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Resum

A
questa tesi presenta diferents tècniques per a la definició d’una me-
todologia per obtenir una representació alternativa de les seqüències
de v́ıdeo capturades per sistemes multi-càmera calibrats en entorns

controlats, amb fons de l’escena conegut.

Com el t́ıtol de la tesi suggereix, aquesta representació consisteix en una des-
cripció tridimensional de les superf́ıcies dels objectes de primer pla. Aquesta apro-
ximació per la representació de les dades multi-vista permet recuperar part de la
informació tridimensional de l’escena original perduda en el procés de projecció que
fa cada càmera.

L’elecció del tipus de representació i el disseny de les tècniques per la recons-
trucció de l’escena responen a tres requeriments que apareixen en entorns controlats
del tipus smart room o estudis de gravació, en què les seqüències capturades pel
sistema multi-càmera són utilitzades tant per aplicacions d’anàlisi com per diferents
mètodes de visualització interactius.

El primer requeriment és que el mètode de reconstrucció ha de ser ràpid, per tal
de poder-ho utilitzar en aplicacions interactives. El segon és que la representació de
les superf́ıcies sigui eficient, de manera que en resulti una compressió de les dades
multi-vista. El tercer requeriment és que aquesta representació sigui efectiva, és a
dir, que pugui ser utilitzada en aplicacions d’anàlisi, aix́ı com per visualitació.

Un cop separats els continguts de primer pla i de fons de cada vista –possible
en entorns controlats amb fons conegut–, l’estratègia que es segueix en el desenvo-
lupament de la tesi és la de dividir el procés de reconstrucció en dues etapes. La
primera consisteix en obtenir un mostreig de les superf́ıcies (incloent orientació i
textura). La segona etapa proporciona superf́ıcies tancades, cont́ınues, a partir del
conjunt de mostres, mitjançant un procés d’interpolació.

El resultat de la primera etapa és un conjunt de punts orientats a l’espai 3D
que representen localment la posició, orientació i textura de les superf́ıcies visibles
pel conjunt de càmeres. El procés de mostreig s’interpreta com un procés de cerca
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de posicions 3D que resulten en correspondències de caracteŕıstiques de la imatge
entre diferents vistes. Aquest procés de cerca pot ser condüıt mitjançant diferents
mecanismes, els quals es presenten a la primera part d’aquesta tesi.

La primera proposta és fer servir un mètode basat en les imatges que busca
mostres de superf́ıcie al llarg de la semi-recta que comença al centre de projeccions
de cada càmera i passa per un determinat punt de la imatge corresponent. Aquest
mètode s’adapta correctament al cas de voler explotar foto-consistència en un es-
cenari estàtic i presenta caracteŕıstiques favorables per la seva utilizació en GPUs
–desitjable–, però no està orientat a explotar les redundàncies temporals existents
en seqüències multi-vista ni proporciona superf́ıcies tancades.

El segon mètode efectua la cerca a partir d’una superf́ıcie inicial mostrejada
que tanca l’espai on es troben els objectes a reconstruir. La cerca en direcció
inversa a les normals –apuntant a l’interior– permet obtenir superf́ıcies tancades
amb un algorisme que explota la correlació temporal de l’escena per a l’evolució de
reconstruccions 3D successives al llarg del temps. Un inconvenient d’aquest mètode
és el conjunt d’operacions topològiques sobre la superf́ıcie inicial, que en general no
són aplicables eficientment en GPUs.

La tercera estratègia de mostreig està orientada a la paral·lelització –GPU –
i l’explotació de correlacions temporals i espacials en la cerca de mostres de su-
perf́ıcie. Definint un espai inicial de cerca que inclou els objectes a reconstruir, es
busquen aleatòriament unes quantes mostres llavor sobre la superf́ıcie dels objectes.
A continuació, es continuen buscant noves mostres de superf́ıcie al voltant de cada
llavor –procés d’expansió– fins que s’aconsegueix una densitat suficient. Per tal de
millorar l’eficiència de la cerca inicial de llavors, es proposa reduir l’espai de cerca,
explotant d’una banda correlacions temporals en seqüències multi-vista i de l’altra
aplicant multi-resolució. A continuació es procedeix amb l’expansió, que explota la
correlació espacial en la distribució de les mostres de superf́ıcie.

A la segona part de la tesi es presenta un algorisme de mallat que permet inter-
polar la superf́ıcie entre les mostres. A partir d’un triangle inicial, que connecta tres
punts coherentment orientats, es procedeix a una expansió iterativa de la superf́ıcie
sobre el conjunt complet de mostres. En relació amb l’estat de l’art, el mètode pro-
posat presenta una reconstrucció molt precisa (no modifica la posició de les mostres)
i resulta en una topologia correcta. A més, és prou ràpid com per ser utilitzable en
aplicacions interactives, a diferència de la majoria de mètodes disponibles.

Els resultats finals, aplicant ambdues etapes –mostreig i interpolació–, demos-
tren la validesa de la proposta. Les dades experimentals mostren com la metodologia
presentada permet obtenir una representació ràpida, eficient –compressió– i efectiva
–completa– dels elements de primer pla de l’escena.



Summary

T
his thesis presents different techniques for the definition of a methodol-
ogy for obtaining an alternative representation of video sequences cap-
tured by calibrated multi-camera systems in controlled environments,

with known scene background.

As suggested by the title of the thesis, this representation consists in a three-
dimensional description of the surfaces of foreground objects. This approach for
the representation of multi-view data allows for the recovering of part of the three-
dimensional information of the original scene lost int the projection process hap-
pening in each camera.

The choice of a type of representation and the design of the techniques for 3D
scene reconstruction are driven by three requirements that appear in controlled
environments such as a smart room or recording studios. In these scenarios, video
sequences captured by a multi-camera rig are used both for analysis applications
and interactive visualization methods.

The first requirement is that the reconstruction method must be fast in order to
be usable in interactive applications. The second one is that the surface represen-
tation must be efficient, providing a compresion of the multi-view data. The third
requirement is that this representation must be effective or, in other words, that it
provides the relevant information to be used for analysis applications as well as for
visualization.

Once separated foreground and background elements from each view –possible
in controlled environments with known background–, the strategy that is followed
in the development of the thesis is that of dividing the reconstruction process in
two stages. The first one consists in obtaining a sampling of the foreground surfaces
(including orientation and texture). The second stage provides closed, continuous
surfaces from the set of samples, through an interpolation process.

The result of the first stage is a set of oriented points in 3D space that locally
represent the position, orientation and texture of surfaces that are visible from
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multi-camera settings. The sampling process is interpreted as a search for 3D
positions that result in feature matchings between different views. This search
process can be driven by different mechanisms, which are presented in the first part
of this thesis.

The first proposal is to use an image-based method that searches surface samples
along the half-line which starts at each camera’s center of projections and goes
through a certain point in the corresponding image. This method is well-suited to
exploiting photo-consistency in a static scenario and presents favorable features for
its usage in GPUs –desirable–, but it is not oriented towards the exploitation of
temporal redundancies in multi-view sequences, nor provides closed surfaces.

The second method performs the search starting from an initial sampled surface
which encloses the space where the objects to be reconstructed lie. The search, in
the inverse direction of the normals –pointing towards its interior–, allows to obtain
closed surfaces with a algorithm which exploits the correlation in the temporal
sequence of reconstructions of the scene. A drawback of this method is the set of
topological operations over the initial surface, which are in general not efficiently
applicable in GPUs.

The third sampling strategy is oriented towards parallelization –GPU – and the
exploitation of spatial and temporal correlations in the search of surface samples.
Defining an initial search space that includes the objects to be reconstructed, some
seed samples are randomly searched, which lie on the surfaces of the objects. Next,
new surface samples are searched for around each seed –expansion process– until
a sufficient density is achieved. In order to improve the search efficiency for seed
samples, a reduction of the search space is introduced, either by exploiting temporal
correlations in multi-view sequences or by applying multi-resolution. Next, the
algorithm proceeds with the expansion, which exploits the spatial correlation in the
distribution of surface samples.

In the second part of the thesis, a meshing algorithm is presented, which allows
for the interpolation of the surfaces between its samples. Starting by an initial
triangle, which connects the points coherently oriented, an iterative expansion of
the surface over the complete set of samples takes place. Compared to the state-of-
the-art, the proposed method presents a very accurate reconstruction (it does not
modify the position of samples) and results in a correct topology. Furthermore, it
is fast enough as to be usable in interactive applications, as a difference with the
majority of available methods.

The final results, applying both stages –sampling and interpolation–, reflect the
validity of the proposal. Experimental data show how the presented methodology
permits obtaining a fast, efficient –compression– and effective –complete– represen-
tation of the foreground elements of a scene.



Contents

List of Figures xi

1 Introduction 1

1.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.1 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 State of the Art 7

2.1 Multi-View 3D Reconstruction . . . . . . . . . . . . . . . . . . . . . 8
2.1.1 3D reconstruction taxonomy . . . . . . . . . . . . . . . . . . 8
2.1.2 Visual hull . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1.3 Photo hull . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.1.4 Multi-view stereo . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Multi-View Video Reconstruction . . . . . . . . . . . . . . . . . . . . 15
2.2.1 Scene flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.2 Surface tracking . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3 Meshing Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.1 Propagation-based methods . . . . . . . . . . . . . . . . . . . 19
2.3.2 Marching cubes-based methods . . . . . . . . . . . . . . . . . 20

2.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3 Approach 25

3.1 Surface Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.1.1 Sample-based surface description . . . . . . . . . . . . . . . . 27
3.1.2 Polygon mesh surface description . . . . . . . . . . . . . . . . 29

3.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2.1 Surface sampling . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.2.2 Surface interpolation . . . . . . . . . . . . . . . . . . . . . . . 34

3.3 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.3.1 Part I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.3.2 Part II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36



vi CONTENTS

3.3.3 Part III . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

I Surface Sampling 37

4 Image-based Surface Sampling 41
4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.1.1 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.1.2 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . 43

4.2 Photo-consistency Test . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.3 Sampling of Visible Photo-consistent Surfaces . . . . . . . . . . . . . 46

4.3.1 Automatic neighborhood selection . . . . . . . . . . . . . . . 47
4.3.2 Extraction of candidate surface points . . . . . . . . . . . . . 47
4.3.3 Global photo-consistency . . . . . . . . . . . . . . . . . . . . 48

4.4 Orientation Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.4.1 Orientation in image-based sampling . . . . . . . . . . . . . . 51

4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5 Surface Sampling by Deformation 53
5.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.1.1 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.1.2 Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.2 Initialization: Static Reconstruction . . . . . . . . . . . . . . . . . . 55
5.2.1 Silhouette constraints . . . . . . . . . . . . . . . . . . . . . . 57
5.2.2 Orientation estimation . . . . . . . . . . . . . . . . . . . . . . 59

5.3 Tracking: Dynamic Reconstruction . . . . . . . . . . . . . . . . . . . 61
5.3.1 Surface expansion . . . . . . . . . . . . . . . . . . . . . . . . 62
5.3.2 Spatial regularization . . . . . . . . . . . . . . . . . . . . . . 62

5.4 Photo-consistency Constraints . . . . . . . . . . . . . . . . . . . . . . 64
5.4.1 Visibility estimation . . . . . . . . . . . . . . . . . . . . . . . 65
5.4.2 Segment shrinking . . . . . . . . . . . . . . . . . . . . . . . . 66

5.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

6 Statistical Surface Sampling 69
6.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

6.1.1 Random sampling in multi-view environments . . . . . . . . . 70
6.1.2 Silhouette-consistent surface reconstruction . . . . . . . . . . 71

6.2 Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
6.2.1 Surface point validation . . . . . . . . . . . . . . . . . . . . . 73
6.2.2 Local normal estimation . . . . . . . . . . . . . . . . . . . . . 73

6.3 Propagation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
6.3.1 Propagation region . . . . . . . . . . . . . . . . . . . . . . . . 75
6.3.2 Iterative propagation algorithm . . . . . . . . . . . . . . . . . 77



CONTENTS vii

6.4 Efficient Sampling Schemes . . . . . . . . . . . . . . . . . . . . . . . 77
6.4.1 Dynamic sampling . . . . . . . . . . . . . . . . . . . . . . . . 78
6.4.2 Multi-resolution sampling . . . . . . . . . . . . . . . . . . . . 79

6.5 Surface post-processing . . . . . . . . . . . . . . . . . . . . . . . . . 81
6.5.1 Fine normal estimation . . . . . . . . . . . . . . . . . . . . . 81
6.5.2 Anisotropic smoothing . . . . . . . . . . . . . . . . . . . . . . 82
6.5.3 Surface coloring . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

7 Surface Sampling Results 87
7.1 Image-based Surface Sampling . . . . . . . . . . . . . . . . . . . . . 87

7.1.1 Qualitative validation . . . . . . . . . . . . . . . . . . . . . . 88
7.1.2 Quantitative results . . . . . . . . . . . . . . . . . . . . . . . 90

7.2 Surface Sampling by Deformation . . . . . . . . . . . . . . . . . . . . 92
7.2.1 Static vs. dynamic reconstruction . . . . . . . . . . . . . . . 93
7.2.2 Usage of resources . . . . . . . . . . . . . . . . . . . . . . . . 94
7.2.3 Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

7.3 Statistical Surface Sampling . . . . . . . . . . . . . . . . . . . . . . . 96
7.3.1 Multi-resolution and dynamic sampling . . . . . . . . . . . . 98
7.3.2 Efficiency in multi-camera environments . . . . . . . . . . . . 99

7.4 Comparison of the Three Sampling Approaches . . . . . . . . . . . . 100
7.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

II Surface Interpolation 107

8 Surface Interpolation 111
8.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

8.1.1 Interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
8.1.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

8.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
8.2.1 Spatial queries . . . . . . . . . . . . . . . . . . . . . . . . . . 119
8.2.2 Half edges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

8.3 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
8.3.1 Initial triangle . . . . . . . . . . . . . . . . . . . . . . . . . . 121
8.3.2 Propagation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

8.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

9 Surface Interpolation Results 129
9.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

9.1.1 Propagation methods . . . . . . . . . . . . . . . . . . . . . . 130
9.1.2 Marching cubes-based methods . . . . . . . . . . . . . . . . . 130

9.2 Datasets and Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . 131



viii CONTENTS

9.2.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
9.2.2 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

9.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
9.3.1 Quantitative comparison . . . . . . . . . . . . . . . . . . . . . 133
9.3.2 Qualitative comparison . . . . . . . . . . . . . . . . . . . . . 134

9.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

III Overall Results and Conclusions 143

10 Overall Method: Sampling and Interpolation Results 145

10.1 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
10.1.1 Data and methodology . . . . . . . . . . . . . . . . . . . . . . 146
10.1.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

10.2 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
10.2.1 Data and methodology . . . . . . . . . . . . . . . . . . . . . . 149
10.2.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

10.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

11 Conclusions 177

11.1 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . . . 177
11.1.1 Surface sampling . . . . . . . . . . . . . . . . . . . . . . . . . 178
11.1.2 Surface interpolation . . . . . . . . . . . . . . . . . . . . . . . 179
11.1.3 Accomplishments . . . . . . . . . . . . . . . . . . . . . . . . . 180

11.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
11.2.1 Surface sampling . . . . . . . . . . . . . . . . . . . . . . . . . 181
11.2.2 Surface interpolation . . . . . . . . . . . . . . . . . . . . . . . 182
11.2.3 Background reconstruction . . . . . . . . . . . . . . . . . . . 182

11.3 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

IV Appendices 185

A Camera Model 187

A.1 Extrinsic Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
A.1.1 Camera position . . . . . . . . . . . . . . . . . . . . . . . . . 188
A.1.2 Camera orientation . . . . . . . . . . . . . . . . . . . . . . . . 188

A.2 Intrinsic Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
A.2.1 Pinhole camera model . . . . . . . . . . . . . . . . . . . . . . 189
A.2.2 Lens distortion . . . . . . . . . . . . . . . . . . . . . . . . . . 189

A.3 Back-Projection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
A.3.1 Known depth . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
A.3.2 Unknown depth . . . . . . . . . . . . . . . . . . . . . . . . . . 191



CONTENTS ix

A.4 Epipolar Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
A.4.1 Derivation of the fundamental matrix . . . . . . . . . . . . . 192

B kd-Tree 193
B.1 Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

B.1.1 Dynamic addition of elements . . . . . . . . . . . . . . . . . . 195
B.2 Queries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

B.2.1 Nearest-neighbors search . . . . . . . . . . . . . . . . . . . . . 196
B.2.2 Range search . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

B.3 Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
B.3.1 High-dimensional data . . . . . . . . . . . . . . . . . . . . . . 197

C Hausdorff Distance 199
C.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

C.1.1 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
C.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
C.3 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

C.3.1 Polygon mesh dissimilarity . . . . . . . . . . . . . . . . . . . 201

D Related Publications 203
D.1 Surface Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
D.2 Surface Interpolation and Applications . . . . . . . . . . . . . . . . . 204

Bibliography 207





List of Figures

1.1 3D reconstruction after projection losses . . . . . . . . . . . . . . . . 3

2.1 Visual Hull as a result of a shape-from-silhouette algorithm . . . . . 8
2.2 Comparison between Visual Hull and Photo Hull . . . . . . . . . . . 9
2.3 Level sets of a voxelized solid cube . . . . . . . . . . . . . . . . . . . 11
2.4 Scene flow as a 3D dense motion field . . . . . . . . . . . . . . . . . 16
2.5 Meshing of a set of points . . . . . . . . . . . . . . . . . . . . . . . . 19

3.1 Surface samples, describing position, orientation and texture . . . . 27
3.2 Triangle mesh containing faces and vertices . . . . . . . . . . . . . . 29
3.3 Right-hand rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.4 3D surface reconstruction as a two-stage approach . . . . . . . . . . 32

4.1 NCC in small-baseline setups . . . . . . . . . . . . . . . . . . . . . . 44
4.2 Distortion measurements in RGB space . . . . . . . . . . . . . . . . 46
4.3 Photo-consistent candidates with increasing depth . . . . . . . . . . 47
4.4 Space carving – rejection . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.5 Space carving – acceptance . . . . . . . . . . . . . . . . . . . . . . . 49

5.1 Dilation of a surface and its enclosed space . . . . . . . . . . . . . . 54
5.2 Surface sampling by deformation. Initialization and tracking . . . . 56
5.3 Topological operations for deformation of a closed surface . . . . . . 58
5.4 Events related to the frustum and silhouette from a viewpoint . . . . 59
5.5 Partial silhouette and frustum constraints for one view . . . . . . . . 60
5.6 Multi-view merging of partial frustum and silhouette constraints . . 60
5.7 Surface points with geometrically estimated orientation . . . . . . . 61
5.8 Dilation of the samples of a surface . . . . . . . . . . . . . . . . . . . 62
5.9 Need for spatial regularization . . . . . . . . . . . . . . . . . . . . . . 63
5.10 Dynamic surface sampling with color-encoded velocity field . . . . . 65

6.1 Motivation to the use of statistical sampling . . . . . . . . . . . . . . 71
6.2 Rectangular propagation region for statistical sampling . . . . . . . . 76
6.3 Propagation of surface samples in statistical sampling . . . . . . . . 78



xii LIST OF FIGURES

6.4 Efficiency improvement in dynamic statistical sampling . . . . . . . 79
6.5 Multi-resolution as a reduction of the search space . . . . . . . . . . 81
6.6 Normal estimation from a local set of surface points . . . . . . . . . 82
6.7 Anisotropic smoothing of surface samples . . . . . . . . . . . . . . . 83
6.8 Choice of the best oriented cameras for coloring . . . . . . . . . . . . 84

7.1 Image-based sampling overview . . . . . . . . . . . . . . . . . . . . . 88
7.2 Image-based sampling, qualitative results . . . . . . . . . . . . . . . 89
7.3 Image-based sampling vs. voxelized space carving . . . . . . . . . . . 92
7.4 Dynamic sampling by surface deformation in five real sequences . . . 94
7.5 Sampling by deformation vs. voxelized shape-from-silhouette . . . . 95
7.6 Statistical sampling with multi-resolution scouting comp. time . . . 98
7.7 Statistical sampling for different levels of image decimation . . . . . 99
7.8 Statistical sampling efficiency in large multi-view settings . . . . . . 100
7.9 Statistical sampling with increasing number of views: samples . . . . 101
7.10 Statistical sampling with increasing number of views: meshes . . . . 102
7.11 Surface obtained with each of the sampling strategies . . . . . . . . . 104

8.1 Range and nearest-neighbor searches . . . . . . . . . . . . . . . . . . 118
8.2 Creation of a half-edge structure . . . . . . . . . . . . . . . . . . . . 120
8.3 Rules for initial triangle creation . . . . . . . . . . . . . . . . . . . . 122
8.4 Additional rules for triangle propagation . . . . . . . . . . . . . . . . 123
8.5 Surface propagation over a set of oriented points . . . . . . . . . . . 124
8.6 Non-manifold edge detection and correction . . . . . . . . . . . . . . 126
8.7 Topological correctness of the output mesh . . . . . . . . . . . . . . 127

9.1 Surface interpolation: drill dataset . . . . . . . . . . . . . . . . . . . 135
9.2 Surface interpolation: bunny dataset . . . . . . . . . . . . . . . . . . 137
9.3 Surface interpolation: armadillo dataset . . . . . . . . . . . . . . . . 138
9.4 Surface interpolation: hand dataset . . . . . . . . . . . . . . . . . . . 139
9.5 Surface interpolation: dragon dataset . . . . . . . . . . . . . . . . . . 140
9.6 Surface interpolation: happy dataset . . . . . . . . . . . . . . . . . . 141

10.1 Surfaces obtained by the baseline system and the proposed one . . . 148
10.2 Topological correctness of the mesh from the proposed method . . . 149
10.3 Free-viewpoint video application from the proposed methodology . . 150
10.4 Results from sequence dancer . . . . . . . . . . . . . . . . . . . . . . 153
10.5 Results from sequence antoine . . . . . . . . . . . . . . . . . . . . . 155
10.6 Results from sequence antoine assis ballon . . . . . . . . . . . . . . . 156
10.7 Results from sequence antoine edmond ballon . . . . . . . . . . . . . 157
10.8 Results from sequence antoine lucie . . . . . . . . . . . . . . . . . . 158
10.9 Results from sequence antoine roue . . . . . . . . . . . . . . . . . . . 159
10.10 Results from sequence lucie corde . . . . . . . . . . . . . . . . . . . 160



LIST OF FIGURES xiii

10.11 Results from sequence benjamin baton . . . . . . . . . . . . . . . . . 161
10.12 Results from sequence coup de pied 1 . . . . . . . . . . . . . . . . . 162
10.13 Results from sequence coup de pied 2 . . . . . . . . . . . . . . . . . 163
10.14 Results from sequence parade coup de point 1 . . . . . . . . . . . . 164
10.15 Results from sequence parade coup de point 2 . . . . . . . . . . . . 165
10.16 Results from sequence saisie col . . . . . . . . . . . . . . . . . . . . 166
10.17 Results from sequence saisie poigne . . . . . . . . . . . . . . . . . . 167
10.18 PSNR vs. number of surface samples, Dancer dataset . . . . . . . . 168
10.19 PSNR vs. number of surface samples, Children dataset . . . . . . . 169
10.20 PSNR vs. number of surface samples, Martial dataset . . . . . . . . 170
10.21 Surfaces reconstructed with growing number of surface samples . . . 171
10.22 Criterion for deciding an optimal number of surface samples . . . . 172

B.1 Construction of a kd-tree with maximum-variance splitting axis . . . 194





Chapter 1

Introduction

O
ver the last years, analysis applications exploiting visual information
have evolved from environments where scenes are captured by a single
camera to setups where several cameras provide multi-view image sets.

Newer imaging technologies provide also more advanced features, such as depth, but
they still lack the interference-free, placing flexibility of standard video cameras.

Thus, the main advantage of multi-view scenarios is the availability of richer
information about the actual 3D scene, when compared to imaging a scene from a
single viewpoint. What is lost in the imaging process is, precisely, the 3D structure
of the scene. This is due to the projection onto a 2D image on the camera sensor
offering the perspective of a single view-point. Multi-view systems are able to re-
cover 3D information from 2D projections in multiple viewpoints. This information
allows for a richer representation of the scene from which both visualization and
analysis applications can benefit. For example, objects affected by occlusions when
being observed from a certain viewpoint can be observed without ambiguity by using
data from other viewpoints. Furthermore, redundancies among different views con-
tribute positively by enhancing the robustness of the scene representation, either by
resolving inconsistencies in detected features or by adding 3D location information.

A practical disadvantage in a multi-view scenario is the management cost of the
richer available data. An obvious problem in multi-view scenarios is that the storage
–or transmission, in a streaming application– of a large number of video sequences
that contain the projections of a certain scene from each of the available viewpoints
is not negligible. Indeed, if a very large number of views is considered, the situation
may become intractable. An important observation is that this cost should be
considered unjustified, because the multiple sequences captured by each camera
present redundancies –the larger number of available views, the more redundant
the multi-view data is–.
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The target of this thesis is to present an efficient method for representing this
multi-view information, at the expense of a certain, reasonable computational cost,
providing an alternative representation for visualization, analysis, transmission and
storage. The computational resources required by such an efficient representation
should not increase linearly with the number of views, regarding the information
redundancy of multi-view data. Another requisite of such a representation is that
it allows to go back to the original views, given the fact that it conveys all the
information contained in the latter.

This representation is the result of the 3D reconstruction methodology that is
proposed in this thesis. The main idea is not only to reduce the storage and trans-
mission costs related to the multi-view data, but also to do that in an efficient way,
such that it is adequate to be used by both visualization and analysis applications.
Regarding this last point, the 3D representation of the multi-view data should en-
rich the possibilities of such applications. Some features –e.g. surface normals– are
not easily computable from the multiple views, whereas their computation can be
a relatively simple task given a suitable 3D representation. To sum up, using a 3D
representation we obtain efficiency (compression) and effectiveness (adaptation to
visualization and analysis) in order to represent the rich information available in
multi-view setups.

1.1 Context

The target scenarios of this thesis are controlled environments. Examples of these
are smart rooms –or smart spaces– and recording studios. In the former, a varying
number of people or objects can interact with each other as well as with computer
systems. This sets the adequate scenario for the development of services related
to advanced human-computer interfaces (HCI) not requiring special attention by
the user, as a the typical HCI display-keyboard-mouse would require. In the latter,
recording studios, multi-view techniques can be exploited also for video production.

In these environments, video cameras –as well as microphone arrays and other
capture equipment– are distributed around the scene in an almost non-invasive
manner, usually in rather wide-baseline configurations. In many cases, the contents
of the background of the scene can be assumed to be static, or are even removed
–chroma keying–. We consider this case, and focus on the foreground –i.e. the
dynamic part– of the scene.

The projection process that takes place in each camera in order to generate
a 2D image out of the actual 3D scene is an inherently lossy process, for most
of the 3D information about the scene is lost. An image-based representation of
the multi-view data provides cues that can be used to recover part of this 3D
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Figure 1.1: 3D reconstruction as a recovering mechanism for the 3D cues lost in the imaging

process. The result of the reconstruction process is an approximation to the actual geometry and

texture of the 3D scene, from which only some surfaces are visible

information. However, it is the process of multi-view reconstruction the one that
explicitly attempts to recover the information lost in the projection process in order
to provide a richer representation, at least of some parts of the scene. This concept
is illustrated in Fig. 1.1.

Hence, the adopted approach is that of obtaining a unique, 3D representation of
the foreground contents of the scene captured by such a multi-camera rig. In more
detail, the main subject that this thesis addresses is the multi-view reconstruction
of the foreground elements of scenes in the aforementioned scenarios with known
background. The purpose of such 3D representation is two-fold, since it is to be
used by different algorithms exploiting the enriched information obtained by multi-
camera rigs for enriched visualization –free-viewpoint video [Lipski et al., 2010]– and
also for analysis of the contents of the scene.

1.1.1 Challenges

Solutions to several problems in multi-view reconstruction have already been pro-
posed, which provide different levels of accuracy depending on the amount and
nature of the available information. Thus, whereas there exist techniques able to
compete with range scanners in terms of accuracy [Seitz et al., 2006], they require
a small enough baseline in order to determine the 3D structure of the scene being
reconstructed. On the other extreme, there also exist techniques which, although
being able to obtain 3D representations from a small number of viewpoints in a
much wider baseline configuration, they are limited by the accuracy or the robust-
ness with respect to inconsistencies in the input data they can provide.

In this thesis, we discuss the suitability of a surface-based representation of the
3D data as opposed to a volumetric one in terms of its efficiency at describing the
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visible features in multi-view scenes. Continuous surface representations have been
widely used in computer graphics, resulting in powerful graphics hardware able to
handle triangle mesh representations of 3D surfaces. Also sample-based descriptions
of surfaces can be considered when the sampling density is high enough and an
explicit description of the topology is not required.

Few methods are available –EPVH in [Franco and Boyer, 2003] being perhaps
the clearest example– which are capable of obtaining a triangle mesh directly from
image-based features, without inputting explicit 3D estimates to the location of
some surface points. However, many techniques exist –e.g. Poisson reconstruction
[Kazhdan et al., 2006]–, which are capable of robustly obtaining triangle meshes
from sets of oriented surface points. One drawback of the approach consisting in
computing the 3D position of surface points and obtaining a triangle mesh by using
such a technique is that the computation time for the mesh might be too large for
being used on-line.

Whereas the former approach has already been used for real-time operation on
adequate hardware configurations, the latter seems more suitable in order to provide
a surface description useful for both analysis and visualization. This is due to the
more uniform distribution of the size of the triangle faces composing the resulting
surface description and the higher density of vertices, which might introduce an
additional rendering cost but provides richer information about local features of
the surface –e.g. orientation or curvature–.

It is also interesting to note that most works in 3D reconstruction target static
scenes, i.e., scenes where no more than one single frame is captured –for multi-view
settings using multi-camera rigs– or scenes where a static object is captured at
different time instants from different viewpoints. Few authors, [Vedula et al., 1999,
Starck and Hilton, 2005] among others, have addressed the problem of exploiting
the redundancies between consecutive time instants in video sequences to either
improve the quality or reduce the computational cost of 3D reconstruction.

