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ABSTRACT

This paper proposes a system to relate objects in an image us-

ing occlusion cues and arrange them according to depth. The

system does not rely on any a priori knowledge of the scene

structure and focuses on detecting specific points, such as T-

junctions, to infer the depth relationships between objects in

the scene. The system makes extensive use of the Binary

Partition Tree (BPT) as the segmentation tool jointly with a

new approach for T-junction estimation. Following a bottom-

up strategy, regions (initially individual pixels) are iteratively

merged until only one region is left. At each merging step,

the system estimates the probability of observing a T-junction

which is a cue of occlusion when three regions meet. When

the BPT is constructed and the pruning is performed, this in-

formation is used for depth ordering. Although the proposed

system only relies on one low-level depth cue and does not

involve any learning process, it shows similar performances

than the state of the art.

Index Terms— Binary partition tree, occlusion cues,

monocular depth, T-junction estimation.

1. INTRODUCTION

Humans are known for their ability to recognize objects and

scenes in a large variety of situations. Nowadays, computers

are far from human vision performances, but high efforts are

put in this research area. Usually vision systems rely on the

information obtained from multiple viewpoints to estimate

disparity to infer depth. Only a few approaches try to infer

depth from the observation of a single image. These ap-

proaches focus on what is called monocular depth perception.

Two main approaches may be distinguished for monocu-

lar depth perception. The learning-based ones and the ones

that operate over the image structure looking for low level

cues. In the former class, [1] and [2] oversegment the image

and gather for each region color, texture, vertical and hori-

zontal features to use them within a Markov Random Field

(MRF) framework to estimate the depth. These approaches

are learning-based because the MRF has been trained with

ground truth data. The main drawback of learning-based ap-

proaches is that their use is limited to the kind of images they

have been trained for. The latter type of systems, where [3]

can be included, uses no training but focuses on the detection

of relative depth cues such as occlusion or convexity to order

the objects in the scene. Note that occlusion does not permit

to infer absolute depth as learning-based approaches may of-

fer, but it is more generic as it assumes nothing about the type

of scene. T-junction points are known to be strong occlusion

cues. It is unlikely that a robust system for depth perception

can be defined only using T-junction detection. However, in

this paper, we are interested in studying the limitation and

weakness of such a system. Nevertheless, surprisingly we

will show that the results obtained with only a low-level oc-

clusion cue are comparable with the state of the art systems

that use learning and, therefore, higher level information.

The approach in [3] consists of an estimation of T-

junctions, followed by an image segmentation and a final

depth ordering stage. Its performances are quite good but

some of the difficult T-junctions are wrongly estimated in the

initial step. The system presented here has two fundamental

differences with [3]: it combines the first and second stages

of [3] into a single step to improve the robustness of the T-

junction estimation and proposes a new iterative procedure to

determine the final depth order. The final depth order image

is obtained from the minimization of a specific cost function.

The system described in Section 2 consists of two basic

steps. The first one is the combined BPT construction and

T-junction estimation, presented in Section 2.1. In second

and last part of the system, described in Section 2.2, the T-

junction candidate points are selected and the depth ordering

is estimated. Results are presented in Section 3 along with the

conclusions and some insights about possible future work.

2. PROPOSED APPROACH

In contrast to [3], the proposed system integrates the BPT

construction and the T-junction estimation in a single process.

The BPT [4] is constructed from an iterative region merging

process where the two most similar and neighboring regions

are merged at each step. To define the similarity measure be-

tween regions, a region model has to be defined. Color in-

formation is represented in the CIE Lab color space. Re-

gions are modeled with 3 histograms (one per color channel)

of 64 bins. The histograms of initial pixels is estimated as

in [3] using self-similarity: each pixel pdf is computed as a
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Fig. 1. T-junction example. Locally, region R2 is the one

forming the largest angle, appearing to be over R1 and R3.

weighted contribution of its neighbors, depending on neigh-

borhoods similarities. The distance between regions relies on

color, area, contour and depth information.

The color distance between regions R1 and R2, d1,2
color, is

computed using the Earth Mover’s Distance (EMD), weighted

by the area of the smallest region. For contour, the measure

d1,2
contour is the increase of perimeter of the new region with

respect to the biggest one [4]. This measure is used only when

both regions exceed an area threshold of 50 pixels so that their

shape is meaningful. The intermediate distance (discarding

depth information) is then

d1,2
BPT = α × d1,2

color + (1 − α) × d1,2
contour (1)

With α = 0.07. Once d1,2
BPT is available, depth information

is introduced using T-junction candidate points. Candidates

are the points where three regions meet. If R1 and R2 share

a common neighbor R3, at least a T-junction candidate n is

present at the contact point. In a neighborhood of n, there is

one region Ri ∈ (R1, R2, R3) which occludes the other two.

