Heo et al. [31], thus obtaining an Antipodally Invariant Spherical Hashing.
In order to further improve performance, we introduce a novel feature transform

that performs better than previous gradient features thanks to a better coarse ap-
proximation of the upscaled gradients. The regressors obtained with an antipodally
invariant metric show a neat gain in PSNR over those obtained with Euclidean dis-
tance and, furthermore, our antipodal SpH is very well adapted to the NN search, as
the loss in quality when compared to exhaustive search is minimal.
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7.1 Introduction
In Chapter 5 we introduced the usage of Spherical Hashing as a mean to alleviate
the computational cost of the nearest neighbor search involved in piecewise linear
regression SR methods. In Chapter 6 we discussed the importance of the antipodal
symmetries and how to embed the data points so that the resulting distances are
antipodally invariant in the Euclidean space. In this chapter we present a novel
SR algorithm that tackles the same objectives (e.g. sublinear search and antipodal
invariance) by means of a tree ensemble with antipodally invariant bimodal splits.
Additionally, we revisit the NBNN selection procedure presented in Chapter 4 and
adapt it to perform a per-patch selection of the best-suited tree within the forest,
which leads to improvements in both speed and quality performance.

7.2 Hierarchical manifold learning
Tree structures are naturally hierarchical: There are O(n) split functions in a tree
of n leafs, which is a fast growth when compared to the characteristic O(log2 n) of
most hashing schemes. In tree structures, each node has a different split function
and is normally trained with the data arriving to that specific node.The benefits of
such hierarchical structure are specially valuable when used not only for fast nearest
neighbor search during inference, but also in order to perform the unsupervised
clustering task that provide the linearization anchor points and the neighborhoods
to train the regression functions.
Our work is related to other hierarchical manifold learning approaches as the

in-place SR of Yang et al. [93], as both methods use hierarchical structures for
unsupervised clustering and fast inference, attaching a locally linear mapping in
each leaf that conforms the piecewise linearization of the manifold mapping. As
in DLT and HHC SR methods, the learning objective of the regression functions
is the residual (x − c) , i.e. the difference between the HR image x and a coarse
approximation c obtained through IBP , Equation (6.7).
The In-Place example regression of [93] fuses a unimodal tree that split the data
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based on the thresholding of a certain data projection. This is the mechanism
underlying the PCA tree [48], its random projection approximation [26] and also the
faster k-D tree. In the latter, a set of features is precomputed for all data and the
spliting is based on the thresholding of the most sensitive feature for each node,
whereas the PCA tree and its approximation provide an adaptive computation of
relevant features during the root-to-leaf tree traversal.
These unimodal trees tend to generate unbalanced partitions: the set of data lying

out of the inclusion partition (projection above threshold) is much more heterogeneus
than the one lying inside (below threshold), as we shown in Figure 7.1. In order
to better represent the partition our data we propose a bimodal tree partitioning
(Figure 7.1, bottom).

7.3 Antipodality and bimodal trees
As seen in Section 6.2, antipodally invariant metrics are of great importance within
regression-based SR. Instead of using a embedding transform as in HHC, we design a
tree split function that is able to group the two most relevant clusters of antipodal
patches at each node.
To properly deal with antipodality when spliting our data, we use the CS described

in Equation (6.2). During training, in each node we obtain two cluster centroids via
the spherical k-means (i.e. adaptation of k-means that is able to handle antipodal
data) [32, 15], namely {µ1,µ2}. Our split criterion for a node is defined as:

µ∗ = arg max
µi={µ1,µ2}

|µi · c| , (7.1)

where the centroid µ∗ which has higher cosine similarity is the binary branch selected
for a given datapoint c.

7.4 Naive Bayes Super-Resolution Forest
Regression forest have been widely applied to several low-level and computer vision
problems [10, 59, 39, 9, 8], even though it has not been applied to SR until fairly
recently [68]. Our approach to SR Forest is inspired by the work of Bernard et al. [5],
in which there is a tree selection strategy.
Combining all the trees in the ensemble might not yield the best possible perfor-

mance. On the one hand, if the output of all the trees is combined the execution
grows linearly with the number of trees (i.e. each tree requires computing a linear
regression per input patch). On the other hand, combining all the trees in the en-
semble might not always improve the results as some of the trees might deteriorate
the performance [5].
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Figure 7.1: Top: Unimodal partitions on a normalized-feature space. The spher-
ical cap (delimited by the solid line) is the fraction of the manifold that can be
described with a single principal direction. Bottom: Antipodally invariant parti-
tioning with unimodal and bimodal split functions. Bimodal partitioning is able to
better separate the two data clusters (represented by red and gray doted caps).
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Figure 7.2: In NBSRF we select the tree T k that provides the best local linearization
of the mapping function for a given datum.

For computational complexity reasons we aim at selecting just one tree within
our forest (i.e. only one regression is computed). We define the Naive Bayes Super-
Resolution Forest (NBSRF) as a tree ensemble where the tree selection is based on
the Naive Bayes assumption [7]. In Figure 7.2 we illustrate the advantages of using
an ensemble of trees in this manner. If we are able to quantify the selectivity of each
tree T (k), 1 ≤ k ≤ Ntr with respect to an input datum c (green dot in the figure), we
can perform a much more accurate regression than that attainable by considering a
single tree. A straightforward solution to this problem consist in choosing the tree
for which CS is maximum. Nonetheless, this criterion would discard the valuable
information stored in the space partitions that leads to the leaf node in each tree,
and it does provide suboptimal performance (see Table 7.1).

7.5 Von Mises-Fisher distribution
We model the data distribution at each node as a Von Mises-Fisher distribution
[22] in order to evaluate the selectivity of a tree with respect to the datapoint. Von
Mises-Fisher models a dispersion distribution over a unit hypershpere:

f(c,µ,ϑ) = C(ϑ) exp(ϑ(µ · c)), (7.2)

where µ is a mean direction, ϑ is a concentration parameter that determines the
dispersion from the central mode and C(ϑ) is a normalizing constant. If we include
CS metric to account antipodal data we obtain:

f(c,µ,ϑ) = C ′(ϑ) exp(ϑ |µc|), (7.3)

where C ′(ϑ) normalizes the modified distribution. For each node in the tree, the data
distribution is composed by a mixture of two antipodal Von Mises-Fisher distribu-
tions. We assume that both components in the mixture have the same concentration
ϑ.
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7.6 Local Naive Bayes tree selection
We use the same Local Naive Bayes framework [47] as in our adaptive region selection
scheme (Chapter 4). We find the best-fitted regressor R(k∗)

i from tree T (k∗) as follows:

R
(k∗)
i = arg max

R
(k)
i

p(R(k)
i |c) = arg max

R
(k)
i

log p(c|R(k)
i ). (7.4)

The number of node responses or features f (k)
l equals the tree depth Td and are

computed from patch c in each root-to-leaf tree traversal. The problem with this
formulation is that it requires computing the likelihoods for all possible paths across
the tree. Fortunately, the alternative formulation by [47] allows us to avoid such
exhaustive MAP. The effect of each node response to a patch c can be expressed as a
log-odds update. This is extremely useful for trees, since it allows us to restrict up-
dates to only those nodes for which the descriptor gives significant evidence (i.e. the
visited nodes along the root-to-leaf traversal).
Let R(k)

i be some linear mapping and R̄i
(k) the set of all other linear mappings.

The odds O for the mapping R(k)
i with uniform priors is given by:

O(R(k)
i ) = p(R(k)

i |c)
p(R̄i

(k)|c)
=

Td∏
l=1

p(f (k)
l |R

(k)
i )

p(f (k)
l |R̄i

(k))
. (7.5)

The final classification rule expressed as log-odds increments reads:

R
(k∗)
i = arg max

R
(k)
i

Td∑
l=1

log p(f (k)
l |R

(k)
i )

p(f (k)
l |R̄i

(k))
,1 ≤ k ≤ Ntr. (7.6)

For each input patch c, we need to do Ntr root-to-leaf traversals, then apply the
rule in Equation (7.6) to find the best-fitted tree within the ensemble, and finally
apply the related regressor R(k∗)

i to it.

7.7 Validation
In Table 7.1 we show in more detail the effect of the contributions of the paper on
×2 scaling on Set14 for increasing numbers of trees with a Td = 11 (2048 leaves).
The first columns of [68] and NBSRF essentially show the improvement of our bi-
modal clustering strategy. In the bicubic experiment we use NBSRF with bicubic
interpolation instead of IBP to show the relative impact of the latter. With the ran-
dom experiment we show that the Local Naive Bayes criterion of NBSRF is clearly
better than a random tree choice (note that the latter is practically equivalent to
having 1 tree), and with the leaf experiment we show that it is not sufficient to just
observe the similarity between data and leaf modes (note that the performance is
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1 tree 2 trees 4 trees 8 trees 16 trees
SRF [68] 32.11 32.16 32.21 32.21 32.22
bicubic 32.28 32.32 32.34 32.35 32.35
random 32.38 32.39 32.40 32.39 32.39
leaf 32.38 32.40 32.40 32.41 32.40
average 32.38 32.43 32.45 32.46 32.45
NBSRF 32.38 32.42 32.44 32.45 32.46

Table 7.1: Different configurations of tree selection compared to our local Naive
Bayes approach and the Super Resolution Forest of Schulter et al. [68].

only slightly better than that achieved with a single tree). In other words, we need
to exploit all the root-to-leaf computed features, as in NBSRF, to choose the optimal
tree. Finally, the average experiment shows that carrying out all the regressions and
averaging (classical random forest) provides in practice the same accuracy, yet it is
Ntr times costlier. The last column of this comparison shows that tree selection can
eventually outperform averaging.

7.8 Summary and discussion
We present a novel method for example-based SR which we name NBSRF, aiming to
high performance in both quality and runtime. NBSRF is essentially a hierarchical
manifold learning approach that uses trees with bimodal split functions, where an-
tipodal patches are effectively clustered together and both children subnodes have
comparable homogeneity, thus leading to an overall better space sampling. We
propose to use tree ensembles in a fast an efficient way by selecting the optimal re-
gression tree based on a Local Naive Bayes criterion. By only selecting the optimal
tree for every input patch instead of averaging over the output of all trees we to
obtain the benefits of random regression forest with almost no extra computational
complexity.
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Chapter 8Dihedral
Symmetry Collapse

8.1 Introduction
Finding meaningful examples for SR is crucial both for internal learning (where the
search space is limited by the image) and external learning. In this direction, Timofte
et al. [76] proposed to generate new training data from different multi-scale images,
Zhu et al. [100] proposed to deform patches based on optical flow and, more recently,
Huang et al. [34] incorporate 3D scene geometry for cross-scale self-similarity using
a modified PatchMatch [4].
Another approach to improve the NN search consists in reducing variability of the

manifold through the knowledge of its redundancy. In the early work of Freeman
et al. [25], the concept of improving the NN search through the collapse of the
manifold’s variability was already addressed. In their learning process, to predict
the highest frequency band they only consider the mid-frequency band and discard
the rest of low-frequencies, thus collapsing the training data for all possible low-
frequency values into one value. Similarly in concept, when subtracting the mean
to a patch, all possible means are mapped to a single 0-mean patch. The benefit of
removing the undesired variability of the manifold versus generating more data is
obvious as the first one obtains the same advantages while not increasing the number
of search candidates. In this chapter we further deepen the knowledge of the natural
image patch manifold, analyzing the redundancy present within the manifold due to
the dihedral group of transforms (i.e. rotation, vertical and horizontal reflections),
which are invariant across scales and easily invertible (i.e. a lossless f−1(x) exists).