There are three main challenges for the 3D reconstruction methodology proposed
in this thesis. The first one is that its result must be able to be used as a replacement
of the multi-view data without introducing a significant loss of information. The
second one is that it has to be efficient in terms of its representation, resulting in
a compression of the multi-view data. Finally, it has to be effective in order to
facilitate the posterior use of the data in visualization and analysis applications.

Going slightly more in detail, some challenges regarding the design of new algo-
rithms for surface-based 3D reconstruction can also be detected. These algorithms
must provide a sufficient level of accuracy –projection of the 3D shape vs. origi-
nal image– without restrictions to the baseline. In second place, it is necessary to
obtain a throughput such that the reconstructed surface can be used for real-time
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visualization and analysis applications and, in third place, it is also necessary, in
terms of efficiency and effectiveness of the approach, to adapt the 3D reconstruction
to the case of multi-view video sequences in order to exploit temporal correlations.

1.2 Objectives

Regarding the previously described challenges in the context of 3D reconstruction of
the surfaces of foreground objects in multi-view video sequences, the main objective
of this thesis is to provide a unique surface-based representation of the relevant
multi-view data under the aforementioned conditions:

• The resulting surface representation must be efficient –compressing the re-
dundancies in multi-view information–, effective –suitable for visualization
and analysis– and accurate –minimizing losses with respect to the original
data–.

• It must be able to retrieve a close approximation to the original images –with
minimal losses– by re-projection of the unique surface-based representation
and addition of the background information.

• It should exploit both spatial and temporal correlation in multi-view video
sequences in order to reduce the computation time and make it suitable for
real-time operation.

• Finally, another goal is to obtain an efficient, continuous representation of the
surface –a triangular mesh– in a usable computation time. Such a representa-
tion can contribute to further compress the multi-view data and can be used
for analysis as well as for rendering using standard graphics pipelines.

As a summary, the ultimate goal of this thesis is to obtain a fast –towards
real-time–, efficient –within a compressed/limited support–, effective –exploitable by
forthcoming applications– and unique surface-based representation of each frame in
multi-view video sequences, which provides all the relevant information about fore-
ground objects contained in the original streams and can be used for both interactive
visualization and analysis applications.

1.3 Structure

Following this brief introduction to the challenges that are tackled in this thesis and
the goals that are to be achieved, the reader will find a review of the related state
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of the art in Chapter 2. Next, Chapter 3 presents the approach that is followed
throughout this thesis, which is divided in two main concepts.

The first main concept is the dense sampling of surfaces from multi-view data
–3D reconstruction–. This is presented in Part I as an evolutionary collection of
different techniques, each with its advantages and its drawbacks.

The second main concept is the interpolation of surfaces from a dense set of
samples –meshing–. The proposed algorithm for this purpose and a comparison to
other methods in the literature are presented in Part II.

In Part III, a validation of the objectives of the thesis is presented. These results
are followed by the final discussion about the achievement of the proposed goals and
the resulting contributions.



Chapter 2

State of the Art

A
pplications derived from research in the exploitation of the rich data
available in multi-view scenarios range from 3D reconstruction of
monuments and buildings [Mueller et al., 2004] to volumetric com-

puter tomography [Sardarescu et al., 2008]. Computer vision algorithms benefit
of the enriched information available in such scenarios, as well. In general, visual
analysis from multiple views exploits the similarity and disparity features present
in the available projections of the scene.

Similarity features (redundancies) that can be identified from different view-
points allow for the establishment of correspondences for the registration of the
images in a common geometric framework. This allows for an easier detection and
analysis of these redundancies in the several views. On the other hand, the dispar-
ity features that can be detected in the multiple views contribute to augment the
visual information available through the inclusion of visual elements belonging to
areas that are hidden in one of the views, thus disambiguating occlusions.

One of the possibilities when working in multi-view scenarios consists in re-
constructing the 3D shapes of elements in a scene that has been captured by a
multi-camera setting. This approach appears in opposition to working in an image-
based manner, using geometric relationships between pairs of images described by
epipolar constraints. Therefore, multi-view approaches can be classified in:

• 3D reconstruction. Three-dimensional shapes are computed from the multi-
view data, with several possibilities for their representation, each providing
different advantages and drawbacks, as seen below.

• Image-based multi-view. Analysis is performed directly on the captured
images and multi-view cues are exploited by considering epipolar constraints
that can be computed from fundamental matrices (Appendix A).
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Figure 2.1: Visual Hull of a set of silhouettes. Only foreground/background classification infor-

mation is used to reconstruct the 3D shape

Thus, a detailed description of the visual data in multi-view settings, for appli-
cations ranging from visualization to analysis –e.g. object manipulation or visual
recognition–, might be based on the reconstruction of 3D models of the environment
and of the objects present in it. Such reconstruction will be more precise as more
cameras observe the space where the scene is located.

We focus this dissertation on 3D reconstruction to obtain a compact and mean-
ingful representation of multi-view data. This can be done efficiently and contribute
to the state of the art. Besides, this representation can be used to freely choose the
viewpoint for visualization applications. Real-time analysis applications can also
benefit of the enriched information available in settings with an increasing number
of viewpoints, without necessarily increasing the computational load as would result
in image-based scenarios, involving comparisons or consistency checks. Instead, a
unique, compact representation of the visual cues provides a generic framework that
isolates visualization applications or high-level analysis from the low-level details of
the multi-view capture process.

2.1 Multi-View 3D Reconstruction

In contrast with image-based multi-view approaches, 3D reconstruction methods
provide a representation with a 3D support that can be used to explain in a single,
compact structure the multi-view cues from the input images with an arbitrary level
of detail, limited by the baseline configuration of the multi-view setup.

2.1.1 3D reconstruction taxonomy

There are several techniques for computing 3D reconstructions from a set of images
captured in multi-camera settings. These techniques can be classified accordingly
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(a) (b)

Figure 2.2: Tightness of the photo hull compared to the visual hull. In (a), the bold line

represents the visual hull of a 2D scene (in this case, the central occupied square) reconstructed

from a set of silhouettes (segments) available in a set of 1D cameras. In (b), the photo hull is

computed and represented by the bold line, resulting in a tighter reconstruction of the actual

shape, which is the colored square

to several differentiating properties. In the following, two possible classifications,
each regarding a certain differentiating property, are listed.

Classification by type of input data. Depending on the type of input data,
we can find different types of 3D reconstruction methods in the literature:

• Visual hull. In [Laurentini, 1994], the visual hull was introduced as the
maximal 3D volume which is consistent with the silhouettes of an object
projected onto a set of images. In this case, input data consist solely of
binary silhouettes. This type of 3D reconstruction is depicted in Fig. 2.1.

• Photo hull. In [Kutulakos and Seitz, 1999], the photo hull was introduced
as the maximal 3D volume which is photo-consistent with each image. In this
case, input data are the captured color images for a given time instant. Due to
the richer information available in the input data, the photo hull constitutes
a tighter estimate of the actual volume than the visual hull, being its lower
robustness, in comparison with that of the visual hull, a drawback to consider
when attempting to use it for analysis applications. The tightness of the photo
hull, compared to that of the visual hull, is illustrated in Fig. 2.2.

• Multi-view stereo. Similarly to the photo hull computation, in multi-view
stereo [Goesele et al., 2006] the input images captured by the cameras are con-
sidered for reconstruction. However, in this case a small baseline camera setup
is required in order to precisely compute the position of surface points that
match a photo-consistency test between pairs of images. Typically, normal-
ized cross-correlation is used as a photo-consistency test, either in grayscale
or in the RGB color space.
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Classification by representation support. The majority of 3D reconstruction
algorithms in the related literature rely on one of the following representations:

• Volumetric. In many algorithms, for example in [Szeliski, 1993], a discrete
occupancy function over a regularly sampled 3D grid –voxelization– is used
to describe the 3D structure of the reconstructed scene. Whereas this support
is useful to represent three-dimensional dense volumes, it appears as a poor
descriptor of the visible data in multi-camera settings, which are the projec-
tions of object surfaces. In the cited reference, a progressive algorithm allows
to obtain the occupancy function in homogeneous areas without having to
visit every voxel of the highest-resolution regular grid individually (these are
exclusively visited when needed).

In [Faugeras and Keriven, 2002], level sets were introduced. They are func-
tions encoding distances of elements in a regularly sampled 3D grid to their
closest surfaces. The advantage of methods based on the level set represen-
tation is that numerical computations involving curves and surfaces can be
computed without having to parameterize these objects. Furthermore, meth-
ods based on level sets provide an effective manner of following shapes that
change their topology, making level sets a convenient representation for mod-
eling time-varying objects. An illustration of such representation is shown in
Fig. 2.3.

• Surface-based. Due to their efficiency for tessellation of surfaces, polygon
meshes are a popular output format for multi-view algorithms. They have
also been used as the central representation by some authors, for example in
[Isidro and Sclaroff, 2003, Franco and Boyer, 2003]. As a difference with the
previous representation supports, polygon meshes describe only the geometry
of surfaces, and not their interior. Thus, it is a representation better suited
to the data available in multi-camera settings. An advantage with respect to
the previous representations is that 3D space does not need to be discretized
in order to obtain it.

Surface patches, also called surfels or oriented points in some references in
the literature [Jia et al., 2006, Carceroni and Kutulakos, 2002], are sampling
elements designed to describe 3D surfaces. As such, they basically consist in
a 3D location and a 3D orientation descriptor. They constitute a suitable
support for describing surfaces of the objects in a multi-view scene, since they
efficiently describe the only features visible by the cameras.

• Image-based. A depth map representation consists in setting a depth
value (distance to image) for each pixel in each available view. It has been
used, for example, in [Kolmogorov and Zabih, 2002, Kauff et al., 2007]. This
representation, compared to the others, lacks a 3D support, which makes its
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Figure 2.3: Level sets of a voxelized solid cube. In this example, where a cut of a solid cube is

shown, gray levels would encode the minimal distance of each voxel to the surface of the recon-

structed cube

usage in analysis applications potentially more costly, due to the increasing
computational demands of multi-view matching with elevate numbers of avail-
able input views. However, depth maps can be an efficient representation for
classical stereo or tri-focal with narrow-baseline [Waizenegger et al., 2011].

Additionally, in [Casas and Salvador, 2006], a discrete occupancy function over
an irregular 3D grid, sampled in a specific way such that it appears as adapted
to the calibration geometry of the input images, is also shown as an intermediate
step between volumetric and image-based representations because, like the latter,
the image-adapted sampling scheme does not introduce an additional, arbitrary
sampling of 3D space that would result in sampling artifacts like those appearing in
volumetric techniques, whereas, like the former, it keeps a sampled representation
that can potentially expand current algorithms for processing voxelized volumes.

2.1.2 Visual hull

As introduced above, the visual hull is the maximal volume consistent with a set
of input silhouettes. Depending on the formation model of the input silhouettes,
different techniques allow the estimation of the visual hull, each of them using one
of the representation supports introduced above.

Shape from silhouette. Shape from silhouette (SfS) techniques require the pre-
vious computation of binary silhouettes of foreground objects in each of the avail-
able views. In this case, the computed silhouettes are considered noiseless, thus
not needing for special care beyond that of geometrical constraints when check-
ing consistencies between views. Reviewing the literature, we report the following
approaches:
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• Voxelized Shape from Silhouette. A multi-resolution technique based in
octrees [Meagher, 1982, Szeliski, 1993] is a widely extended approach. In it, a
coarse representation of the visual hull is obtained and, at subsequent itera-
tions, the resolution of the representation is increased in parts of the volume
that require higher sampling frequencies for obtaining a suitable represen-
tation without excessive aliasing (surfaces). Another technique, with fixed
resolution for all voxels but computationally efficient in the definition of its
projection test, consists in randomly sampling the actual projection of a voxel
on the images, rather than using the whole splat onto which a voxel projects
for a given point of view. This projection test is called SPOT (Sparse Pixel
Occupancy Test), and was introduced in [Cheung et al., 2000].

• Implicit Surface Visual Hull. This technique attempts to achieve a higher
reconstruction quality by the adoption of a specific adaptive sampling scheme
[Erol et al., 2005] that, similarly to the octree-based voxelization, uses a finer
resolution in those regions where it is needed. As a second step, it is accom-
panied by a post-processing aiming at obtaining crack-free polygonal surfaces,
using marching cubes [Lorensen and Cline, 1987].

• Polyhedral Visual Hull. This technique directly computes the 3D surface
of the visual hull and describes it as a polygon mesh. Different views of
this approach can be found in [Matusik et al., 2001] and [Lazebnik et al.,
2007], [Franco and Boyer, 2003] or [Franco and Boyer, 2009]. Furthermore,
[Franco et al., 2006] introduces the visual shape concept. Visual shapes are a
class of silhouette-consistent shapes including, but not limited to, the visual
hull. They are useful when observing shapes with known properties, such as
smoothness, because this prior knowledge of the geometrical structure can be
used for retrieving shapes with an appearance closer to the actual ones.

• Compressed Sensing Reconstruction. The application of the compressed
sensing theory [Donoho, 2006] to the field of 3D reconstruction allows obtain-
ing the volumetric occupancy from a smaller number of random projections,
thanks to the exploitation of the sparse structure of the resulting occupancy
function. This approach allows for the fast reconstruction of the visual hull,
rendering the computation time practically independent of the number of in-
put views, as shown in [Reddy et al., 2008]. The reconstruction of the actual
scene occupancy from the sparse set of samples requires the efficient computa-
tion of the so-called Basis Pursuit [Chen and Donoho, 1994], a widely studied
linear programming problem, which is considered tractable under the data
structure assumptions in the compressed sensing theory.

Shape from silhouette with enhanced robustness. In a more general case,
silhouette formation must be considered noisy, due to limitations in silhouette ex-
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traction algorithms. Hence, consistency tests between views and further processing
must address this problem. There are several approaches in the literature that can
be grouped as follows:

• Minimization of energy functions. An energy function is defined, includ-
ing functionals based on the local neighborhood structures of three-dimensional
elements and smoothing factors, like in [Kolmogorov and Zabih, 2004] and [Al-
coverro and Pardàs, 2009]. Algorithms based on graph cuts allow to obtain
a global minimum of the defined energy function ([Kolmogorov and Zabih,
2002]) with great computational efficiency. The optimal graph cuts are ob-
tained by first constructing a directed graph with a reversed edge for each
edge between two nodes. The maximum flow algorithm is executed on the
resulting graph, with each node representing a binary variable, and the re-
sulting labeling of the nodes represents the minimum cut of the graph derived
from the defined energy function.

• Space occupancy grids and other Bayesian frameworks. With space occu-
pancy grids [Franco and Boyer, 2005], each pixel is considered as an occupancy
sensor, and the visual hull computation is formulated as a problem of fusion of
sensors with Bayesian networks. This method allows to avoid obtaining error-
prone binary silhouettes by, instead, computing an occupancy probability for
each pixel that is fused with the probabilities of other pixels in other views
in order to set the voxel occupancy probability. This voxel occupancy proba-
bility can be thresholded at a final step in order to set the binary occupancy
values.

• Shape from Inconsistent Silhouette. For cases when silhouettes contain
systematic errors, [Landabaso et al., 2006] proposes a framework to minimize
the classification error of a voxel when inconsistent views are a minority. To
achieve that, the inconsistent hull is obtained, representing those voxels that
are potentially occupied although they do not belong to the visual hull due
to inconsistencies between silhouettes. The unbiased hull computed from the
inconsistent hull, which represents voxels that should be part of the recon-
structed volume, is added to the visual hull, resulting in a reconstruction
robust to systematic errors in the silhouette extraction process.

Additionally, in [Shin and Tjahjadi, 2008], the local convex hull is introduced.
This technique addresses some problems related to discontinuities, derived from the
surface triangulation via marching cubes of octree-based voxelized representations
of visual hulls. It proposes slicing an initial reconstructed volume for, in subsequent
steps, generating local convex surfaces that are combined to obtain a more robust
estimate of the surfaces of foreground objects.
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2.1.3 Photo hull

As introduced above, when, instead of binary silhouettes, color images captured
by multi-camera settings are used for reconstructing a scene, the photo hull can be
obtained, representing the largest photo-consistent volume. In the literature we can
find two different approaches for obtaining the photo hull of a scene in arbitrarily
wide-baseline setups:

• Voxel coloring. In the algorithm proposed in [Seitz and Dyer, 1997], start-
ing with an empty volume, voxels are visited in a specific order that provides
consistent visibility for all the cameras and added to the reconstructed volume
if they pass a photo-consistency test. One of its drawbacks is the need for a
certain order for visiting the voxels, in order to ensure visibility. Furthermore,
it assumes surfaces to be Lambertian, i.e., they only reflect the diffuse compo-
nent of the ambient light, making the appearance of surfaces independent of
the point of view. Unfortunately, this assumption, made by many algorithms
exploiting photo-consistency, is in general not true in real cases, which makes
such methods much less robust than silhouette-based ones.

• Space carving. As a difference with the previous one, this algorithm [Ku-
tulakos and Seitz, 1999] consists in setting as occupied a whole initial vol-
ume, which includes the actual scene, and iteratively removing those voxels
that, visited in a specific order (typically using sweep planes), do not pass a
photo-consistency test. Again, the Lambertian surface assumption appears
in this approach, which keeps this method from achieving the robustness of
silhouette-based ones.

2.1.4 Multi-view stereo

When small-baseline setups are available, finer photo-consistency tests can be used
that take into account data in a vicinity of each pixel, assuming that perspectives
will be similar between views. This set of techniques can be considered as an
extension of classical stereo vision to a multi-camera environment, and introduces
the problem of the appearance of inconsistent estimates between different pairs of
views.

Thus, different multi-view stereo techniques introducing different types of re-
finements and solutions to the consistency problem can be found in the literature:

• Depth-map extraction and fusion. In [Goesele et al., 2006], depth-maps
are extracted from each view by finding correspondences with, at least, two
neighbor views, and computing its correspondent 3D position by triangula-
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tion. Then, a volumetric combination of the depth-maps and posterior surface
extraction is applied in order to obtain the photo-consistent reconstructed sur-
face.

• Energy minimization. Volumetric min-cut methods (that are obtained
from the maximum flow algorithm for graphs with reversed edges) combine
photo-consistency with shape smoothing factors, as in [Sinha and Pollefeys,
2005]. More recently, [Campbell et al., 2008] considers several hypothesis for
the placement of the actual surface, and an optimization step using Markov
Random Fields gives impressive results for highly textured scenes. Its main
drawback is that the method is unable to infer the surface position for objects
that are not highly textured. This algorithm can be viewed as an improvement
over [Goesele et al., 2006] using the same working principle.

• Fusion with silhouettes. In this case, the robustness of shape from sil-
houette approaches is combined with the availability of richer features in
multi-view stereo by minimizing a convex functional with the exact silhou-
ette consistency imposed as a convex constraint that restricts the domain of
admissible surfaces to those that fit in the binary silhouettes once projected
onto the original viewpoints, as in [Kolev and Cremers, 2008]. The authors
claim high-accurate, silhouette-consistent reconstructions for real-world data
in a computationally efficient manner.

• Surface reconstruction from dense stereopsis. In [Furukawa and Ponce,
2007], an initial sparse set of surface elements (surfels, surface patches or
oriented points) are obtained from matching image-based features of several
input images. From this initial estimation, an iterative algorithm augments
the number of surface elements and rejects outliers, achieving results with
high accuracy, even for small image sets. At a post-processing step, a closed
polygonal mesh is morphed until it fits the set of reconstructed surface ele-
ments with an energy minimization algorithm. This method has the drawback
of a high computational cost, with its bottleneck in the iterative stage that
increases the density of surface elements.

2.2 Multi-View Video Reconstruction

One of the fundamental properties of a scene is its motion. Exploiting the temporal
correlations of a scene is a task in computer vision that can benefit of the enriched
information available in multi-view scenarios. Depending on the methodology ap-
plied for exploiting this valuable feature of a scene, which complements and enriches
the geometric description that can be obtained by some of the methods above, scene



16 State of the Art

(0,0,0)

t

t+1

(0,0,0)

t

t+1

Figure 2.4: Scene flow. Each vector represents the motion of a feature of the reconstructed shape

from one time instant to the next one. Note that the reconstructed shape has rotated 90 degrees

around its center and also translated. The scene flow implicitly describes both types of motion

flow and surface tracking approaches can be found in the literature, which present
important differences on the nature of the data used for estimation.

2.2.1 Scene flow

Earlier approaches have separated the shape and motion estimation tasks, in a scene
flow formulation of the problem. The scene flow concept was introduced as a 3D
equivalent to the optical flow in monocular video sequences. In this case, input data
consist in sequences of images captured by a multi-camera setting.

The techniques in the literature first pre-compute shape estimates at each time
instant. Then, velocity fields are obtained by feature matching between reconstruc-
tions at different instants. The scene flow typically complements photo hulls or
multi-view stereo surface reconstructions. These techniques are reviewed next. Fig.
2.4 shows how rigid motion can be represented accompanying an existing shape at
different time instants in a toy example.

As seen in [Vedula et al., 1999], when many cameras are used to image a scene,
it is necessary to apply some regularization or smoothing to compute the scene flow
describing the non-rigid motion of the scene. Reviewing the literature, we find two
different ways to compute the scene flow for non-rigid motion, regarding the way
regularization is applied:

• Image-based regularization, as in [Vedula et al., 2002]. This approach is
used with voxel coloring for obtaining the voxelized photo hull of the scene
and its scene flow. In this case, smoothing is performed in each image plane
and the smoothed 2D optical flows are combined for obtaining the 3D scene
flow.

• 3D regularization on 3D surfaces. In [Carceroni and Kutulakos, 2001], this
approach is used for recovering the 3D shape, reflectance and non-rigid mo-
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tion of scenes in a surfel-based representation, with the scene flow smoothing
directly computed in 3D space. One of the most interesting points of this
approach is the usage of a model for the appearance of the projections of
surfaces in the scene not assuming Lambertian surfaces, although it requires
the knowledge of the physical position of light sources.

Some works in the literature obtaining dense non-rigid scene motion estimates
using a polygon mesh representation of surfaces, in a scene flow formulation of the
motion estimation problem, can be found in [Ahmed et al., 2008] and [Klie et al.,
2007]. The former receives as input a sequence of visual hull surfaces obtained from
static surface reconstructions in each time instant. Then, sparse correspondences
from SIFT features [Lowe, 2004] between adjacent frames are obtained. Finally,
dense correspondences are inferred by finding matches at neighborhoods of each
found correspondence. The latter [Klie et al., 2007] receives the same type of input
and obtain a sparse 3D motion field from combining 2D optical flows from different
views. Similarly to the previous case, sparse motion vectors are propagated to their
vicinities in order to obtain a dense motion field. Dues to the noisy motion vectors
at the output of the algorithm, temporal smoothing is applied in the form of low
pass filters.

In [Starck and Hilton, 2005], a spherical model is constructed by mapping the
surface obtained at each time instant to a sphere. In this case, surfaces are es-
timated by first concatenating voxel coloring and marching cubes [Lorensen and
Cline, 1987], and then applying projective texturing [Mueller et al., 2004] in order
to provide texture to the surfaces. As its authors claim, the spherical domain gives a
consistent 2D parametrization of non-rigid surfaces for matching, which can be used
in order to find the 2D bijection that guarantees a continuous one-to-one surface
correspondence.

2.2.2 Surface tracking

More recent approaches exploit both spatial and temporal redundancies in sequences
with motion by tracking surfaces from multi-view captures. Some of the existing
techniques exploit multi-view data in a manner similar to multi-view stereo re-
construction, while others aim at obtaining shapes equivalent to photo hulls with
wider-baseline scenarios in mind. Also for the latter scenario, silhouette-based ap-
proaches can be used to introduce precise deformations to an existing model in order
to fit it to the silhouettes at each time instant. Other approaches aim at tracking
objects in crowded scenes with very sparse cameras without color calibration. All
these approaches are viewed in more detail next.
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Multi-view stereo-based. Impressive time-coherent reconstructions can be ob-
tained by tracking surfaces reconstructed by multi-view stereo, at the cost of large
computation times. In [Furukawa and Ponce, 2008, Furukawa and Ponce, 2009b],
normalized cross-correlation is used as a photo-consistency measurement between lo-
cal neighborhoods of vertices in the mesh surface being tracked and images captured
at the next time instant with a detailed treatment of visibility. First, smoothing
constraints are applied at a local scale, in order to capture both radial and tangen-
tial surface motion. Then, at a global scale, a second level of refinement is achieved
by introducing both smoothing and rigidity constraints.

In [Courchay et al., 2009], a global variational approach is applied in order to
jointly estimate shape and motion. Their method fixes the topology of the surface,
represented as a mesh, at the initial instant and then recovers both shape and
motion by optimizing the positions of vertices at each instant. The optimization is
driven by an energy function that incorporates photo-consistency and smoothness
terms for both the velocity field and the surface across time.

In [Goldluecke and Magnor, 2004], spatio-temporal 3D hyper-surfaces are intro-
duced in an elegant notation able to combine data from several time instants in
a sequence in order to provide smooth surface estimates over time. The dynamic
geometry is volumetrically modeled as a 3D iso-surface in space-time. To create
the model, the photo-consistency of the whole scene is optimized with temporal
smoothness constraints, which are intrinsic to the PDE -based evolution method
used for energy minimization. The intersection of the 3D hyper-surface with planes
of constant time gives the 2D surface at each time instant.

Silhouette-based. In [de Aguiar et al., 2007], range data is used for creating a
high resolution mesh model of an object to be tracked. Then, Laplacian deforma-
tions are applied in order to fit the surface of the model being tracked to the set of
silhouettes in each time instant, obtaining impressive offline results. In its follow-up
[de Aguiar et al., 2008], photo-consistency constraints from multi-view stereo are
introduced in the framework in order to provide accurate mesh fitting to small scale
shape detail.

In [Guan et al., 2008], color information is introduced in a way that can be
used in very wide-baseline scenarios and without requiring color calibration between
cameras. A Gaussian Mixture Model (GMM) model of each subject in the scene
is automatically learned in each view when a new shape is found in the scene.
A Bayesian method is used to infer the voxel occupancy, combining the silhouette
information with the matching score to each multi-view GMM model. This approach
does not provide dense motion fields, but it can be useful for tracking multiple
objects in crowded scenes with sparse multi-view settings.
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Figure 2.5: Meshing of a set of points. From left to right, an initial set of points and different

surfaces represented as polygon meshes, obtained with increasing spatial resolution. Courtesy of

Xavier Suau, extracted from [Suau et al., 2010]

2.3 Meshing Algorithms

Meshing algorithms provide a means to compute a closed, continuous surface out
of a set of input points. Typically, the output surface is provided as a set of
connected triangular facets. In Fig. 2.5, the data points from the dragon dataset in
[The Stanford 3D Scanning Repository, 2010] are used to generate three different
surfaces with increasing spatial resolution.

Regarding the literature in meshing algorithms from a set of oriented points, two
families of methods can be considered. The first one comprises methods based on the
propagation of an existing surface, whereas the second family comprises methods
based on a volumetric reconstruction followed by marching cubes [Lorensen and
Cline, 1987].

2.3.1 Propagation-based methods

Propagation methods for surface reconstruction have in common the initial defi-
nition of one or more regions that are used as seeds for a propagation algorithm
that attempts to cover the whole surface between the input 3D points. Some of the
methods available in the literature that fall in this category are:

• Ball pivoting [Bernardini et al., 1999]. It starts with a seed triangle and
iteratively pivots a ball around an edge (i.e. it revolves around the edge while
keeping in contact with edgepoints) until it touches another point, forming
another triangle.

• Restricted and oriented propagation [Suau et al., 2010]. It starts by voxelizing
the space where the surface lies and fills each voxel with an original point.
Then, a specifically-designed propagation scheme connects close points in or-
der to create new faces of the resulting surface.
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Ball pivoting

The ball pivoting algorithm is an advancing-front algorithm to incrementally build
an interpolating triangulation of a given point cloud. The method is conceptually
simple. Starting with a seed triangle, it pivots a ball around each edge on the
current mesh boundary until a new point is hit by the ball. The edge and point
define a new triangle, which is added to the mesh, and the algorithm iteratively
considers a new boundary edge for pivoting.

Restricted and oriented propagation

Restricted and oriented propagation is a method to reconstruct meshed surfaces from
point sets based on a propagation through a voxelized space performed in order to
find the closest neighbors of every data point. Propagation is done following a
specific propagation pattern which exploits reciprocity in neighbor finding. Every
obtained pair of neighbors defines a new edge of the output mesh.

2.3.2 Marching cubes-based methods

Marching cubes (MC) is a well-known method for extracting a polygonal mesh of
an iso-surface from a 3D scalar field –regular voxelization–. A set of oriented points
belonging to the surface of the objects –explicit surface representation– is a very
common output of 3D reconstruction methods (the first part of [Furukawa and
Ponce, 2007] constitutes an impressing multi-view stereo example.) It is possible
to translate it to a volumetric representation, usually under certain conditions of
spatial uniformity, in order to apply marching cubes at the last stage.

Therefore, some approaches exist which, first, determine voxel occupancy by
means of a certain type of regularization and, then, extract the surface by means
of MC. Some methods in the literature are:

• Robust implicit moving least squares-marching cubes [Oztireli et al., 2009]. It
extracts the iso-surface of a Moving Least Squares surface, defined by a point
set as a robust implicit extension of Moving Least Squares that preserves sharp
features, by using non-linear regression and finally applies the marching cubes
algorithm.

• Poisson reconstruction [Kazhdan et al., 2006]. It obtains volumetric occu-
pancy by solving a Poisson equation and then performs marching cubes in
order to extract the surface.
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Robust implicit moving least squares-marching cubes

Moving least squares is a very attractive tool to design effective meshless surface
representations. However, as long as approximations are performed in a least square
sense, the resulting definitions remain sensitive to outliers, and smooth-out small
or sharp features. In [Oztireli et al., 2009], these major issues are considered and
a novel point-based surface definition combining the simplicity of implicit MLS
surfaces [Kolluri, 2005] with the strength of robust statistics is presented.

