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ABSTRACT

In this paper, we propose a system to obtain a depth ordered seg-
mentation of a single image based on low level cues. The algorithm
first constructs a hierarchical, region-based image representation of
the image using a Binary Partition Tree (BPT). During the building
process, T-junction depth cues are detected, along with high convex
boundaries. When the BPT is built, a suitable segmentation is found
and a global depth ordering is found using a probabilistic framework.

Results are compared with state of the art depth ordering and
figure/ground labeling systems. The advantage of the proposed ap-
proach compared to systems based on a training procedure is the
lack of assumptions about the scene content. Moreover, it is shown
that the system outperforms previously low-level cue based systems,
while offering similar results to a priori trained figure/ground label-
ing algorithms.

Index Terms— binary partition tree, depth estimation, occlu-
sion, T-junctions, convexity

1. INTRODUCTION

Perceiving depth is a fairly easy task for humans. In most situations,
people estimate disparity from two images, one for each eye. How-
ever, even if only one point of view is available, good scene inter-
pretations can be done barely at a glance. It is believed that a priori
scene knowledge helps to infer the final scene structure. Regardless,
humans are able to derive the depth successfully in unknown situa-
tions. This capacity is also due to a low level vision process, where
depth cues (features indicating depth relationships) are detected.

State of the art algorithms working on monocular depth percep-
tion rely mostly on a priori trained systems [1, 2]. Although these
approaches may be suitable for common situations, they cannot han-
dle all possible types of scenes. Another approach to arrive at a
plausible depth estimation is to imitate the human vision system by
detecting low level depth cues.

To this purpose, the region based approach in [3] proposes three
steps: detection of T-junction points, BPT construction and depth or-
dering. The system presented here has two fundamental differences
with [3]: it combines the first and second stages of [3] into a single
step and proposes a new iterative probabilistic framework to deter-
mine the final depth order. The proposed system is an extension of
[4] where less depth cues were considered to determine depth.

The organization of the paper is as follows: first, in Section 2,
the estimation of local depth cues is explained. The procedure to go
from local depth cues to global depth ordering is outlined in Sec-
tion 3. The last Section 4 presents the results compared with state
of the art systems on monocular depth ordering and figure/ground
segregation.

Fig. 1. The local depth gradient of T-junctions cannot be determined

using only local depth cues. At the left, the red ball occludes the

green and blue balls, producing a normal T-junction. The right im-

age shows an inverted T-junction. Due texture variations, the sky

appears to be locally in front of the dog.

2. ESTIMATION OF LOCAL DEPTH CUES

The proposed system adopts a very similar approach to [4] to es-
timate depth cues. This process is jointly performed with the con-
struction of a BPT [5]. The BPT is a bottom-up approach and at each
iteration merges the two most similar regions according to a defined
distance using color, area, shape and depth features. Still, two major
changes are introduced in the estimation of local depth cues. First,
instead of considering only one kind of T-junctions [6], normal and
inverted types are introduced, allowing different occlusion relations.
Second, it is known that, typically, humans relate convex boundaries
to foreground regions [7]. Hence, in addition to occluding points,
convexity is also estimated as an occlusion cue between adjacent re-
gions.

2.1. T-junction Estimation

To estimate T-junctions, all points i in the image are assigned a T-
junction confidence value 0 ≤ pi ≤ 1. This confidence indicates the
probability that the point i is indeed a true T-junction. pi is estimated
at each BPT merging, where all points where three regions meet are
considered plausible candidates to indicate occlusion.

The process is the same as the one exposed in [4] but a brief
explanation follows. Three features are examined locally at each
point: color, angle and curvature. Since good T-junctions should
have good color contrast, with straight and T-shaped branches, the
three measured features are compared with the ideal values: high
contrast, perfect angles and no curved branches. The result of this
comparison is a confidence value for each feature. Finally, to obtain
the overall T-junction confidence for a point i, color pc, angle pa and
curvature pκ confidences are combined to obtain: pi = pc×pa×pκ.