8.2 Reducing the manifold span
In this section we first overview two basic patch pre-processing steps (mean sub-
traction and normalization) and their effects within the manifold, followed by a
geometric transformation model that can reduce the manifold span (extended in
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Figure 8.1: Reduction of the manifold’s span and complexity by the procedures
introduced in Section 8.2. The manifold is composed of three dimensional (i.e. 3×1)
patches in the range of [−1,1] extracted from images.
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Section 8.3) and its analysis in the Discrete Cosine Transform (DCT) space. An
overview of the presented transformation is shown in Figure 8.1.

8.2.1 Mean subtraction and normalization
Mean subtraction is an inexpensive process widely adopted in SR applications, as it
is specially beneficial since the mean presents no variations across scales. Bevilaqua
et al. [6] concluded in their feature analysis that the centered luminance patches are
the best suited for their non-negative neighbor embedding SR. Within the manifold
structure, mean subtraction collapses all the possible patches to lie on the hyperplane
1ᵀx = 0, as shown in Figure 8.1b.
Patch normalization is also a simple yet effective process very present in low-

level vision, often interpreted as an illumination normalization. Patch normalization
removes the undesired variability derived from scalar multiplication: All positive
scalar variations are represented by a single unitary vector (i.e. a certain patch
structure). In terms of manifold transformation, normalization enforces the patches
to lie in the unitary hypersphere, as we show in Figure 8.1c. The combination of
both mean subtraction and normalization limits the span of the manifold to the
intersection of the mean hyperplane and the unitary hypersphere, a ring in the
3-dimensional example of Figure 8.1d.

8.2.2 Antipodality
Antipodal points (i.e. points that are diametrically opposed in the unitary sphere:
xA = −x) cannot be properly collapsed by patch normalization as norms are strictly
positive, so any two normalized antipodal points are located at the furthest away
Euclidean distance (the diameter of the hypersphere) while actually the structure of
the patch is exactly the same (see Figure 8.2). In our previous work we already in-
troduced antipodal invariance for SR (Chapter 6). It is possible to collapse antipodal
variability together with dihedral transformations as described in Section 8.3 and
illustrated in Figure 8.1e-8.1f.

8.2.3 Transformation models
Within the space of patches, numerous 2D geometric transformations have been
proposed in order to model physical displacements in the 3D world, improve invari-
ance to those transforms (e.g. rotation for object detection) or expand the search
space both in testing and training. A general model for such transformations is the
projective transformation model, also referred as homography or collinearity.
The projective transformation properly describes the possible transformations of

a pinhole camera when moving to an arbitrary viewpoint. Homographies are widely
used in several applications involving multiple cameras or camera motion [21, 29],
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Figure 8.2: D4 dihedral transforms applied to a 20x20 patch and its corresponding
antipodal versions denoted with −I.

and they have been also used recently in SR [35] in order to increase the number of
relevant patches in the NN search.
Homographies show two main drawbacks when applied to SR. Firstly, as small

patches present a very scarcely sampled grid, transforming its geometry requires
interpolating values, which leads to a high-frequency loss. Secondly, the homography
transform has 8 degrees of freedom, therefore being computationally expensive to
explore and estimate (e.g. Huang et al. [35] use an affine transform enriched with
some perspective deformation limited to a discrete set of detected planes).
We propose the usage of the dihedral groupD4 (for polygons of 4 sides, e.g. patches)

[90], which is a subset of affine transformations that only includes rotations and re-
flections. This finite group G = {gj}7

j=0 contains 8 structure-preserving transforms
which just re-distribute the elements within a patch and therefore do not require any
interpolation. We can obtain the set of 8 dihedral transforms G via a combination
of the following matrices in the 2D space:

gx =
(
−1 0
0 1

)
, gy =

(
1 0
0 −1

)
, gᵀ =

(
0 1
1 0

)
, (8.1)

where gx and gy denote the reflections along the x and y axis respectively, and gᵀ
denotes the transpose operation. All the transforms forming the dihedral group
are linear and scale invariant, and a straightforward inverse function exists. In
Figure 8.2 we show the behavior of the dihedral group of transforms and how they
affect a given patch.

8.2.4 Dihedral group in the DCT space
In this section we analyze the effect of the dihedral group G in the domain of the
DCT, as there are some useful properties that lay the groundwork for our proposed
method. The DCT b of a patch x of size M×N reads:

b(k,l) =
M−1∑
m=0

N−1∑
n=0

x(m,n) cos
π(m+ 1

2)k
M

cos
π(n+ 1

2)l
N

. (8.2)
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As the DCT is linear, applying the transpose operator (i.e. gᵀ in the 2D space)
results in a transpose in the transformed space, i.e. bᵀ = fDCT (xᵀ). As for the
reflection operators (i.e. gx and gy in the 2D space), they result in a change of sign
in some of its components:

bgx(k,l) = b(k,l) · (−1)l
bgy(k,l) = b(k,l) · (−1)k . (8.3)

The behavior of the proposed dihedral transforms in the DCT space is therefore
reduced to transpositions and sign changes in a defined set of coefficients. Figure 8.4
left shows which components of the DCT are expected to change whenever there is a
reflection or transposing operator. This simple and predictable behavior in the DCT
space facilitates the observation of mirror symmetries.

8.3 Manifold symmetries
The transform group G presented in Section 8.2.3 defines 8 points in the M×N -
dimensional manifold of natural patches for a given patch primitive x (see Figure 8.4
right). This is a dihedral symmetric shape within the manifold surface, since a
symmetric structure is defined if there exists a non-trivial group of action that defines
an isomorphism. Our goal is to exploit the symmetries defined by G together with
antipodality in order to efficiently collapse redundant variability of our manifold
span.
Our proposed Symmetry-Collapsing Transform (SCT) builds on the work of Zabrod-

sky et al. [96], where they proposed a continuous Symmetry Distance (SD) which
measures how symmetric a given structure is. This metric δ is defined in the shape
space Ω, where each shape is represented by a sequence of r points {Pi}r−1

i=0 . The
metric reads:

δ(P,Q) = 1
r

r−1∑
i=0
‖Pi −Qi‖2 , (8.4)

which is an averaged point to point Euclidean distance. In order to achieve invariance
to symmetry, a Symmetry Transform (ST) of a shape P is defined as the symmetric
shape closest to P in terms of Equation (8.4), and thus SD is defined as SD =
δ(P, ST (P )). The metric is therefore the point to point Euclidean distance of a
given shape to its closest symmetric shape.
Zabrodsky et al. [96] present different ST depending on the type of symmetry to be

accounted (e.g. rotational, mirror-symmetry). For the specific case of the mirror-ST,
with a known mirror symmetry axis, the procedure for every pair of points {P0, P1}
is:

Fold by reflecting the point across the mirror symmetry axis obtaining
{
P̊0, P̊1

}
(i.e. P0 ≡ P̊0).
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Average both points to obtain a new average point A0.

Unfold the average point A0 in order to obtain A1.
We show an overview of the original mirror-ST in Figure 8.3 (steps 1 and 2a). In the
original algorithm, the ST aims to obtain a regular polygon which can be thereafter
compared to the input shape in order to estimate its point to point distance. Our
goal is to obtain a transform that reduces variability while respecting the SD.
To achieve this reduction, we present a modified ST, which we denote as SCT, that

moves all the possible symmetric points to a reference side of the mirror axis, thus
reducing redundant variability. For that purpose, assuming a single mirror axis,
all the points are fold into the reference side where P0 lies, and the element of the
applied symmetry group (i.e. gj) is saved. This is similar to a mean subtraction ,
where all possible different means of a given patch are collapsed to a single 0-mean
patch and the mean is saved in order to differentiate among them. We show an
overview of our proposed SCT in Figure 8.3 (steps 1 and 2b), where we highlight
that the resulting distances are conserved with respect to the original algorithm.
Although folding the points back to their original position is not necessary for the
distance calculation in our SCT, we can do it at any point as the inverse SCT.
The initial ST and SD extend to any finite point-symmetry group G in any dimen-

sion, where the folding and unfolding are performed by applying the group elements
[96]. However, when extending to more than 3D, finding the symmetry axes that
minimize SD is non-trivial.
In order to (a) keep the transform under a reasonable complexity, (b) easily and

analytically find the mirror axes of G and (c) benefit from behavior of G in the
DCT domain, we propose a representation based on the first vertical and horizontal
harmonics b(1,0) and b(0,1). Each of these coefficients is affected only by one reflec-
tion and the transpose is plainly mapped to a coefficient switch. Semantically, b(1,0)
and b(0,1) are the coefficients statistically containing more energy that represent the
response to vertical and horizontal variations, resembling the original vertical and
horizontal 2D space of Zabrodsky et al. [96]. The three resulting mirror planes are
straightforwardly obtained as b(1,0) = 0, b(0,1) = 0 and |b(1,0)| − |b(0,1)| = 0, as
shown in Figure 8.4 right. At this stage, there is still ambiguity within this projected
space as an antipodal point can be confused by a patch affected by vertical and hor-
izontal reflections (as both vertical and horizontal coefficients have a sign change).
In order to disambiguate, we include another dimension and a fourth mirror plane
in b(3,3) = 0 which is not affected by transpose, nor vertical or horizontal reflection
(as it is a DCT base with inner dihedral symmetry). This fourth axis, which we fold
in the first place, represents the negative unitary matrix −I (i.e. sign change) to be
applied both patch-wise and within the DCT domain before collapsing the rest of
symmetries.
The final proposed transform c̊ = κ(c,ϕ(c)) produces collapsed patches (denoted

by the ring accent) using the four defined axes, where gj = ϕ(c) retrieves the element
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Figure 8.3: Mirror-Symmetry Transform of a single pair of points as proposed by
Zabrodsky et al. [96] (1 and 2a) and our proposed SCT (1 and 2b).

within the group G together with the disambiguation of the sign (i.e. −I when
b(3,3) < 0 ). The inverse c = κ−1(̊c,ϕ(c)) applies the same elements of the symmetry
group that were used in the collapse in a reverse order, restoring the patch to its
original appearance.