To reach this new definition, MLS surfaces are reviewed in terms of local kernel
regression, opening the doors to the utilization of a robust kernel regression. This
representation, which can handle sparse sampling, generates a continuous surface,
which better preserves fine details, and can naturally handle any kind of sharp
features with controllable sharpness. It combines ease of implementation with per-
formance competing with other non-robust approaches. At the latest stage, a tri-
angular mesh is extracted by using the marching cubes algorithm.

Poisson Reconstruction

Poisson reconstruction proposes a formulation that considers all the points at once,
without resorting to heuristic spatial partitioning or blending, and is therefore
highly resilient to data noise. Unlike radial basis function-based schemes [Turk
and O’Brien, 2005], the Poisson approach presented in [Kazhdan et al., 2006] allows
a hierarchy of locally supported basis functions, and therefore the solution reduces
to a well conditioned sparse linear system. A spatially adaptive multi-scale algo-
rithm is used, whose time and space complexities are proportional to the size of the
reconstructed model.

Using this approach, surface reconstruction is expressed as a Poisson problem,
which seeks the indicator function that best agrees with a set of possibly noisy, non-
uniform observations. This approach can, for example, robustly recover fine detail
from noisy real-world scans. At its last stage, an octree-based marching cubes
implementation extracts a triangular mesh from the volumetric representation.

2.4 Conclusions

The main techniques and representation formats for 3D reconstruction from a set
of calibrated input views found in the literature have been introduced. The state
of the art provides a number of methods, based on different approaches, that are
suitable for different types of scenarios that can be considered when working with
multi-view camera settings. A taxonomy of the methods and types of representa-
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tion that translate relevant features from the multi-view input data to 3D features
(occupancy, surface, color. . . ) has been presented.

When focusing on the 3D reconstruction of the objects in a scene captured by
a set of multiple cameras, which are useful for both representation and further
processing purposes, different methods yield results with dramatic differences, re-
garding the nature of the data used for reconstruction and the requirements of the
specific application. Thus, methods offering high detail at its output are costly
and oriented to small-baseline scenarios, such as the multi-view stereo approaches,
whereas methods which provide lesser detail are suitable to interactive applications
demanding small processing times and can have an arbitrarily wide-baseline config-
uration, which influences the reachable level of accuracy on the reconstruction.

We can observe that the only visible 3D features in multi-view data are the
projections of the surfaces –i.e. the interfaces between the interior of objects and
air– of the objects contained in the actual 3D scene. Therefore, we propose to
exploit surface representations, with the use of surface patches or polygon meshes,
in order to efficiently represent the reconstructed 3D features, instead of using
volumetric representations, which in general spend valuable computational resources
in computing and storing the occupancy of empty (air) or invisible (interior of
objects) regions.

In order to efficiently compute surfaces in multi-view video sequences, the ap-
plication of a tracking strategy seems a suitable option. In contrast with techniques
for motion estimation by computation of the scene flow, tracking strategies can be
used to exploit the temporal correlation of the scene in order to either reduce the
computation time or improve the accuracy and consistency of the surface. Since re-
construction techniques are in general costly, it will be important to provide tracking
techniques for the reconstruction of sequences, which allow for a combined exploita-
tion of spatial and temporal correlations in the position of the surfaces.

Polygon meshes appear as good candidates for representing the visible features
in 3D scenes, due to their powerful post-processing capabilities, being easy to han-
dle in standard hardware-accelerated graphics pipelines and providing an explicit
description of the surface topology. Meshes can be obtained from a discrete rep-
resentation, based on surface samples, by different techniques, as shown in Section
2.3. However, the reviewed techniques are either computationally demanding or
inaccurate in terms of topological correctness. Therefore, it is also proposed to ob-
tain a method able to obtain a topologically correct continuous surface with a low
computational cost.

In order to summarize the challenges of this thesis already mentioned in the pre-
vious chapter related to the state of the art, we attempt to provide a framework for
the efficient processing of the available data in multi-camera scenarios by obtaining
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a single instance representation of the objects in the scene that:

1. Has little computational cost when compared to other methods delivering a
similar accuracy in their results.

2. It is suitable for the reconstruction of multi-view sequences, exploiting both
spatial and temporal correlations.

3. Contains all the relevant information contained in the original images.

Finally, it is important to remark that, although this thesis is not focused on
specific higher-level computer vision or computer graphics problems such as pose
estimation or techniques for scene visualization –for free-viewpoint video–, the ulti-
mate goal of the obtained scene representation is to be used by these applications,
without the expense of operating directly on the data captured by a multi-camera
setting that would arise in image-based approaches.





Chapter 3

Approach

T
he previous chapter shows that the availability of multi-view data is
beneficial in order to provide state-of-the-art performance in several
disciplines in computer vision. In addition, the rich multi-view infor-

mation can be more easily exploited when presented as a single instance of a 3D data
structure properly describing all features of interest. Imposing the condition that
the reconstruction is accurate, with a minimal information loss, it is always possible
to go back to a good estimate of the original images by re-projecting the 3D models
onto the original viewpoints. The methodology for obtaining this representation
must solve early vision concepts –such as visibility, occlusion or image distortion–
and leave for a posterior stage the feature analysis for specific applications.

One of the main goals of this approach, which can be interpreted as a low-level
data fusion from multiple sensors, is to avoid using a multi-instance representation
composed by the raw images from each available viewpoint and their corresponding
calibration data at an application level. Such a multi-instance representation would
further impact an analysis application attempting to exploit not only multi-view
data, but also motion information by processing multi-view video sequences. Such
scenario might require costly processing, transmission and storage of multi-view
data from several time instants. Furthermore, algorithms based on the processing
of a single instance 3D representation of a multi-view scene can be more general,
because they will never depend on the number of available cameras and their in-
teractions. Otherwise, the cost of processing multi-view data could exponentially
grow with the number of input views.

This thesis attempts to demonstrate that surface representations of the elements
of interest in multi-view video sequences can be obtained at a reasonable compu-
tational cost, providing complete and compact descriptions of the relevant visual
features available in the original multi-view streams. In other words, this type of
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description can provide enough visual information to analysis applications as to
render image-based approaches unpractical, due to the additional management cost
associated to using raw multi-view data in the latter.

This chapter describes the approach presented throughout this thesis, designed
to provide a complete and compact multi-view data representation of foreground
elements in dynamic scenes, which can be used by both analysis and visualiza-
tion applications. First, the set of visual features included in the proposed surface
representations are presented and classified regarding their nature. Then, the nec-
essary methods to obtain each of these representations are introduced. Finally, the
organization of the rest of the dissertation is presented.

3.1 Surface Description

Relevant visual features in multi-view scenes are always found on the surfaces of
objects of interest. Indeed, the interior space of objects of interest is typically hidden
by an opaque surface, whereas empty space occupied by air does not provide any
visual information. Therefore, it is this interface between the interior of objects and
empty space the one that contains the relevant visual data.

Surfaces in 3D space can be represented in a number of ways, either explicit or
implicit –a volumetric field determining spatial occupancy implicitly contains the
location of surfaces–. In our approach, surfaces are explicitly described by means of
two different, although related, types of primitives. The first representation consists
in a sample-based description of the surface, whereas the second one is a polygon
mesh.

One important advantage of considering a surface sampling scheme instead of
a volumetric approach is that it is possible to augment the level of detail exactly
on the surface of interest, by increasing the sampling density in that region. In
contrast, a volumetric approach would require an increase of the sampling density
in a region which would comprise the surface, part of the interior of the object
and part of the empty space around the object, due to the impossibility of exactly
determining the position of the surface.

The benefit of a polygon mesh compared to a sample based description is that it
provides a mechanism –linear interpolation– to determine an estimate of the surface
between existing samples. In comparison with other possible interpolation schemes,
this one is supported by current mainstream graphics hardware, which makes it a
good choice for interactive applications.
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Figure 3.1: Three surface samples of the proposed 3D representation characterized by their

geometric (3D position and orientation) and texture descriptors. The size of each surface sample

in the proposed 3D representation is considered to be infinitesimal

3.1.1 Sample-based surface description

The first type of support for the description of 3D objects of interest in a multi-view
scene is, as mentioned, a collection of surface samples. In its most elementary form,
such representation consists in a point cloud with the 3D positions of a certain
number of surface points. However, with the help of additional descriptors, higher
degrees of information detail can be obtained.

In order to describe the shape of a 3D surface as estimated from data captured by
a calibrated multi-camera setting, geometry and texture are complementary features
which, combined, provide a rather complete set of the available visual features.
Whereas the former describes the position and pose of a 3D surface element, as
referred to a reference coordinate system, the latter describes its color at a local
scale. An illustration of the concept of a surface sample is shown in Fig. 3.1.

Geometric descriptors

Geometric information can be expressed in different manners, depending on the
requirements of the application, ranging from very low level descriptions, which
require less computational resources for their extraction and representation, up to
higher level descriptors, the extraction and representation of which require more
resources.

In general, three different types of geometric descriptors can be considered for
each surface sample:

• 3D position xi, with respect to an arbitrary 3D reference system.
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• Orientation n̂i, a unitary outward-pointing vector in a direction normal to
the surface.

• Curvature, described by its two principal curvatures k1,i and k2,i [Guggen-
heimer, 1963].

At this point, it is interesting to discuss the properties of these three descrip-
tors. The 3D position of a surface sample constitutes the most basic geometric
description. By considering the variation of the position of the points included in a
conveniently sized neighborhood of the surface sample, a higher level descriptor –its
orientation– can be estimated. At the highest level, the variation of the orientation
of the points belonging to the neighborhood of the surface sample can be used to
estimate its curvature parameters. However, this third type of descriptor will not
be used in our approach, for curvature can be determined at any later stage by ex-
ploiting the extracted location and orientation of a set of infinitesimal or elementary
surface samples at close distances.

Alternative approaches consider larger surface samples [Carceroni and Kutu-
lakos, 2002], which require more detail in the represented features (curvature, ori-
entation and also texture). In this case, even the computation of the orientation
of each surface sample would require more than the knowledge of the location of a
set of close surface samples and a hint about the interior and exterior of the object,
because samples would be too distant to describe local variations. Thus, an inter-
esting property of elementary surface samples is that, given a sufficient sampling
density, a small amount of information at every point –location and orientation–
suffices to geometrically determine the surface.

Texture descriptors

Texture can also be encoded as an attribute of each surface sample. Assigning an
RGB color that is consistent with each one of the viewpoints that have a line of
sight with the surface point described by the sample already constitutes a low-level
texture description. Such a method for describing texture can have an arbitrary
level of detail, by varying the density of the surface samples.

Higher-level features, such as Gray-Level Co-occurrence Matrix (GLCM)-derived
figures [Haralick et al., 1973] or edge histograms can also be used when a low
density of surface points is needed for implementation constraints. The use of this
type of features allows using a sparser surface description while keeping valuable
information about the texture of the object. Therefore, they can constitute a useful
complement to the low-level RGB color descriptor when the sampling density over
the surface cannot provide enough level of detail of its texture variations, which are
in general subtler than their geometric counterparts.
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Figure 3.2: Local detail of a polygon mesh describing a surface. Each triangular face, which

might contain texture information, shares its vertices with other neighbor faces, thus describing

the surface topology

In this thesis, only the RGB color has been used as a texture descriptor, assuming
a sufficient surface sampling density. Again, the adoption of an approach based on
elementary surface samples, instead of larger surface samples, results in a benefit in
terms of the required per-sample information. For both types of features, geometric
and texture, a rather complete description of the actual surfaces can be obtained
by encoding a small amount of data (only position, orientation and color) for every
sample when a sufficient sampling density is considered.

3.1.2 Polygon mesh surface description

In order to describe the reconstructed surface even in regions lying between elemen-
tary surface samples, a polygon mesh is used. Polygon meshes can be considered a
first-order polynomial interpolant –or linear interpolant– of the actual surface, given
a set of elementary surface samples. It constitutes, therefore, a suitable continuous
representation of the information contained in a set of discrete surface samples.

There are different ways to describe a polygon mesh, such as lists of vertices
and faces or a half-edge structure. In our case, we consider a the former type of
description, composed by triangular faces that share a set of vertices. An illustration
of such description is shown in Fig. 3.2. However, the latter is also used at an
intermediate step in order to check the topological correctness of the polygon mesh.

Some properties regarding the topology of a mesh must be fulfilled if the mesh
is used for analysis. A two-manifold mesh can be properly oriented, whereas a
mesh not fulfilling this topological property cannot be, for example, unfolded onto
a 2D plane [Floater and Hormann, 2001]. Since surfaces reconstructed from multi-
view video sequences using the proposed approach are going to be used for both



30 Approach

v1 v2

v3

n̂

Figure 3.3: Ordering of the three vertices of a triangular face following the right-hand rule, given

the orientation of the face

visualization and analysis, special care will be taken in order to provide surfaces
with correct topology.

Geometric descriptors

As pointed out above, surface geometry described by polygon meshes is considered
to be consisting of triangular faces that share their vertices with neighbor faces.

Vertices. Similar to the case of surface samples, vertices in a mesh can contain
different types of geometric descriptors. Apart from the 3D position of the vertex in
an arbitrary reference system, a commonly included feature is an orientation, which
can be used to compute surface illumination. However, unless otherwise stated, only
the 3D position of each vertex will be considered as a per-vertex feature throughout
this dissertation.

Faces. Typically, triangular faces are geometrically described as a set of three
indices to their corresponding vertices. This is due to the fact that their orientation
is commonly assumed to follow the right-hand rule of ordering of their vertices, as
shown in Fig. 3.3.

Texture descriptors

Without considering more sophisticated effects such as mip-mapping –used in com-
puter graphics in order to provide superficial detail beyond the geometric resolution
of the polygon mesh–, two types of texture descriptors can be considered, regarding
a polygon mesh (geometrically) described by means of lists of vertices and faces.

• Face texture, containing high resolution detail between vertices.

• Per-vertex RGB color, used to interpolate the surface color between vertices.
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Due to the minimalistic texture representation chosen in surface sampling, the most
natural choice for the mesh representation is a per-vertex color description. Such
a texture description will be accurate as long as the vertex density of the mesh is
sufficiently high. Again, the choice of an elementary surface sampling approach with
a sufficient density allows encoding the continuous surface with a small amount of
data when compared to that of providing a texture to each face composing the mesh.
Indeed, in a closed surface with Nf faces, approximately Nv = 2Nf vertices exist.
Whereas encoding the texture coordinates in a parameterizable two-manifold mesh
would require Nv 2D coordinates –3Nf in non-manifold surfaces– and a texture
image for each surface only Nv RGB colors (3D coordinates) are required for per-
vertex color information.

In this section, two types of surface representation have been presented, which
will be used at different stages throughout the methodology presented in this the-
sis. Such methodology, resulting in the extraction of these two types of surface
descriptions, is introduced in the next section.

3.2 Methodology

Several factors strongly influence the design decisions in this thesis towards methods
able to work with arbitrarily wide baselines in real-time scenarios. Examples of
these factors are the computational cost of processing an arbitrarily high number of
cameras or the impossibility of placing a desired number of cameras due to spatial
and usability constraints.

Whereas multi-view stereo methods [Campbell et al., 2008, Esteban and Schmitt,
2003] provide state-of-the-art quality with properly conditioned small-baseline set-
ups, the surface reconstruction methods proposed in this thesis might fall one step
behind those in terms of quality in properly-conditioned scenarios. However, this
strategy allows us to provide surface reconstruction in challenging wide-baseline
scenarios, where more accurate methods fail due to the absence of the required
availability of redundant data.

The two different types of surface representations that are considered in the
following chapters are used in two different stages of the processing chain depicted
in Fig. 3.4. Therefore, sample-based representations of the reconstructed surfaces
are obtained at the end of the surface sampling stage, whereas continuous polygon
mesh representations are available after the surface interpolation stage. Due to the
different nature of these two methods and type of representation, this thesis has
been divided in two parts, surface sampling and surface interpolation, tackling the
specific challenges at each of these stages. These are described next.
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Figure 3.4: 3D surface reconstruction as a two-stage approach. After the first stage, a sample-

based representation of surfaces is obtained, whereas, after the second one, a polygon mesh is

obtained as the interpolation between the surface samples.

3.2.1 Surface sampling

The surface sampling methods presented in this thesis can be classified by two
related criteria:

• The type of available data, leading to different possible reconstruction meth-
ods, some of them faster and others more accurate and offering richer infor-
mation of the surfaces.

• The type of search strategy for each surface sample, leading to different types
of algorithms, some better adapted to exploit photo-consistency and others to
exploit temporal correlation.

In the following, the differences that appear from the choice of one of the types of
available data and search strategies are briefly introduced.

Reconstruction methods and available data

As depicted in Fig. 3.4 Part I, a number of possible pipelines has been considered in
order to extract surface samples from multi-view data. Thus, in case of considering
only the silhouettes of objects of interest for a single time instant, a first type



3.2 Methodology 33

of surface reconstruction (silhouette-consistent) appears. This initial pipeline can
be slightly modified to exploit temporal correlations (dynamic surface) or color
information (photo-consistency).

Silhouette-consistent reconstruction. The reconstructed surfaces obtained by
this approach are those of a visual hull [Laurentini, 1995, Franco and Boyer, 2009],
corresponding to the techniques in Section 2.1.2 in the previous chapter.

Photo-consistent reconstruction. When attempting to obtain a single-instance
representation containing all the relevant features of the input images, it is necessary
to also consider color or texture information. As seen in Section 2.1.4, it is useful
to exploit both binary silhouettes of the objects of interest and color images [Kolev
and Cremers, 2008]. The former data provides a strong robustness and the ability
to reconstruct shapes in multi-view scenarios with an arbitrarily wide baseline by
limiting the spatial search area. The latter, color information, allows refining shapes
by enforcing photo-consistency between images, using techniques similar to those
in Section 2.1.3.

With this approach, apart from obtaining tighter surface estimates than those
obtained with the silhouette-consistent approach, additional shape features are also
directly available at the output: a texture descriptor –such as a RGB color– is in-
cluded at each surface sample when photo-consistency is also enforced. Please note
that a texture descriptor could also be attached to silhouette-consistent reconstruc-
tions, although photometric information would not be used to improve the accuracy
of the reconstructed surface. In turn, this latter approach involves a smaller com-
putational cost.

Dynamic surface reconstruction. Inter-frame correlation is exploited in this
thesis for reducing the computational cost involved in the reconstruction of sur-
faces in consecutive time instants of multi-view video sequences. Interestingly, as
presented in Section 2.2.2, the exploitation of the correlation of a scene between
consecutive time instants can also provide an estimate of the motion of each surface
sample.

Reconstruction methods and search strategies

Surface sampling can be intuitively interpreted as the distribution of samples, at
a constant or varying density, all over the surfaces of the objects that are being
reconstructed. One desirable property related to the distribution of samples would
be that their density is increased where required, while keeping a lower density in
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areas without relevant information.

Whereas this would be difficult to obtain with classical volumetric techniques,
where 3D space is arbitrarily divided in order to determine the occupancy of each
subdivision –with some possible refinements such as octrees [Szeliski, 1993]–, the
surface reconstruction methods present here an advantage, for they are free of these
arbitrary divisions and sampling is more suitable to be adapted to the contents of
the scene.

Thus, a search strategy specifically designed to exploit the features of the avail-
able data are expected to result in the placement of surface samples in valid posi-
tions.

As it will be seen in subsequent chapters, the choice of a strategy for search of
surface samples leads to different algorithms. Some of these will present convenient
behaviors to exploit temporal correlation, whereas others will adapt better to the
exploitation of photo-consistency. A possible classification of the methods presented
in this thesis is:

• Image-based search, with search regions defined along the back-projected rays
of camera pixels, where surface samples are associated to individual pixels.

• Surface deformation-based search, with search regions along the normals of
each surface sample, assuming a certain level of correlation between the sur-
faces in consecutive time instants.

• Statistical search, with search regions distributed around other valid surface
samples, where the likelihood of finding new surface samples is higher.

The advantages and disadvantages of these methods will be presented and discussed
throughout the chapters dedicated to surface sampling.

3.2.2 Surface interpolation

Surface interpolation corresponds to the Part II in Fig. 3.4. The input data consists
of surface samples with or without color information. Although there exist several
methods in the literature for extracting a polygon mesh from a set of oriented surface
samples [Bernardini et al., 1999, Kazhdan et al., 2006], the target of the technique
proposed here is to obtain a high degree of precision while keeping a reasonably
reduced computational cost.

Some methods in the literature [Kazhdan et al., 2006] consist in first robustly
determining the volumetric occupancy of 3D space and then extracting the surface
as the interface between occupied and empty space (Section 2.3.2). The method
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proposed in this thesis shares similarities with another family of mesh extraction
methods, which can be referred to as propagation-based schemes (Section 2.3.1),
with [Bernardini et al., 1999] constituting a well-known example. The main advan-
tage of our method with respect to other propagation-based schemes is the usage
of fewer computational resources, accomplished by the use of suitable data struc-
tures and a quick propagation algorithm based on a set of rules for guaranteeing
the desired topological properties and a high accuracy.

At the output of this stage, an interpolating surface is obtained from the set of
input surface samples. This surface can be used for both visualization and analysis,
thanks to its topological correctness.

3.3 Thesis Organization

The main body of this thesis dissertation is divided in three parts. The first one
presents a set of methods suitable for surface sampling from different types of input
data. The second part describes the proposed meshing algorithm for surface inter-
polation. The third part presents the global results combining methods from Parts
I and II, as well as some concluding remarks and proposed lines of future work.

3.3.1 Part I

The first part of the document contains chapters dedicated to the different sur-
face sampling schemes, providing some advantages and disadvantages for each data
configuration considered for reconstruction. In the final one, the techniques are
validated and compared. The information presented in each of these chapters is the
following:

• In Chapter 4, an image-based surface sampling approach with search re-
gions consisting in the back-projected rays of each pixel, exploiting photo-
consistency.

• In Chapter 5, a surface sampling based on the deformation of an existing sur-
face, with search regions along the normal of each surface sample, exploiting
temporal correlation.

• In Chapter 6, a surface sampling scheme based on the statistical propagation
of surface samples in regions with higher likelihood of containing surfaces,
exploiting spatial correlation.

• In Chapter 7, experiments with each one of the proposed techniques and the
corresponding results, followed by a comparison of the three methods.
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3.3.2 Part II

The second part of the dissertation contains two chapters dedicated to the extraction
of a mesh interpolating a continuous surface between surface samples. First, the
methodology is introduced and then, in Chapter 9, results are presented. The
contents of these chapters are:

• In Chapter 8, a surface interpolation approach –meshing algorithm– is pre-
sented, which provides accurate polygon meshes with a low associated com-
putational cost.

• In Chapter 9, some results obtained with the interpolation technique are pre-
sented.

3.3.3 Part III

The two previous parts of the thesis include partial results corresponding to the sam-
pling and interpolation techniques. The third part of the thesis dissertation contains
overall results, validating the complete approach –sampling and interpolation– and
the conclusions. The chapters conforming this last part of the document contain:

• Chapter 10 presents quantitative and qualitative evidence of the suitability of
the complete approach –surface sampling and interpolation– for the problem
of surface reconstruction.

• Chapter 11 lists an overview of the accomplished goals and proposes some
lines of future work.

Finally, Appendices A, B, C and D introduce, respectively, concepts related to the
geometry of calibrated cameras, the kd -tree structure for efficient spatial queries,
the Hausdorff -distance as a metric for surface quality and a list of publications
obtained as a result of the research conducted in the elaboration of this thesis.



Part I

Surface Sampling





Surface Sampling

T
his part of the dissertation introduces a methodology for providing
a complete, discrete representation of the surfaces of moving objects
–scene foreground– that are observed by a rig of calibrated cameras.

This is accomplished by a set of procedures oriented to the finding of the location
and orientation of surface samples by means of specifically designed search schemes
aiming at efficiently exploiting the spatial or temporal redundancies available in the
input multi-view data.

Surface sampling, when compared to other 3D reconstruction methods, provides
a higher degree of freedom in the desired output resolution –in this case, sampling
density–. Although this might difficult the process of interpolating between surface
samples, the technique presented in Part II correctly handles this possible limitation.
In volumetric analysis, computational costs grow when an increase of the sampling
density at the visible features of the 3D scene –surfaces of objects– is desired, due
to the uniform distribution of samples in the entire working volume. However, in
surface-oriented approaches, sampling density can be more freely increased, because
the additional computational cost will only be used for samples representing objects
surfaces.

In the following chapters, three different techniques are presented, which develop
the principle of finding the position and orientation of surface samples in different
manners. Regarding different types of input data –binary silhouettes or color im-
ages, multi-view video sequences or static multi-view scenes–, each of the proposed
techniques shows some advantages and some limitations. These techniques are the
result of an evolutionary approach in the search for the best possible technique that
efficiently exploits the available information and improves the limitations of each
previous one.





Chapter 4

Image-based Surface

Sampling

A
s presented in Section 2.1.1, some approaches for scene reconstruction
from a set of calibrated views show a high level of robustness, such as
the silhouette-based methods, whereas others attempt to obtain the

finest possible detail, such as current multi-view stereo techniques. Photo-consistent
techniques fill in the gap between these two types of approaches, providing photo-
hulls. In certain environments, it is required to obtain a complete and robust rep-
resentation of a multi-view scene under tight constraints on the smallest achievable
baseline of the camera setting. In such a scenario, photo-consistency can provide
better accuracy with respect to the real shapes than silhouette-based methods, while
being more flexible in terms of baseline than multi-view stereo approaches.

In order to exploit photo-consistency, an image-based approach appears as a
good candidate to reconstruct surfaces from multi-view data [Furukawa and Ponce,
2007]. Therefore, in this chapter an image-based sampling strategy is presented,
which provides a photo-consistent surface reconstruction of foreground objects in
scenes with known background.

4.1 Motivation

Multi-view stereo techniques aim at reconstructing the 3D shapes of objects from
images captured from small baseline multi-view setups. This setup permits recon-
structing surfaces of objects in high detail, as long as the surfaces are visible from
a large enough number of viewpoints. When the volume enclosing the scene to be
reconstructed is large, more viewpoints must be placed around the scene in order to
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keep a small baseline. However, it is not always possible to arbitrarily increase the
number of viewpoints, due to either physical –camera placement– or computational
constraints.

The goal of the presented method is an alternative approach to tackle the prob-
lem of improving accuracy without greatly increasing the number of views. The
target scenario consists in a scene in an indoor environment with known back-
ground whose images are captured from a highly sparse set of viewpoints, as few
as e.g. 4 or 5 –as the cardinal points and a top view– in a wide baseline setup.
These viewpoints are placed around the whole scene in a way that they offer a wide
spatial coverage. In contrast with the usual sparse scenarios that are considered in
multi-view stereo, which typically include between 10 and 20 viewpoints, the dis-
crepancies due to perspective changes between images in such setups are dramatic
and influence the reachable reconstruction accuracy.

4.1.1 Related work

The visual hull was introduced in [Laurentini, 1994] as the maximal 3D shape con-
sistent with the silhouettes of an object projected onto a set of viewpoints. Several
methods in the literature, usually referred to as shape-from-silhouette, estimate the
visual hull. In these methods, input data consists solely of binary silhouettes. In
[Franco and Boyer, 2009], a polygon mesh is directly reconstructed, which repre-
sents the surfaces of the visual hull. This technique provides a highly precise surface
description when compared to most common volumetric counterparts.

A pre-processing stage, which may introduce segmentation errors, must provide
accurate silhouettes of the objects of interest. In order to make visual hulls more
robust against errors in silhouettes, [Franco and Boyer, 2005] and [Landabaso et al.,
2006] provide algorithms for obtaining visual hulls from silhouettes presenting false
detections and misses, both using a voxel grid representation.

The photo hull was introduced in [Kutulakos and Seitz, 1999] as the maximal
3D shape which is photo-consistent with the set of input images. In this case, the
captured images are used as input data, instead of binary silhouettes. In their work,
a voxel grid is again used as 3D support. The algorithm proposed for extracting the
3D shapes, called space carving, consists in setting all voxels of an initial volume
that contains the actual scene as occupied and iteratively carving away those visible
voxels that, visited using sweep planes –in order to avoid computing the visibility
of each voxel from each camera–, do not pass a photo-consistency test. Due to the
richer information available, the photo hull constitutes an estimate of the actual
shape tighter than the visual hull, allowing concavities on the reconstructed shapes.

Voxels are useful to represent dense volumes, but they do not accurately describe
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their surfaces. Alternatively, surface samples are designed for that purpose. Several
examples in the multi-view stereo literature, like [Carceroni and Kutulakos, 2001]
and [Furukawa and Ponce, 2007], have already used this type of representation,
either to provide the final result or as an intermediate representation. In [Furukawa
and Ponce, 2007] an initial sparse set of surface samples is obtained from matching
image-based features. From this initial estimates, an iterative algorithm augments
the density of samples and rejects outliers, achieving results with high accuracy.
Then, a polygon mesh is morphed with an energy minimization algorithm until it
fits the set of reconstructed surface samples.

In [Campbell et al., 2008], another common strategy is utilized, which consists
in, first, estimating the depth map of each available view by using local groups of
input images and then combining them in a voxel grid, in order to obtain the global
surface estimate. Usually, combining methods use some regularization technique.
Minimization via graph cuts offers fast performance when minimizing a certain
domain of energy functions with binary variables, as defined in [Kolmogorov and
Zabih, 2004].

In some other works, such as [Kolev and Cremers, 2008], the robustness of the
visual hull is combined with color information, allowing the reconstruction of con-
cavities. A convex functional is minimized with the exact silhouette consistency
imposed as a constraint that enforces the resulting shape to fit in the binary silhou-
ettes once re-projected onto the original viewpoints. However, multi-view stereo
techniques are designed for scenarios where the robustness against the dramatic
discrepancies between views present in wide-baseline setups is not a determining
factor and, therefore, do not suit the requirements imposed by our target scenario.