2.2. Depth gradient at T-junctions

Previous work on T-junctions [3, 4] imposed a strong depth config-
uration for these cues: the region forming the largest angle (top re-
gion) is lying closer to the viewer. However, experience shows that
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Fig. 2. Normally, convex shapes present less area in small neigh-

borhoods. Convex regions, as R1 here, are perceived as foreground

while R2 is perceived as background.

T-junctions may also indicate the opposite depth relation. Since, lo-
cally, all kinds of junctions are similar, deciding whether T-junctions
are normal or inverted should be done by looking other than local
features, Fig. 1.

The depth relation created by a T-junction proved to be very un-
certain. Normally, if an object is really occluding other objects in
the background, more than one T-junction is likely to be formed in
the image, and all these T-junctions may have the same region/object
as the occluding region. On the other way, it is possible to detect a
T-junction even though no real occlusion relation exists. False de-
tections often occur due to color or texture variations. As an initial
guess, prior to global reasoning, all T-junction are considered nor-
mal, indicating true occlusion relationships.

This initial guess, being low confident, is allowed to change
when estimating the global depth ordering of the scene. That is,
in some circumstances, the depth gradient of a T-junction is changed
if there are many other occlusion relations indicating the opposite
depth relationship.

2.3. Convexity Estimation

Convexity depth cues are defined locally at region boundaries. A re-
gion R1 is convex with respect to R2 if, on average, the curvature
vector on the common boundary is pointing towards R1. If R1 ap-
pears to be convex, it is perceptually seen as the foreground region
(and thus, closer to the viewer). To determine convexity, the curva-
ture vector should be computed but, instead, a faster strategy is pro-
posed. Generally, when examining boundary pixels, if R1 presents
less area than R2 in a local neighborhood, R1 may be seen as con-
vex, see Fig. 2. Convexity cues are also characterized by a confi-
dence value which can be computed using:

ζc (R1, R2) =
λ

L

X
(x,y)∈Γ

α(x, y) (1)

With α(x, y) = 1 if the area of R1 is greater than the area of R2 in
a local window Ω(x, y), α(x, y) = −1 otherwise. The weighting
parameter λ is chosen to be the average of the normalized gradient
magnitude along the boundary. L is the number of points where the
measure α(x, y) is calculated. The overall convexity confidence of
a boundary is:

ζ (R1, R2) = 1 − exp

„
− 1

γc
× |ζc (R1, R2)|

«
(2)

With γc = 1
12

determined experimentally. If the result ζc (R1, R2)
is positive, R1 is considered to be convex and, therefore, on top of
R2. The converse indicates that R2 is on top of R1. To make the
measure as scale invariant as possible, Ω(x, y) is chosen to be a
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Fig. 3. Three allowed prunings of a given BPT. For each pruning, the

framed leave nodes are merged to its parent, reducing the number of

BPT nodes by one. All other possible prunings in this BPT reduce

the number of leaves of the tree by more than one. The results of the

prunings (red, blue and green) are shown a the bottom (left,center

and left respectively).

circular window with a radius of 5% of the contour length. Points
lying near junctions, image borders and other regions are discarded
for the measures. Contours having small lengths (L < 100 pixels)
are considered to be non-significant for convexity cues.

3. GLOBAL DEPTH ORDERING

After the BPT construction, only local occlusion relations have been
detected. The goal now is to find a depth ordered partition D from
the previously constructed BPT. To arrive at a global depth ordering,
the local depth cues should propagate their depth information to re-
late all the regions in the image. It is possible, however, that two
(sets of) local cues contradict each other, telling that two regions are
at the top of each other at the same time. If that is the case, no depth
ordering is possible and a conflict arises. To solve such cases, the
problem of arriving at a consistent solution is stated as finding D
that minimizes a cost function.