8.4 Application to SR

In this section we propose a novel SR algorithm that makes use of our proposed
c̊ = κ(c,ϕ(c)), which we name Patch Symmetry Collapse (PSyCo). We denote 0-
mean patches with the line accent (e.g. c). The main idea is to train our regression
ensemble (both k anchor points in Dl and the associated regressors {Ri}) with the
ground truth and coarse collapsed patches {x̊,̊c} so that during training time the
system is optimized for the reduced span of the manifold which is to be used. We
obtain our coarsely approximated images C with IBP. The kSVD input is a matrix of
0-mean patches without symmetric redundancy which have been stacked as columns,
denoted by C̊. After that, a NN search with the angular similarity

∣∣∣∣d̊ᵀ
i c̊
∣∣∣∣ is performed

for each atom di in Dl to construct each neighborhood Ci as a fixed-size subset of
the whole training data C. Once the anchor points and neighborhoods have been
defined, each regressor Ri is trained with the following closed-form expression:

Ri = (1 + λ)(X̊i − C̊i)C̊i
ᵀ(C̊i C̊i

ᵀ + λI)−1. (8.5)
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Figure 8.4: Left: Coefficients of a DCT that are affected by gx, gy (resulting
in a sign change, Equation 8.3) and gᵀ (resulting in a transpose of coefficients).
Right: Overview of our κ(x,ϕ(x) with real patches, highlighting the symmetry axes
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During inference time, the NN search and regression is performed with
{

d̊,̊c
}
and af-

ter regression the symmetric transformation needs to be reverted so that the patches
recover their original orientation. The regression stage reads:

x̃ = c + κ−1(R∗ c̊,ϕ(c)), (8.6)
and the final image X̃ is obtained by an overlapping reconstruction strategy, as it
is common in SR [74, 92, 68].

8.5 Validation
In this section we validate the contributions of our proposed transform, assessing the
impact of collapsing each of the axes separately, and also the combination of those
exclusively corresponding to the dihedral group G and the impact of the complete
system, which also tackles antipodal symmetries. Figure 8.5a shows PSyCo with
several mirror-axes configurations and dictionary sizes. First, we would like to asses
the benefits of our symmetric transform when compared to untransformed patches.
The quality is around 0.4 dB higher for small dictionary sizes (e.g. 16, 32) and around
0.2 dB for 1024 atoms. We find remarkable the fact that our symmetry transform
performs always slightly better than a ×16 times larger dictionary without any
symmetry accounted. This supports the idea that with our manifold collapse we
can effectively cover the 16 different appearances of a given primitive patch without
increasing the search space, plus an additional quality gain as the training of the
regressors is better (i.e. due to more meaningful patches in the neighborhoods).
When it comes to assess the incidence of each type of transform separately, we

find that all have similar impact, being the antipodal symmetry slightly better-
performing than the reflection or the transpose. We also note that each symmetry
axis is roughly comparing equally to a ×2−4 times larger untransformed dictionary.
The dihedral symmetries together surpass that of the antipodal, and we observe that
its quality performance surpasses by a great margin that of the ×8 larger dictionary
without any symmetry.

8.6 Summary and discussion
In this chapter we present the last contribution of this thesis, which in a certain way
presents a unifying framework for manifold learning with antipodal and dihedral
invariance. We present a novel regression-based SR algorithm that benefits from
an extended knowledge of the structure of both LR and HR patch manifolds. We
propose a transform that collapses the 16 variations induced from the dihedral group
of transforms (i.e. rotations, vertical and horizontal reflections) and antipodality
(i.e. diametrically opposed points in the unitary sphere) into a single primitive. The
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key idea of our transform is to study the different dihedral elements as a group of
symmetries within the high-dimensional manifold. We obtain the respective set of
mirror-symmetry axes by means of a frequency analysis of the dihedral elements,
and we use them to collapse the redundant variability through a modified symmetry
distance. The experimental validation of our algorithm shows the effectiveness of
our approach, which obtains competitive quality with a dictionary of as little as 32
atoms (reducing other methods’ dictionaries by at least a factor of 32) and further
pushing the state-of-the-art with a 1024 atoms dictionary.
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Chapter 9Results
In this section we introduce the set-up used for the experimental validation of the
dissertation, i.e. the metodolody, metrics and datasets used for our experiments.
All the relevant methods described in the thesis are then separately evaluated and
their parameters analyzed and discussed. A final section does a complete bench-
marking of all the algorithms and compares the different metrics established for the
experimental validation.

9.1 Methodology
Our experimental set-up aims at assessing the performance of image-upscaling algo-
rithms. In order to be able to objectively evaluate the quality of the upscaled image,
a reference ground truth image is required. Most of the well-known quality assess-
ment metrics require pixel-wise error measurements, therefore the reference image
and the output image should be correctly alligned, as even subpixel shifts create
great disturbances in such measurements. In order to satisfy both requirements,
we downscale the reference ground truth images by a given magnification factor S
(i.e. 2, 3 and 4) with a bicubic kernel and then apply the SR algorithms to restore
the image to the original resolution. This procedure represents the SR reconstruc-
tion constrain described in Section 2, Equation (2.1), where the degrading kernel H
is the anti-aliasing bicubic filtering. We obtain our estimated HR image X̃ via SR,
and we then compute several metrics related with quality assessment, and also the
processing time and memory usage of the SR algorithm itself. We show an overview
of the presented methodology in Figure 9.1.

9.2 Metrics

9.2.1 Peak Signal-to-Noise Ratio

PSNR describe the ratio between the maximum possible power value of the signal
and the power of the noise that corrupts it. PSNR is defined in logarithmic scale
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Figure 9.1: Overview of the experimental methodology. The reference ground truth
image X is downscaled and filtered with bicubic kernel H. This new LR image Y is
processed by the SR algorithm, from which we measure time and memory usage. The
estimated HR image X̃ is compared with the reference image X to obtain objective
error measurements.

and it is expressed in decibels (dB). The noise power is computed by estimating the
MSE with respect to the ground truth signal:

MSE = 1
mn

n∑
i=1

m∑
j=1

(Sref (i,j)− Snoise(i,j))2, (9.1)

where Sref is the clean reference ground truth image and Snoise is the observed noisy
image. The PSNR metric relates this mean quadratic error to the maximum value
of the signal:

PSNR = 10 log MAX2

MSE . (9.2)

We normalize the dynamic range of our images to be in the range [0,1], so that
MAX is consistently 1.

PSNR and MSE are probably the metrics most widely used in SR benchmarking
and, more generally, in image and video quality assessment. The formulas have very
intuitive physical meanings, and they are additionally simple and fast to compute.
From a mathematical perspective, minimizing over MSE is very well understood and
a common approach in many state-of-the-art algorithms. As of today, there is also
not a clear standardized alternative to these quadratic fidelity metrics [89].
Despite its wide adoption, PSNR has been shown to correlate poorly with the

quality perceived by human viewers [91]. This is caused by the fact that data
metrics like PSNR overlook the human visual system and rather compare only byte
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to byte distances without any further intelligence. Wang and Bovik [85] describe
some of the implicit assumptions of signal fidelity metrics (e.g. MSE and PSNR) which
are specially problematic for image quality assessment:

1. PSNR is independent from temporal and spatial pixels relationships. If both
the reference and distorted pixels are re-arranged in the same way, the PSNR re-
mains the same.

2. PSNR is independent from any relationship between the error and the original
signal. For a given error signal, PSNR remains unchanged regardless of which
original signal it is added to.

3. PSNR ignores the sign of the error signal.

4. In PSNR all the samples are equally important to the global error computation.

All these four assumptions do not hold in the context of evaluating visual quality
perception [89, 85]. Many other quality assessment metrics have been proposed in
order to better relate to the visual human system. The Structural Similarity (SSIM)
index of Wang and Bovik [86] represent a remarkable effort in that direction.
In the benchmark analysis of Yang et al. [91] they compare and study different

metrics for the evaluation of SR techniques. They include subjective evaluation and
compute how each of the metrics involved correlate with it. The metric that mostly
correlates with subjective perception is the Information Fidelity Criterion (IFC), and
thus we include this together with the widely adopted SSIM and PSNR for our SR
evaluation.

9.2.2 SSIM
The SSIM index is based on the assumption that the human visual system is highly
adapted to extract structural information from the viewing field, and thus measuring
structural change can approximate perceived image distortion [86]. For a reference
imageX and a corrupted image C from which we obtain patches x and c respectively,
SSIM index breaks the quality measures in three different components: luminance,
contrast and structure.
The luminance component is compared using the means of both patches as follows:

l(x, c) = 2µxµc + C1

µ2
x + µ2

c + C1
, (9.3)

where µx = 1
N

∑N
i=1 xi denotes the local mean of the patch x and C1 is a constant

to avoid numerical instability.
The contrast comparison function takes a similar form, but it uses the standard

deviation σx =
(

1
N−1

∑N
i=1(xi − µx)2

)1/2
as an estimate of the signal constrast:
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co(x, c) = 2σxσc + C2

σ2
x + σ2

c + C2
. (9.4)

Equation (9.4) is less sensitive to contrast change 4σ = σc − σx for the case
where there is high base contrast, which tries to reproduce the masking feature of
the human visual system [86].
The structure comparison function is based on the correlation after luminance

and contrast normalization:

s(x, c) = σxc + C3

σxσc
, (9.5)

where σxc is estimated as:

σxc = 1
N − 1

N∑
i=1

(xi − µx)(ci − µi). (9.6)

Equation (9.5) corresponds to the cosine of the angle between the vectors (xi−µx)
and (xi − µx).
The SSIM index between signals is a composition of the three of Equations (9.3),

(9.4) and (9.5):

SSIM(x, c) = [l(x, c)]a · [co(x, c)]b · [s(x, c)]c , (9.7)

where a, b and c weight the impact of each of the components, and which are equally
set to 1 in the original work of Wang and Bovik [86]. A symmetric Gaussian weight-
ing function is applied in order to avoid block-like artifacts in the SSIM index map
of the complete image, and the mean of all the values of the image is computed in
order to represent the overall image quality.