4.1.2 Problem statement

The proposed method aims at reconstructing the photo-consistent surfaces of ob-
jects, the images of which have been captured by a very sparse set of cameras with
known pose and intrinsic parameters. Similarly to [Furukawa and Ponce, 2007], the
presented method exploits photo-consistency by performing an image-based search
for surface samples. From [Kolev and Cremers, 2008], the proposed method keeps
a resemblance in the sense of exploiting binary silhouettes in addition to photo-
consistency measurements in order to constraint the position of the surface samples
The complete method consists in the concatenation of three stages:

1. First, candidate depths for the image points in each view are obtained, based
on photo-consistency measurements between pairs of pixels from neighbor
cameras.

2. Then, the surface points are extracted by globally imposing photo-consistency
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Figure 4.1: Normalized Cross-Correlation (NCC) exploits perspective similarity in order to find

accurate matches between neighbor views when used in typical multi-view stereo scenarios. A

match for a given image point is found along its epipolar line on the neighbor view

[Kutulakos and Seitz, 1999], considering the complete set of available views.

3. Finally, a normal for each surface point is estimated by processing the local
geometry of its neighborhood.

4.2 Photo-consistency Test

Due to the severe perspective discrepancies between different views –wide-baseline
setups–, the properties of photo-consistency measurements used in state-of-the-art
multi-view stereo approaches do not match our specific requirements, despite of
their great level of precision.

A widely utilized form of photo-consistency measurement in multi-view stereo,
the so-called normalized cross correlation (NCC), assumes a certain perspective
similarity between viewpoints, which actually exists in small-baseline image sets.
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This assumption permits measuring the NCC in a straight-forward, fast manner by
just computing it over 2D windows at each image, as illustrated in Fig. 4.1. In
scenarios with a slightly wider baseline, a planar grid can be defined in 3D space,
with sample points on the grid being projected onto the images. This grid must vary
its orientation depending on the actual 3D geometry of the surfaces corresponding to
the observed projections, as shown in [Furukawa and Ponce, 2007]. This alternative
is computationally expensive, since both photo-consistency and orientation have to
be jointly extracted and there remains the assumption of a maximal baseline that
is too small for our target scenario.

In dynamic scenes where background images are available, foreground silhou-
ettes of objects of interest in each image can be automatically extracted with the
technique proposed in [Stauffer and Grimson, 1999]. Silhouettes are useful for
photo-consistency for two reasons: on the one hand, they reduce the search space
in the 3D domain; on the other hand, they can be used to reject many photo-
consistent matches that may lie far from the actual object surfaces. Therefore, a
simpler photo-consistency test with little impact from the perspective discrepancies
can be considered if it is applied in combination with the constraints imposed by
the silhouettes. In order to test the photo-consistency of a 3D point that belongs
to the visual hull, we choose a less computationally expensive photo-consistency
test that measures the squared Euclidean RGB distance between the pair of im-
age points where it projects1. In order to cope with non-Lambertian surfaces, the
photo-consistency measurement admits an additional tolerance to brightness differ-
ences when the chromaticity shows a variation below an adjustable threshold. A
more detailed description of the photo-consistency test applied to pixels belonging
to the projections of objects of interest follows.

A robust photo-consistency measure for non-Lambertian surfaces, which results
in different projections of the surface showing different brightness levels, should
account for the possible discrepancies in both their brightness and chromaticity
components. Based in the foreground/background color-based segmentation scheme
presented in [Horprasert et al., 1999, Xu et al., 2005], brightness distortion (BD)
can be defined as a scalar value that brings expected photo-consistent pixels close
to the observed chromaticity line. Color distortion (CD) can be defined as the
orthogonal distance between the expected photo-consistent color and the observed
chromaticity line. Both measures are shown in Fig. 4.2 and formulated in Eqs. 4.1.

BD = arg min
α

(RGB1 − α · RGB2)
2

(4.1)

CD = �RGB2 −BD · RGB1�

1In our experiments, using other color spaces, such as YUV or LabCIE, did not provide clear

improvements with respect to RGB.
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Figure 4.2: Distortion measurements in RGB space. RGB1 and RGB2 are the RGB values of

two pixels from different images. CD is the chromaticity distortion between both colors and BD

is the corresponding brightness distortion

In practice, BD can be easily computed as BD = RGB2 ·RGB1/ �RGB1�2. A set
of thresholds and rules are necessary to define the final photo-consistency test. This
test, which takes a maximum RGB distance (RGBmax), has the following form:

1. If �RGB1 −RGB2� < RGBmax, then pixels are photo-consistent.

2. Else, if �RGB1 −RGB2� ≥ RGBmax, but CD < 10 and 0.5 < BD < 1.25,
then pixels are also photo-consistent.

3. Otherwise, pixels are not photo-consistent.

This photo-consistency test, the thresholds of which have been empirically deter-
mined in order to obtain the desired behavior, provides a robustness improvement
for photo-consistency measurements when considering non-Lambertian surfaces. In
fact, when chromaticity remains similar enough between views, the range of allowed
brightness distortion will include a wide range of shadowing and highlighting effects.

4.3 Sampling of Visible Photo-consistent Surfaces

Although the technique presented next could also be used to reconstruct the sur-
faces of a visual hull by using only binary silhouettes as input data, in the following
we consider the more general configuration of using both color images and binary
silhouettes of objects of interest. The method consists in generating lists of can-
didate locations for photo-consistent surface samples along the back-projected ray
of each pixel and then imposing global photo-consistency by means of a carving
procedure.
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Figure 4.3: A list of photo-consistent candidates for a given pixel (marked in yellow in the left

view) is obtained from testing pixels along its epipolar line in a neighbor view and stored in a list,

in order of increasing depth with respect to the current viewpoint

4.3.1 Automatic neighborhood selection

In order to generate lists of photo-consistent candidates –that will contain the re-
sulting surface points– from pixels in every view, a set of neighbor views for the
image-based search must be defined.

The neighborhood of each viewpoint is automatically obtained by taking its
closest viewpoints, defining the proximity of two viewpoints as

πij = πji =
�

1− 1
2

cos(αij)
�

δij , (4.2)

where αij is the angle between the two unitary vectors orthogonal to the image
planes of viewpoints i and j and δij is the Euclidean distance between the centers
of projections –Appendix A– of the two viewpoints.

4.3.2 Extraction of candidate surface points

For each viewpoint vc of the complete set V , we define two sets of neighbor, Nc,
and complementary, Cc, viewpoints, which have empty intersection and such that
Nc ∪ Cc ∪ vc = V .

Any image point back-projects to the 3D world as a ray with its origin at the
center of projections of the given viewpoint, as seen in Appendix A. Thus, if we
want to know the exact position of the 3D point which originated the captured
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Figure 4.4: A candidate surface point visible but not photo-consistent in a third viewpoint is

rejected. The colored square inside of each camera represents the color of the corresponding pixel

when the 3D point is visible.

2D image point, we must search for it along the mentioned back-projected ray. In
order to do so, we utilize the information available in the other views by means of
a valuable geometric tool, the epipolar line, also introduced in Appendix A.

As illustrated in Fig. 4.3, for a given 2D point xc that lies on the extracted
foreground silhouette of an image ic corresponding to the viewpoint vc, we obtain
the epipolar line ln(xc) at each neighbor viewpoint n ∈ Nc. For each foreground
pixel p traversed by ln(xc), we measure its photo-consistency with the pixel at the
point xc. If the photo-consistency test defined above is positive, we triangulate the
3D position of the new candidate surface point. If the triangulated point projects
to a foreground pixel for each view in Cc ∪ Nc, we store it in a list of candidate
3D points {zxc} with an increasing value of depth with respect to the center of
projections of the view vc.

At the end of this stage, a list of candidate surface points for each image point in
each view is obtained. Furthermore, since the lists of candidate points are ordered
in increasing depth from each viewpoint, estimates of the depth maps are implicitly
obtained. The surface described by the points at the end of this stage can be
interpreted as a shape which is already tighter to the actual shape than the visual
hull provided by a shape-from-silhouette method, although it does not yet constitute
a photo hull, since it lacks global photo-consistency.

4.3.3 Global photo-consistency

The next stage consists in discarding candidate surface points which are not photo-
consistent with the complete set of viewpoints V . In order to do so, we will carve
away those 3D points which do not pass the photo-consistency test defined in Section
4.2 for at least one of the viewpoints.

The algorithm works as follows: for each viewpoint vc, we take the first point at
every {zxc}. We consider the case that the 3D point obtained from two neighbor



4.4 Orientation Estimation 49

neighbors

neighbors neighbors

scene

Figure 4.5: A candidate surface point visible and also photo-consistent in a third viewpoint is

taken as the new closest candidate in this viewpoint. The colored square inside of each camera

represents the color of the corresponding pixel when the 3D point is visible.

views is visible from another viewpoint, meaning that its distance to the center of
projections is smaller than the current depth estimate for the corresponding image
point. If the candidate point is photo-inconsistent with the new viewpoint, it is
removed and the next closest candidate for each view where it was visible is taken.
This situation is illustrated in Figure 4.4. Otherwise, if the 3D point is photo-
consistent with the new viewpoint, then we set it as the new closest candidate for
the corresponding image point. This second situation is illustrated in Figure 4.5.

This filtering strategy is similar to space carving, with the difference that, instead
of carving visible voxels, we carve candidate surface points along back-projected
rays. As an advantage, the proposed method does not introduce additional spatial
sampling artifacts due to the arbitrary division of the 3D space that occurs when
using a voxel grid. All of the candidate surface points are obtained from triangulat-
ing image samples with the available geometric constraints from camera calibration.
Furthermore, the search space is restricted, because it is bounded by the visual hull
as a result of the inclusion of silhouette information. As in space carving, every
time some point has been carved away, the algorithm iterates on the new set of
surface points. This is repeated until no more changes are detected, which means
that the set of surface samples is globally photo-consistent.

After running this algorithm, we obtain the surface corresponding to a photo
hull, represented by surface samples which are tighter to the actual surface than
the initial candidates and can show concavities. In order to obtain a complete
description of the surface, the orientation of these points must be estimated.

4.4 Orientation Estimation

In order to estimate the orientation of each surface point, a least squares method is
applied for fitting a plane to a set of points in a neighborhood of it, assuming local
flatness.
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It is possible to fit a plane to a set of 3D points using least squares with errors
measured orthogonally to the proposed plane. Let the plane be n̂ · (x− xa) = 0,
where n̂ is a unit length normal to the plane and xa is a point on the plane. Define
xj to be the sample points; then

xj = xa + λjn̂ + pjn̂∗j (4.3)

where λj = n̂ · (xj − xa) and n̂∗
j

is some unit length vector perpendicular to n̂
with appropriate coefficient pj . Define yj = xj − xa. The vector from xj to its
projection onto the plane is λjn̂. The squared length of this vector is λ2

j
= (n̂ · yj)

2.
The energy function for the least squares minimization is E (xa, n̂) =

�
m

j=1 λ2
j
. Two

alternate forms for this function are

E (xa, n̂) =
m�

j=1

y�
j

�
n̂n̂�

�
yj (4.4)

and

E (xa, n̂) = n̂�




m�

j=1

yjy�j



 n̂ = n̂�M (xa) n̂ (4.5)

Using the first form of E in the previous equation, take the derivative with respect
to xa to get

∂E
∂xa

= −2
�
n̂n̂�

� m�

j=1

yj (4.6)

This partial derivative is zero whenever
�

m

j=1 yj = 0 in which case xa = 1
m

�
m

j=1 xj

(the average of the sample points).

Given xa, the matrix M (xa) is determined in the second form of the energy
function. The quantity n̂�M (xa) n̂ is a quadratic form whose minimum is the
smallest eigenvalue of M (xa). This can be found by standard eigensystem solvers.
The corresponding unit length eigenvector n̂ is the result of the extraction of the
normal direction to a set of points by least squares fitting of a plane.

If xa = (a, b, c)� and xj = (xj , yj , zj)�, then matrix M (xa) is given by
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(4.7)

The normal estimated by using this approach still shows one degree of freedom.
The sign of the unit length eigenvector –the normal, n̂– corresponding to the small-
est eigenvalue is not defined. Therefore, additional features have to be exploited
to completely determine surface orientation. In the following, a mechanism for this
image-based sampling strategy is presented.
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4.4.1 Orientation in image-based sampling

Let rn be an arbitrary maximum distance for neighbor points. The algorithm
applied to each surface point xi works as follows:

1. Define an extrinsic neighborhood νi including all the surface points at an
Euclidean distance from xi smaller or equal to rn .

2. Estimate the mean position µi of the neighborhood νi and modify the position
of each neighbor point xj by subtracting it:

xj := xj − µi, ∀xj ∈ νi

3. Create a matrix Mi =
�

xj∈νi
xjx�j . A vector n̂i, orthogonal to the plane fit-

ted by least squares to the neighborhood νi, is obtained as the first eigenvector
of Mi.

This method does not control whether the resulting orthogonal vector n̂i is in-
wards or outwards pointing, but the knowledge of the camera viewing the surface
point helps setting the sign of the orientation by enforcing a negative dot product be-
tween the point normal and the director vector of the corresponding back-projected
ray, which has a direction inverse to that from which the surface is visible.

4.5 Conclusions

The presented image-based approach to surface sampling obtains a set of colored
and oriented surface samples, which describe the visible photo-consistent surfaces of
the objects of interest in images –foreground objects– using an arbitrarily sparse set
of views. With this technique, surface samples are found by a searching mechanism
over regions defined as back-projected rays of pixels in every image.

As introduced in Chapter 3, it would be wise to exploit the information about
the contents in a certain time instant to improve the quality or the efficiency of the
reconstruction at the next time instant, due to the strong temporal correlation on
the position of the surface samples, when working with multi-view video sequences.
However, due to the selection of search regions for surface samples, an arbitrary
motion of the surfaces in 3D space cannot be naturally modeled and incorporated
in the proposed technique in order to enhance the efficiency or the accuracy of
surface sampling.

As a summary, the presented technique makes a search of visible surface sam-
ples along the back-projected rays of each pixel in each view, in an image-based
procedure exploiting epipolar constraints and photo-consistency between pairs of
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neighbor views in arbitrarily wide baselines. Some valuable properties of this ap-
proach are:

• The visibility computation is implicit. Whenever a surface candidate is carved
away, its next candidate becomes visible. This feature shows the method is
suitable for the efficient computation of photo-consistent surfaces.

• It can provide a pixel-perfect projection of the reconstructed surface under
accurate photometric and geometric camera calibration. This corresponds to
the goal of being able to retrieve the original images by the projection of the
reconstructed surfaces.

However, this approach presents some drawbacks that limit its efficient applicability
for real-time processing of multi-view video sequences, which is the main target of
this thesis:

• The reconstruction mechanism makes it difficult to exploit temporal correla-
tions when reconstructing surfaces in multi-view video sequences, due to the
strict definition of search regions along back-projected rays of pixels. This
results in a limited throughput.

• Reconstructed surfaces are open, because only surfaces samples visible from
at least one view are part of the final surface –surfaces are not extrapolated–.
Therefore, algorithms exploiting topological properties of the objects surfaces
will be affected by this limitation.

The next chapter proposes an alternative surface sampling approach that tackles
these drawbacks by searching the positions of surface samples in every time instant
around the deformation of an existing, closed surface from a previous time instant.



Chapter 5

Surface Sampling by

Deformation

T
he previous chapter has introduced an image-based sampling scheme to
obtain photo-consistent samples of visible surfaces in arbitrarily wide
baseline setups. Such technique is able to extract a cloud of oriented

points that can also describe the silhouette-consistent surface of a static scene,
when replacing the color information by binary silhouettes. However, the design
of the search strategy for surface samples is not suitable for exploiting temporal
correlations in multi-view video sequences.

In order to cope with this limitation, a new sampling scheme based on the
deformation of an existing surface is proposed, which naturally exploits temporal
redundancies in addition to spatial ones.

5.1 Motivation

When multi-view video sequences are available, a large amount of information about
the scene at each new time instant is known from the reconstruction at the previous
time instant. Therefore, it seems straightforward to provide algorithms able to
tackle the problem of 3D reconstruction as the exploitation of both spatial and
temporal redundancies in multi-view video sequences simultaneously.

In contrast with the approach presented in the previous chapter, where the
search regions for surface samples were back-projected rays of pixels, this time a
different search strategy is considered, which is more oriented towards the actual
structure of the surfaces to be reconstructed. The new search regions are defined
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Initial surface

Figure 5.1: The volume enclosed by the dilation (dark thick line) of the existing surfaces (light

thick line) of objects in certain time instant very likely contains the surfaces of these moving

objects (in orange) in the next time instant, thus reducing the search space

along the (inward) normals of samples of an existing surface. This arbitrary choice
exploits the fact that the volume enclosed by a sufficient dilation of an existing sur-
face in a time instant most likely contains the object in the next time instant, under
the assumption of a limited amount of motion between frames. This is illustrated
in Fig. 5.1. The main advantage of this approach is that the search space for every
time instant is greatly reduced, once conditioned to the knowledge of the previous
position of surface samples.

5.1.1 Related work

A number of methods exists for extracting the visual hull (VH) from a set of bi-
nary silhouettes. Some provide a voxelized volumetric representation [Cheung et al.,
2000] and others provide surfaces described by polygonal meshes [Franco and Boyer,
2009]. The VH is fast to estimate and offers an initial description of the volumes in
the scene for applications with camera rigs in arbitrarily wide-baseline setups. How-
ever, these algorithms are not designed to exploit temporal redundancies available
in video sequences.

Some achievements in motion estimation have been made by separating the
shape and motion estimation tasks, in a scene flow estimation approach of the
problem that can use color [Vedula et al., 2005] or spherical models [Starck and
Hilton, 2005] as matching features, although the shape estimation problem is treated
statically, without exploiting temporal redundancies. There also exists a growing
number of algorithms that jointly estimate the 3D motion and photo-consistent
shape of scenes by tracking surfaces in multi-view settings [Furukawa and Ponce,
2008, Courchay et al., 2009, Goldluecke and Magnor, 2004] using local normal-
ized cross-correlation and smoothing constraints, a global variational approach or
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spatio-temporal hypersurfaces, respectively. As a result, impressive time-coherent
reconstructions are obtained at the cost of large computation times. [Guan et al.,
2008] tracks people in crowded scenes, exploiting image-based appearance mod-
els, which help disambiguating shape modeling without requiring color calibration
between cameras. This approach is designed to work even in wide-baseline setups.

Using range data for initializing a high-quality mesh model of the surface of a
person, [de Aguiar et al., 2007] applies Laplacian deformations in order to fit the
high-quality surface to the set of silhouettes at each instant, obtaining impressive off-
line results. However, in smart room environments it is desirable to only consider the
data obtained from calibrated cameras, with known or static background, in order
to make a better user experience. In such a scenario, no range data is available in
order to estimate precise models of the dynamic objects in a scene.

5.1.2 Strategy

The methodology for efficiently extracting silhouette-consistent surface samples by
the exploitation of temporal redundancies that is presented next corresponds to
a tracking strategy as opposed to scene flow estimation strategies. The proposed
strategy is divided in two parts:

• Initialization: Static reconstruction. First, samples of a silhouette-
consistent surface are obtained for an initial time instant without having any
knowledge of the shape at previous time instants by exploiting only spatial
redundancies.

• Tracking: Dynamic reconstruction. Then, the knowledge of the shape in
the previous time instant allows for a more efficient sampling of the surfaces in
the next time instant, by exploiting both spatial and temporal redundancies.

The different stages composing this technique for surface sampling, based on
the deformation of an existing surface, are illustrated in Fig. 5.2. In both stages of
the complete tracking strategy –initialization and dynamic surface–, the resulting
output is a sampled representation of the surfaces of the VH at every time instant.

5.2 Initialization: Static Reconstruction

The starting point of the initialization procedure is the definition of an arbitrary,
closed initial surface that encloses a large volume containing the scene to be recon-
structed. The initial surface is described as a point cloud of arbitrary density with
the property that each point pi has a unitary displacement vector mi, orthogonal to
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Initial surface Initial surface Initial surface

Initialization

Dynamic surface

Initial surface

New time
instant

Initial surface Initial surface Initial surface

Figure 5.2: The tracking strategy is divided in an initialization stage, at which an arbitrary

sampled surface is deformed to represent the surface of the foreground objects of the scene, and

a tracking stage (dynamic surface), at which the surface in the previous time instant is used in

order to estimate more efficiently the position of surface samples in the new time instant

the initial surface, pointing inwards to another point p∗
i
, also lying on the surface.

This property defines a segment si for each pair of surface points pi and p∗
i

in which
their displacement range is constrained.

This arbitrarily defined constraint on the displacement range of surface points is
suitable for two reasons. On the one hand, it ensures that the processing of a new
view keeps each surface point inside of the limits imposed by any other previously
processed viewpoint. On the other, it allows to keep topological information about
interior and exterior of the surface.

The main concept behind the proposed algorithm for the initialization stage is
the iterative introduction of modifications of the closed surface in order to fit its
projection to the foreground silhouette of each viewpoint in the multi-camera set-
ting. This concept in spatial domain resembles that of adapting an existing surface
to a new set of silhouette constraints in another instant in time domain, which is
the principle of the tracking part of the presented surface sampling approach.
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At the output of the static reconstruction stage, oriented silhouette-consistent
surface samples, corresponding to a Visual Hull, are obtained. First, silhouette-
consistency is imposed by a per-view application of a set of topological operations
on each segment connecting surface points and a global merging of the resulting
segments. Then, orientation is estimated by exploiting local distributions of surface
samples and knowledge about the interior and exterior of the objects, given by the
segments.

5.2.1 Silhouette constraints

Silhouette constraints are imposed in a two-staged approach that copes with the
problem of camera settings not offering complete views of the scene to be recon-
structed. First, in a per-view stage, every segment is conceptually shrunk and cut
into smaller pieces by imposing the silhouette constraints corresponding to each
view. Then, a global combination of these partial results delivers the final set of
surface points, which are the extremes of such segments.

Per-view constraints

The first stage when adapting the arbitrary initial surface –described as a point
cloud with connected points forming segments– to a new silhouette is the shrinkage
of each segment si. Both extrema pi and p∗

i
are displaced along the segment towards

each other until they either intersect the back-projected silhouette or meet each
other. In the former case, the segment is just shrunk in order to fit the silhouette
constraint. In the latter case, the segment –and therefore its extreme points– can
be discarded.

However, after shrinking a segment, holes in silhouettes and empty regions be-
tween silhouettes still have to be accounted for. In this case, the extremes are fur-
ther moved towards each other until they meet, introducing additional segments by
cutting the current segment every time the point displacement along the segment
makes them enter and leave the interior of the back-projection of the silhouette.
These two topological operations on the segments are illustrated in Fig. 5.3.

After these two operations, each segment is replaced by a set of new, shorter
segments that fit the constraints of the silhouette corresponding to the view un-
der consideration. When daisy-chaining this stage between all views, these new
constraints are automatically merged to those resulting from the silhouettes of pre-
viously processed views. Throughout the entire process the surface remains closed.

However, as seen in the next section, it is better to consider this daisy-chained
version of the method only as a concept, for it would be faster to execute –each
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Figure 5.3: Topological operations on a segment connecting two surface points by the imposition

of the silhouette constraints from one view. (a) Initial segment connecting two points on an

arbitrary initial surface. (b) Shrinkage in order to fit the visible extents corresponding to the

silhouettes in that view. (c) Segment is cut in two pieces due to the silhouette configuration. (d)

Resulting set of segments for this view

view reduces the search space of the subsequent views in the chain– but would not
provide mechanisms to reconstruct parts of the foreground objects that lie out of
the frustum –or viewing cone– of one or more views.

Global combination

Rather than directly performing the topological operations –in other words, cutting
and shrinking segments– during the processing of each input silhouette, an ordered
list of events for each initial segment accumulates both the partial inclusion in
the camera’s frustum and the occupancy from each view. The types of events are
illustrated in Fig. 5.4. A final stage merges the per-view constraints and decides the
topological operations applied to each segment. The resulting algorithm processes
each initial segment as follows:

1. For each view, the events corresponding to the partial frustum inclusion and
occupancy extremes –shown in Fig. 5.5– are obtained.
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Initial surface
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Leave shape

Frustum

Enter shape

Enter shape
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Figure 5.4: 2D representation of a set of events detected along a segment from a certain viewpoint

2. The events from all views are stored in a list, ordered by the distance of the
position of each event to a pivot point on the line where the segment lies.

3. The extremes of the resulting segments are those points where either the
occupancy count becomes equal to the number of inclusions in frusta (entering
shape) or the occupancy becomes smaller than the number of inclusions in
frusta (exiting shape), as shown in Fig. 5.6.

The resulting surface points are the extremes of the segments created during the
global combination stage. Using this mechanism, the topological operations on the
segments joining points from the initial closed surface are applied at the last stage.
This way, it is not necessary that the object is included in the frustum of each view
in order to be reconstructed.

Furthermore, conservative estimates of the surface of the visual hull are possible,
by assuming the existence of τ silhouette under-segmentation errors of a point
included in the volume of a foreground object –in other words, in τ views, the
projection of the same part of an object is classified as background–. Then, in the
third step of the previous algorithm, a tolerance τ can be used as a sufficiently small
difference between the occupancy count and the number of inclusions in frusta that
produces a surface point. τ = 0 provides the non-conservative, visual hull surface.

In order to characterize the surface by a set of points, without keeping topological
information included in the extents of the segments, the orientation of each surface
sample must be defined as shown next.

5.2.2 Orientation estimation

Normals are geometrically estimated in a way similar to that in the image-based
method in Section 4.4. However, in order to estimate whether the resulting vector
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Initial

 segment

FrustumOccupancy

Figure 5.5: Partial frustum intersection and occupancy of an initial segment from a viewpoint.

The orange segment represents the projection of a 3D segment onto the image plane.

n̂i is inwards or outwards pointing, the knowledge of the unitary displacement
vector of each surface point –pointing towards where the segment lies– is the tool
used to determine the sign of the estimated normal. Using the same notation as in
the image-based case, let λi be the average projection norm of the inward-pointing
unitary director vector mj tied to each xj ∈ νi onto n̂i. If λi < 0, n̂i is considered
to point outwards and therefore its sign remains unchanged, whereas, if λi > 0, it
is forced to point outwards by changing its sign: n̂i := −n̂i. In Fig. 5.7, a set of
surface points lit by a a virtual light at the viewing position is shown. At the left
side normals are not available and, therefore, all points are lit equally, whereas at
the right side the use of normal information provides a better representation of the
surface.

The neighborhood νi used for estimating the normal direction also provides an
approximate description of the local topology of the reconstructed surface around
each sample. This information proves useful for the dynamic estimation of the posi-
tion of surface samples, which will require the application of spatial regularization.

Frustum view 1

Frustum view 2

Frustum view 3

Frusta intersection

Occupancy view 1

Occupancy view 2

Occupancy view 3

Occupancy intersection

2 3

2 3

Figure 5.6: Occupancy along an initial segment for 3 input views with inclusion in a minimum

of 2 frusta. The resulting surface points are the extremes of the occupied segments
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Figure 5.7: Surface points lit considering normals (right), which are geometrically obtained from

the positions of sample points on the surface of the visual hull (left)

5.3 Tracking: Dynamic Reconstruction

As introduced in the previous chapter, the image-based reconstruction technique de-
fines an arbitrary search region for each surface element, which is the back-projected
ray corresponding to each pixel of the objects of interest –foreground objects–. This
search criterion keeps the method from naturally handling shape priors in sequences
with motion, due to the fact that search areas cannot be modified in order to ex-
ploit directions of motion of a surface sample between two consecutive time instants
different from the arbitrarily defined ones.

However, a surface deformation-based method allows for the choice of a better
adapted search region for each surface sample. Hence, the design for the search
region is exploited in this section in order to accept shape priors from a previous time
instant and track them at each new time instant. The proposed method is the first
one in this thesis exploiting spatial correlation. It is capable of obtaining a surface
sampling at each time instant equivalent to that obtained with static approaches
(either the initialization stage of this technique or the image-based approach in the
previous chapter), but with the benefit of a smaller computational cost.

In the initialization stage of this technique, parts of the initial arbitrary surface
–represented as a point cloud with pairs of points defining segments– were allowed
to vanish in cases where the strictly guided displacement of the surface points along
their arbitrarily defined search regions makes the extremes of a segment collapse
without having crossed a surface along their path. However, when attempting to
estimate shape in a tracking strategy, it is not permissible to discard surface points,
since that would result in a growing under-sampling of the surfaces as time passes.
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Figure 5.8: A sampled surface and its dilation following the estimated outward normals for each

surface sample. The size of the surface samples has been enlarged for clarity

Therefore, the proposed method introduces a regularization strategy for reducing
the side-effects of arbitrarily defining the search regions for each surface sample.

5.3.1 Surface expansion

Assuming that the displacement of surface samples between consecutive frames is
bounded, rt is defined as an arbitrary radius of the 3D search area from one time
instant to the next. The search space is defined in spatial units of the 3D reference
system, instead of pixel units that would be used in classical image processing. This
is a clear advantage of working with 3D reconstructions of multi-view data, which
is fundamental in the proposal of this thesis.

The dilation of a sampled surface can be defined as the displacement of each
surface sample by a parametric distance rt in the direction of the normal of each
surface sample. Fig. 5.8 depicts the dilation of a surface obtained by translating the
surface points a distance rt following their estimated outward normals. It is inter-
esting to note that the volume enclosed by the resulting surface very likely contains
the object at the next time instant. Thus, rt controls the range of distances a sur-
face sample can displace between from frame to frame such that it can be tracked
by the proposed algorithm. However, a mechanism for recovering samples displaced
a distance larger than rt is also considered by means of spatial regularization.