To define such a function, three concepts are proposed. First, the
algorithm should try to use as many non-conflicting cues as possible.
Second, since humans can decompose an image in few depth planes,
D should be simple, with few regions. Third, no region should be
isolated, i.e. all regions should be related with the others by at least
one occlusion relation. With these concepts, the following cost func-
tion is stated:

C(D) =
X
i∈R

pi + γN × N + γu × U (3)

Where R is the set of rejected depth cues (T-junctions and convexity
relations) due to depth conflicts. pi can act as the confidence of
a T-junction or as the confidence of a convexity relation between
two region boundaries. U is the number of isolated regions, that is,
regions which do not have any depth relationship with any other in
the final depth partition. Finally, N stands for the number of regions
composing the final depth image. γu ≈ 2 is set high enough to dis-
courage isolated regions. γN = max(0.1, pmin) is the penalization
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ρij R1 R2 R3

R1 - p1 + p2 − p1p2 (p1 + p2 − p1p2)p3

R2 0 - p3

R3 0 p4 -

Fig. 4. Example of a DOG. Nodes and edges represent regions and

depth cues respectively. The table shows the PoP for each pair of

nodes. Red edges form a cycle.

factor for scenes with many regions, where pmin is the minimum
confidence value of all the detected depth cues.

The minimization begins with a tree B0 and iteratively seeks for
simpler trees greedily, Fig. 3. B0 is obtained by pruning the tree at
nodes where the most confident T-junctions appear. The confidence
pi of these T-junctions satisfy pi > 0.1 and pi > 0.2pmax, where
pmax is the maximum T-junction confidence. To obtain B0, the BPT
is pruned at the regions forming these T-junctions.

At each iteration t, for each tree Bt, a set of K feasible solu-
tions Bk

t , k = 1..K, are generated by considering all the possible
prunings that reduce the number of leaves in Bt by exactly one. In
the example of Fig. 3, three such prunings are possible. Since the
leaves of each pruned BPT define a partition, the depth ordered par-
tition Dk

t is obtained for each Bk
t . With all Dk

t available, the next
tree Bt+1 is the tree corresponding to the partition of minimum cost
Dt+1 = arg minDk

t

`
C(D0

t ), C(D1
t ) . . . , C(DK

t )
´
. The pruning

process is applied successively, obtaining at each iteration Bt and
Dt, t = 1..T . At the final iteration T , the tree has only one leaf
and cannot be further pruned. The final depth ordered partition is
Dmin = arg minDt (C(D0), C(D1) . . . , C(DT )).

As can be seen in the previous minimization procedure, a depth
ordered partition has to be generated from each pruned tree B. To
this end, local depth cues should propagate their depth information
through regions. Since conflicts may appear, a probabilistic scheme
is proposed.

3.1. Probabilistic Framework for Depth Ordering

Since the initially computed cues are merely local, a global reason-
ing should be done to arrive at a consistent solution for the whole
image. To do so, a Depth Order Graph (DOG) is constructed. Nodes
in the graph represent regions of the partition extracted from the
leaves of the BPT. The depth relations are represented in the DOG
by directed weighted edges, going from the foreground region to the
background one. There is exactly one edge going from region R1 to
R2 if there is a depth cue i (T-junction or convexity) telling that R1

is in front of R2. The weight of this edge is the cue confidence, pi.

To order the regions according to depth, the DOG should be
acyclic (with no conflicts). To achieve such a graph structure, the
DOG can be seen as a network of reliable links [8]. Each edge in
the DOG associated with a cue i is reliable with probability pi. A
region Rj is reachable from Ri if there exists at least one directed

Fig. 5. Two first columns: results from [4]. Two last columns: pro-

posed system results. In the original images, boundaries are overlaid

and the junctions are marked in red. The closer region in junctions

is filled with white if the T-junction is normal, or with black if it is

inverted. In the depth maps, white regions are close to the viewer,

black are further away. The red regions have no related depth cues

with their neighbors.

path that goes from the former region to the latter. The probability of
existence of this path ρij is defined as reliability in [8], and referred
in this work as probability of precedence (PoP) due to its nature.
That is, the PoP ρij is the probability of a region Ri to be foreground
with respect to Rj .