9.2.3 IFC
The IFC of Sheikh et al. [70] is a quality assessment algorithm based on natural scene
statistics that are analysed from an information theory perspective, i.e. modelled as a
transmitter, channel and receiver. Images and videos of the three dimensional visual
environment form a certain subspace in the space of all possible signals, and sev-
eral efforts have been made to develop sophisticated models that characterize those
statistics [73]. A given degradation of an image can be analyzed as a disturbance in
those statistics. Sheikh et al. [70] propose the usage of natural scene statistics com-
bined with distortion models in order to quantify the statistical information shared
between the degraded and reference image.
The source model that they propose in their work is based on Gaussian Scale

Mixture (GSM) [82] in the wavelet domain. We start defining one subband of the
wavelet decomposition of an image as a GSM random field , F = {Fi : i ∈ I}, where
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I denotes the set of spatial indices for the random field and C is a product of two
stationary random fields that are independent of each other:

C = S · U , (9.8)

where S is a random field of positive scalars and U is a Gaussian scalar random field
with mean zero and variance σ2

U .
The distortion model is also described in the wavelet domain. It is a simple signal

attenuation and additive Gaussian noise model in each subband:

D = GF + V = {giFi + Vi : i ∈ I} , (9.9)

where F denotes the random field from a subband in the reference signal, D denotes
the random field from the corresponding subband from the test (degraded) signal, G
is a deterministic scalar attenuation field, and V is a stationary additive zero-mean
Gaussian noise random field with variance σ2

V .
Given a source model and a distortion model, the information fidelity crite-

rion is the mutual information between the source and the distorted images. Let
FN = (F1,F2, . . . ,FN) denote N elements from F . Let Let DN = (D1,D2, . . . ,DN)
denote the corresponding elements from D. The mutual information between these
is denoted as I(FN ,DN). The information fidelity criterion proposed in [70] is the
conditional mutual information I(FN ;DN |SN = sN), where SN = (S1,S2, . . . ,SN)
are the corresponding N elements of S, and for single wavelet subband reads:

I(FN ;DN |SN = sN) = 1
2

N∑
i=1

log2(1 + g2
i s

2
iσ

2
U

σ2
V

). (9.10)

The IFC is then obtained by summing over all subbands:

IFC =
∑

k∈subbands
I(FNk,k;DNk,k|SNk,k = sNk,k),

where FNk,k denotes Nk coefficients from the random field Fk of the k-th subband.
The IFC metric measures fidelity, not distortion, and therefore it ranges from zero

(no fidelity) to infinity (perfect fidelity).

9.2.4 Time
In order to evaluate computational complexity we measure the time that a given
algorithm takes to upscale an input LR image to an output HR image. All the
experiments were run on an Intel Xeon W3690 @ 3.47GHz equipped with 12GB of
RAM memory.
We also compute the frame frequency or frame rate that the algorithm can provide,

which is a metric proportional to the speed of the algorithm and thus helps for
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visualization purposes in our radar plots. The framerate fframe:

fframe = 1
tframe

, (9.11)

where tframe describes the amount of time required to upscale a given frame.

9.2.5 Model Size
Different approaches to SR learn different data structures from the training data,
e.g. regressors, anchor points, dictionaries, deep networks weights. For each of those
algorithms it is also possible to modify certain parameters so that more information
is learnt and stored (e.g. the number of dictionary atoms or hidden network layers),
but this comes not only at a computational cost but also at a higher memory usage
cost.
Some algorithms use very reduced sets of data and still are competitive in terms

of quality performance. Also, in this thesis there is great emphasis on being efficient
in the learnt representations thanks to the exploitation of inherent symmetries of
patch manifolds.
In order to assess the improvements achieved in this direction, specially within

algorithms that share similar data structures (e.g. regression-based SR), we measure
the amount of memoryMSR necessary to store and use each algorithm for its rec-
ommended configuration. Together with the quality metrics, this can help interpret
how efficient the learnt data is.
In order to visualize this values within spider plots we define the Memory Com-

pression Ratio φ2 (i.e. for magnification factor ×2), which consist on a ratio that
relates the size of the current model to the model size of the ANR SR in [74], so that
the memory usage is inversely proportional to the Memory Compression Ratio and
thus better memory usage (i.e. less bytes) translates to higher compression values.
We reference to ANR as it is a well-known algorithm with a medium sized set of
learnt data (regressors and anchor points), which is also directly related both to
dictionary- and regression-based SR.

φ2(MSR) = MANR

MSR

. (9.12)

We defineMANR as the size in bytes (B) of the ANR SR in [74]:

MANR = ((p2
sfPCA)ds + (fPCAds))sfloat, (9.13)

where ds denotes the number of atoms (1024), ps denotes the HR patch dimen-
sionality, fPCA denotes the LR feature dimensionality compressed via PCA and sfloat
denotes the size of the representation of each element (i.e. we assume all the elements
to be 4Bytes floats).



9.3 Datasets 77

Set5 Set14 kodak

Figure 9.2: Images from datasets Set5, Set14 and kodak.

9.3 Datasets
We use Set5, Set14 and kodak datasets for our testing sets. Set5 and Set14 are
composed by two sets of 5 and 14 images respectively and have been the reference
datasets to compare in the recent state of the art benchmarks. Set5 has images from
65kpixels to 262kpixels. Set14 has images that range from 76kpixels to 393kpixels.
The kodak dataset has not been adopted as widely as Set5 and Set14, however it is
a good option as it offers a set of 24 clean, high-quality images (24 bits per pixel) of
a fixed resolution of 393kpixels. We show some examples of the images in the test
datasets in Figure 9.2.

9.4 Sparse SR
In this section we provide performance evaluation for the sparse SR of Yang et al. [95]
and the follow-up work of Zeyde et al. [97] which has an emphasis on efficiency and
computing time.

Configuration
The original sparse algorithm of Yang et al. [95] requires setting several parameters.
We use the recommendations of the authors and replicate their experimental setup:
The regularization parameter λ (see Eq. 2.6) is set to λ = 0.1 (if there is noise
presence, λ should increase proportionally to the standard deviation of the noise),
the patch size is set to 5 pixels extracted in a full overlap scheme, the number of
atoms in the trained coupled dictionary ds is set to ds = 1024 and the maximum
number of iterations for the IBP (see Eq.(2.8)) is set to 20.
As for the method of Zeyde et al. [97], the main parameter to set is the size of
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Bicubic Yang et al. [95] Zeyde et al. [97]
S PSNR time PSNR time PSNR time

Set5
2 33.661 0.001 36.015 156.513 35.805 4.202
3 30.392 0.001 31.928 143.225 31.912 1.801
4 28.421 0.001 29.579 140.359 29.694 1.060

Set14
2 30.232 0.002 31.946 312.872 31.812 8.309
3 27.541 0.001 28.673 287.218 28.669 3.682
4 26.000 0.001 26.805 279.020 26.879 2.190

kodak
2 30.845 0.002 32.330 564.734 32.206 14.556
3 28.426 0.002 29.245 514.468 29.221 6.418
4 27.223 0.002 27.793 489.638 27.837 3.786

Table 9.1: Performance of ×2, ×3 and ×4 magnification in terms of averaged
PSNR (dB) and average execution time (s) on datasets Set5, Set14 and kodak.

the dictionary, which we also fix to ds = 1024. Additionally, the patch size is set to
3 pixels in the LR space, which is then multiplied by the magnification factor when
extracting patches in the coarse upscaled image (i.e. for ×2 the patch size in the
HR space is 6 pixels). The level of sparsity (number of elements which are non-zero)
is set to 3 in the OMP and k-SVD algorithms. This parameter set is re-used in all
the following experiments if not stated otherwise.

Performance

In Table 9.1 and 9.2 we show the objective evaluation (in terms of PSNR, IFC,
SSIM and time) of these two methods compared with the bicubic interpolation which
acts as a baseline. The method of Yang et al. has consistently a better performance
for a ×2 magnification factor for the three measured quality metrics. The difference
becomes tighter for ×3, and as for ×4 Zeyde et al. is the best performer in terms
of PSNR, with a very similar performance in terms of SSIM and IFC. The execution
times of Yang et al. are two orders of magnitude higher than those of Zeyde et
al., thus the efficient sparse decomposition via OMP presented by [97] is specially
effective.
In Figure 9.3 we show close-ups for visual inspection. This subjective evalua-

tion is in consonance with the objective results, as images obtained with Yang et
al. SR presents sharper edges for ×2 upscaling, but for ×3 and ×4 there are strong
artifacts along the edges. Images obtained with Zeyde et al. are slightly less sharp
but also present less artifacts and therefore are more pleasant to the eye.
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Bicubic Yang et al. [95] Zeyde et al. [97]
S IFC SSIM IFC SSIM IFC SSIM

Set5
2 6.282 0.930 9.626 0.952 8.204 0.950
3 3.616 0.869 5.056 0.899 4.550 0.897
4 2.342 0.811 3.142 0.840 2.953 0.843

Set14
2 6.304 0.869 9.142 0.903 7.939 0.899
3 3.535 0.774 4.713 0.812 4.297 0.808
4 2.259 0.702 2.927 0.736 2.755 0.734

kodak
2 6.223 0.870 8.644 0.904 7.649 0.900
3 3.410 0.779 4.367 0.811 4.049 0.807
4 2.126 0.719 2.657 0.745 2.540 0.744

Table 9.2: Performance of ×2, ×3 and ×4 magnification in terms of averaged IFC
and average SSIM on datasets Set5, Set14 and kodak.

S Bicubic Yang et al. [95] Zeyde et al. [97] Gr.Truth
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4

Figure 9.3: Close-ups of the results in Table 9.1 and 9.2 for visual qualitative assess-
ment. Best-viewed zoomed in.
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Bicubic Zeyde et al. [97] GR ANR
S PSNR time PSNR time PSNR time PSNR time

Set5
2 33.661 0.001 35.805 4.202 35.153 0.515 35.858 0.783
3 30.392 0.001 31.912 1.801 31.423 0.282 31.926 0.402
4 28.421 0.001 29.694 1.060 29.342 0.199 29.691 0.273

Set14
2 30.232 0.002 31.812 8.309 31.355 1.011 31.801 1.519
3 27.541 0.001 28.669 3.682 28.305 0.568 28.647 0.801
4 26.000 0.001 26.879 2.190 26.589 0.421 26.846 0.564

kodak
2 30.845 0.002 32.206 14.556 31.873 1.711 32.245 2.573
3 28.426 0.002 29.221 6.418 28.987 0.968 29.213 1.395
4 27.223 0.002 27.837 3.786 27.639 0.716 27.806 0.975

Table 9.3: Performance of ×2, ×3 and ×4 magnification in terms of averaged
PSNR (dB) and average execution time (s) on datasets Set5, Set14 and kodak.

9.5 Anchored Neighborhood Regression

Configuration

We follow the author’s parameter setting proposed in [74]. This comprises a dictio-
nary size ds = 1024 and a neighborhood size of 40 atoms. Other parameters such as
patch size and maximal sparsity are set-up equally as in the previous work of Zeyde
et al. [97].