5.3.2 Spatial regularization

Similarly to the initialization procedure resulting in a static reconstruction, the
search direction for each surface sample is again set as an inner pointing vector –in
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(a) (b) (c)

(d) (e) (f)

Figure 5.9: In (a) a set of oriented surface samples (green) represents the surface of the orange

shape. In (b) the shape has moved with respect to its initial position. In (c) the initial surface

samples have been dilated along their normals in order to generate a new search volume. In (d)

some samples reach the surface following the inward normal direction. In (e) local rigidity is

imposed in the remaining sample by adding a tangential displacement (blue arrow). In (f) the

whole set of samples lies on the new surface thanks to the use of regularization

this case, the inverted normal of a surface sample–. The main difference is that in
this case the search space is greatly reduced with respect to that of the initialization.
Instead of an arbitrary surface enclosing the volume where foreground objects lie,
the enclosing surface is the result of dilating the surface in the previous time instant.

As shown in Fig. 5.9, the arbitrarily defined search direction results in some
surface points not being able to meet the surface in the previous time instants,
whereas others slide over the surface. In order to cope with the former problem and
reduce the latter, regularization is applied in order to enforce local rigidity, as seen
below.

Let xe

i
be a surface point expanded along its normal n̂i by rt units. Its inward

normal direction −n̂i can be considered as a direction to look for an initial estimate
of its position at the new time instant. However, some sort of regularization is
needed in order to keep local rigidity on the set of points. Therefore, an iterative
method with motion feed-back is applied on the whole list of points. In outline, this
iterative method modifies the search range of each point xt−1

i
by adding a set of

tangential displacements di obtained from its neighbors νi. In more detail, the initial
set of displacements for each surface point is initialized dj := (0, 0, 0)� , ∀dj ∈ di.
Then, the following method is applied to each surface point xi iteratively:

1. Let Ni be the number of xi’s assigned displacements. Define an initial dis-
placed position as the addition of its position at the previous time instant and
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its current set of displacements xd

i
:= xt−1

i
+ 1

Ni

�
dj∈di

dj .

2. Define a virtual segment, joining its displaced expanded position xe

i
:= xd

i
+

rtn̂i and its displaced contracted position xc

i
:= xd

i
− rtn̂i.

3. Shrink the virtual segment by displacing the outer surface point xe

i
towards

xc

i
. Along this path, store the closest position to xt−1

i
, namely xs

i
, at which

the outer surface point crosses the surface and enters the intersection of the
back-projection of all the available silhouettes corresponding to cameras with
frusta containing that region.

4. If the xs

i
is found, keep it as the current candidate for its new position xt

i
:= xs

i

and obtain the corresponding displacement δi := xt

i
− xt−1

i
.

5. If δi is defined, set a displacement term for each neighbor xj ∈ νi orthogonal
to its displacement direction τij = δi − δi · n̂j . The motion component along
the inward normal is directly set by the shrinking mechanism.

The regularization procedure described above is executed until no more samples
can be fit to the new silhouettes. Some samples, lying in regions such as limb
extremes, might not be attached to the surface in the new time instant, despite of
the regularization. However, they can be integrated in the reconstructed surface by
applying the same rigid transform (in this case a translation) as the resulting one
of its closest neighbor that fits the new surface. This method allows these surface
samples to be recovered at subsequent iterations of the algorithm in another time
instant, without the need to destroy them and create new ones in order to prevent
an otherwise progressively growing uncovered area of the surface.

Finally, the normal estimation method introduced in static reconstruction (Sec-
tion 5.2.2) is applied to each of the resulting surface points. A dense velocity field
can be obtained as a first order estimate by simply taking the displacement of
each surface point between two consecutive time instants. This velocity field is not
intended to be accurate, but it illustrates the direction and magnitude of the dis-
placements that result after the application of the dynamic method. In Fig. 5.10,
it can be observed how the color-encoded velocity field estimated in this manner
actually provides a plausible approximation to the actual motion of the scene.

5.4 Photo-consistency Constraints

So far we have seen how silhouette constraints can be used in order to deform an
initial surface and make it represent the surface enclosing the visual hull of the set
of silhouettes. However, color information contained in the images captured by the
multi-camera rig has not yet been introduced to the surface deformation mechanism.
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Figure 5.10: Shape and motion jointly estimated from sequences of silhouettes extracted from

8 cameras placed around a person. The estimated velocity is color encoded following the axes at

the bottom-left side. White points correspond to the initial surface.

The approach we propose in order to introduce the photo-consistency constraints
imposed by the contents of the color images is that of further deforming the resulting
surfaces until they are photo-consistent with the complete set of available views.
The approach is divided in two steps that are repeated iteratively until no more
segments are shrunk in order to fulfill the photo-consistent constraints imposed by
the available images:

1. Obtain the visibility of each surface point.

2. Shrink each segment until its extremes (the surface points) are either non-
visible or photo-consistent.

5.4.1 Visibility estimation

Computing the visibility of a surface point from a given viewpoint is not straight-
forward, due to the fact that the topology of the surface is unknown. Furthermore,
the density of the point cloud describing the surface can be arbitrarily small. Even if
the exact topology of the surfaces in the scene remains unknown, the neighborhood
of each surface point provides useful information for obtaining its visibility.

The condition for a surface point to be visible from a certain viewpoint is that
it has a direct line of sight with the center of projections of the camera. Let
z (p = (x, y)) be the depth map of a certain viewpoint. If a surface point is visible,
its depth measured from the center of projections must be equal to the depth of the
pixel onto which it projects for this cam.

The problem that arises is that of computing a proper depth map from a cloud
of 3D points projected onto a given viewpoint without an exact knowledge of its
topology. In practice, this means that an area around the projection of each surface
point has to be drawn in order to close the depth map and avoid the possibility
that a surface point in a hidden surface becomes visible through the holes. The
chosen approach consists in drawing the convex hull of the neighborhood of each
surface point, which ensures filling in the gaps between projected surface points.
The resulting algorithm for each view works as follows. First, initialize the depth
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map to a value further than any surface point. Then, for each surface point:

1. Compute the depth of the surface point with respect to the viewpoint zp.

2. Compute the convex hull of its neighborhood.

3. For each pixel in the convex hull, if its depth is smaller than the value stored
in the depth map, set its depth to zp.

Once the depth map is computed, each surface point whose depth with respect
to a viewpoint is smaller than z(p) + δ, with p = (x0, y0) and δ a threshold for
balancing the inaccuracy of the convex hull representation empirically set to 1/2rn,
is considered to be visible from that viewpoint.

The depth map can be improved by computing the exact topology of the surface
and drawing faces instead of convex hulls. Doing so, the δ threshold would be
unnecessary and the visibility computation would be, as a result, more precise.

5.4.2 Segment shrinking

When an extreme of a segment is visible from more than two views, its photo-
consistency has to be measured, using the same method as in the image-based
method (Section 4.2). When the photo-consistency test is not passed, the segment
starts a shrinking process until it either becomes hidden, turns photo-consistent or
vanishes by meeting its other extreme.

When all visible segments have been processed in this manner, a new carving
iteration starts. First, the current visibility of each view is computed and, then,
the segments are shrunk accordingly to their visibility and photo-consistency. The
algorithm ends when all the extrema of the segments, i.e. the surface points, are
photo-consistent.

5.5 Conclusions

A new surface sampling strategy has been presented, which exploits temporal and
spatial correlations in order to reduce the computational cost associated to the
reconstruction of each frame in scenarios with static, known background. This
technique is based on the deformation of a closed initial surface in order to obtain
silhouette-consistency.

The design of the technique has been driven by the proposal of solutions to
the problems found in the sampling strategy presented in the previous chapter.
However, the algorithm presented in this chapter shows some drawbacks:
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• Obtaining pixel-perfect projections requires a high number of initial surface
points due to the random initial placement of surface points, many of which
are discarded as a result of the deformation strategy for initialization.

• Photo-consistency constraints require costly visibility computations when com-
pared to the technique presented in the previous chapter.

• The initialization part of the technique is not well-suited to massively parallel
platforms, such as GPUs, due allocation and memory alignment issues derived
from the division of the initial segments connecting two surface points into
an undetermined quantity of smaller segments resulting from the two applied
topological operations.

• There exists a long-term drift of surface samples towards areas further apart
from the motion direction, due to the action of rigidity constraints –which
are, in turn, necessary in order to recover surface samples close to extremes,
such as limbs, and avoid excessive sliding of points on the surface–.

On the other hand, this method shows important advantages with respect to the
technique presented in the previous chapter:

• The reconstruction mechanism allows exploiting spatial and temporal corre-
lations on the position of surface samples in multi-view video sequences, thus
improving the efficiency of the sampling stage.

• The search space is not determined by the images, but rather by the 3D
structure of the scene.

• The reconstructed surfaces are closed, with extrapolated non-visible parts,
which provides a more effective representation for visualization –stencil buffer
shadowing [Segal et al., 1992]– and analysis applications.

• The strategy might be used to obtain an initial estimate of the dense motion
of the scene. Although this is not the main target of the sampling approach,
it could be used as an additional feature in multi-modal analysis applications
for motion detection.





Chapter 6

Statistical Surface Sampling

T
he previous chapter has presented a sampling approach intended for
the exploitation of temporal correlations in multi-view video sequences.
Although spatial correlations are implicitly exploited in the regular-

ization process taking place in the tracking stage of that algorithm, in this chapter
we present a methodology for taking advantage of spatial correlations in a more
principled manner.

Samples of 2D surfaces in 3D space show a high degree of spatial compactness.
Indeed, given a certain volume in 3D space which dimensions are in the order of
∝ r3, its corresponding 2D enclosing surface has dimension ∝ r2. This result implies
that, given a known surface sample, new surface samples can be efficiently found
by inspecting a compact region surrounding it.

In this chapter, this property is exploited in order to improve the process of
surface sampling from a set of calibrated views. First, we motivate the exploitation
of spatial correlation. Then, we present an initialization or scouting stage, in which
a small number of seed surface samples is obtained, and a propagation stage, where a
dense set of surface samples is efficiently obtained by exploiting spatial correlation.
In order to improve the efficiency of the initialization stage, two techniques are
proposed, which exploit temporal correlations in multi-view video sequences and
multi-resolution. Finally, some techniques for the post-processing of the resulting
set of surface samples are presented.

6.1 Motivation

The working principle of the technique presented here can be justified by an example
with lower dimensionality. Let pj denote a pixel and i(pj) a binary 2D image with
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i(pj) = 0 for pixels representing an empty area and i(pj) = 1 for pixels representing
an occupied area, with an image size equal to at = σx × σy ∝ r2.

Let ab ∝ r be the size of the border of such region. Then, if we define a procedure
where pj takes a random pixel in the rectangle [1..σx]×[1..σy], the probability of one
such pixel lying on the border of the occupied region, πb, is the ratio between the
size of the border and the size of the complete image, or πb = ab/at ∝ r/r2 ∝ 1/r.
This procedure is illustrated in Fig. 6.1 (a).

However, after a large number of attempts O(1/πb), the probability that the
result of at least one of these pixels lies on the border of the occupied region tends
to one. Although the number of attempts could be prohibitively expensive if the
procedure was to be applied for each border point, it could be affordable at an
initialization step if then a better suited strategy follows.

Let δn be a representative distance between neighbor points, and ρn ∝ δn a
search radius. A second procedure is defined as follows: let pb be a border pixel
obtained after a large number of tries of the first procedure and generate a new pj

as the sum of pb and a random value in the ball p�
j

: �p�
j
� ≤ ρn. Since the border in

a local region is approximately a straight line, the number of border points is ∝ ρn,
whereas the area of the search region is ∝ ρ2

n
. This means that the probability that

the picked up pixel lies on the border of the occupied region, π�
b
, is the ratio between

the size of the intersection of the border with the new search region and the size of
this new search region, or π�

b
∝ ρn/ρ2

n
∝ 1/ρn. Since ρn � r, the resulting success

probability for the new procedure accomplishes π�
b
� πb. This second procedure is

illustrated in Fig. 6.1 (b).

With this example we have shown how the search in local regions can provide
an efficiency improvement with respect to global searches. The same idea can be
translated to a higher dimensional space, which results of great interest for the
surface sampling problem. In the following, the details of the application of this
principle in the extraction of surface samples is explained in detail: the strategy for
obtaining the random surface sampling consists in an initial scouting procedure. As
a result, a collection of seed surface points uniformly distributed over the surface
is obtained. Finally, a finer local search provides a dense sampling of the object
surfaces. The challenge of this method is to guarantee that surface parts are not
missing due to the non-exhaustive search of surface points.

6.1.1 Random sampling in multi-view environments

Similarly to the case of finding a 1D contour in a 2D space, in multi-view envi-
ronments it is necessary to find 2D contours (surfaces) in a 3D space, with the
difference that, in this case, the only data from which we have actual measurements
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(a) (b)

Figure 6.1: Random sampling of a 1D contour in a 2D space. (a) It takes a large number of

random tries to find a contour sample. (b) Once a contour sample has been found, a proper

neighborhood (pixels delimited by orange lines) around a given contour point (light green pixel)

helps in reducing the number of tries to find another contour sample.

are the 2D projections of the 3D scene onto each available view. Thus, 3D points
under study have to be evaluated from their 2D projections onto each view.

6.1.2 Silhouette-consistent surface reconstruction

Given a set of silhouettes corresponding to different views of a scene, a silhouette-
consistent surface point necessarily projects onto a silhouette contour pixel in at
least one of the images. In order to validate this statement, please keep in mind
that the occupied region of the visual hull [Laurentini, 1994] is uniquely defined
by a set of silhouettes. A property supporting this statement is the fact that the
back-projection of a silhouette point contacts the actual surface of the object in at
least one point.

Therefore, the problem of reconstructing the silhouette-consistent surface by
random sampling can be tackled in the following manner. Let P be the outcome
of a random experiment that generates 3D points inside of a predefined bounding
volume vt = σx× σy × σz. Let now pc be the 2D projection of P on a view c. If pc

belongs to the contour of the silhouette in a camera c, then P is part of the surface.
Naturally, the efficiency of this experiment, which is the base for the scouting or
initialization stage, is rather low.

However, the actual improvement introduced by random sampling is not shown
by this experiment. The search efficiency can be improved by reducing the search
range. If we define a proper neighborhood around a surface sample, a second ex-
periment can generate random 3D points P� lying inside. This corresponds to the
second stage, propagation, of the proposed method. In this stage, the likelihood
that a randomly generated sample P� belongs to the surface will be much greater
than in the initialization stage.
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6.2 Initialization

The algorithm for silhouette-consistent reconstruction consists of two stages. The
first stage, scouting, is responsible for generating a collection of seed surface samples
by random sampling the space enclosed by a bounding box where foreground objects
are to be found. The second stage extracts new surface samples by iteratively testing
new points in suitable neighborhoods around already obtained surface samples.

The concept of propagation can be understood as that of assigning a property
of a certain sample to others lying in its neighborhood. As a result, a sparse initial
set of samples of a certain class can be expanded to a dense set of samples. In our
method, points lying around seed surface samples can be selected as new surface
samples after a local propagation, as introduced in the next section.

The decision of generating more than one seed surface sample is due to the
chosen type of propagation scheme, which is introduced below. Propagation can be
done in two different manners:

• Omni-directional. Each surface sample propagates with equal likelihood in
every direction inside a suitable neighborhood.

• Directional. Each surface sample is given a propagation direction such that
the propagation process does not result in new samples in regions that have
already been visited.

In practice, since the location of the surfaces is unknown, the only possibility is
to apply the former. In order to apply the omni-directional propagation scheme
without introducing local oversampling, it is necessary to define a uniformly dis-
tributed collection of surface samples that will propagate to a dense set of surface
samples after an adequate number of iterations. The details will be seen in the next
section, but for now we keep in mind the idea of obtaining a sparse set of uniformly
distributed seed surface samples.

Let [mx..Mx]× [my..My]× [mz..Mz] be a bounding box enclosing the scene to be
reconstructed. An initial random experiment is defined, which produces random 3D
points inside of this bounding box. Then, in order to accept a generated 3D random
point P as belonging to the surface of one of the objects to be reconstructed, three
conditions have to be fulfilled:

1. The 3D point projects onto a foreground pixel for each available view.

2. The 3D point projects to a contour pixel for at least one of the views.

3. A normal (the point’s orientation) can be estimated by operations on a close
neighborhood of the 3D point.
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When these three tests are passed by a random 3D point, this is accepted as a seed
surface sample after attaching its orientation estimation.

6.2.1 Surface point validation

Let Nc be the number of cameras with frustum including the 3D point under evalu-
ation or, in other words, the number of cameras for which the projection of the 3D
point P lies inside of the corresponding image. If for one of these Nc cameras, the
pixel where P projects to belongs to the background of the scene, then the point is
discarded.

The projection test described above checks the first of the three conditions for
accepting the 3D point as belonging to the surface. In order to ensure that P is an
actual surface point, a second test is also performed on the point. Given a pixel pc

where the 3D point P projects onto the image corresponding to camera c, we test
if at least one of the pixels in its 4-neighborhood belongs to the background. If the
test is positive for at least one of the cameras, the point is accepted for testing the
third acceptance condition.

Conservative estimation. This surface point validation method is correct in
absence of segmentation errors. In case that there are some pixels wrongly marked
as belonging to the foreground, the consistency checks between a large enough
number of cameras will most likely reject false surface points projecting onto one of
such pixels. The case of false background detection, however, will introduce severe
reconstruction errors.

Assuming segmentation errors are uncorrelated between views, we can derive
that the presence of one such an error in one of the Nc cameras onto which a
3D point projects is most surely accompanied by Nc − 1 correct decisions in the
remaining cameras. Thus, by setting a tolerance to one segmentation error, a better
estimate of the actual object can be obtained from noisy foreground detections, at
the cost of slightly wider reconstructed shapes, providing a conservative estimate of
the silhouette-consistent surface.

6.2.2 Local normal estimation

The orientation of each seed surface sample is important for two reasons. On the
one hand, it offers necessary information about the topology of the surface which
will be useful in order to interpolate the surface, as presented in Part II of this
thesis. On the other hand, and more importantly for the approach presented in this
chapter, it is necessary in order to define suitable search regions for the propagation
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stage. In order to estimate the orientation of a surface point, a local cluster of
surface points is estimated in a close neighborhood of a valid surface point. Given
a valid surface point P, a new random search is performed in a ball of radius ρn

centered at P. ρn is an adjustable parameter that defines a small distance such
that the local surface remains practically flat (constant normal). In general, it is
defined as a small fraction of the main diagonal of the bounding box of the working
volume.

Three new points are generated in this neighborhood, which pass the surface
point validation test described above. Then, a plane is fitted to the set of 4 points
by least squares and the director vector of the plane is taken. As introduced in
Section 4.4, doing so leaves us with a degree of freedom: the sign of the normal
vector. In order to determine its sign, an iterative method is applied, which consists
in the following steps:

1. Add the orientation of the surface point multiplied by a small scaling value
to the position of the surface point x+ := x + αn.

2. Subtract the orientation of the surface point multiplied by a small scaling
value to the position from the surface point x− := x− αn.

3. Obtain the results of the projection tests for both x+ and x−.

4. If one of the projection tests results in empty space and the other results in
occupied space, the point can be accepted. If x+ belongs to empty space, the
normal’s sign is already correct. Otherwise, we change its sign: n := −n.

5. If both projection tests have the same result and α > αmin, repeat the process
with α := 4/5α. If α ≤ αmin, the point cannot be successfully oriented.

If at the output of this test the result is that the 3D point P could not be successfully
oriented, it is discarded, together with its local neighbors.

6.3 Propagation

From the collection of seed surface points, which are sparse but uniformly dis-
tributed over the surface, a propagation procedure is defined in order to efficiently
provide a dense sampling of the surface by exploiting spatial correlation. Thus,
the following method aims at obtaining new surface samples at smaller distances
from each other, resulting in a denser surface sampling. The benefit of introducing
new samples taking into account the position of already obtained samples is the
statistical reduction of the number of random tries until we find new valid surface
samples.
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6.3.1 Propagation region

Given a known surface sample, we define a local 3D region around it where new
surface samples are very likely to be found, given that surfaces are continuous. The
design rules of this propagation region are the following:

• Assuming surfaces are locally flat, or present a large curvature radius, pref-
erence will be given for new surface samples to be placed close to the plane
defined by the surface sample’s position and orientation.

• Given the fact that a certain density of surface samples is already placed
around each surface sample, in order to estimate its orientation, new surface
samples will be placed at a distance which will be larger or equal than the
distance at which the furthest neighbor sample is placed.

One possible shape for the propagation region is a rectangle, although others could
be used with similar result. Given a seed surface sample, we define two normal
vectors û and v̂ which are orthogonal to each other and also to the normal n̂. By
construction, these two vectors û and v̂ lie on the plane defined by the seed surface
sample’s position and orientation.

Rectangular propagation region. In order to generate this region, the follow-
ing three random values are required for each sample:

1. Normal offset ωn, or distance between the seed sample and the new random
sample in the axis of the seed sample’s normal, n̂.

2. Axial offset ωu, or distance between the seed sample and the new random
sample in the û axis.

3. Axial offset ωv, or distance between the seed sample and the new random
sample in the v̂ axis.

Let ρn be a small maximum distance between surface samples such that these
are close enough to assume they lie on the same plane. Let now ρr be a larger
distance about one order of magnitude larger than ρn that is still small enough to
assume a large number of surface samples are almost coplanar. Let n, u and v be
uniform random variables in the range [0, 1]. Then, the previous random values ωn,
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Figure 6.2: The rectangular propagation region around a surface sample xs –and its neighbor

samples, used for estimating the local orientation–. It favors propagation on the plane orthogonal

to the normal vector while allowing small curvatures with variations of up 2ρn along the normal

ωu and ωv can be generated as follows:
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A gap between a seed surface sample and the ones obtained from propagation is
left empty in order to apply the propagation algorithm iteratively, at increasingly
smaller scales, until the desired number of surface samples is reached. With this, the
omni-directional search for new surface samples using the same propagation region
at different scales can be performed without creating clusters of surface samples at
small distances. Also, since any surface sample is surrounded by three additional
surface samples at a small distance –used for estimating its orientation–, we leave
an extra space ρr/2 in order to avoid the generation of larger clusters of samples in
the vicinities of seed surface samples.

The final random sample is computed by combining the contributions of the
three random values:

xr = xs + ωnn̂ + ωuû + ωvv̂, (6.2)

with xr and xs the random sample in a rectangular propagation region and the
seed surface sample, respectively. The appearance of the rectangular propagation
region is shown in Fig. 6.2. In the figure, a seed sample xs, surrounded by three
neighbor samples used for estimating the local surface orientation, is the center of
the oriented propagation region.
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6.3.2 Iterative propagation algorithm

Let q := {xs} be a queue of seed surface samples and Ns the target number of surface
samples. Initially, q contains Nq seed surface samples obtained in the scouting
stage (q does not contain the additional samples obtained for the estimation of
the orientation, since propagating around them would generate local clusters of
samples). ρn and ρr are initialized to valid values, according to the scene scale.

Then, while the required number of surface samples Ns is larger than the current
number Nc –which is initially equal to 4Nq, i.e. the total number of samples adding
the seed surface samples and their neighbors–, the following algorithm is iteratively
applied at monotonically decreasing scales (note step 6):

1. Create an empty queue of seed surface samples q�.

2. Pop the first seed sample xs from q.

3. Obtain a test surface sample xt lying in the rectangular propagation region
and perform the foreground, contour and orientation tests introduced in the
initialization stage. If xt is valid (it belongs to the surface of the visual hull
and can be correctly oriented), add it to q�, store its neighbors in a separate
list and update Nc.

4. Repeat the previous step until 4 new surface samples are obtained by propa-
gation of xs.

5. Repeat from 2 to 4 until q is empty.

6. Set q := q� and update the propagation region dimensions ρn := ρn and
ρr := 0.5ρr.

At the end, a total of Ns surface samples are obtained at a very small computational
cost when compared to the initialization or scouting stage, as we will see in the
experiments in Chapter 7. This results from the fact that the propagation region is
designed to exploit the local distribution of surface samples.

Note that the additional gap introduced in the propagation region allows ap-
plying an omni-directional search for new surface samples at different scales of the
propagation region without creating clusters of surface samples at small distances.
This is illustrated in Fig. 6.3.

6.4 Efficient Sampling Schemes

Analyzing the strategy presented in this chapter, it is clear that the bottleneck
resides in the initial search for seed surface samples, which is driven at random in
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xs xs xs xs

Figure 6.3: Propagation of a surface sample –and three neighbor samples– in order to generate

4 new surface samples –with three neighbor samples each–. Such propagation scheme allows to

multiply by 5 the number of samples in every iteration, thus densely covering the surface

usually large working volumes –the space where people interact while being captures
by the multi-camera rig–. Even though most of the surfaces samples are obtained
during the propagation stage of the method, a large part of the computational
resources are dedicated to this initial search.

In this section, two different techniques are proposed, which reduce the amount
of computational resources spent in the initial search of surface samples. The first
one is based on an idea already presented in Chapter 5, the existence of temporal
correlations between the position of surfaces samples in a given a time instant and
the next one, whereas the second one is based on considerations about the spatial
sampling density implicit to the resolution of the input images.

6.4.1 Dynamic sampling

Similar to the dynamic surface sampling strategy presented in Section 5.3, the
statistical approach for surface sampling can also benefit from temporal correlations
in multi-view sequences. Indeed, the information about the position of surface
samples in previous time instants can reduce the time required to find the seeds in
the current time instant by limiting the volume in which new surface samples are
to be searched for.

The approach taken in this chapter is not as tight as the one presented in
the previous one. Indeed, only the seed samples are transferred from one time
instant to the next one, leaving the complete covering of the surfaces to the efficient
propagation scheme presented in Section 6.3. Thus, in this case an approximation of
the dense velocity field of the surface samples cannot be obtained as a sample-wise
first order estimate.

Assuming that the seed surface samples are evenly distributed over the surfaces
of objects –which actually occurs, due to to the initial random search for surface
points–, new positions for these samples can be safely searched for by independently
setting a symmetric search region with a parametric radius for dynamic search ρd.
This way, the placement of new seed samples for the current time instant does not
favor any specific direction. Given three random values u, v, w in the range [−1, 1],
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Figure 6.4: By exploiting temporal correlations between consecutive frames, the search space for

seed surface samples can be reduced from the whole volume of (Mx−mx)×(My−my)×(Mz−mz)

to a smaller one (4/3πρ
3
d), thus increasing the search efficiency

such that u2 + v2 + w2 ≤ 1, the candidate to seed sample is computed as follows:

xt = xt−1 + ρd(u, v, w)�. (6.3)

When the surface candidate and its three neighbor samples obtained for orientation
estimation fulfill the three conditions presented in Section 6.2, they are added to
the list of seed surface samples and the list of neighbor samples for the current time
instant, respectively. Then, the next seed sample from the previous time instant is
used for searching a new seed for the current time instant. This dynamic alternative
to the initialization algorithm proceeds until finishing processing the whole list of
seed surface samples from the previous time instant.

Fig. 6.4 illustrates the gain in search efficiency that can be achieved by exploiting
the temporal correlation of the scene in this manner. Instead of finding a correct seed
surface sample in the complete volume V = (Mx −mx)× (My −my)× (Mz −mz),
the search volume is reduced to V � = 4/3πρ3

d
, which on its hand increases the

probability of succeeding at finding a surface sample ∝ V/V �.

After this alternative initialization, the propagation algorithm proceeds as in
Section 6.3, resulting in the final sampling of the surface with the desired number
of surface samples.

6.4.2 Multi-resolution sampling

The main purpose of this technique is to reduce the amount of random searches
needed to find the initial seed samples by increasing their success probability. Please
note that, given a set of silhouettes corresponding to different views of a scene,
the likelihood of finding a contour pixel in random searches decreases when the
resolution of the images increases. As a reminder, the projection onto a contour
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pixel for at least one silhouette is a requirement for a 3D point to be part of the
silhouette-consistent surface –see Section 6.2–.

Let Nx ×Ny and lc be the resolution of the input images –measured in pixels–
and corresponding contour length –also measured in pixels–, respectively. If the
resolution of an image is reduced by decimating in each dimension by a factor δ,
the corresponding contour length is also divided by δ.

Now let a randomly chosen 3D point project onto one of the input views. The
success probability at full resolution πf can be considered proportional to lc

Nx×Ny
,

assuming that random points project with equal likelihood to any point in the
image. Then, for the success probability after decimation, πd ∝ lc/δ

Nx/δ×Ny/δ
= δπf ,

the result is that it increases with respect to that at full resolution. This translates
in a reduced number of random attempts to find a surface point.

In order to accept a generated 3D random point xl as a low-resolution seed to
the silhouette-consistent surface, two conditions have to be fulfilled:

1. The 3D point projects onto a foreground pixel for all low-resolution views.

2. The 3D point projects to a contour pixel for at least one of these views.

The low-resolution seeds obtained with this method cannot be used as surface
points because they are not accurate with respect to the high-resolution silhouettes.
However, similar to the case of dynamic sampling, an actual surface sample can be
found in a local neighborhood of low-resolution seed. This situation is illustrated
in Fig. 6.5. The complete algorithm for multi-resolution sampling is as follows:

1. A list of low-resolution seeds is obtained from the decimated multi-view set.

2. As shown in Fig. 6.5, for each low-resolution seed, we apply an approach
similar to that in the previous section, but using a search region around each
seed with a multi-resolution search radius ρm, which should be as small as
possible (in order to be efficient), but large enough to be able to find a valid
surface sample in the region delimited by the back-projection of the pixels of
the low-resolution views. As a result, a list of oriented seed samples and their
corresponding neighbors is obtained.

3. Finally, the propagation procedure covers the entire surface with the desired
number of surface samples.
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m

Figure 6.5: The search for a low-resolution seed –gray dot– needs a much smaller number of

random searches to obtain than the high-resolution counterpart –black dot–. In order to obtain

the high-resolution seed from the low-resolution one, a local search a region around the latter must

be performed. The area between the gray and black half-lines starting at each camera correspond

to the back-projection of a low-resolution contour pixel and a high-resolution one, respectively

6.5 Surface post-processing

In order to improve the visual appearance of the reconstructed surface, some refine-
ments and addition of complementary information can be applied to the resulting
set of surface samples. In the development of this thesis, three post-processing
operations have been considered.

