PROVEC - Procesado de Vídeo en Entornos Controlados

Type Start End
National Oct 2007 Sep 2010
Responsible URL
Josep R. Casas

Reference

Procesado de Vídeo en Entornos Controlados: Aplicación a Seguridad, Salas Inteligentes y Telepresencia
Ref.: Ministerio de Educación y Ciencia TEC2007-66858/TCM

Description

The main objective of PROVEC is to develop and improve tools for video processing in controlled environments. Objectives include fundamental tasks of analysis, indexing and compression.
The notion of controlled environment is exploited to increase robustness and effectiveness of analysis and video compression tools. In analysis, prior information is used to define precise targets, useful ontologies and meaningful assessment protocols. Controlled environments also carry an indication of the potential variability of the scene, which can be used to increase the compression of video codecs.

Publications

Alcoverro M. Stochastic optimization and interactive machine learning for human motion analysis Pardàs M, Casas J. Signal Theory and Communications. 2014 . (17.16 MB)
Gallego J, Pardàs M, Haro G. Enhanced foreground segmentation and tracking combining Bayesian background, shadow and foreground modeling. Pattern Recognition Letters. 2012 ;33(12):1558–1568.
Palou G, Salembier P. Depth Ordering on Image Sequences Using Motion Occlusions. In: IEEE Int. Conf. in Image Processing, ICIP 2012. IEEE Int. Conf. in Image Processing, ICIP 2012. Orlando, Florida, USA; 2012. (5.42 MB)
Palou G, Salembier P. From local occlusion cues to global depth estimation. In: IEEE Int. Conf. on Acoustics Speech and Signal Processing, ICASSP 2012. IEEE Int. Conf. on Acoustics Speech and Signal Processing, ICASSP 2012. Kyoto, Japan; 2012. (480.32 KB)
Salvador J. Surface Reconstruction for Multi-View Video Casas J. 2011 . (4.74 MB)
Canton-Ferrer C, Casas J, Pardàs M, Monte E. Multi-camera multi-object voxel-based Monte Carlo 3D tracking strategies. Eurasip journal on advances in signal processing. 2011 ;2011:1–15.
Palou G, Salembier P. Occlusion-based depth ordering on monocular images with binary partition tree. In: IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2011. IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2011. Prague, Czech Republic; 2011. pp. 1093–1096. (444.04 KB)
Canton-Ferrer C, Casas J, Pardàs M. Human motion capture using scalable body models. Computer vision and image understanding. 2011 ;115:1363–1374.
Digne J, Dimiccoli M, Salembier P, Sabater N. Neighborhood Filters and the Recovery of 3D Information. In: Handbook of Mathematical Methods in Imaging. Handbook of Mathematical Methods in Imaging. Springer Verlag; 2011. pp. 1203-1229.
Rolón J, Salembier P. Improved local pdf estimation in the wavelet domain for generalized lifting. In: Picture Coding Symposium, PCS 2010. Picture Coding Symposium, PCS 2010. Nagoya, Japan; 2010. (192.64 KB)

Pages