Performance

In Table 9.3 and 9.4 we show the objective evaluation (in terms of PSNR, IFC,
SSIM and time) of GR and ANR, and we compare them with the SR algorithm of
Zeyde et al. [97]. The performance of ANR is similar to that of Zeyde et al., with
differences upper bounded by 0.06dB. The IFC and SSIM indices of both algorithms
are also comparable, only with marginal differences. Nonetheless, we would like to
remark that ANR is notably faster, obtaining times about one order of magnitude
faster (i.e. around ×4 times faster). The GR, which consist on a single regressor,
yields lower PSNR and SSIM values, even though surprisingly is the best performer in
terms of IFC. In terms of time is also slightly faster than ANR as it does not perform
any nearest neighbor search.
In Figure 9.4 we show close-ups for visual inspection. GR produces heavy ringing

artifacts, whereas both Zeyde et al. and ANR produce fairly similar images. All the
images in the figure contain aliased frequencies, meaning that their schemes are not
able to recognize and minimize its presence.
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Bicubic Zeyde et al. [97] GR ANR
S IFC SSIM IFC SSIM IFC SSIM IFC SSIM

Set5
2 6.282 0.930 8.204 0.950 8.663 0.945 8.523 0.950
3 3.616 0.869 4.550 0.897 4.649 0.885 4.689 0.897
4 2.342 0.811 2.953 0.843 2.987 0.828 3.030 0.842

Set14
2 6.304 0.869 7.939 0.899 8.433 0.898 8.193 0.901
3 3.535 0.774 4.297 0.808 4.448 0.803 4.415 0.810
4 2.259 0.702 2.755 0.734 2.822 0.728 2.829 0.735

kodak
2 6.223 0.870 7.649 0.900 8.168 0.899 7.885 0.902
3 3.410 0.779 4.049 0.807 4.195 0.804 4.145 0.809
4 2.126 0.719 2.540 0.744 2.599 0.740 2.589 0.744

Table 9.4: Performance of ×2, ×3 and ×4 magnification in terms of averaged IFC
and average SSIM on datasets Set5, Set14 and kodak.

S Bicubic [97] GR [74] ANR [74] Gr.Truth
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Figure 9.4: Close-ups of the results in Table 9.3 and 9.4 for visual qualitative assess-
ment. Best-viewed zoomed in.
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9.6 Adaptive dictionaries

Configuration
In our original publication [60] we used our adaptive dictionary training together
with the scheme of [95]. Our local NBNN can be used together with any algorithm
that builds a dictionary (e.g. the Naive Bayes Super-Resolution Forest introduced
in Chapter 7). When used with sparsity, it requires building a dictionary per im-
age or per sequence of images of similar content, thus efficient dictionary building
have sensitive impact in the computational time. Consequently, we preferred for its
evaluation within this dissertation the usage of the k-SVD for our sparse dictionary
training and OMP for the sparse decomposition.
We set our dictionary size ds = 512 in order to minimize the training time impact.

We set the maximal sparsity to 3 elements. We compare the advantage of this
adaptive dictionary with [97] also set to ds = 512.

Performance
In Table 9.5 and 9.6 we show the objective evaluation (in terms of PSNR, IFC,
SSIM and time) of our NBNN sparse SR compared with the efficient sparse SR of
Zeyde et al. [97] and bicubic interpolation. Our proposed adaptive approach im-
proves the performance over Zeyde et al. consistently for all the magnification fac-
tors and datasets, with increments up to 0.27dB. The IFC and SSIM indices are also
consistently improved, with a remarkable gap in terms of IFC of 1.4 for the ×2 factor.
If we compare the performance of our adaptive 512 atoms dictionaries with Zeyde et
al. [97] trained with 1024 atoms (see Table 9.1) we can see that even with half sized
dictionaries we obtain better performance. In terms of time, the effect of training
new dictionaries per frame has also a great impact, obtaining execution times which
are 2 to 3 orders of magnitude higher. The application of sparse NBNN to images is
specially suitable when dictionaries do not need to be trained per frame, but rather
for a set of frames (e.g. a dictionary per scene or shot).
In Figure 9.5 we show close-ups for visual inspection. Our proposed NBNN is

able to reconstruct aliased frecuencies where the non-adaptive approach fails to do
so (first row in the figure). Overall, the edges obtained are sharper and better
preserved with respect the ground truth image.

9.7 Dense Local Training
In this section we provide performance evaluation of our Dense Local Training al-
gorithm [62], where we show substantial quality benefits due to our novel training
approach and additional speed-ups caused by the sublinear Spherical Hashing near-
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Bicubic Zeyde et al. [97] Sparse NBNN
S PSNR time PSNR time PSNR time

Set5
2 33.661 0.001 35.677 4.376 35.940 1032.719
3 30.392 0.001 31.814 1.922 32.004 641.534
4 28.421 0.001 29.612 1.210 29.776 349.962

Set14
2 30.232 0.002 31.720 9.244 31.947 1749.697
3 27.541 0.001 28.585 4.146 28.737 1175.802
4 26.000 0.001 26.813 2.559 26.947 693.179

kodak
2 30.845 0.002 32.133 16.138 32.360 2541.422
3 28.426 0.002 29.157 7.187 29.297 1568.001
4 27.223 0.002 27.794 4.551 27.888 1297.318

Table 9.5: Performance of ×2, ×3 and ×4 magnification in terms of averaged
PSNR (dB) and average execution time (s) on datasets Set5, Set14 and kodak.

Bicubic Zeyde et al. [97] Sparse NBNN
S IFC SSIM IFC SSIM IFC SSIM

Set5
2 6.282 0.930 8.111 0.949 9.573 0.951
3 3.616 0.869 4.501 0.895 5.082 0.899
4 2.342 0.811 2.923 0.841 3.218 0.843

Set14
2 6.304 0.869 7.871 0.898 9.108 0.903
3 3.535 0.774 4.266 0.806 4.749 0.813
4 2.259 0.702 2.737 0.732 3.000 0.740

kodak
2 6.223 0.870 7.602 0.899 8.659 0.904
3 3.410 0.779 4.026 0.806 4.415 0.812
4 2.126 0.719 2.527 0.742 2.732 0.749

Table 9.6: Performance of ×2, ×3 and ×4 magnification in terms of averaged IFC
and average SSIM on datasets Set5, Set14 and kodak.
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S Bicubic Zeyde et al. [97] NBNN Gr.Truth
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Figure 9.5: Close-ups of the results in Table 9.5 and 9.6 for visual qualitative assess-
ment. Best-viewed zoomed in.
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est neighbor search. In this section we assess the impact of each of the contributions,
together with the behavior of some of the parameters.

Configuration
DLT is based on ANR [74] and therefore shares some of its parameters. We keep the
dictionary size to ds = 1024 , however the neighborhood size parameter operates
in a completely different way. Previously, ANR selected a reduced set of dictionary
atoms in order to build the neighborhoods (i.e. Nh ⊂ Dh). The neighborhoods
Nl and Nh in DLT are constructed directly from a raw pool of patches (i.e. Nh ⊂
Xt) of a way greater cardinality (e.g. in the order of hundreds of thousands). In
this sense, the neighborhood size is not upper-bounded by the dictionary size and
offers a more populated distribution over the manifold, which enables more compact
neighborhoods and a higher number of patches within a given distance.
We assess the impact of the neighborhood size in terms of PSNR in Figure 9.6.

Smaller dictionaries improve their performance when the neighborhood size is in-
creased. Large neighborhoods have a great impact in the training computational
time and memory usage. Obtaining each regressor requires computing the pseudo-
inverse (Nᵀ

lj
Nlj

+ λI)−1 from Equation (3.9) which is a square matrix with as many
rows as neighbors in the neighborhood. For ds = 1024 we observe small differences
from 1000 to 10000 atoms, and thus we select a parameter among the lower end
(1300) to stay within reasonable training memory and time consumption.
We show the impact of the number of hyperspheres in terms of PSNR and time in

Figure 9.7. We set the number of hyperspheres to be used by the Spherical Hashing
NN search to 6 hyperspheres, as this is a reasonable compromise between speed gain
and quality loss. In order to also provide the best performance possible, we show as
well the performance for 1 hypersphere (i.e. exhaustive search).

Performance
In Table 9.7 and 9.8 we show the objective evaluation (in terms of PSNR, IFC, SSIM
and time) of two configurations of DLT (differentiated by a subscript index, e.g. DLT1)
compared to, ANR, GR and the baseline of bicubic interpolation. The performance
of our proposed DLT with either configuration clearly outperform the rest of the
benchmark for both PSNR, SSIM and time. In terms of PSNR, DLT1 improves up to
0.6dB the performance over ANR. As of time, our fast SpH sublinear search results
in substantial speed-up (between ×10 and ×20 times faster than ANR).
Overall, the performance of the dense training approach together with the spher-

ical hashing search improve greatly both quality and execution time.
In Figure 9.8 we show close-ups for visual inspection. We remark the generally

sharper images obtained with our proposed DLT, and the almost complete elimina-
tion of ringing artifacts that are present in ANR and GR.



86 Chapter 9 Results

102 103 104

Neighborhood size

31.3

31.4

31.5

31.6

31.7

31.8

31.9

32

32.1

32.2

32.3

PS
N

R
 (d

B)

32
128
256
1024

Figure 9.6: DLT parameter configuration: PSNR for different neighborhood and dic-
tionary sizes (32, 128, 256, 1024). For smaller dictionaries, larger neighborhood sizes
yield better quality.
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Figure 9.7: DLT parameter configuration: Impact of the dictinary size and the num-
ber of spheres selected in the SpH in terms of (a) PSNR and (b) time.
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Bicubic GR ANR DLT1 DLT6
S PSNR time PSNR time PSNR time PSNR time PSNR time

Set5
2 33.661 0.001 35.153 0.515 35.858 0.783 36.497 0.099 36.356 0.045
3 30.392 0.001 31.423 0.282 31.926 0.402 32.542 0.065 32.407 0.043
4 28.421 0.001 29.342 0.199 29.691 0.273 30.208 0.064 30.085 0.046

Set14
2 30.232 0.002 31.355 1.011 31.801 1.519 32.190 0.208 32.095 0.088
3 27.541 0.001 28.305 0.568 28.647 0.801 29.082 0.136 29.016 0.085
4 26.000 0.001 26.589 0.421 26.846 0.564 27.317 0.121 27.209 0.085

kodak
2 30.845 0.002 31.873 1.711 32.245 2.573 32.647 0.328 32.558 0.150
3 28.426 0.002 28.987 0.968 29.213 1.395 29.567 0.225 29.512 0.142
4 27.223 0.002 27.639 0.716 27.806 0.975 28.069 0.199 28.021 0.143

Table 9.7: Performance of ×2, ×3 and ×4 magnification in terms of averaged
PSNR (dB) and average execution time (s) on datasets Set5, Set14 and kodak.