The first one is a finer estimation of the surface normals by using the distribution
of surface samples in a wider area that comprises more samples than the used to
obtain the surface orientation in the initialization stage, thus providing more robust
estimates for the surface orientation. The second one is an anisotropic smoothing
to obtain a smooth surface at a sup-pixel scale. The third and final one assigns
a color to each surface sample without imposing photo-consistency, targeting real-
time applications.

6.5.1 Fine normal estimation

Assuming the surface to have a large local curvature radius, the same least squares
method presented in Section 4.4 can be applied for fitting a plane to a set of points
in a neighborhood of each point on the surface offering better robustness than the
one of the method for local estimation introduced above.

Let rn be an arbitrary maximum distance for neighbor points satisfying the
previous assumption. The algorithm applied to each surface point xi works as
follows:
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i

Figure 6.6: Normal estimated from a set of points by fitting a plane passing through the point

resulting from averaging the positions of the complete set (µi)

1. Define an extrinsic neighborhood νi := {xj} including each surface point xj

at an Euclidean distance from xi smaller or equal to rn .

2. Estimate the mean position µi of νi and modify the position of each neighbor
point xj by subtracting it xj := xj − µi, ∀xj ∈ νi.

3. Create a matrix Mi =
�

xj∈{νi} xjx�j .

A vector n̂i, orthogonal to the plane fitted by least squares to the neighborhood
νi, is obtained as the eigenvector of largest eigenvalue of Mi. Finally, the sign of
n̂i has to be determined. Let λi be the average projection norm of the estimated
normals n̂j of each xj ∈ νi onto n̂i. If λi > 0, n̂i is considered to point outwards
and therefore its sign remains unchanged whereas, if λi < 0, it is forced to point
outwards by changing its sign: n̂i := −n̂i. The method is illustrated in Fig. 6.6.

6.5.2 Anisotropic smoothing

Once normals have been robustly obtained with the application of the previous
method, the surface orientation can be used to eliminate the high-frequency noise
in the placement of the surface samples due to the finite resolution of the input
silhouettes. We plan to smooth surfaces along the direction of the normal of each
sample. This technique allows neutralizing the effect of local skewness in the distri-
bution of the samples in a neighborhood, while providing a suitable smoothing of
the detected surface samples’ positions.

Thus, in order to obtain a more visually appealing distribution of surface points,
a spatial smoothness constraint is imposed to a local neighborhood of each surface
sample. Let the superscript o denote an output sample and rn a neighborhood
radius, equal to the one used for normal estimation; then, the algorithm applied to
each surface sample xi works as follows:

1. Define a neighborhood νi := {xj} including each surface sample xj at an
Euclidean distance from xi smaller or equal to rn with a normal at an angle
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ini

Figure 6.7: Each surface sample is displaced in the direction of its normal until intersecting the

plane orthogonal to its normal, producing an anisotropic smoothing of the sampled surface

smaller than θν with respect to the normal of the sample under consideration:
n̂i · n̂j > θν .

2. Estimate the mean position µi of νi. Set the new value xo

i
:= xi + αn̂i, with

α = (µi − xi) · n̂i.

3. If xo

i
does not project onto any silhouette contour, repeat the previous step

after setting α := 4
5α.

Had we chosen to apply an isotropic smoothing technique, clusters in regions
with higher sampling density and gaps in their emptier counterparts would have
appeared. An illustration of an ideal case where the displacement results in a
perfect placement of the surface sample –while projecting onto at least one silhouette
contour– can be found in Fig. 6.7.

6.5.3 Surface coloring

Exploiting photo-consistency in this sampling approach would present the same
type of difficulties as in the deformation-based approach from the previous chapter.
The explicit computation of the visibility of each surface sample in order to impose
global photo-consistency might be too costly for real-time applications, although a
similar method to that in Section 5.4 could be applied to that respect.

However, in order to add color information to the reconstructed surface samples,
a two-pass approach can be adopted, which will not provide photo-consistent sur-
faces but will contain important texture information that can be used in real-time
applications. Such approach is based on the photo-consistency method in Section
5.4, but removing the possibility of changing the position of any surface point, thus
exiting after the first iteration. Therefore, in first place a depth map for each view
is obtained by projecting each surface point onto the corresponding viewpoint –with
a sufficient area, in order to avoid hidden surface points to be visible through gaps
between visible ones– and storing the closest depth value of each pixel.

In the second pass, we can determine the visibility of each surface point from
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xi

Figure 6.8: Given the normal (orange arrow) of a surface sample xi, its visibility from each view

(computed using depth maps) and a set of cameras with orientation vectors ẑc (blue arrows), the

three best oriented cameras viewing the sample can be selected

each available view by projecting it one more time and comparing its depth to that
of the corresponding pixel in the depth map. Using this information, we collect the
colors of the 3 best oriented cameras where a surface point is visible. The choice of
these 3 cameras is based on the angles between the surface point normal and the −ẑc

vectors of each camera c’s coordinate system expressed in world coordinates. For
each camera, −ẑc is a vector pointing towards its center of projections –Appendix
A– in a direction orthogonal to the image plane. Let n̂i be the normal of an oriented
surface point. Then, ωi,c = −ẑc · n̂i, is taken as orientation score of a camera c for
the point xi. The selection of the three best oriented cameras for a given point is
illustrated in Fig. 6.8. The final color of the surface point is assigned as a weighted
average of the colors sampled from the three best oriented views, with the weight
of camera c defined as wi,c = ωi,c/

�
c�=1..3 ωi,c� .

6.6 Conclusions

In this chapter we have presented an alternative sampling strategy to obtain the
position and orientation of samples of the surface of a visual hull that outperforms
the other two sampling approaches presented in the previous chapters in terms of
computational load and ability to scale to a large number of input views, as it will
be seen in Chapter 7, where all the presented sampling strategies are validated.

This is accomplished thanks to an alternative search for surface samples driven
by statistical principles that aim at exploiting the spatial correlation on the location
of surface samples. The main advantage of this approach is that, although it initially
generates a sparse surface sampling with a low search efficiency –random search–,
an efficient search strategy in regions very likely containing surface samples around
existing ones provides a fast dense sampling of surfaces. Among its advantages,
this technique allows to define exactly the number of samples in the reconstructed
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surface. This feature improves the ability of this sampling strategy –compared to the
one presented in the previous chapter– of providing surfaces that, once re-projected
onto the original viewpoints, accurately describe the original images. Furthermore,
the algorithm can also exploit correlations in the temporal axis. The inefficient
initial search for a sparse sampling of the surface is not required from frame to
frame. Instead, a search over a suitably smaller range around each sample can
be used. In order to improve the efficiency of the initial scouting stage when no
information about previous time instants is available, a multi-resolution technique
is also presented. The gains achieved with these two enhancements for the scouting
stage (dynamic and multi-resolution) will also be presented in Chapter 7.

This technique still presents a limitation when compared to the image-based
approach presented in Chapter 4: the application of photo-consistency constraints
still requires costly global visibility computations, like in the approach presented in
Chapter 5. However, in comparison to the technique presented in Chapter 5, this
new algorithm is easy to parallelize, which makes it suitable to its application in
GPU contexts. Furthermore, this sampling strategy is the fastest among the three
presented in this thesis, showing the smallest computation time for a given number
of surface samples, especially when considering larger multi-view settings, where
the efficiency at exploiting spatial correlations of the proposed method shows up
more clearly.





Chapter 7

Surface Sampling Results

I
n this chapter, the sampling methodology proposed in this first part of the
thesis is validated by evaluating the results obtained when applying each of
the techniques presented in the previous three chapters to different sets of

multi-view static scenes and video sequences. Some of the results are purely quali-
tative, depicting the apparent improvement in quality of the proposed methodology
with respect to some classical methods. A quantitative evaluation of the new tech-
niques is also included, regarding different aspects relevant to their performance,
such as the computational load and geometric or photometric accuracy.

This chapter is divided in four sections. The first one presents photo-consistent
surfaces obtained by using the image-based sampling strategy introduced in Chapter
4. The next one presents silhouette-consistent surfaces obtained from both static
multi-view scenes and dynamic multi-view sequences, using the surface deformation
technique from Chapter 5. The third section presents colored, silhouette-consistent
surfaces from multi-view sequences by using the methodology described in Chapter
6. Finally, a comparison of these three sampling strategies is presented.

7.1 Image-based Surface Sampling

The technique presented in Chapter 4 is able to reconstruct the visible surfaces of
foreground objects from a very sparse set of images. An illustration of some of its
stages is shown in Figure 7.1. It can be summarized as:

1. First, obtaining candidate depths for the image points in each view, based
on photo-consistency measurements between pairs of pixels from neighbor
cameras, using epipolar constraints.
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Figure 7.1: Image-based surface sampling. From left to right: two sample input images out of

six available; initial depth estimates for one of the input viewpoints; reconstructed surface points;

reconstructed surface rendered with colored colored surface samples from two novel viewpoints

2. Then, surface points are extracted by iteratively carving away those points
which are not globally photo-consistent.

3. Finally, a normal for each surface point is estimated by fitting a plane to a
local neighborhood.

In the following, two different types of results are presented. The first one is a
qualitative comparison between the results obtained with both typical small base-
lines that are considered in multi-view stereo scenarios and more challenging ones
obtained by dramatically increasing the baseline –reducing the number of views–
in the same scenes. These results are accompanied by examples of surface samples
from static scenes in real-world scenarios with known –and removable– background
in challenging wide-baseline configurations.

The second type of results, focusing on the target scenarios, present a quantita-
tive measure of the quality improvement that can be achieved by a surface sampling
strategy, compared to a volumetric sampling strategy, under equivalent conditions.

7.1.1 Qualitative validation

The datasets listed in Table 7.1 have been used as input in our experiments. In the
table, apart from the number of available input images and their resolution, we have
also included the maximum allowed squared RGB distance for photo-consistency –
manually adjusted– that has been used for each dataset, ρ.

The first two datasets, temple and dino, are part of the benchmark promoted by
[Seitz et al., 2006]. In the temple dataset, one of the 16 available images has been
removed, because it was repeated. The datasets dino-s and temple-s are obtained
by just picking 6 of the available views. This produces a very sparse scenario that
helps us demonstrating how the sampling strategy is actually able to extract photo-
consistent surfaces under such adverse conditions.

The persons dataset corresponds to 5 views of two persons captured at the smart
room facility of the Signal Processing Group of the UPC, whereas the shirt dataset
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(a) 15 input images (b) 16 input images

(c) 6 input images (d) 6 input images

(e) 5 input images (f) 6 input images

Figure 7.2: Sample results on the used datasets. (a) temple, (b) dino, (c) temple-s, (d) dino-s,

(e) persons and (f) shirt. In each case, one of the input images is shown, along with the initial

estimate of one of the depth maps corresponding to one of the input views and the reconstructed

surface samples seen from a novel viewpoint

consists of 6 views of a person in a smart room environment in the Telefonica R&D
facilities in Barcelona.

The only relevant parameter for obtaining correct reconstructions in all the
scenarios is the aforementioned photo-consistency threshold ρ. For example, in
datasets where the color captured by different cameras has not been calibrated, as
in persons, this threshold must be loose enough to allow the reconstruction of almost
complete surfaces. Please note that the higher the threshold, the looser, since our
photo-consistency test (Section 4.2) measures Euclidean color distances. Whereas
a high threshold implies the acceptance of some outliers as surface elements, for us
it is more important to obtain an almost complete surface, with both visualization
and analysis applications in mind.

The results obtained from testing our algorithm with the datatsets in Table 7.1
are shown in Fig. 7.2. For each dataset, we have included one of the input views, an
initial depth estimate for one of the viewpoints and the resulting surface rendered
with colored surface samples viewed from a novel viewpoint.

The method shows a relatively fast performance, mainly when compared to



90 Surface Sampling Results

Name Views Image Size ρ

temple 15 640× 480 100
dino 16 640× 480 30

temple-s 6 640× 480 100
dino-s 6 640× 480 30
persons 5 768× 576 3000
shirt 6 640× 480 1000

Table 7.1: Datasets for the qualitative validation of the image-based sampling approach. The

large temple and dino datasets are included for reference. The only parameter that needs tuning

is the photo-consistency threshold ρ over the squared Euclidean RGB distance

multi-view stereo techniques, with computation times ranging from more than 3
minutes for the complete dino dataset (16 views) down to a few seconds for the
persons dataset. These times are obtained on an Intel Xeon CPU at 3.0 GHz.

The reconstructions with the temple and dino datasets are useful for comparative
purposes. The very sparse datasets (those with less than 10 input viewpoints placed
all around the scene), which are prohibitive for multi-view stereo techniques due to
the wide baseline, can be handled with the proposed sampling strategy. Indeed, it
trades-off geometric or photometric accuracy with spatial coverage of the scene.

7.1.2 Quantitative results

The neighbors of each view are automatically obtained by taking the 3 closest view-
points. The proximity of two viewpoints is defined as πij = πji =

�
1− 1

2 cos(αij)
�
δij ,

where αij is the angle between the two unitary vectors orthogonal to the image
planes i and j and δij is the Euclidean distance between the centers of projections
of the two views. Photo-consistency thresholds have been adjusted empirically.

The dataset used for the evaluation is composed by 33 static multi-view scenes
captured in a controlled environment by a set of 18 cameras placed around the scene
of which we will make subsets for the experiments. Eight of these cameras offer
partial views of the objects of interest in the scene, whereas two other cameras are
reserved as ground-truth for indirect evaluation of the reconstruction quality. The
datasets for evaluation are obtained by picking some of the views for reconstruction.
As a result, three datasets with 6, 8 and 16 cameras respectively are available for our
experiments. The corresponding foreground silhouettes are automatically extracted
and show misclassified pixels. The foreground silhouettes of the two ground-truth
views are manually extracted.

The evaluation procedure consists in using the 6, 8 or 16 available views for
reconstructing the photo-consistent shapes of the foreground elements of the scene,
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F-measure PSNR
# Views Surface patch Voxel Surface patch Voxel

6 0.85 0.84 40.64 dB 34.77 dB
8 0.87 0.86 41.67 dB 37.08 dB
16 0.88 0.88 43.62 dB 39.94 dB

Table 7.2: Evaluation of image-based sampling and volumetric photo-consistent reconstruction

schemes considering a growing number of input views for the experiments illustrated if Fig. 7.3

projecting them onto the two unused viewpoints and extracting the performance
measurements from comparison with the ground-truth. The measured magnitudes
are:

• F-measure, or the harmonic mean of precision (rejection of false foreground
pixels) and recall (rejection of missing foreground pixels), measured on the
silhouettes,

• PSNR of the pixels that are part of the foreground on both the ground-truth
and testing silhouettes.

A volumetric equivalent of the proposed method has been implemented, which
also uses the proposed photo-consistency test and the visual hull-bounding of the
final photo-consistent reconstructed shapes. In order to compare the results, we fol-
low the equivalency condition between voxels and image sampling density proposed
in a previous work [Casas and Salvador, 2006]. Thus, given a sampling distance in
each major direction x and y used on the available input images, σ{x,y} = 4 pixels
in our experiments, we define its equivalent voxel size, measured in units of the
coordinate system of the scene.

The average results obtained by comparing the projections of the reconstructed
shapes with the two ground-truth images for the surface patch-based and voxelized
methods for each of the three considered datasets are shown in Table 7.2. As it
can be observed, the accuracy of the proposed method is higher than that obtained
by a voxelized approach, both in terms of shape (F-measure) and color (PSNR).
Regarding the latter, our measurements confirm that surface color is not properly
represented by the inaccurate surface description provided by a volumetric recon-
struction. When analyzing the results, please keep in mind that the ground-truth
images have not been used for reconstruction. Some results for the evaluated scenes
are shown in Fig. 7.3, including geometric and textured renderings of the recon-
structed shapes from novel viewpoints. The computation time of the proposed
surface patch-based method is within one order of magnitude larger than that of its
volumetric counterpart (ranging from fractions of a second for the datasets with 6
views up to more than ten seconds for the datasets with 16 views).
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(a) Ground truth (b) Geometry patches

(c) Colored patches (d) Voxels

Figure 7.3: Reconstruction results for 8 cameras. The groundtruth image has not been used

for reconstruction. (a) Groundtruth image masked with its manually extracted silhouette. (b)

Reconstructed geometry represented by surface patches. (c) Colored surface patches. (d) Voxelized

colored surfaces with equivalent resolution

7.2 Surface Sampling by Deformation

The methodology for extracting silhouette-consistent surface samples by the de-
formation of an existing surface is presented in Chapter 5. As an advantage with
respect to the image-based approach, it allows the exploitation of temporal redun-
dancies, following a tracking strategy. As usual among tracking strategies, two
separate stages provide initialization and tracking:

• Initialization: Static reconstruction. First, samples of a silhouette-consistent
surface are obtained for an initial time instant –without having any knowledge
of the shape at previous time instants– by exploiting only spatial redundancies.

• Tracking: Dynamic reconstruction. Then, the knowledge of the shape in the
previous time instant allows for a more efficient sampling of the surfaces in
the next time instant, by exploiting both spatial and temporal redundancies.

Three experiments are used to validate the proposed method. The first exper-
iment checks the consistency of the shapes resulting from dynamic reconstruction,
compared to their equivalents obtained by static reconstruction, in order to validate
the faster former method. The second experiment evaluates the usage of computa-
tional resources of dynamic reconstruction when compared to a classical volumetric
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Sequence Time static Time dynamic RMS distance
walking 3.43 s 1.07 s 0.000102

open arms 3.77 s 1.17 s 0.000134
move arm 3.45 s 0.93 s 0.000100

kick 3.45 s 1.23 s 0.000094
jump 3.41 s 1.16 s 0.000119

Table 7.3: Average RMS Hausdorff distance of surfaces obtained by dynamic reconstruction vs.

static reconstruction. The maximal edge length of the associated bounding box is 0.101 in all cases

shape-from-silhouette algorithm. The third experiment quantitatively evaluates the
accuracy of the method, using a synthetic scene for which we have 3D ground-truth
data.

The synthetic scene is obtained as the projection of an animated human-like 3D
model onto a number of virtual viewpoints. Therefore, the reconstructed surfaces
can be compared to those of the actual model in every time instant.

For the other experiments, five real sequences with known background have
been used, with 50 frames each. The silhouettes of a person captured by 8 cameras
placed all around are extracted using [Stauffer and Grimson, 1999]. These sequences
–walking, open arms, move arm, kick and jump–, show different types of motion,
ranging from fast motion of limbs to slower displacement of the person.

The initial surface for the tracking strategy is defined by 105 surface points
randomly distributed over a box-shaped surface with dimensions slightly larger than
that of the bounding box of each scene; the diameter for normal estimation 2×rn is
set to 1/100 of its main diagonal and the expansion distance is set to rt := 5×rn. In
order to reconstruct shapes when parts of the scene are not included in the frusta of
all views, a minimal inclusion in 4 frusta is required. All measurements have been
obtained from an Intel Xeon 3.0 GHz.

7.2.1 Static vs. dynamic reconstruction

Fig. 7.4 shows the reconstructed surfaces with color-encoded estimated velocities
for their samples. The sequences walking, open arms and jump show displacement
of large surfaces in scenes with displacement of large surfaces, whereas move arm
and kick show fast motion of limbs in scenes with displacement of small surfaces.
The velocity estimated by the dynamic reconstruction method shows outliers in
areas where surfaces collide, but, overall, it plausibly describes the apparent surface
motion.

In order to quantitatively validate the dynamic method as an efficient alternative
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(a) (b)

(c) (d)

(e)

Figure 7.4: Surface samples from sampling by surface deformation and color-encoded velocity

estimates for (a) walking, (b) open arms, (c) move arm, (d) kick and (e) jump. The RGB color

code for velocity follows the included axes, although the normal information included for better

visualization of shape under illumination slightly distorts its actual intensity. White colored points

correspond to surfaces at initial time instants (static reconstruction)

to static reconstruction, each of the scenes have been processed with both methods,
and the average RMS Hausdorff distance [Aspert et al., 2002] is measured between
two meshes obtained by applying Poisson reconstruction [Kazhdan et al., 2006] on
the sets of oriented surface points. The results in Table 7.3 reflect that shapes are
practically equivalent and the processing times are clearly and consistently reduced.

7.2.2 Usage of resources

In Table 7.4, the memory usage for two configurations with approximately equal pro-
cessing times shows how the reconstruction of surfaces with the proposed method
needs less computational resources than the voxelized alternative and provides a
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Method Initial pts Surface pts Memory
Voxel 121× 300× 311 53706 700 MB

Dynamic 5× 105 84962 495 MB

Table 7.4: Memory usage of surface sampling by deformation compared to that of volumetric

shape-from-silhouette with approximate equal processing times of 2.2 s and 2.3 s respectively

higher level of detail. This can be visually confirmed in Fig. 7.5, where triangu-
lar meshes have been extracted from both voxelized shape-from-silhouette and the
proposed method with marching cubes [Lorensen and Cline, 1987] and Poisson re-
construction, respectively. The memory usage and execution times in the voxelized
approach are influenced by the implementation strategy of pre-computing the pro-
jections of all voxel centers and storing the pixel coordinates in Look-Up Tables,
which greatly shortens the processing time.

7.2.3 Accuracy

Synthetic sets of silhouette sequences are generated by the projections onto a set of
views of an animated mesh model. We utilize the average RMS Hausdorff distance
between a target mesh, which is obtained either from voxelized shape-from-silhouette
followed by marching cubes or from dynamic reconstruction followed by Poisson re-
construction; and a sampled mesh, which is the initial mesh model. The results
are summarized in Table 7.5. As expected, dynamic reconstruction outperforms
the voxelized shape-from-silhouette method in terms of accuracy, because the 3D
sampling at regular positions that takes place in the voxelized method cannot ac-
curately describe surfaces, and it also confirms that the dynamic reconstruction of
shape and motion achieves a correct estimate of the visual hull from frame to frame,
as suggested by the first experiment.

Figure 7.5: Comparison of the reconstructed surface with voxelized shape-from-silhouette (left)

and the proposed method (right) for approximately equal processing times of 2.3 s and 2.2 s,

respectively
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Sequence RMS dist. volumetric RMS dist. dynamic
walking 0.001286 0.000664

open arms 0.000902 0.000447
move arm 0.000873 0.000587

kick 0.001100 0.000745
jump 0.000910 0.000517

Table 7.5: Average RMS Hausdorff distance for approximately equal processing times using

volumetric shape-from-silhouette and dynamic sampling by deformation. The maximal edge length

of the associated bounding box is 0.101 in all cases

7.3 Statistical Surface Sampling

The statistical surface sampling strategy presented in Chapter 6 is designed to
efficiently obtain silhouette-consistent surface samples by directing the search to
regions where a high likelihood of finding surfaces exists. This is achieved by a
two-staged approach:

• First, an initial scouting procedure in the working volume, obtains a small
amount of seed surface samples, which are costly to find but constitute a
small percentage of the final set of surface samples.

• Then, a propagation strategy redirects the search to suitably defined regions
around each seed sample, and quickly covers the complete surface until reach-
ing the desired number of surface samples.

The bottleneck of the algorithm is the initial scouting, which takes the most of
the computation time, due to the blind search that takes place in a large volume.
Therefore, two strategies for reducing the computation time required to obtain the
seed surface samples have been proposed:

• The first one, dynamic statistical sampling, exploits temporal correlations in
multi-view sequences, which translates in a reduced search region for seed
samples from frame to frame and posterior propagation.

• The second strategy introduces a multi-resolution technique, which performs
a fast greedy search for surface points from heavily decimated input that is
followed by a search for seed surface samples in small regions around each low-
resolution surface point in a manner similar to that in the dynamic strategy.

The algorithm is parameterized by the number of output surface samples –kept
constant as 100000 in our experiments– and the size of the different search regions
used at every stage. All of these parameters, including those only used for the
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Parameter Value
Bounding box volume sx × sy × sz

Fine normal estimation radius ρn
1

200

�
s2

x
+ s2

y
+ s2

z

Initial propagation radiusρp 2ρn

Local normal estimation radius ρl
1
2ρn

Dynamic scouting radius ρd 8ρn

Multi-resolution scouting radius ρm 2ρn

Number of samples Ns 100000

Table 7.6: Parameters for the statistical surface sampling, including those for dynamic and

multi-resolution sampling. Note that the number of surface samples is restricted to 100000

improvement of the scouting stage using one of the two proposed alternatives, have
been empirically determined in order to provide the expected behavior and are listed
in Table 7.6.

For the experiments, three multi-view real sequences from datasets available in
[4D Repository, 2010] and a synthetic one –kung-fu girl [Kung-Fu Girl, 2005]– have
been used, which are listed in Table 7.7. As it is shown, two of the real sequences
are captured by 16 views placed all around the scene, whereas the remaining one
contains only captures from 8 views. The synthetic sequence is captured by 25
virtual cameras placed on a hemisphere around the animated model.

Three experiments have been performed. The first two experiments demonstrate
the efficiency increase that can be achieved by applying any of the two types of
proposed improvements to the initial scouting for seed surface samples, e.g., the
dynamic sampling and the multi-resolution sampling. The third experiment shows
a property about the scaling of the proposed surface sampling strategy to large
multi-view settings that makes it ideal to be used in such conditions. All the results
are obtained from a single-threaded implementation running on an Intel Core 2 Duo
2.8 GHz processor.

Sequence # Views # Frames Resolution
dancer 8 201 780× 582
children 16 339 1624× 1224
martial 16 210 1624× 1224
kung-fu girl 25 200 320× 240

Table 7.7: Three multi-view real sequences from the 4D repository and a synthetic sequence

(kung-fu girl) used for the experiments related to statistical sampling
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Sequence Default Dynamic
dancer 1.02 s 0.46 s
children 2.73 s 0.92 s
martial 2.35 s 0.88 s
kung-fu girl 1.4 s 0.56 s

Table 7.8: Per-frame computation time with default and dynamic scouting for statistical sampling

7.3.1 Multi-resolution and dynamic sampling

In this section we present two experiments that demonstrate the increase in effi-
ciency that can be achieved when modifying the initial scouting stage with the two
proposed improvement types.

In Section 6.4.1, a dynamic scouting strategy has been presented, which reduces
the computation time in multi-view video sequences by exploiting temporal correla-
tion. This technique has been used for the four sequences. The average computation
times for each sequence with and without dynamic scouting are listed in Table 7.8.
Inter-frame similarity of the position of the surfaces of foreground objects can be
used for reducing the search region for seed surface samples, which results in a clear
increase in frame-rate.

In Section 6.4.2, a multi-resolution approach has been proposed to improve the
efficiency of the scouting stage. The most important adjustable parameter is the
decimation level in the input images. In Fig. 7.6, the execution times for sampling
with different levels of initial decimation for the input silhouettes are shown. Note
that the case with decimation set to one corresponds to the default scouting strategy.
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Figure 7.6: Reconstruction time vs. initial level of image decimation in multi-resolution scouting.

A decimation of 1 is equivalent to the default scouting with full-resolution images



7.3 Statistical Surface Sampling 99

Figure 7.7: From left to right, statistical sampling results for the kung-fu girl sequence for initial

decimation of 1, 2, 8 and 32 in each image dimension. Decimation of 1 is equivalent to default

scouting. Incorrect values for the search radius lead to uneven distribution of seed surface samples,

which cannot be correctly balanced during the propagation stage

The resulting efficiency gain obtained by both dynamic and multi-resolution
scouting is similar. The extra cost from initially obtaining seed samples at low res-
olution in multi-resolution scouting is partly balanced with the fact that the low-
resolution seeds are in average closer to the actual surface than the high-resolution
seeds from a previous time instant in dynamic scouting, which translates in the
choice of a multi-resolution scouting radius smaller than its dynamic scouting coun-
terpart.

In Fig. 7.7, surface samples corresponding to a frame from the kung-fu girl
sequence are shown, as obtained when using the multi-resolution scouting strategy
with different levels of initial decimation. Due to an incorrect choice of the search
radius for high-resolution seed surface samples, most of the low-resolution samples
are discarded by the impossibility to find a high-resolution matching sample. The
propagation mechanism is not designed to correct such situation, resulting in a
highly uneven distribution of samples.

7.3.2 Efficiency in multi-camera environments

A limiting problem when working in multi-camera environments is the cost associ-
ated to the addition of each new camera. Typically, algorithms exploiting multi-view
data can grow linearly –i.e., in volumetric reconstruction techniques– or even expo-
nentially –i.e., in image-based approaches where multiple cross-validations between
images take place– with the number of available cameras.

However, the proposed strategy for sampling benefits from the fact that the ratio
between contour pixels and total number of pixels remains practically constant with
respect to the number of available cameras when these are placed at similar distances
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Figure 7.8: Reconstruction time vs. number of cameras for three real sequences from [4D

Repository, 2010] and a continuous sequence from [Kung-Fu Girl, 2005] (all in continuous lines).

The dash lines show the computation time that would be required for sampling if the computational

cost of adding a view was constant (as in volumetric shape-from-silhouette). The details of the

sequences are in Table 7.7

from the objects of interest. Even better, the ratio between silhouette contour pixels
and occupied volume increases with the addition of each new camera. Thus, even if
the cost of a projection test grows linearly with the number of views, the probability
that a 3D point is a surface point also grows, partly balancing this effect. As shown
by the following experiment, the result is that the proposed sampling strategy is
well suited to large multi-camera settings.

Fig. 7.8 shows, in dashed lines, the extrapolated computation time from the first
five up to the whole range of available views. As shown, the actual computation
time grows at a much smaller rate for subsequent views, due to the introduction of a
larger number of silhouette contour pixels. In Figs. 7.9 and 7.10, the reconstructed
surfaces for one time instant of each sequence with increasing numbers of input
views are shown as a set of surface samples or its interpolating mesh obtained with
the algorithm presented in Part II, respectively. The marginal increase of detail in
the resulting surface becomes smaller, and so does the marginal cost of adding each
additional view. This shows the efficiency of the proposed sampling strategy.