For example in Figure 1, R2 occludes R1 and R3.

For each candidate n, the probability pi,n that the top re-

gion is Ri is computed as described in Section 2.1. As several

T-junction candidates may give information about the relative

depth of R1 and R2, the probability that R1 is on top of R2 is

evaluated by:

p1 =

(
1 −

N1∏
n

(1 − p1,n)

)
N2∏
n

(1 − p2,n) (2)

Where N1 and N2 are the number of T-junctions indicating

R1 and R2 is the top region respectively. p2, the probability

that R2 is the top region, is computed similarly. Note that

since each pi,n is independent from the others, p2 �= 1 − p1.

The final distance between two regions is d1,2 = d1,2
BP T

(1−|p1−p2|) .

Having defined the region distance, a BPT is constructed as-

suming that individual pixels form the initial regions. During

the construction, the similarity measure increases the distance

of regions that do not belong to the same depth plane. Thus,

the tree is expected to be partially depth-structured.

2.1. T-junction Candidates Estimation

In this section, we assume that we are analyzing a candidate

local configuration no in which R1 may be on the top of R2,

that is, we want to estimate the value p1,no of equation (2).

To simplify the notation, we call p this value of p1,no
. To

estimate the confidence value p of a T-junction, color differ-

ence, angle structure and boundary curvature confidence are

evaluated at each candidate point within a centered circular

window (R = 10), except for the angle. Color contributes to

differentiate between contrasted regions. Angle helps to infer

the depth relationship and curvature detects if the junction has

clearly defined boundaries. As they are independent features,

p = pcolor × pangle × pcurve.

2.1.1. Color

The color confidence is the result of several measures. In a

local neighborhood of the candidate point, the three regions

are modeled with their mean color vector and their covari-

ance matrix. Pixels neighboring the boundaries are neglected

because, their color value is a combination of various regions

and they may introduce a bias in the estimation. For each

pair of regions (i, j) = (1, 2), (1, 3) and (2, 3) statistical and

perceptual measures are first computed. The former, ci,j
s , is

computed as a two sample Hotelling’s T 2 test and the latter,

ci,j
p , is the euclidean distance between region mean colors.

Experiments showed that these measures were prone to false

alarms at edges, so another distance was added. To penalize

high statistical distance dissimilarities, the minimum statisti-

cal distance, cmin
s = min

(
c1,2
s , c1,3

s , c2,3
s

)
, is used to obtain

cr = cmin
s −

(
1

c1,2
s

+ 1
c1,3

s
+ 1

c2,3
s

)−1

.

Reliable candidates are expected to have large color distances.

A total of 7 measures (3 for ci,j
s , 3 for ci,j

p and cr) are obtained

for each candidate point. The confidence for each measure is

known as p-value. It is defined as the probability that a candi-

date has equal or less distance than the observed measure [5].

The p-value is computed assuming a Rayleigh distribution for

the measures. The final color distance pcolor is obtained from

the product of the 7 p-values.

2.1.2. Angle

Angle plays an important role in a T-junction as the region

forming the largest angle is assumed to be the one lying on

top (see Figure 1). To calculate the angle feature, the three

boundaries that meet at a candidate point are used. Informa-

tion at the junction center is considered to be unclear, so a

small nucleus of radius 4 is omitted from the analysis. First

the average orientation of each branch is computed. Then,

angles θi, between pairs of orientation are estimated and the

junction angle characteristic is evaluated. Considering the an-

gles, ideal shaped T-junctions have a maximum angle of π
and two minimum angles of π

2 . Two measures, Δθmax and

1094



Fig. 2. Block diagram of the minimization loop

Δθmin, are defined as the absolute difference of the maxi-

mum and minimum angles with π and π
2 respectively. To ob-

tain the confidence value, Δθmin and Δθmax are considered

to follow Rayleigh distributions. Under the hypothesis that

the T-junction is ideally shaped, the corresponding p-values

are found. The final angle distance pangle is the product of

both values.

2.1.3. Curvature

Although curvature is not as important as color and angle, it

serves to measure the branches’ straightness. If boundaries

are highly curved, the point may not be perceived as a junc-

tion. The curvature of the boundaries is measured using the

level sets theory. Each region is isolated creating a binary im-

age of the local window. Then, the mean absolute value of

the curvature is computed at the region boundary points as in

[6]. The 3 measures are assumed to be Rayleigh distributed.