Bicubic GR ANR DLT1 DLT6
S IFC SSIM IFC SSIM IFC SSIM IFC SSIM IFC SSIM

Set5
2 6.282 0.930 8.663 0.945 8.523 0.950 8.617 0.954 8.511 0.954
3 3.616 0.869 4.649 0.885 4.689 0.897 4.880 0.909 4.772 0.906
4 2.342 0.811 2.987 0.828 3.030 0.842 3.192 0.860 3.103 0.854

Set14
2 6.304 0.869 8.433 0.898 8.193 0.901 8.173 0.905 8.106 0.904
3 3.535 0.774 4.448 0.803 4.415 0.810 4.514 0.819 4.442 0.817
4 2.259 0.702 2.822 0.728 2.829 0.735 2.925 0.749 2.863 0.746

kodak
2 6.223 0.870 8.168 0.899 7.885 0.902 7.783 0.908 7.729 0.907
3 3.410 0.779 4.195 0.804 4.145 0.809 4.199 0.819 4.145 0.817
4 2.126 0.719 2.599 0.740 2.589 0.744 2.652 0.754 2.603 0.752

Table 9.8: Performance of ×2, ×3 and ×4 magnification in terms of averaged IFC
and average SSIM on datasets Set5, Set14 and kodak.
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Figure 9.8: Close-ups of the results in Table 9.7 and 9.8 for visual qualitative assess-
ment. Best-viewed zoomed in.

9.8 Half Hypersphere Confinement
The HHC SR is an extension of our previous DLT where we take advantage of antipo-
dally invariance both during training and testing stages.

Configuration
HHC utilizes the same parameters as DLT, as it is essentially the same algorithm
with support for antipodal invariance. We perform several experiments in order to
assess the best configuration in terms of neighborhood sizes and number of hyper-
spheres, and we discuss why it is a good idea to increase the dictionary size and the
number of spheres, showing some experiments where the benefits are outlined. In
Figure 9.9 we show the impact of the neighborhood size for several dictionary sizes,
where we observe similar behavior as in DLT. Smaller dictionaries require larger
neighborhoods, and there is a saturation point where the quality stabilizes. We fix
the neihghborhood size to 4250 as quality improvement has already stalled.
The dictionary size ds is not necessarily associated with the number of hyper-

spheres used during testing time. Our hashing scheme defines several hash codes
or buckets, and the regressors are labeled with them during training time. In the
case of having more than one regressor per bucket, a reranking strategy is followed
and thus the best-suited regressor is obtained from the bucket’s candidates. The
ratio between the number of sparse atoms and the number of buckets (2s where s is
the number of hyperspheres) gives an average number of regressors per hash code.
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Figure 9.9: HHC parameter configuration: PSNR for different neighborhood and dic-
tionary sizes (32, 128, 256, 1024).

In Figure 9.10 we show that our algorithm scales well in terms of quality when in-
creasing the size of the sparse dictionary, and therefore, is worth increasing its size
and adapting the number of hyperspheres to obtain the desired quality and speed
trade-off. We aim to at the same execution time as DLT used with 1024 atoms and
6 hyperspheres. We obtain a very similar time figure (while obtaining substantially
improved PSNR quality) with 7 spheres and 8192 atoms. In Figure 9.11 we show
how our algorithm scales better by increasing the dictionary size than A+, which
improvement is always smaller and tends to saturate earlier. We obtain maximum
quality by setting our dictionary size to 8192 elements and, afterwards, fixing a
number of hyperspheres which gives us the desired speed.
Note also that even without enlarging the dictionary we obtain better quality

performance. In Figure 9.11 we show that our methods is consistently obtaining
better PSNR values (about 0.2dB higher) for different dictionary sizes, and that
even with 1024 atoms we perform better than A+ with 8192 atoms.

We present two configurations of HHC in the evaluation tables: 1 hypersphere (i.e.
exhaustive search) which sets an upper quality limit and 7 hyperspheres (differen-
tiated with a numerical subscript, e.g. HHC7) which is our optimal configuration in
terms of quality vs speed trade-off. By showing both configurations we evaluate the
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Figure 9.10: HHC parameter configuration: Impact of the dictinary size and the
number of spheres selected in the SpH in terms of (a) PSNR and (b) time.
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Bicubic A+ DLT6 HHC1 HHC7
S PSNR time PSNR time PSNR time PSNR time PSNR time

Set5
2 33.661 0.001 36.571 0.823 36.356 0.045 36.905 0.896 36.836 0.076
3 30.392 0.001 32.597 0.396 32.407 0.043 32.814 0.430 32.768 0.062
4 28.421 0.001 30.285 0.279 30.085 0.046 30.481 0.280 30.442 0.069

Set14
2 30.232 0.002 32.283 1.585 32.095 0.088 32.504 1.790 32.464 0.146
3 27.541 0.001 29.127 0.840 29.016 0.085 29.271 0.865 29.233 0.120
4 26.000 0.001 27.314 0.586 27.209 0.085 27.451 0.544 27.415 0.120

kodak
2 30.845 0.002 32.721 2.722 32.558 0.150 32.908 3.091 32.866 0.249
3 28.426 0.002 29.579 1.437 29.512 0.142 29.697 1.484 29.664 0.205
4 27.223 0.002 28.104 1.006 28.021 0.143 28.186 0.933 28.173 0.190

Table 9.9: Performance of ×2, ×3 and ×4 magnification in terms of averaged
PSNR (dB) and average execution time (s) on datasets Set5, Set14 and kodak.

effect of the approximate search both in quality drop and in time speed-up, showing
at the same time the full potential of the antipodal search and GIBP features.
For the comparison, A+ [76] uses a dictionary of 1024 atoms and a neighborhood

size of 2048 atoms, as setting it to 4250 degraded their quality results. The rest of
the parameters are set equally for all the methods.

Performance

We show objective evaluation of all methods in Table 9.9 (PSNRand time) and Table
9.10 (IFC and SSIM). First of all, the PSNR obtained with our HHC SR is consistently
around 0.2dB higher than that of A+, which is the most related compared method.
The speed-up with respect A+ ranges from ×4.6 to 9.3. We are consistently the
best-performers both in SSIM and IFC for all datasets and magnification factors,
confirming the good performance of our method.
Secondly, the algorithmic speed of the spherical hashing approach (i.e. comparison

between s = 1 and s = 7) ranges from ×4.8 to 11 depending on the upscaling factors.
The drop in quality is very reduced and ranges from 0.01 to 0.07dB. With s = 7 we
clearly outperform methods in running time (with the exception of bicubic) while
being highly competitive in quality (PSNR, IFC, SSIM).
In Figure 9.12 we show close-ups for visual inspection. In the first row we show how

our HHC1 is able to better reconstruct complex structures (note that the continuity
and structure of the diagonal lines is recovered). In the second row we show an
example where there is aliasing present, and how we can better neutralize it. In
the third row we show an example where images upscaled by HHC SR have sharper
edges and less of artifacts.
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Bicubic A+ DLT6 HHC1 HHC7
S IFC SSIM IFC SSIM IFC SSIM IFC SSIM IFC SSIM

Set5
2 6.282 0.930 9.031 0.955 8.511 0.954 9.300 0.957 9.231 0.956
3 3.616 0.869 5.036 0.909 4.772 0.906 5.192 0.913 5.148 0.912
4 2.342 0.811 3.277 0.861 3.103 0.854 3.389 0.866 3.356 0.865

Set14
2 6.304 0.869 8.551 0.906 8.106 0.904 8.768 0.909 8.712 0.908
3 3.535 0.774 4.644 0.819 4.442 0.817 4.775 0.823 4.736 0.822
4 2.259 0.702 3.002 0.749 2.863 0.746 3.088 0.754 3.058 0.753

kodak
2 6.223 0.870 8.117 0.908 7.729 0.907 8.283 0.911 8.248 0.910
3 3.410 0.779 4.301 0.818 4.145 0.817 4.405 0.822 4.374 0.821
4 2.126 0.719 2.718 0.754 2.603 0.752 2.786 0.758 2.765 0.757

Table 9.10: Performance of ×2, ×3 and ×4 magnification in terms of averaged IFC
and average SSIM on datasets Set5, Set14 and kodak.

S Bicubic A+[76] DLT6 [62] HHC1 [53] HHC7 [53] Gr.Truth
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Figure 9.12: Close-ups of the results in Table 9.9 and 9.10 for visual qualitative
assessment. Best-viewed zoomed in.
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9.9 Naive Bayes SR Forest

Configuration
For our NBSRF the two most relevant parameters are the number of trees in the
forest, and the depth of each of the trees. In Figure 9.13 we show the impact of those
parameters in terms of PSNR and time. We see that the computational cost of adding
more trees is linear, but with a small slope (regardless of the number of trees, only
one regression takes place). The bottom left chart also serves to validate the Local
Naive Bayes tree selection algorithm. The addition of more trees to the ensemble
consistently produces better accuracy, even though just one of them is actually used
to infer the appearance correction for the coarse patch. We set the number of trees
of our forest to 8 as even larger number of trees does not seem necessary given the
saturation of the curve. We fix the tree depth to 11, which translates into 2048
leaf nodes per tree. In figure bottom right we see that increasing this number even
further results in increased quality. The rationale behind limiting our trees to 2048
leaves goes in the direction of staying within reasonable memory model size (i.e. the
model size grows linearly with the number of trees and exponentially with the tree
depth).

Performance
In Table 9.7 and 9.8 we show the objective evaluation (in terms of PSNR, IFC, SSIM
and time) of our proposed NBSRF compared with DLT6 which also uses sublinear
search and A+ which uses exhaustive search.

NBSRF is the best performer in terms of PSNR, SSIM and IFC, with improvements
around 0.2dB with respect to A+. NBSRF is reasonably fast, however is not the
fastest within the compared algorithms as DLT also relies in a sublinear search and
does not require traversing several binary structures (i.e. tree ensemble).
In Figure 9.14 we show some close-ups for subjective evaluation. NBSRF shows an

outstanding robustness against ringing and aliasing effects.

9.10 Patch Symmetry Collapse

Configuration
In Figure 9.15a and 9.15b we show the behavior of the most important two param-
eters to be selected in our PSyCo SRalgorithm. The neighborhood size has higher
impact and its optimal value increases for smaller dictionary sizes (as each neighbor-
hood covers more span within the manifold). The regularization weighting term λ
has a lesser impact and its optimal value increases for big neighborhoods and small
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Figure 9.13: NBSRF parameter configuration: PSNR and time for several number of
trees (left) and leaf nodes per tree (right). The reference configuration is marked in
red.