The probability ρij can be calculated exactly by the inclusion-
exclusion principle [8], Fig. 4. Nevertheless, its computation cost
encourages to find approximate solutions. Since the exact value of
ρij is not the ultimate goal of the conflict resolution step, an up-
per bound proved to give reasonable results. The computation is
performed using a modification of the classic Floyd-Warshall algo-
rithm [9]. When all ρij are computed, the existence of a conflict (or
a cycle) in the DOG is straightforward. If for some Ri, Rj , both
ρij , ρji ≥ 0 a cycle is present. In such case, some depth cues should
be modified/discarded.

The proposed approach aims to break low-confident depth rela-
tions. Assuming ρij < ρji, the modified cue is the one correspond-
ing to the edge with lowest confidence that goes from Ri to Rj .
Two different cases appear. First, if the edge represents a convexity
depth cue, the cue is discarded and the corresponding edge removed.
Second, if the edge nature comes from a T-junction, a slightly differ-
ent approach is performed. Since the occlusion relation is not clear,
the edge is first reverted, thus changing a normal T-junction to an
inverted one. If it still creates a conflict, it is discarded.

This process is repeated until no cycles in the DOG are found.
When an acyclic graph is available, the depth order of each region
can be computed using a topological partial sort to obtain the depth
ordered partition D.

4. RESULTS AND CONCLUSIONS

4.1. Improvements of the System

Two different sources of improvements can be found in the proposed
system with respect to the work in [4]. First, the introduction of more
depth cues (convexity) may help the system to find depth relations
where T-junctions are not present. For example, in the first row of
Fig. 5, T-junctions are not able to relate the pen and the box with
their background. Nevertheless, convexity cues help to determine
the correct depth relations of the objects with their background.

The second source of improvement is due to the global reason-
ing. A good example of such behavior is shown in the second row
of Fig 5. While there are many conflicting cues (there are many T-
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Fig. 6. From left to right. Original image, possible depth ordering

from a ground truth segmentation, results of the system in [4] and

results of the proposed system.

junctions telling that the sky is the front region), a global reasoning
achieves a correct depth interpretation by inverting all the conflicting
junctions.

As a more qualitative comparisons, Fig. 6 and 7 show the com-
parison with the previous systems [4] and [3]. It can be seen that
the systems perform similarly but due to the inclusion of more depth
cues, the proposed shows more consistent results than [4]. More-
over, the integration of T-junction estimation and segmentation may
lead to slight better segmentations, as can be seen qualitatively in
Fig. 7.

4.2. Comparison with the State of the Art

Qualitatively comparison can be performed against other low level
cue based algorithms, such as [3]. Comparisons with learning-based
approaches were already presented in [4], and differences on the al-
gorithm behavior were clearly stated.

Results are also compared with figure/ground labeling algo-
rithms, [10, 11] using the dataset [12]. Figure/ground labels are
assigned at occlusion boundaries, where two depth planes meet. The
closer side is assigned the figure label, while the further side is con-
sidered the ground. The comparison is performed using automatic
segmentations, although the proposed system can be modified to

Fig. 7. From left to right. Original image, possible depth order-

ing, results of the proposed system and results of the region based

approach in [3]

Algorithm Proposed [10] [11]

Results 71.3% 68.9% 69.1%

Table 1. Percentage of correct assigned figure/ground labeling on

automatically generated contour points.

work also with segmentations generated by humans.
To evaluate the ground truth labels on automatic generated con-

tours, detected contour pixels are matched to a ground truth contour
point having the same orientation. Human marked and automatic
occlusion boundaries may not coincide, so unmatched pixels are ig-
nored. Results in Table 1 count the number of correct matches.

Similar performance with both systems is observed even though
[11] makes use of more depth cues. Moreover, both [10, 11] rely
on a priori training and they do not provide region information, only
labels at detected edges. The proposed approach, however, provides
a full ordered depth partition which can be a good starting point for
other segmentation or even 3D visualization applications.
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