7.4 Comparison of the Three Sampling Approaches

The three sampling strategies presented in this part of the thesis are now compared
in terms of computation time and visual appearance of the resulting surface. The
video sequence used for this comparison is dancer, from [4D Repository, 2010], listed
in Table 7.7.
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Figure 7.9: Statistical sampling with increasing number of views. The leftmost column shows

surface samples reconstructed from only 5 viewpoints of each sequence. Towards the right, surface

samples obtained with increasing number of views. The rightmost column shows the surface

samples reconstructed from the whole multi-view set for each sequence
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Figure 7.10: Statistical sampling with increasing number of views. The continuous surface is

obtained with the algorithm presented in Part II. The leftmost column shows surfaces reconstructed

from only 5 viewpoints of each sequence. Towards the right, surfaces obtained with increasing

number of views. The rightmost column shows the surfaces reconstructed from the whole multi-

view set for each sequence
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Method No. of samples Time Initialization time
Image-based 56502 167.34 s -
Deformation 56610 2.5 s 8.62 s
Statistical 56610 0.25 s 0.63 s

Table 7.9: Average computation time per frame (in seconds) for sequence dancer using the three

sampling strategies with approximately equal number of reconstructed surface samples

In Table 7.9, the average computation time per frame using each of the proposed
techniques is listed. For the sampling strategy based on the deformation of an
existing surface, the obtained time corresponds to that of the tracking strategy
(initialization 8.62 s). For the statistical sampling strategy, the time in the table
corresponds to the application of the dynamic improvement in the scouting stage
(initialization without multi-resolution decimation 0.63 s). The number of surface
samples has been determined by the image-based strategy, with the deformation-
based strategy configured in order to obtain a value as close as possible to the
former and the statistical sampling configured in order to retrieve exactly the same
number of samples as the highest one among the other two strategies.

The average computations times confirm the expected behavior of the three
strategies. Whereas the image-based approach does not exploit any sort of spatial or
temporal correlation on the distribution of surface samples and the strategy based on
the deformation of an existing surface exploits mainly the temporal correlation (and
indirectly also spatial during the regularization algorithm), the statistical sampling
strategy is the one that best exploits these two types of correlations outperforming
the other two methods in terms of computation time for a certain sampling density.

Fig. 7.11 shows the continuous surface corresponding to one time instant of
the dancer sequence, obtained using ball pivoting [Bernardini et al., 1999] over the
set of surface samples reconstructed with each of the three sampling strategies.
Whereas the surface obtained with the image-based strategy is the closest to the
actual surface –see the narrower head, achieved by imposing photo-consistency–, it
also presents holes –like those on the chin of the dancer–. The surface obtained
from the deformation-based strategy is practically equivalent to that obtained with
statistical sampling, with a clearly higher presence of high-frequency detail and,
most prominently, noise on the distribution of surface samples in the former, avoided
by the application of anisotropic smoothing (Section 6.5.2 in Chapter 6) as post-
processing in the latter.

In general, considering the processing time and the resulting topological correct-
ness of the statistical sampling strategy, the presented results assess this strategy as
the best of the three proposed strategies in terms of the goals of this thesis. Indeed,
it is the approach that takes a smaller processing time –close to real-time opera-
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Image-based Deformation Statistical

Figure 7.11: Continuous surface for a time instant in the video sequence dancer, obtained by

applying ball pivoting on the set of approximately 56000 surface samples reconstructed by the

image-based, the surface deformation and the statistical sampling strategies

tion using a single core of the CPU, while being easy to parallelize– and provides a
closed surface, free of holes. Whereas the posterior application of ball pivoting, in
order to provide a continuous triangulated surface, renders this approach useful for
off-line processing only, the surface interpolation algorithm presented in Part II of
this thesis tackles the problem of tessellating a continuous surface between samples
targeting speed and topological correctness.

7.5 Conclusions

The experiments presented in this chapter provide evidence of the high accuracy
level that can be achieved by obtaining surface reconstructions using the techniques
introduced in the previous chapters of this first part of the thesis. Different types of
experiments have been conducted using each of the three presented surface sampling
approaches, as well as a final comparison of the three methods.

Using the image-based surface sampling approach, experimental results show
that, in order to obtain an equivalent resolution level in a volumetric methodology,
a much higher amount of computational resources would be necessary. Compared to
multi-view stereo methods, the photo-consistency test proposed in Chapter 4 proves
useful in arbitrarily wide-baseline scenarios. This technique is the slowest among
the presented ones, but it can be used to provide photo-consistent reconstructions
when a small number of views is available.

With the surface sampling strategy by surface deformation, experiments show
that the method allows taking advantage of temporal redundancies in dynamic
scenes, which are the source of a great reduction of the required computation time
and can be used to provide an explicit description of motion that can be used by
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higher level algorithms as an additional set of features detected from the raw data,
as introduced in Chapter 5. This technique is much faster than the previous one,
due to the exploitation of temporal correlation, and can be, therefore, used with a
larger number of views if the latency due to the slower initialization stage can be
allowed in a specific real-time application.

Finally, using the statistical sampling strategy presented in Chapter 6, experi-
ments show that it is highly efficient with respect to large number of input views,
yet capable of obtaining reconstructions in very wide-baseline configurations, thanks
to the proper exploitation of spatial correlations. Furthermore, the exploitation of
temporal correlations is also introduced as a mechanism to improve the initial scout-
ing stage for seed surface samples. Similarly, a multi-resolution technique can also
be designed, which produces similar gains in processing time when no information
from the current position of surfaces is available. When a large number of views
is to be processed for real-time applications, this would be the algorithm that best
fits the goals of the thesis presented in Chapter 1, thanks to the more principled
exploitation of both spatial and temporal correlations.

As the final comparison between the three strategies shows, the statistical sam-
pling approach is the fastest, resulting from the better exploitation of spatial corre-
lation, and provides a topologically correct, closed surface. Due to the high degree
of parallelization of the latter algorithm, it is also the best suited for GPU imple-
mentations. Indeed, a Master’s Thesis developed by Marc Maceira and co-directed
by my advisor and myself has recently resulted in a real-time implementation with
speed-ups of around 5×–7×, with room for further improvements.
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Surface Interpolation





Surface Interpolation

W
hereas the previous part of the thesis copes with the definition
of strategies for the reconstruction of sets of surface samples cor-
responding to foreground objects in multi-view video sequences,

this second part tackles the problem of retrieving a closed, continuous surface –
presented as a triangle mesh– in order to interpolate the information contained in
such surface samples.

Again, the design of the corresponding methodology is driven by the goal of ob-
taining fast methods applicable in interactive applications, while offering topological
guarantees in order to keep the resulting continuous surfaces usable for forthcoming
visualization and multi-view analysis applications.

In the two chapters composing this second part of the thesis, we first present
the details of the proposed method for surface interpolation –meshing algorithm–
and, then, we compare its performance to that of other meshing methods in the
literature, by using well-known datasets of surface samples obtained from range
data. The application of the method proposed in this second part of the thesis
on the sets of surface samples obtained by the best sampling approach in the first
part is left for Part III, where a validation for the complete surface reconstruction
approach –including both sampling and interpolation– is presented.





Chapter 8

Surface Interpolation

A
set of surface samples constitutes a minimal discrete representation

of a surface. In order to obtain a complete reconstruction of the
surface, an interpolation scheme must be provided, which tessellates

a continuous surface between its samples. Due to the possible irregularity resulting
from the sampling scheme, interpolating a surface between these samples is a non-
trivial problem that requires special attention, as it will be explained below. In this
chapter, a novel meshing algorithm is introduced, which produces a two-manifold
mesh from a set of surface samples. Such a mesh is useful for visualization purposes,
but also for analysis-by-synthesis methods that might exploit convenient topological
properties of 2D manifolds in 3D space.

8.1 Motivation

Surface samples can be used for visualization, without the need for an explicit
computation of a continuous surface out of the rendering pipeline, as it has been
demonstrated with impressing results in [Pfister et al., 2000] or [Guennebaud et al.,
2004]. However, a discrete representation of a surface does not provide a com-
plete description of its topology, which is usually required when processing 3D data
(in some applications through surface parameterization [Hormann et al., 2007]).
Furthermore, a suitable continuous description of the surface can also simplify vi-
sualization by using the standard rendering pipelines in current graphics hardware.

As mentioned above, the problem of interpolating a continuous surface given
a set of discrete surface samples presents several challenges. In first place, the
problem can be computationally expensive when the number of surface samples is
large. The problem is also ill-conditioned: in general, some assumptions about the
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topology of the surface have to be made in order to obtain a solution, which will
in general not be unique. The combination of these problems translate to the main
challenge, which is the definition of the ordering of the surface samples for surface
interpolation. Furthermore, in order to be convenient for analysis and visualization,
the interpolated continuous surface must guarantee certain topological properties,
such as being closed and orientable.

8.1.1 Interpolation

Mathematically, interpolation can be described as a method of constructing new
data points within the spatial range of a discrete set of known data points. It can
also be interpreted as a specific case of curve fitting, in which the resulting curve
goes exactly through the data points or samples.

In datasets where the independent variable –sample points xi– is unidimensional,
the order of the samples is uniquely defined. Thus, the problem in such case is just
that of defining the interpolant function.

However, in datasets like the ones we deal with, the independent variable is a
position in 3D space. Therefore, the order of samples, which will be used in order to
generate the interpolant function, cannot be uniquely chosen, since a well-defined
ordering of the samples does not exist. Indeed, the most challenging part of surface
interpolation is precisely the definition of the neighborhood of each sample point,
which in turn results in the explicit description of the surface topology. Whereas
for analysis applications it is convenient to obtain a topologically correct continu-
ous surface, obtaining such a surface in general introduces more complexity to the
procedure.

The problem of defining the topology of the independent variable is therefore the
main topic of this chapter. In the following, we justify the selection of an interpolant
function by studying the different available interpolation types:

• Polynomial. The interpolant is a polynomial of a certain degree.

• Spline. The interpolant is a special type of picewise polynomial, or spline.

Polynomial interpolation

Given a set of n + 1 data points (xi, yi) where no two xi are the same –in case of
a surface, xi would be the coordinate of vertex i and yi some attribute related to
such vertex, i.e., its color–, one is looking for a polynomial p of degree at most n

with the property
p(xi) = yi,∀i ∈ {0, 1, ..., n} (8.1)
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The polynomial p is called the interpolant. Generally, if we have n data points,
there is exactly one polynomial of degree at most n− 1 going through all the data
points in a certain order. The interpolation error is proportional to the distance
between the data points to the power n. One advantage of this method is that the
interpolant is a polynomial and thus infinitely differentiable in the range (x0, xn),
with x0 < x1 < ... < xn.

However, polynomial interpolation has some disadvantages. Calculating the in-
terpolating polynomial can be computationally expensive for large n. Furthermore,
polynomial interpolation may exhibit oscillatory artifacts, especially at the end
points, the so-called Runge’s phenomenon. This disadvantage can be avoided by
using spline interpolation, which is presented later.

In the following, two particular cases of polynomial interpolation are considered,
which solve the computation cost problem that appears for large n at the cost of
increasing the interpolation error. The first, with n = 0, is the so-called nearest-
neighbor or piecewise constant interpolation. The second, with n = 1, is the so-
called linear interpolation.

Nearest-neighbor interpolation. The nearest-neighbor algorithm simply se-
lects the value of the nearest sample, and does not consider the values of other
neighboring samples at all, yielding a piecewise-constant interpolant. The algorithm
is very simple to implement, and has been widely used in real-time 3D rendering to
select color values for a textured surface. In this case, the differentiability property
is lost.

Linear interpolation. Linear interpolation on a set of data points is defined as
the concatenation of linear interpolants between each pair of data points. This re-
sults in a continuous curve, with a discontinuous derivative, thus of differentiability
class C0.

This particular case of polynomial interpolation is widely used in surface recon-
struction, since it provides a sufficient level of accuracy for visualization and also
for analysis, given a dense enough sampling of the surface, as it is shown in Chapter
10 in Part III. Furthermore, the resulting surface representation (a polygon mesh),
can be processed by the standard rendering pipelines in graphics hardware. This
type of interpolation is therefore the most suitable for interactive applications.

Spline interpolation

In the specific case of linear interpolation, a linear function for each of intervals
[xk, xk+1] is used as interpolant, whereas in the more general polynomial interpola-
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tion a polynomial of high-degree n is used as the interpolant between a large number
of data points or even the whole set of points. Spline interpolation uses low-degree
polynomials in each of the intervals that would be used in linear interpolation, with
the polynomial pieces chosen such that they smoothly fit in the resulting function.

Spline interpolation incurs a smaller error than linear interpolation and the
resulting interpolant is smoother. It is also easier to evaluate than the high-degree
polynomials used in the more general polynomial interpolation and does not suffer
from Runge’s phenomenon. However, the resulting interpolated surface, although
showing a high level of accuracy for analysis, cannot be processed by the standard
rendering pipelines in current graphics hardware with interactive visualization in
mind.

Chosen methodology

A possible drawback in linear interpolation is the discontinuous derivative. However,
given the fact that the input surface samples already contain information about the
local orientation, this does not generate any practical limitation.

In the following, linear interpolation is taken as the most suitable option for
its usage in analysis and visualization. Even though the interpolating error might
be larger than that in spline-based interpolation, the possibility of using current
graphics hardware for interactive visualization and the smaller computational cost
associated to the extraction of the interpolant (a polygon mesh) makes us decide
for this approach. Furthermore, a spline interpolation of a surface could also be
obtained from a polygon mesh [Krishnamurthy and Levoy, 1996] at a post-processing
stage if required.

About the ordering of the independent variable –i.e. the positions in 3D space
of the surface samples–, different techniques exist in the literature, which produce
linear interpolants which either pass exactly through the existing sample points
or through close points defined by smoothing constraints on local sets of input
samples. Some of these techniques are introduced in the next section, which are
used to contextualize the necessity for the proposed method.

8.1.2 Related work

Many surface meshing techniques have been developed over the past years. The
marching cubes (MC) algorithm was proposed long ago in [Lorensen and Cline,
1987]. This algorithm is a well-known method for extracting iso-surfaces from three-
dimensional scalar fields. In practice, MC allows to extract a triangle mesh from a
volumetric representation of a 3D scene.
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Marching cubes-based methods

Many reconstruction techniques, like the ones presented in the first part of this thesis
and others in the 3D reconstruction literature [Furukawa and Ponce, 2008], as well
as range data from laser scans, do not provide a volumetric representation of 3D
shapes, but rather a set of oriented surface samples. Hence, some approaches exist
which, first, determine voxel occupancy by means of a certain type of regularization
and, then, extract the surface by means of MC. Two state-of-the-art methods falling
in this category are RIMLS-MC [Oztireli et al., 2009] and Poisson-Rec [Kazhdan
et al., 2006].

RIMLS-MC. Moving least squares (MLS) is an attractive tool to design effec-
tive meshless surface representations. However, as long as approximations are per-
formed in a least square sense, the resulting definitions remain sensitive to outliers,
and smooth-out small or sharp features. In [Oztireli et al., 2009] these issues are
considered and they present a novel point-based surface definition combining the
simplicity of implicit MLS surfaces [Kolluri, 2005] with the strength of robust statis-
tics, resulting in a Robust Implicit Moving Least Squares (RIMLS).

To reach this new definition, MLS surfaces are reviewed in terms of local ker-
nel regression, opening the doors to the introduction of robustness. The authors
claim that this representation can handle sparse sampling, it generates a continuous
surface better preserving fine details, and can naturally handle any kind of sharp
features with controllable sharpness. It also combines ease of implementation with
performance competing with other non-robust approaches. Finally, a triangular
mesh is extracted by using the Marching Cubes algorithm. RIMLS-MC has some
desirable properties:

• It provides an accurate description of the surface, even in presence of noisy
data.

• It shows better detail in edges, when compared to other marching cubes-based
approaches.

However, it also presents some drawbacks:

• The method is relatively slow compared to other methods in the literature.

• The output surface, although topologically correct, can present holes, due to
insufficient volumetric density.

Poisson-Rec. Poisson Reconstruction proposes a formulation that considers all
the points at once, without resorting to heuristic spatial partitioning or blending,
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and is therefore highly robust against data noise. As claimed by its authors, the
Poisson approach presented in [Kazhdan et al., 2006] allows a hierarchy of locally
supported basis functions, and therefore the solution reduces to a well conditioned
sparse linear system. A spatially adaptive multi-scale algorithm is used, whose time
and space complexities are proportional to the size of the reconstructed model.

In other words, surface reconstruction is expressed as a Poisson problem, which
seeks the indicator function that best agrees with a set of possibly noisy, non-uniform
observations. This approach can, for example, robustly recover fine detail from noisy
real-world scans. At its last stage, an octree-based Marching cubes implementation
extracts a triangular mesh from the volumetric representation. Therefore, Poisson-
Rec has several desirable properties:

• It provides an accurate description of the surface, even in presence of noisy
data.

• It allows choosing the level of detail in a trade-off with computational com-
plexity.

However, it also presents some drawbacks:

• The precision around edges is not controlled.

• The output surface shows a limited amount of detail for similar computation
times when compared to propagation methods.

Propagation methods

Propagation methods for surface reconstruction have in common the initial defini-
tion of one or more regions that are used as seeds for a propagation algorithm that
attempts to cover the whole surface between the input 3D points. Two methods in
the literature falling in this category are Ball Pivoting [Bernardini et al., 1999] and
ReOP [Suau et al., 2010].

Ball Pivoting. The Ball Pivoting Algorithm (BPA), is an advancing-front algo-
rithm to incrementally build an interpolating triangulation of a given point cloud.
The method is conceptually simple. Starting with a seed triangle, it pivots a ball
around each edge on the current mesh boundary until a new point is hit by the
ball. The edge and point define a new triangle, which is added to the mesh, and the
algorithm considers a new boundary edge for pivoting. BPA has several desirable
properties:
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• It is intuitive, since it triangulates a set of points by rolling a ball on the point
cloud. The user chooses only a single parameter, its radius.

• It has a theoretical foundation, since it is related to alpha-shapes [Edelsbrun-
ner and Mücke, 1994], and given sufficiently dense sampling, it is guaranteed
to reconstruct a surface within a bounded distance from the original manifold.

• It keeps the positions of the original surface samples in the output mesh.

However, it also presents some drawbacks:

• It can produce surfaces with holes when sampling is not dense enough. In case
of iterating with a larger radius for the pivoting ball, wrong topology might
result from some local configurations.

• It is slow when compared to other methods, both based on a propagation
scheme and on marching cubes.

ReOP. Restricted and Oriented Propagation is a method to reconstruct polygon
meshes from oriented point sets based on a propagation through a voxelized space
performed in order to find the closest neighbors of every data point. Propagation
is done following a specific pattern which exploits reciprocity in neighbor finding.
Every obtained pair of neighbors defines a new edge of the output mesh. ReOP has
several desirable properties:

• It provides a quick reconstruction of the surface, which makes real-time ap-
plications conceivable.

• It keeps the positions of the original surface samples (or an average of 3D
point cliques lying on the same voxel).

However, it also presents some drawbacks:

• The resulting mesh is composed by tetrahedrons rather than surface triangles,
due to the 3D search strategy for neighbor points.

• The use of memory might be very high at high resolution, due to the necessity
of regularly sampling space.

Goals

The goals of the method proposed in this chapter, compared to the features of those
available in the literature, are:
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Figure 8.1: In green color, a range search with specified radius r around a given point –marked

in red– returns a single result. In blue, a nearest-neighbors search with k := 5 returns a set of

neighbor points around the the red point

• To preserve the position of the existing surface samples, like the propagation-
based methods, in order to maximize the accuracy of the reconstructed surface
when error-free data points are available. ReOP and BPA are therefore ful-
filling this requirement.

• To obtain fast interpolation of surfaces with the goal of being usable in real-
time applications. ReOP is fast, but does not guarantee topological correct-
ness.

• To obtain a correct topology of the interpolated surface, making it usable for
analysis applications. BPA, Poisson-Rec or RIMLS-MC can provide topolog-
ically correct surfaces, but are slow to be applied in real-time.

8.2 Methodology

The proposed algorithm follows the same principle as the ball pivoting algorithm,
i.e. it is based in a surface propagation scheme, with the imposition of a set of rules
to guarantee the topological correctness of the resulting surface.

First, the algorithm randomly selects a starting face and, then, it propagates on
its contour, resulting in a growing region of triangular faces. The objective of the
propagation phase is to find adjacent faces to, ideally, cover the whole surface with
topologically correct triangles. As mentioned, a set of rules is checked whenever
a face is to be added to the region, to ensure the resulting mesh is complete and
manifold.
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8.2.1 Spatial queries

Knowledge of local neighborhoods of each point and fast access to this information
is a key factor of our proposal. A kd-tree decomposition of the 3D point cloud helps
out in finding this information. As proposed in [Friedman et al., 1977], a kd-tree
decomposition is an efficient structure –in terms of memory footprint and search
speed– onto which nearest-neighbors and range queries are efficiently performed.
The main concepts about this structure are presented in Appendix B, but here we
focus on the two types of search –nearest-neighbors and range search– that are of
interest for our proposed algorithm and are illustrated in Fig. 8.1. We recommend
readers unfamiliar with this technique to look at Appendix B, in order to better
understand the benefits of using such representation for efficient spatial queries.

In order to create the tree, instead of splitting the kd-tree in the axis of maximum
spread as in [Friedman et al., 1977], we choose to split in that of maximum variance.
This makes our the tree more robust against outliers in the sense that the efficiency
of the search process is not affected by their presence. Other splitting rules might
be applied, as suggested in [Maneewongvatana and Mount, 1999].

Nearest-neighbors search. In order to determine the composition of the neigh-
borhood of a given surface point it is often necessary to obtain a list of the k

nearest-neighbors to the given point. This is efficiently provided by a nearest-
neighbors search in the kd-tree, as shown in Section B.2.1.

Range search. In some other cases, it is required to obtain all the points lying
inside of a sphere of a determined radius centered at a given point. This search,
which retrieves a list of points at a distance smaller or equal to r from the specified
point, can also be efficiently implemented as a range search in a kd-tree, as shown
in Section B.2.2.

8.2.2 Half edges

In order to obtain a topologically correct polygon mesh, it is necessary to check
whether a newly created face is compatible with the set of existing ones. Considering
triangular faces, with three edges forming the contour of each face, it is necessary to
ensure that the two new edges created after each propagation step are compatible
with the already existing edges that may connect the involved vertices.

One useful representation of the polygon mesh is the so-called half-edge structure
[Kettner, 1999]. In this structure, only edges are represented, which connect the
vertices of the mesh in a certain orientation. In Fig. 8.2, the creation of a half-edge
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Figure 8.2: Evolution of a set of half-edges after the addition of a new triangular face at every

step. The current contour half edges at each step are named as hij , where the subscript indicates

the source and sink sample points that are connected by the half edge. The corresponding sparse

matrix H
t after every step t shows the set of current half edges. The ones that continue the

propagation are those left in bold in the matrices
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representation and the corresponding contour at each propagation stage is shown.

The half-edge representation of meshes used by our method is stored as a sparse
matrix H where all elements are empty, except for those that correspond to an
active half edge, as shown in Fig. 8.2. These occupied elements are the only ones
that are actually stored in memory.

The labeling of each non-zero element of the matrix is set to the identifier of
the triangular face that generated the half-edge, which is used for correcting the
topology of the mesh, as presented later in Section 8.3.2.

8.3 Algorithm

The algorithm presented in the following returns a polygon mesh that can be used
as a linear interpolant of the surface between a set of input surface samples. In fact,
the goal is to define the connections between close samples, or the ordering of the
independent variable –i.e. the 3D position of the surface samples–.

The description of the resulting polygon mesh is such that it suffices at provid-
ing the required information for both visualization and analysis, without requiring
additional information. As presented in Section 3.1.2, the polygon mesh will be
represented as a list of vertices, each with its 3D position –and its RGB color, when
available–, and a list of faces, each represented by three vertex identifiers.

The problem of finding the set of faces that correctly connect the input points is
tackled in a region propagation fashion, as introduced above. First, a robust initial
surface region –a triangle– will be defined and, then, the propagation on the current
surface contour will start from the triangle’s contour and iteratively end up in the
covering of the whole surface.

8.3.1 Initial triangle

The choice of a starting face for propagation is of great importance, since it sets
where the surface will start growing from. Thus, a set of conditions are required
to be fulfilled in the form of a set of rules, in order to ensure a correct subsequent
propagation.

A random unused starting point A and its k nearest-neighbors Ci are queried to
the kd-tree, where C1 and Ck are the closest and the farthest points in the returned
set, respectively. The objective is to find a triangle between A, B = Cj in the range
j = 1..k and a third valid Ci in the range i = j..k. In order to do so, points Ci must
verify the following conditions (also depicted in Fig. 8.3):
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Figure 8.3: Rules for initial triangle creation. Left, situation where the shape rule (S) is not

fulfilled. Right, situation where the orientation rule (O) is not fulfilled. Red color means rejected,

green means new and grey means already there

• (S) Shape rule: Angle αi at Ci must verify that αmin < αi < αmax.

• (O) Orientation rule: The normals of the three points, i.e. n̂A, n̂B and
n̂Ci , must be coherently oriented.

If it is not possible to find a correct configuration from the randomly chosen point
A and its neighbors, the method is restarted with a new randomly chosen point A.
The first C = Ci point which verifies the shape rule (S) and the orientation rule (O)
with respect to two close points A and B is kept, obtaining an F1 = �ABC starting
triangle. The half-edge structure presented above is also updated with the three
new half-edges just created, which are also added to a queue of contour edges that
will be used throughout the propagation. In an abuse of notation, an edge in the
queue actually corresponds to a half-edge in the former structure.

8.3.2 Propagation

Propagation starts at the initial triangle F1, its three edges being the first contour
edges to be processed. Contours to be propagated are extracted from a FIFO queue
of contour edges. Then, it is checked whether they are active contours –i.e. the
half-edge structure does not contain the opposite-oriented half-edge–. The idea is
to expand contours with faces, while preserving topological properties at the same
time. We define the following features related to a contour edge:

• F : Face the edge belongs to, with normal n̂f .

• V1, V2 : Edge’s start (source) and end (sink) vertices, respectively.

• V3: Opposite vertex which completes the existing F .

• Me: Edge’s middle point, or Me = 1
2 (V1 + V2).

• d̂e: Propagation direction from Me, defined as d̂e = n̂f × (V2 − V1).
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Figure 8.4: Rules for triangle propagation, added to those in Fig. 8.3. Top left, situation where

the used vertex inside rule (U) is not fulfilled. Top right, situation where the unused vertex inside

rule (UN) produces the rejection of such vertex. Bottom left, situation where the spatial position

rule (P) is not fulfilled. Bottom right, a valid face is created, which fulfills the complete set of

propagation rules. Red color means rejected, green means new and gray means already there

The k-nearest neighbors of Me are queried to the kd-tree. Such vertices, called
candidates or Ci, are processed in increasing distance order, beginning with the
closest one C1. In addition to rules for correct shape (S) and orientation (O), a
candidate Ci (and the new candidate face F̃ = �V1V2Ci) must satisfy four more
rules to be considered valid (see Fig. 8.4). The first two of these additional rules
are the following:

• (P) Spatial position : The candidate vertex must be placed in a β = 2π sr
solid angle centered at the edge’s middle point Me and oriented as the prop-
agation direction d̂e.

• (C) Contour or unused : The candidate vertex must be either a non-used
vertex or a contour one.

For the two last additional rules, we make use of the second type of search imple-
mented for the kd-tree structure. Since it deals with a local neighborhood around
each created face, a range search with a suitable radius is performed, in order to
find all the existing points regardless of the sampling density. The idea behind
these rules is to prevent the creation of two close layers of triangle faces coherently
oriented. This might occur due to the existence of points distributed in two close
layers when working with noisy surface samples.

• (U) Used vertex inside : Let bcf be the baricenter of the new face F̃ , and
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Figure 8.5: From left to right and top to bottom, propagation of a contour until completely

covering the set of samples for a surface composed as samples of a bi-dimensional Gaussian function

B a ball centered at bcf of radius ρ = max{dist(p, bcf )} with p = {V1, V2, Ci}.
If there exists an already used vertex vu ∈ B, which can be perpendicularly
projected onto F̃ , the candidate point Ci is rejected.

• (UN) Unused vertex inside : In the (U) context, if there exists an unused
vertex vun ∈ B which can be perpendicularly projected onto F̃ , then vun is
rejected.

When a candidate point Ci, and its associated candidate face F̃ , fulfill all of
the preceding rules, this new triangle face is created. The queue of contour edges
is updated with the newly added edges of F̃ and the half-edge matrix also reflects
the introduced changes. In case that no candidate satisfies the imposed rules, the
current edge is marked as contour edge and it is not further processed.

The propagation process is illustrated in Fig. 8.5, where the contour –colored
in red– is iteratively propagated until covering all the samples of a surface corre-
sponding to a bi-dimensional Gaussian surface.
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Non-manifold edge detection

Despite of the set of rules for topological correctness described above, in some cases
a wrong set of triangular faces might be created in some regions where different
fronts of the surface propagation meet. This situation is illustrated in Fig. 8.6 (a).
The gray region corresponds to a hole that is to be tessellated by propagating any of
the contours around it. In Fig. 8.6 (c), two contour edges have propagated to new
faces fulfilling all of the correctness rules presented above. However, this results in
an incorrect configuration of overlapping surfaces.

From Fig. 8.6 (f) on, the mechanism for detection of a non-manifold edge and its
posterior correction is illustrated. When a new candidate face F̃ is to be created, it
is checked whether each of its contour half-edges can be correctly created –meaning
that it does not exist in the half-edge structure–.

If one of the half-edges already exists, it is detected as a non-manifold edge.
Consequently, the candidate face F̃ and the faces sharing the colliding half-edge
–face identifiers are stored in the half-edge structure– are deleted as shown in Fig.
8.6 (g).

The half-edges that are set free by the removal of these faces adjacent to the
non-manifold edge are added to the contour queue. Then, the normal propaga-
tion proceeds, which eventually produces a correct configuration by considering a
reduced set of candidate points.