Bicubic A+ DLT6 NBSRF [65]
S PSNR time PSNR time PSNR time PSNR time

Set5
2 33.661 0.001 36.571 0.823 36.356 0.045 36.757 0.045
3 30.392 0.001 32.597 0.396 32.407 0.043 32.741 0.083
4 28.421 0.001 30.285 0.279 30.085 0.046 30.430 0.124

Set14
2 30.232 0.002 32.283 1.585 32.095 0.088 32.453 0.089
3 27.541 0.001 29.127 0.840 29.016 0.085 29.252 0.123
4 26.000 0.001 27.314 0.586 27.209 0.085 27.415 0.180

kodak
2 30.845 0.002 32.721 2.722 32.558 0.150 32.805 0.139
3 28.426 0.002 29.579 1.437 29.512 0.142 29.626 0.213
4 27.223 0.002 28.104 1.006 28.021 0.143 28.170 0.289

Table 9.11: Performance of ×2, ×3 and ×4 magnification in terms of averaged
PSNR (dB) and average execution time (s) on datasets Set5, Set14 and kodak.
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Bicubic A+ DLT6 NBSRF [65]
S IFC SSIM IFC SSIM IFC SSIM IFC SSIM

Set5
2 6.282 0.930 9.031 0.955 8.511 0.954 9.124 0.955
3 3.616 0.869 5.036 0.909 4.772 0.906 5.084 0.910
4 2.342 0.811 3.277 0.861 3.103 0.854 3.311 0.863

Set14
2 6.304 0.869 8.551 0.906 8.106 0.904 8.643 0.907
3 3.535 0.774 4.644 0.819 4.442 0.817 4.680 0.821
4 2.259 0.702 3.002 0.749 2.863 0.746 3.013 0.751

kodak
2 6.223 0.870 8.117 0.908 7.729 0.907 8.207 0.909
3 3.410 0.779 4.301 0.818 4.145 0.817 4.327 0.819
4 2.126 0.719 2.718 0.754 2.603 0.752 2.723 0.756

Table 9.12: Performance of ×2, ×3 and ×4 magnification in terms of averaged IFC
and average SSIM on datasets Set5, Set14 and kodak.

S Bicubic A+ DLT6 [62] NBSRF [65][65] Gr.Truth
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Figure 9.14: Close-ups of the results in Table 9.11 and 9.12 for visual qualitative
assessment. Best-viewed zoomed in.



96 Chapter 9 Results

 Neighborhood size
103 104

P
S

N
R

 (
dB

)

32.15

32.2

32.25

32.3

32.35

32.4

32.45

32.5

32.55

32.6

32
128
256
1024

(a)
 Lambda

10-3 10-2 10-1

P
S

N
R

 (
dB

)

32.15

32.2

32.25

32.3

32.35

32.4

32.45

32.5

32.55

32.6

32, N = 50000
128, N = 10000
256, N = 10000
1024, N = 2500

(b)

Figure 9.15: PSyCo parameter configurations: (a) shows the impact of the neighbor-
hood size and (b) the impact of the regularization weighting term λ.

dictionaries. We also note that λ = 0.2 is a good compromise across all possible con-
figurations, and thus we recommend its usage for a first approach when optimizing
the neighborhood size. We note that fine tuning over lambda is notable faster when
using Frobenius norm as the dimensionality of the matrix inversion (C̊i C̊i

ᵀ + λI)−1

in Equation (8.5) does not grow with the neighborhood size, but rather is fixed to
the feature dimensionality.
We present two different configurations, with 32 and 1024 atoms. For the first

one, we set a neighborhood size of 42000 and λ = 0.25; for the second one the
neighborhood size is set to 2750 and λ = 0.18.

Performance

9.11 Benchmarking
In this section we benchmark the algorithms presented in this thesis together with
some of the current SR state of the art. The motivation for such a benchmark is
to focus less in each algorithm individually (and its configuration and parameters,
both of them discussed previously) and rather see in a more explicit way the overall
evolution line, and how does PSyCo, the latest and most mature algorithm in this
dissertation, compare with other methods of the state of the art.
The methods that we include in our benchmark are: The current Super Resolution

using Convolutional Neuronal Networks (SRCNN) deep learning method presented
by Dong et al. [18] with their recommended 9-5-5 network (note the superior per-
formance when compared to the 9-1-5 network of their earlier publication [17]), the
A+ anchored regression algorithm of Timofte et al. [76], the recently published SR
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Bicubic A+ PSyCo32 PSyCo1024
S PSNR time PSNR time PSNR time PSNR time

Set5
2 33.661 0.001 36.571 0.823 36.598 0.027 36.905 0.091
3 30.392 0.001 32.597 0.396 32.636 0.040 32.934 0.098
4 28.421 0.001 30.285 0.279 30.326 0.054 30.627 0.106

Set14
2 30.232 0.002 32.283 1.585 32.321 0.043 32.554 0.191
3 27.541 0.001 29.127 0.840 29.127 0.065 29.360 0.190
4 26.000 0.001 27.314 0.586 27.299 0.091 27.566 0.201

kodak
2 30.845 0.002 32.721 2.722 32.657 0.071 32.902 0.317
3 28.426 0.002 29.579 1.437 29.574 0.107 29.744 0.312
4 27.223 0.002 28.104 1.006 28.070 0.162 28.284 0.346

Table 9.13: Performance of ×2, ×3 and ×4 magnification in terms of averaged
PSNR (dB) and average execution time (s) on datasets Set5, Set14 and kodak.

Bicubic A+ PSyCo32 PSyCo1024
S IFC SSIM IFC SSIM IFC SSIM IFC SSIM

Set5
2 6.282 0.930 9.031 0.955 9.114 0.955 9.239 0.957
3 3.616 0.869 5.036 0.909 5.088 0.910 5.206 0.914
4 2.342 0.811 3.277 0.861 3.312 0.861 3.413 0.870

Set14
2 6.304 0.869 8.551 0.906 8.640 0.906 8.735 0.909
3 3.535 0.774 4.644 0.819 4.683 0.819 4.780 0.824
4 2.259 0.702 3.002 0.749 3.031 0.749 3.101 0.757

kodak
2 6.223 0.870 8.117 0.908 8.219 0.908 8.267 0.911
3 3.410 0.779 4.301 0.818 4.340 0.818 4.399 0.822
4 2.126 0.719 2.718 0.754 2.735 0.754 2.795 0.760

Table 9.14: Performance of ×2, ×3 and ×4 magnification in terms of averaged IFC
and average SSIM on datasets Set5, Set14 and kodak.
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S Bicubic A+ PSyCo32 PSyCo1024 Gr.Truth
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4

Figure 9.16: Close-ups of the results in Table 9.13 and 9.14 for visual qualitative
assessment. Best-viewed zoomed in.

forest with alternative training ASRF of Schulter et al. [68] and the Transformed
Self-Exemplars Single-Image SR of Huang et al. [35].
We train A+, ASRF and PSyCo with the same 91 images provided by Yang et

al. in their sparse coding SR [95]. As for SRCNN, we use the network provided by
their authors which has been trained with the ImageNet dataset (in the order of
hundred thousand images) [14].
For the compared methods we used the code publicly available from the author’s

website. Our code is a MATLAB + MEX implementation with parallel support.
In Table 9.15 and 9.16 we show the averaged PSNR, IFC, SSIM indices and ex-

ecution times of the benchmark. PSyCo with 1024 atoms obtains the best PSNR
values, around 0.3dB higher across all s and datasets when compared to the most
related algorithm A+. We also outperform the most competitive methods (SRCNN
and Super-Resolution Forest with alternative training (ASRF)) in PSNR by up to
0.3dB. In terms of time, both our configurations are the fastest of the benchmark,
specially our proposed (32), which is an order of magnitude faster than any other
method. We also note that our methods are trained in less than two hours, which
contrasts with the SRCNN method trained with ImageNet. The measured IFC values
are consistently the highest among the benchmark, and we highlight the fact that
for most magnification factors, PSyCo with 32 atoms obtains the runner-up IFC, con-
firming the good performance of our time- and memory-effective configuration. In
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Bicubic SRCNN [18] TSelfEx [35] ASRF [68] A+ [76] PSyCo (32) PSyCo (1024)

s PSNR time PSNR Time PSNR Time PSNR Time PSNR Time PSNR Time PSNR Time

Se
t5

2 33.66 0.001 36.66 4.722 36.50 42.521 36.69 1.278 36.57 0.823 36.60 0.027 36.91 0.091

3 30.39 0.001 32.75 5.226 36.62 31.008 32.57 1.026 32.60 0.396 32.64 0.040 32.93 0.098

4 28.42 0.001 30.48 9.962 30.33 26.728 30.20 1.071 30.29 0.279 30.33 0.054 30.63 0.106

Se
t1

4 2 30.23 0.002 32.45 8.204 32.23 98.645 32.36 2.134 32.28 1.585 32.32 0.043 32.55 0.191

3 27.54 0.001 29.29 8.098 29.16 70.176 29.12 1.674 29.13 0.840 29.13 0.065 29.36 0.190

4 26.00 0.001 27.50 8.305 27.40 63.873 27.31 1.386 27.31 0.586 27.30 0.091 27.57 0.201

ko
da

k 2 30.85 0.002 32.81 14.367 32.65 195.70 32.76 3.360 32.72 2.722 32.66 0.071 32.90 0.317

3 28.43 0.002 29.65 15.026 29.52 135.243 29.63 2.555 29.58 1.437 29.57 0.107 29.74 0.312

4 27.22 0.002 28.17 14.069 28.14 115.652 28.17 2.204 28.10 1.006 28.07 0.162 28.28 0.346

Table 9.15: Performance of ×2, ×3 and ×4 magnification in terms of averaged PSNR
(dB) and execution time (s) on datasets Set5, Set14 and Kodak. Best results in
bold and runner-up in blue.

Bicubic SRCNN [18] TSelfEx [35] ASRF [68] A+ [76] PSyCo (32) PSyCo (1024)

s IFC SSIM IFC SSIM IFC SSIM IFC SSIM IFC SSIM IFC SSIM IFC SSIM

Se
t5

2 6.28 0.930 8.04 0.954 7.81 0.930 8.56 0.950 9.03 0.955 9.11 0.955 9.24 0.957
3 3.62 0.869 4.66 0.909 4.75 0.868 4.93 0.908 5.04 0.909 5.09 0.910 5.21 0.914
4 2.34 0.811 2.99 0.863 3.17 0.810 3.19 0.857 3.28 0.861 3.31 0.861 3.41 0.870

Se
t1

4 2 6.30 0.869 7.78 0.907 7.59 0.869 8.18 0.906 8.55 0.906 8.64 0.906 8.74 0.909
3 3.54 0.774 4.34 0.821 4.37 0.774 4.53 0.818 4.64 0.819 4.68 0.819 4.78 0.824
4 2.26 0.702 2.75 0.751 2.89 0.702 2.92 0.746 3.00 0.749 3.03 0.749 3.10 0.757

ko
da

k 2 6.22 0.870 7.15 0.907 6.78 0.869 7.39 0.9070 8.12 0.908 8.22 0.908 8.27 0.911
3 3.41 0.779 3.90 0.818 3.81 0.778 4.03 0.8150 4.30 0.818 4.34 0.818 4.40 0.822
4 2.13 0.719 2.42 0.754 2.46 0.719 2.53 0.7510 2.72 0.754 2.74 0.754 2.80 0.760

Table 9.16: Performance of ×2, ×3 and ×4 magnification in terms of averaged
IFC and SSIM on datasets Set5, Set14 and Kodak. Best results in bold and runner-
up in blue.