Under the hypothesis that an ideal candidate point has three

straight branches, the final curvature distance pcurve is the

product of the corresponding p-values of the three measures.

2.2. Selection and Depth Ordering

If all the T-junction candidates are used to generate the fi-

nal depth order, two problems may arise. First, points cor-

responding to false alarms may be used. Second, since oc-

clusion cues only give information on the relative depth or-

der, the depth of each region is assumed to be constant. As

a result, depth order conflicts may appear when several T-

junctions give contradictory order information for the same

pair of regions. In this case, if all T-junctions are considered,

depth ordering is impossible. To converge to a solution some

of the candidates should be discarded. The problem selecting

the best set of T-junctions can be solved by the iterative min-

imization of a cost function, which can be performed by the

scheme described by the block diagram of Figure 2.

To define the cost function three concepts are needed. First,

since the candidate points are characterized by their confi-

dence value, true T-junction are expected to have high p value.

Second, it is expected that in real images, the number of true

T-junctions is rather low. Therefore, the resulting depth order

image is also expected to have few regions and depth planes.

Third, regions are expected to have at least one depth relation-

ship with their neighbors, represented in a Depth Order Graph

(DOG). From these concepts, the cost function is defined as:

C(R) =
∑
i∈R

ci

cmax
+ γN × N + γu × U (3)

R is the set of rejected candidates. The individual cost func-

tion of a junction i is defined as ci = pi × min(ni
1, n

i
2, n

i
3).

ni
x, x ∈ (1, 2, 3) are the region areas on the local window.

γu = 2 is a penalization factor for isolated nodes U in the

DOG, and N is the number of 4-connected components in

the depth order image. γN is set to the half of the geometric

mean of all the normalized T-junctions costs ci

cmax
.

The minimization loop is used to minimize the cost de-

fined by eq. (3). Previously, an initial T-junction selection is

performed by thresholding the T-junction probability value.

At each iteration, the first stage of the loop generates a solu-

tion from the final T-junctions candidates, selecting the points

randomly. The probability to select a candidate depends di-

rectly on its p value. The second step selects nodes on the

BPT forming a partition preserving the selected T-junction

points, allowing the construction of the DOG from T-junction

depth relationships. Conflicts between T-junction informa-

tion can be identified in the DOG as cycles. These cycles

can be removed sequentially by rejecting the T-junctions of

lowest probability values. After that, the depth ordering is

performed by depth-labeling each region with its partial order

in the DOG. Finally, the depth order image is generated. The

cost defined by eq. (3) is calculated and the loop is restarted

until stabilization, choosing the minimum cost solution as the

final depth order image.

3. RESULTS AND CONCLUSIONS

Figure 3 presents some results of the algorithm and compares

them with the state of the art solutions. The chosen images

were selected from a variety of locations such as database [7]

or downloaded from the Internet. They gather both indoor

and outdoor environments. The original images are shown

on the top row. The final set of T-junctions selected after the

minimization loop are indicated in the second row. The three

last rows present the depth map. Bright values correspond to

regions that are close to the camera. Comparing the results

of our system (last row) and the results from [2] (third row),

one can see that occlusion cues are a good feature for relative

depth ordering but, in some cases, it is insufficient to clas-

sify depth planes. Results of [1] (fourth row) show that sur-

face orientation greatly increases the perception of depth. As

mentioned in the introduction, learning-based strategies offer

absolute depth information, which is unavailable considering

only occlusion cues.

Several conclusions can be extracted from the results of Fig-

ure 3. First, the proposed system performance may compete
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Fig. 3. Results of the algorithm compared with [2] and [1]. From top to bottom, in rows: original image, final image partition

with marked T-junctions, results from [2], [1] and results of the proposed system. Bright (dark) values correspond to regions

close to (far from) the camera.

with the current state of the art techniques and although [1, 2]

infer absolute depth, relative depth relations are usually cor-

rectly estimated by our scheme. Second, our approach de-

fines much more precisely the object boundaries, thanks to

the use of the joint T-junction estimation and BPT construc-

tion. Third, due to the training process, algorithms from [2, 1]

perform worse when the images correspond to indoor scenes.

Furthermore, our system can also be used for figure/ground

segregation. Nevertheless, it is possible to see that in some

images not all objects/regions are indeed correctly ordered

(images 2 and 5) due to the lack of T-junctions between them.

Taking into account the last observation, future efforts will fo-

cus on improving the system to include other depth cues such

as convexity to solve more general cases.
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