100 Chapter 9 Results

10-1100101

Slower <--- Running time (s) ---> Faster

31.7

31.8

31.9

32

32.1

32.2

32.3

32.4

32.5

32.6

P
S

N
R

 (
dB

)

16
16

2048
SRCNN

A+

2048

2048

16

PSyCo

ASRF
9-1-5

9-5-5
65536

(15 trees)

Figure 9.17: PSNR vs time (s) of PSyCo SR compared to other SR methods for
dictionary sizes from 16 to 2048, in power-of-two increments. Experiment run on
Set14 and ×2 magnification factor. Circled points are found in Table 9.15.

Figures 9.18, 9.19 and 9.20 we show some close-ups for subjective evaluation of ×2,
×3 and ×4 upscaling factors respectively. We highlight the generally sharper edges,
the less proliferation of ringing artifacts and the resilience to aliasing which results
in better preserved structures. For those methods which depend on a dictionary, we
test a ×2 upscaling factor on Set14 for several dictionary sizes and measure PSNR
and times (see Figure 9.17) to compare performances for equal dictionary sizes.
In Figure 9.21 we show the evolution of our methods in terms of the three-fold

defining factors of SR: Memory efficiency (represented as a the memory compression
rate with respect to ANR), speed (in frames per second) and quality (in terms of
PSNR). The triangle representing ANR is widely surpassed in the three metrics of
the radar plot. Interestingly, there is a clear progression in terms of quality and
speed for algorithms such as DLT, HHC and NBSRF. However, the model size of such
algorithms does not improve, as both HHC and NBSRF have substantially bigger
models (e.g. more regressors, more anchor points) than ANR. The benefits of the
PSyCo are obvious: With the compatct configuration of 32 atoms, it increases greatly
in speed and memory efficiency, while still retaining a very comptetitive quality
performance, standing clearly out as the method with a higher score in this three
dimensional assesment.
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Bicubic SRCNN [18] ASRF [68] A+ [76] PSyCo(1024) Gr. Truth

Figure 9.18: Close-ups of the results for visual qualitative assessment of a ×2 mag-
nification factor from the datasets in the benchmark. Best-viewed zoomed in.
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Bicubic SRCNN [18] ASRF [68] A+ [76] PSyCo(1024) Gr. Truth

Figure 9.19: Close-ups of the results for visual qualitative assessment of a ×3 mag-
nification factor from the datasets in the benchmark. Best-viewed zoomed in.
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Bicubic SRCNN [18] ASRF [68] A+ [76] PSyCo(1024) Gr. Truth

Figure 9.20: Close-ups of the results for visual qualitative assessment of a ×4 mag-
nification factor from the datasets in the benchmark. Best-viewed zoomed in.
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Figure 9.21: Plot of the Memory Compression Rate, frames per second (fps) and
PSNR. Top: Evolution of the algorithms developed within this dissertation. Bot-
tom: Comparison with other state of the art methods based on regression. Experi-
ment run for a ×2 upscaling factor in Set14.
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Chapter 10Conclusions
In this thesis we have addressed the problem of recovering a high-resolution image
from its degraded and downscaled observation. This is an ill-posed problem which
requires further constraints or prior knowledge in order to be tractable. In this thesis
we tackle it by learning the low-to-high resolution correspondence from natural
image statistics in the form of low-resolution and high-resolution patch examples.
Our contributions build on top of the coupled dictionary approach to SR of Yang

et al. [95] and the Anchored Neighborhood Regression of Timofte et al. [74]. The
contributions of this thesis can be summarized as follows:

Naive Bayes Adaptive Dictionaries
We present a Naive Bayes formulation to construct adaptive dictionaries with atoms
that are semantically related to the content of the input image. We use training
sub-image regions in order to preserve texture consistency, and we characterize each
of them by densely extracting SIFT features. During inference, we use the efficient
local Naive Bayes Nearest Neighbor approach to avoid estimating the probability
density functions over all our training regions, and instead only do so for those
regions in the local neighborhood of the input descriptors. The dictionaries obtained
with our approach outperform those build by randomly sampling patches, even
though this comes at the computational cost of training a dictionary per image
(Chapter 4). Results of this contribution have been published in the British Machine
Vision Conference (2013) [60]. We revisit our local NBNN with more emphasis on
computational efficiency in our NBSRF.

Dense Local Training
We present a novel training scheme for regression-based SR. This new training ap-
proach is based on dense, fully collaborative neighbor embedding, which fits better
the `2-regularizer present in ANR [74] and other linear regression methods. We pro-
pose to use the sparse dictionary atoms as anchor points to the manifold, but form
the neighborhoods with raw manifold samples from a more extensive training pool.
By doing so, we find tighter neighborhoods which, consequently, fulfill better the
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local condition necessary for locally linear embedding. Additionally, a higher num-
ber of local independent measurements is available and we can control the size of
the neighborhoods, i.e. it is not upper-bounded by the dictionary size. This con-
tribution is key to obtain better fitted regression functions that yield remarkable
quality improvements at no computational cost. Results of this contribution have
been published in the Asian Conference on Computer Vision (2014) [62].

Spherical Hashing
We proposed a novel search strategy based on the data-dependant Spherical Hashing
algorithm [31]. We train a set of hashing functions on patch statistics so that the
manifold is partitioned in a balanced way. We then label the anchor points (and
their associated regression functions) with hash codes so that, during inference, only
a reduced set of hashing functions need to be computed for each input patch in order
to find a regressor. This approach resulted in substantial speed-ups with respect to
exhaustive search strategies. Results of this contribution have been published in the
Asian Conference on Computer Vision (2014) [62].

Half-Hypersphere Confinement
We further analyzed the features and the metrics involved during the regression
process. We studied the importance of antipodal invariance in our search space,
and recommended the use of the cosine similarity over Euclidean distances. In
order to be able to use any fast search structure, we propose a novel transform
which boosts the antipodal invariance in the Euclidean space. This enables the
Spherical Hashing to be antipodally invariant. The regressors obtained with cosine
similarity show a neat gain in PSNR over those obtained with Euclidean distance and.
Furthermore, our antipodally invariant Spherical Hashing is optimally adapted to
the regressor search as the drop in quality when compared to an exhaustive search
is residual. Results of this contribution have been published in the Transactions on
Image Processing [53] and in the Winter Conference on Applications of Computer
Vision (2016) [54].

Naive Bayes SR Forest
We present a novel method for example-based SR, based on hierarchical manifold
learning. We design a regression forest based on bimodal trees, where antipodal
patches are effectively clustered together and both children subnodes have compa-
rable homogeneity, thus leading to an overall better space sampling. In order to
further extend the accuracy of the local linearizations of the coarse-to-fine mapping,
we propose to use tree ensembles and select the optimal regression tree based on a
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Local Naive Bayes criterion. Results of this contribution have been published in the
International Conference on Computer Vision (2015) [65].

Dihedral Symmetry Collapse
We present a new method for regression-based SR that builds around a novel man-
ifold collapsing transform κ. This transform eliminates the undesired variability of
the manifold due to the dihedral group of symmetries (i.e. rotation, vertical and
horizontal reflections) and the antipodal symmetry. The dihedral group is specially
suitable for SR as it is scale invariant and easily invertible. We perform a frequency
analysis of the dihedral group in the DCT domain, where the group members are
mapped as a combination of transpose and sign changes. Through a modification
of the Symmetric Transform of Zabrodsky et al. [96] we collapse the 16 variations
induced from the dihedral group and its antipodal extensions into a single primi-
tive. The complexity of our proposed κ is inherently low, as it requires as little as
3 inner products and a matrix re-ordering. We exhaustively test our transform and
also compare it with other recent state of the art methods. We consistently obtain
×16−×32 smaller dictionaries when aiming at a certain PSNR. For a fixed dictionary
size, we greatly improve in terms of quality both objectively and qualitatively. Our
method with 1024 atoms greatly surpasses the state of the art in terms of PSNR and
IFC, and with a 32 atoms dictionary (i.e. reduced model size) we achieve competitive
quality while being an order of magnitude faster. Results of this contribution have
been published in the Computer Vision and Pattern Recognition Conference (2016)
[55].

10.1 Future Work
PSyCo, our latest contribution, presents a unified framework for the incorporation
of manifold structure knowledge, i.e. antipodal and dihedral symmetries, is highly
flexible and it has great potential to be further refined. In this section we propose
several ideas that could inspire some future work.

Gradient features in the transformed domain
We used patches without mean as input features for the regression in our latest work.
The use of 1-st and 2-nd order gradient features as the ones in [97, 76, 74, 54, 62, 53]
together with our PSyCo is not straightforward, as the derivatives of the dihedral
group elements need to be accounted. Including gradient features and eventually
a PCA compression scheme can improve performance and reduce memory usage,
specially for high magnification factors.
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Cascaded regression
Cascading stages of piece-wise linear regression has been applied to other problems
with success [16], and has been proposed recently for SR [33, 75]. Extending our
PSyCo SR by adding extra cascaded regression stages is likely to improve the resulting
quality, even though this will come at the cost of higher execution time and a bigger
model size.

PSyCo and Spherical Hashing
A direct approach to speed-up PSyCo SR is creating a fast search structure that
adapts well to the manifold distribution, in the same way we did with our proposed
antipodally invariant Spherical Hashing or the bimodal tree, but in this case with
support for dihedral invariance as well. Including the PSyCo transform within the
Euclidean distance calculations of Spherical Hashing could be a good starting point
in that direction.

Texture synthesis
The recent work of [64] opens an interesting discussion with respecth the minimiza-
tion over the squared error or any other pixel-wise fidelity term common in many
SR approaches. In their work, they propose a combination of automated texture
synthesis with a perceptual loss focusing on creating realistic textures rather than
optimizing for a pixel-accurate reproduction. The usage of such strategy can be
beneficial to SR imaging, specially to deal with high-frequency stochastic textures
which are unlikely to be recovered by any conventional SR method. A combination
of both approaches through a deeper understanding of the scene (e.g. discerning
textures from edges or flat areas) might bring together the best of the two worlds.
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