Iterative propagation

Propagation stops when no more contour edges are left to be processed in the queue.
However, there may still be many unused points left. Iterating the initial triangle
and propagation steps presents two advantages. First, it helps to achieve a complete
meshing of the surface by filling zones which, following the rules for topological
correctness, were not reachable from the previous starting triangles. Second, the
sampled scene may contain many unconnected surfaces to be interpolated. Letting
the system find new starting triangles will result in an individual meshing of each
object.

Thus, when several disconnected surfaces compose the sampled scene, a new
starting triangle is searched among the remaining unused points, which will launch
a new propagation phase. Such cycle may be repeated iteratively while the amount
of used points Nu is below a threshold. The propagation implementation used
through this thesis has been stopped in all cases when Nu > 90%.

In case that the propagation to a certain part of a surface has not taken place
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 8.6: Incorrect surface interpolation and posterior correction. In every stage, the blue line

signals the next contour edge to be processed in a queue. (a) An uncovered region (light gray) that

is to be covered by the triangular mesh; (b) A half-edge propagates the surface following the set of

rules for topological correctness; (c) another half-edge propagates the surface incorrectly, despite

of following the set of rules for topological correctness; (d) and (e) two other contour half-edges

propagate; (f) another contour half-edge propagates, in this case producing an overlap with an

existing half-edge; (g) the three facets adjacent to the non-manifold edge are deleted; (h) and (i)

the propagation proceeds without topological errors



8.4 Conclusions 127

Figure 8.7: Topologically correct output mesh and detail of a challenging region around a saddle

point

due to limitations imposed by the spatial position rule (P), the propagation would
also proceed correctly, since every propagation phase takes into account the con-
nectivities found during the previous propagation steps.

8.4 Conclusions

In this chapter, a novel meshing algorithm has been presented, which is useful to
interpolate a continuous 2D surface in 3D space between samples corresponding to
a discrete representation. It is driven by the main goal of defining an ordering for
the input surface samples which is useful for interpolating the values of a continuous
surface between these samples within a limited computation time.

The proposed algorithm, which has some points in common with the ball piv-
oting algorithm [Bernardini et al., 1999], being the main one its propagation-based
principle, has accomplished its goals:

• It preserves the position of the existing surface samples, and is therefore ca-
pable of maximizing the accuracy of the reconstructed surface when error-free
data points are available.

• It provides fast interpolations of surfaces with the use of an efficient set of
data structures for spatial queries.

• It is capable to obtain a correct orientable surface, through the application of
several rules for topological correctness and the possibility of automatically
recovering from errors beyond the scope of these rules.

When compared to the ball pivoting algorithm, the proposed method does not
require an iterative increment of the search radius in order to cope with scenes with
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irregular distribution of surface samples. Instead, the use of kd -trees as a tool for
spatial queries automatically isolates the meshing strategy from this problem. As
illustrated in Fig. 8.7, the proposed method can reconstruct topologically correct
surfaces even in cases where the input set of surface samples are unevenly distributed
and represent a challenging geometric region such as a saddle point. More details
about the performance of the meshing algorithm are presented in the next chapter.

As a difference with respect to volumetric algorithms like those based on the
final extraction of the surface by marching cubes –e.g. [Kazhdan et al., 2006], a
robust, state-of-the-art approach–, the chosen propagation scheme keeps unmodified
the position of existing surface samples. This feature allows, for example, to easily
interpolate the values contained in the surface samples to any position over the
resulting continuous surface, using classical algorithms such as [Gouraud, 1971].
This can be done quickly thanks to the one-to-one correspondence between discrete
surface samples and vertices in the mesh, which translates in a fulfillment of the
main goal of the proposed method.



Chapter 9

Surface Interpolation Results

T
he algorithm for linear interpolation of a surface presented in Chapter 8
has been designed in order to provide a topologically correct triangular
mesh that connects an input set of oriented points. The natural idea

is to use this method for oriented points extracted with any of the surface sampling
techniques proposed in the first part of this dissertation. However, in order to
characterize its performance, in this chapter we present an evaluation based on a
comparison of several surface reconstructions with range data, which have been
obtained from [The Stanford 3D Scanning Repository, 2010].

First, the different techniques used for comparison are listed, which also pro-
vide a triangular mesh from sets of oriented 3D points. Next, the datasets and the
metrics used for comparing them to our proposed technique are presented and quan-
titative results are provided for the six used datasets, for which a reference surface
represented as a triangular mesh is available and used as ground-truth. Finally, a
qualitative evaluation of the quality of the surfaces obtained with all methods for
each used dataset is also introduced.

9.1 Methods

In this section, we present the techniques for triangulation of a surface from a set
of oriented points that we have used in the evaluation of the technique presented
in Chapter 8. The goal is to compare the results obtained with several approaches
falling in the two categories presented in the Chapter 2 (Section 2.3) and in more
detail in Section 8.1.2 in the previous chapter: propagation-based and marching
cubes-based methods. All the following algorithms, except for the proposed method
and ReOP, are implemented in the MeshLab software [Cignoni et al., 2008].
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9.1.1 Propagation methods

From this category, the ball pivoting algorithm, restricted and oriented propagation
and the proposed method have been used.

BPA. The ball pivoting algorithm [Bernardini et al., 1999] is related to the so-
called alpha-shapes, which can be seen as a generalization of a convex hull [Edels-
brunner and Mücke, 1994]. In this method, a virtual ball of a user-specified radius
scans a cloud of oriented points and obtains triangular faces connecting them in a
surface propagation approach.

In our experiments, the initial value for the ball radius is automatically adjusted,
and three iterations are then applied with increasing radius in steps of 0.5% of the
bounding box diagonal.

ReOP. Restricted and oriented propagation [Suau et al., 2010] is a fast method
based on voxel propagation, with the main drawback of a non-manifold output mesh,
which renders this approach useful when targeting visualization, but not when the
reconstructed surface has to be further processed.

In our experiments, only the parameter adjusting the voxel size is adjusted,
leaving the 6-OCT pattern constant throughout all the executions. The rule for
choosing the voxel size is such that at least 96% of the points are not sharing a
voxel with other points.

Proposed. The proposed method presented in Chapter 8 creates an initial trian-
gular face and iteratively propagates its edges to generate new faces under a set of
rules for topological correctness

The only parameter that has been adjusted is the number of results k for nearest-
neighbor search, setting it to a value such that no holes appear in the resulting
surfaces (ranging from 5 to 20 in our experiments).

9.1.2 Marching cubes-based methods

From this category, RIMLS-MC and Poisson reconstruction have been used, two
methods that have in common the use of marching cubes [Lorensen and Cline, 1987]
for extracting the final surface.

RIMLS-MC. Robust Implicit Moving Least Squares-Marching Cubes [Oztireli
et al., 2009] obtains a Moving Least Squares surface defined by the point set as
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a robust implicit extension of Moving Least Squares that preserves sharp features,
by using non-linear regression. The surface is finally extracted with marching cubes.

In our experiments, the scale of the spatial low-pass filter, relative to the radius
–local point spacing– of the vertices is set to 4. The grid resolution, as in ReOP, is
manually adjusted until the number of vertices at the output is practically equal to
that at the input. It has also been visually checked that the presence of holes due
to volumetric under-sampling remains under reasonable limits.

Poisson-Rec. Poisson reconstruction [Kazhdan et al., 2006] solves a Poisson
equation for volumetric occupancy trying to best approximate the vector field de-
fined by the samples. Then, it obtains a smooth surface after applying an octree-
based implementation of marching cubes to the resulting occupancy function.

In our experiments, only one parameter has been tuned. This is the depth of
the octree used for extracting the final surface. Again, the criterion has been that
the number of output vertices was approximately equal to the number of surface
samples at the input.

9.2 Datasets and Metrics

In this section, we first present the six datasets used for both the quantitative
and the qualitative comparisons of the polygon meshes obtained with each of the
techniques listed in the previous section. Then, the metrics used for comparing the
performance of each method are also presented.

9.2.1 Datasets

The experiments presented below are carried out with six datasets containing sur-
faces represented as oriented points, most of them provided by the Stanford 3D
Scanning Repository [The Stanford 3D Scanning Repository, 2010]. These are listed
in Table 9.1.

For all these datasets, a reference meshing is provided along with the oriented
points, which is used as ground-truth for the quantitative comparison below. These
datasets include both irregular and uniform distributions of surface points. Thus,
they provide a sufficient measure of the performance of the proposed method under
different scenarios.
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Name # Points Points distribution

drill 1,960 Uniform
bunny 34,834 Uniform
armadillo 172,974 Uniform
hand 327,323 Irregular
dragon 437,645 Very irregular
happy 543,652 Very irregular

Table 9.1: Datasets used for quantitative evaluation of our proposed surface interpolation algo-

rithm

9.2.2 Metrics

The RMS Hausdorff distance metric is used to evaluate the similarity between the
obtained surface and a ground-truth surface, giving an idea of the accuracy of the
reconstruction. More details about this metric can be found in Appendix C.

A second parameter taken into account is the overall computation time, which
does not include the time required to read the oriented points from the input file
nor the time required to write the polygon mesh to the output file.

The third and last figure that has been taken for comparison is the memory
footprint of each method. The memory measurements are only valid as an approx-
imation to the actual values, since they have been obtained as a multiple of one
thousandth part of the total amount of available memory. However, they reflect the
trends with respect to memory efficiency of each compared method.

Thus, the proposed surface interpolation algorithm is quantitatively compared
to the methods introduced above using these three figures. For reference, all the
experiments are executed on a 64-bit Intel Xeon CPU 3.0 GHz with 32 GB RAM.

For the qualitative comparison, visual inspection of both the overall mesh and
some details in challenging areas are considered in order to evaluate the performance
of each method.

9.3 Results

In this section, we present the quantitative and qualitative results obtained with the
proposed technique and each of the remaining five methods used for comparison.
Details of the datasets presented above, which have also been used for the qualitative
comparison, are introduced in the qualitative comparison.
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Method drill bunny armadillo hand dragon happy

RIMLS-MC
Time 1.66 36.06 170.42 211.92 180.32 215.24
Mem. - - 96 192 256 288
RMS 1747 526 249 234 279 344

Poisson-Rec
Time 0.66 13.00 35.64 38.81 43.61 49.55
Mem. - - 224 480 640 704
RMS 2532 1367 591 543 874 1232

BPA
Time 0.15 48.62 347.00 935.36 1846.49 2988.64
Mem. - - 64 128 192 224
RMS 506 99 61 92 105 144

ReOP
Time 0.70 0.81 4.10 8.73 14.36 14.89
Mem. - - 288 1088 1696 1920
RMS 464 94 61 163 56 116

Proposed
Time 0.03 0.92 3.06 8.12 10.11 15.44
Mem. - - 96 192 288 320
RMS 410 90 40 43 103 113

Table 9.2: Computation time, memory usage and accuracy for meshing each of the six sets of

oriented points. The execution time is shown in seconds and the memory usage in megabytes,

whereas the RMS Hasudorff distance is shown in units of a millionth part of the main diagonal

of the bounding box of each dataset. In bold text, the shortest execution time, the least memory

usage and the best accuracy for each dataset

9.3.1 Quantitative comparison

In Table 9.2, the execution time, approximate memory usage and RMS Hausdorff
distance –in all cases, the smaller, the better– are shown for each of the datasets and
the techniques used for comparison. About the units, execution time is measured
in seconds and memory usage in megabytes, whereas the RMS Hausdorff distance
is measured in units of a millionth part (10−6) of the diagonal of the corresponding
bounding box. The shortest computation time, smallest memory footprint and best
accuracy are written in bold font for each dataset. Due to the small resolution of
the memory usage measurements, the memory footprint of the datasets drill and
bunny could not be obtained.

As shown in Table 9.2, the proposed method is always showing either the best
computation time or the best accuracy among the tested methods. In terms of
computation time, the properly created kd -tree proves as a suitable data structure
for spatial queries, when compared to other propagation-based schemes. In terms
of quality, when compared to marching cubes-based methods, the utilization of
the exact position of surface samples makes propagation-based techniques much
more accurate, whereas among these latter techniques, the proposed one provides
in most cases the surface closest to the reference one due to the topologically correct



134 Surface Interpolation Results

configuration of the resulting triangular faces.

With respect to the memory footprint, the comparison might be biased: the
methods executed from Meshlab –BPA, RIMLS-MC and Poisson-Rec– have been
measured by subtracting the initial memory usage of the program, before loading
the datasets and starting the meshing algorithm. It might be possible that some
memory is released by the program during the execution of potentially memory-
demanding methods, or that some data structures actually used by the meshing
methods are pre-loaded when the program starts. Thus, we cannot take solid con-
clusions about the memory usage beyond that, in general, methods requiring a
global voxelization of the working volume –Poisson-Rec and ReOP– are more mem-
ory demanding. In general, the propose method offers a good computation time vs.
memory footprint trade-off.

To sum up, the proposed method is the best in terms of accuracy and execution
time, in general, being closely followed by ReOP in most cases and superseded by
this method in the few remaining ones. In terms of memory usage, it was not
possible to offer an accurate comparison with all of the methods, but it compares
favorably to ReOP and Poisson-Rec, the closest contenders in terms of computation
time.

9.3.2 Qualitative comparison

For the following experiments, a short introduction to each dataset is presented.
Then, some qualitative valuations are drawn from the results depicted in the corre-
sponding figures, presenting both general views and close-up details for the surfaces
reconstructed using each of the presented methods as well as for the ground-truth
surface.

Drill dataset. The drill dataset is the smallest one in the comparison. However,
the relatively low sampling density of the surface makes this dataset challenging. In
Fig. 9.1, it is shown how the marching cubes methods –RIMLS-MC and Poisson-
Rec– fail to reconstruct the original, due to over-smoothing introduced by the regu-
larization mechanism. BPA clearly shows topological errors, whereas ReOP creates
an excessive number of faces, which corresponds to its condition of not guaranteeing
topological correctness. The proposed method provides an almost-exact replica of
the original surface.

Bunny dataset. This is a classical, common dataset in the literature that presents
a mostly regular sampling with some holes on its base and irregular sampling on the
seams between different scans. In Fig. 9.2, the detail view corresponding to the tail
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GT Proposed BPA ReOP RIMLS-MC Poisson-Rec

GT Proposed BPA ReOP RIMLS-MC Poisson-Rec

Figure 9.1: First row: general view of the surface of the Drill dataset, from ground-truth –

first column– and each of the compared techniques. All of them output the same number of

vertices in the reconstructed surface. Second row: detailed view of the surface, with visible edges,

corresponding to the top of the drill



136 Surface Interpolation Results

shows how the proposed method and BPA provide a meshing very close to that of
the ground-truth. ReOP, once again, generates an excessive amount of triangular
faces, whereas RIMLS-MC presents some holes and Poisson-Rec oversmoothes the
resulting surface.

Armadillo dataset. The armadillo dataset introduces a greater level of detail
than the previous two datasets. It is also a common dataset in the literature that
presents a very regular sampling with a somewhat more complicated topology on the
surface corresponding to the teeth of the figurine. Fig. 9.3 shows the reconstructed
surfaces obtained with each of the compared methods. The detail views of the pro-
posed method, BPA and RIMLS-MC reveal different polygon meshes, which closely
resemble the one corresponding to the ground-truth. ReOP presents an excessive
number of triangular faces, whereas Poisson-Rec over-smooths the reconstructed
surface.

Hand dataset. The hand dataset shows a challenging scenario with lots of joints
between different pieces of the complete surface and hollow structures enclosed by
two layers of opposite-oriented surfaces. However, the surface lacks fine detail, which
makes it a good dataset for marching cubes-based techniques. In Fig. 9.4, general
views already show some errors in BPA and ReOP, due to the small distance be-
tween the mentioned two-layers of opposite-oriented surfaces. The proposed method
and RIMLS-MC provide the most accurate surfaces in topological terms, whereas
Poisson-Rec tends to over-connect different pieces due to the excessive volumetric
smoothing.

Dragon dataset. The dragon dataset shows a challenging scenario with a very
irregular sampling and a great level of detail on its shape. In Fig. 9.5, the general
views reveal that all methods provide apparently hole-free surfaces. However, a
closer inspection of the back of the head shows that the proposed method and BPA
are the ones that most closely resemble the ground-truth mesh. ReOP generates an
excessive amount of faces and RIMLS-MC presents some small-scale holes, whereas
Poisson-Rec presents an over-smoothed, yet watertight, output mesh.

Happy dataset. The happy dataset shows a very challenging scenario with the
most irregular sampling and a great level of detail on its shape. In Fig. 9.6,
the general views of the reconstructed surface already reveal a loss of detail with
RIMLS-MC and Poisson-Rec, due to excessive regularization. BPA presents some
cracks in the base, whereas ReOP produces an excessive amount of faces due to the
lack of topological guarantees provided by the method. The surface provided by
the proposed technique closely resembles that corresponding to the ground-truth.
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GT

Proposed

BPA

ReOP

RIMLS-MC

Poisson-Rec

Figure 9.2: First column: general view of the surface of the Bunny dataset, from ground-truth

–first row– and each of the compared techniques. All of them output the same number of vertices

in the reconstructed surface. Second column: detailed view of the surface, with visible edges,

corresponding to the tail of the bunny
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GT

Proposed

BPA

ReOP

RIMLS-MC

Poisson-Rec

Figure 9.3: First column: general view of the surface of the Armadillo dataset, from ground-

truth –first row– and each of the compared techniques. All of them output the same number of

vertices in the reconstructed surface. Second column: detailed view of the surface, with visible

edges, corresponding to a close-up of the face of the figurine
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GT

Proposed

BPA

ReOP

RIMLS-MC

Poisson-Rec

Figure 9.4: First column: general view of the surface of the Hand dataset, from ground-truth

–first row– and each of the compared techniques. All of them output the same number of vertices

in the reconstructed surface. Second column: detailed view of the surface, with visible edges,

corresponding to the joins between three pieces close to the fifth finger
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GT

Proposed

BPA

ReOP

RIMLS-MC

Poisson-Rec

Figure 9.5: First column: general view of the surface of the Dragon dataset, from ground-truth

–first row– and each of the compared techniques. All of them output the same number of vertices

in the reconstructed surface. Second column: detailed view of the surface, with visible edges,

corresponding to the back of the head
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Ground-Truth Proposed

BPA ReOP

RIMLS-MC Poisson-Rec

Figure 9.6: General and detailed –with visible edges– views of the surface of the Happy dataset,

for ground-truth and each of the compared techniques. All of them output the same number

of vertices in the reconstructed surface. The detailed views show a close-up of the face, where

marching cubes-based methods lack fine detail and ReOP clearly introduces unnecessary redundant

faces, as well as topological errors
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In general, it can be observed that the proposed method adapts well to all of
the datasets and presents a reconstructed mesh which, topologically, is very close to
the ground-truth one, apparently delivering better results than the rest of proposed
methods. Considering the results from the quantitative comparison above and these
qualitative results about the topological correctness of the surface, the proposed
technique compares favorably to all of the other tested methods.

9.4 Conclusions

In this chapter, both quantitative –accuracy, computation time and memory footprint–
and qualitative results –visual similarity of the reconstructed mesh to that of the
ground-truth– have been presented. For obtaining them, the surface interpolation
technique proposed in the previous chapter as well as other state-of-the-art ap-
proaches, both propagation-based and marching cubes-based have been compared
using the same datasets. In general, the main advantages of the proposed technique
are the following:

• The proposed method is fast when compared to both propagation-based and
marching cubes-based techniques. This is due to the efficient query for surface
samples using the kd -tree structure.

• The proposed method, being part of the propagation-based techniques, offers
a better accuracy than marching cubes-based counterparts, since the position
of existing surface samples directly translates into the position of the vertices
of the resulting mesh.

• When compared to the other propagation-based techniques, the topological
correctness of the reconstructed surface obtained with the proposed method
makes it a better alternative than the fast, accurate Restricted and Oriented
Propagation method, the hardest contester in terms of computation time.

• By visual inspection, the mesh resulting from the proposed method resembles
the most that of the ground-truth.

About its drawbacks, the most relevant one is the fact that, as a difference with
marching cubes-based methods, in which a volumetric, global regularization takes
place, when the input data is noisy, so is the output surface. However, this problem
might be tackled by a pre-processing stage of the input surface samples, such as the
surface smoothing that has been presented in Section 6.5.2, in the chapter devoted
to statistical surface sampling.
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Chapter 10

Overall Method: Sampling

and Interpolation Results

I
n the two main parts in which the dissertation is divided, several (progres-
sively improved) approaches for surface sampling and one for surface inter-
polation have been presented. In this chapter, the best surface sampling

approach (the one presented in Chapter 6) and the surface interpolation technique
presented in Chapter 8 are concatenated in order to generate 3D reconstructions
out of several multi-view video sequences.

The chapter is divided in two parts. The first one presents an evaluation of
the proposed approach by comparing it to a baseline system for scene reconstruc-
tion composed of classical techniques. The second part presents results obtained
from multi-view video sequences publicly available from [4D Repository, 2010], with
datasets considering different numbers of input views. These experiments have been
used in order to demonstrate the achievement of the main goals of this thesis. As
a remainder, the surface reconstruction was expected to be fast –towards real-
time–, effective –usable for both analysis and visualization– and efficient –able to
compress the multi-view data redundancies–, and the experiments corroborate the
accomplishment of these requirements.

10.1 Evaluation

In this first section we present experimental evidence showing that the system re-
sulting from the concatenation of surface sampling and interpolation obtains fast,
effective and accurate descriptions of surfaces when compared to a baseline system
built from existing techniques.
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Dataset # Views # Frames Color Image size
Real 18 584 yes 640x480

Synthetic 8 977 no 640x480

Table 10.1: Data-sets used for evaluation of the proposed approach

10.1.1 Data and methodology

Two types of multi-view sequences are used for this first set of experiments. The
first one consists on the projected silhouettes of an animated 3D model of a mov-
ing person onto a set of 8 cameras. Using such a synthetic sequence is useful for
our experiments, since the 3D model used to generate it is available and can be
used as 3D ground-truth, which in general is not available in real sequences. The
second sequence consists in real data of a moving person captured by 18 cameras
in the facilities of Telefonica R&D and the corresponding automatically obtained
foreground silhouettes, which present some segmentation errors. The configuration
details of these two data-sets are summarized in Table 10.1.

Baseline system. Both the baseline system and the proposed concatenation of
surface sampling and interpolation (Table 10.2) use the same silhouette extraction
method [Gallego and Pardàs, 2010] for generating their input silhouettes for the
real sequences –for the synthetic sequence, silhouettes are noise-free and generated
through OpenGL–. Then, in the baseline system, a voxelized shape-from-silhouette
implementation that uses projection look-up tables provides a volumetric reconstruc-
tion. This implementation technique reduces computing time at the expense of an
increased memory usage. At the last stage, a polygon mesh is extracted from the
volumetric reconstruction by applying the marching cubes (MC) algorithm. The
MC implementation also exploits precomputed tables to improve its throughput.
The use of precomputed tables in each stage in order to improve its speed draws a
challenging scenario for the comparison.

10.1.2 Experiments

For this evaluation, three experiments have been run on a system equipped with an
Intel Xeon 3.0 GHz processor and 32 GB of RAM. These three experiments, which

System Reconstruction Mesh extraction
Baseline Voxelized SfS Marching cubes
Proposed Statistical Sampling Proposed meshing

Table 10.2: Features of the baseline system vs. those of the proposed approach
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Baseline Proposed
# Points Time (s) RMS×106 Time (s) RMS×106

5000 0.5 1006 0.4 676
10000 1.2 836 0.9 623
20000 3.0 752 1.9 575
40000 12.9 673 4.1 534

Table 10.3: Quantitative comparison between the baseline system and the proposed sampling-

interpolation concatenation

provide both quantitative and qualitative assessments about the performance of the
methodology presented in this thesis, are the following:

• The first one is a performance comparison between both systems, using multi-
view sequences with 3D ground-truth data.

• Then, in the second experiment, surface reconstruction results obtained with
both systems are qualitatively compared by visual inspection.

• Finally, in the third experiment, a possible Free-Viewpoint Video [Miller et al.,
2005] application with the proposed technique is presented, in which a 3D
reconstructed subject is placed in a virtual environment with a virtual camera
that can be manually placed.

Quantitative performance comparison

The first experiment compares the performance of both systems, baseline and
sampling-interpolation concatenation. This comparison consists in the reconstruc-
tion of the surface of the animated 3D model and its posterior comparison to the
original mesh using the RMS Hausdorff distance [Aspert et al., 2002] between the
reconstructed mesh and the real one, averaged along the whole sequence, as a qual-
ity measurement. As shown in Table 10.1, no color information is available in the
synthetic sequence.

Table 10.3 summarizes the average times employed in the concatenation of 3D
reconstruction –statistical surface sampling or volumetric shape-from-silhouette–
and meshing –proposed surface interpolation method or marching cubes– and the
average RMS Hausdorff distance for both the baseline system and the proposed
sampling-interpolation scheme with growing sampling densities. In the table, lower
values of RMS mean higher quality. The proposed system offers more accurate
results at every resolution level, due to the adopted sampling scheme, better adapted
to surfaces. At higher resolution levels, much smaller processing times and better
accuracy reflect the suitability of the approach for dense surface reconstruction.
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Figure 10.1: Mesh from the baseline system (left) and from the sampling-interpolation concate-

nation (right) with approx. processing times of about 5 s. Color is added for better discrimination

Qualitative comparison

The second experiment consists in a qualitative comparison of both systems in a
real scenario (using the real sequence). In Fig. 10.1, two meshes corresponding to
the surface of a person in a controlled environment, reconstructed by the baseline
system and by the sampling-interpolation concatenation, are shown. Both for this
experiment and the next one, a conservative estimate of the visual hull with τ =
2, the tolerance to foreground segmentation errors, has been obtained with both
methods, due to the notorious presence of foreground misses.

In this case, an equal processing time for both methods (∼5s) is the com-
parison criterion, which results in a larger number of reconstructed points for the
proposed technique (30,000 versus 12,000) that, in addition, are more accurate in
terms of their location with respect to the ground-truth. Visual inspection reveals
that the mesh obtained by the sampling-interpolation concatenation is more accu-
rate and realistic than the one obtained by the baseline system. Furthermore, the
meshing algorithm proposed in Part II of this thesis delivers a manifold surface even
in challenging regions (Fig. 10.2).

Free-viewpoint video application

In the third experiment, the complete surface reconstruction system –including sur-
face coloring, not used in the previous experiments– has been applied to the real
sequence. With this, we can demonstrate a possible free-viewpoint video applica-
tion, consisting in a replacement of the real background by a virtual one and a free
selection of the viewpoint. Please note that the mesh is not textured. Instead, we
apply Gouraud shading [Gouraud, 1971] of the triangle faces of the mesh after set-
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Figure 10.2: Manifold output mesh and detail of a challenging region around a saddle point

ting vertex colors equal to those of the corresponding reconstructed surface points.
In Fig. 10.3, two instants of the sequence are viewed from three novel viewpoints.

This possible application reflects the fact that the reconstructed surface contains
a suitable amount of information about the foreground elements of the scene. Such
information can be employed, for example, for visualizing –from a freely chosen
viewpoint– the foreground elements of the scene without the need of using the
original images. In other words, the approach proves to be effective for its usage in
one of the target applications.

10.2 Validation

In the previous section, it has been shown how the proposed methodology performs
faster and with better accuracy than an equivalent system for surface reconstruction
built from classic algorithms. In this section, we aim at illustrating how the proposed
methodology can obtain high-quality reconstructions of scenes of diverse types. As a
result of these experiments, both the effectiveness and the efficiency of the proposed
surface reconstruction method for multi-view sequences are showcased.

10.2.1 Data and methodology

For this second set of experiments, fourteen sequences from three datasets –dancer,
children and martial– available in [4D Repository, 2010] have been used, which are
listed in Table 10.4. As it is shown, the two latter are captured by 16 cameras
placed all around the scene, whereas the dancer sequence only contains 8 views.
The complete set of multi-view sequences are used for the first experiment, whereas
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Figure 10.3: Three novel viewpoints (rows) from two different time instants (columns) depicting

how a Free-Viewpoint Video application, in which the original background has been replaced

by a virtual one, would look like using the methodology presented in this thesis. The scene is

captured by 18 cameras and the automatic foreground extraction introduces a notorious presence

of segmentation errors. The original multi-view video sequences are courtesy of Telefonica R&D
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Dataset Resolution # cams Sequence # frames

Dancer 780× 582 8 dancer 201

Children 1624× 1224 16

antoine 529
antoine assis ballon 516
antoine edmond ballon 339
antoine lucie 485
antoine roue 507
lucie corde 410

Martial 1624× 1224 16

benjamin baton 233
coup de pied 1 210
coup de pied 2 240
parade coup de point 1 241
parade coup de point 2 256
saisie col 310
saisie poigne 321

Table 10.4: Datasets from the 4D repository

only one sequence of each dataset has been used for the second experiment.

The video sequences are provided of foreground silhouettes of great quality, with
minor errors in few frames. This means that for these experiments it will not be
necessary to obtain a conservative estimate of the visual hull, which translates in
a more accurate surface reconstruction. Another nice feature of this data is that
color is calibrated across views, which is useful for both the application of photo-
consistency or surface coloring.

As in the previous section, the sampling-interpolation concatenation presented
throughout this thesis has been used for reconstructing the scene at each time
instant. The surface sampling stage consists in the statistical sampling (Chapter
6), whereas the surface interpolation stage consists in the application of the method
presented in Chapter 8. The number of surface samples in the first stage, unless
otherwise stated, has been set to 100000 and the different distances parameterizing
the method are set to the same values as those in Table 7.6. For the meshing
stage –surface interpolation–, a number of 20 nearest-neighbors is chosen for surface
propagation, which results in a closed surface without an excessive computational
cost (∼2 s/frame).

10.2.2 Experiments

The fourteen videos have been processed by the sampling-interpolation concatena-
tion, and the resulting surfaces have been re-projected onto the original viewpoints.
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The experiments in this section show how the proposed methodology is effective
–suitable for both analysis and visualization–:

• It is able to retrieve with a suitable level of precision the original images
by composing the projection of the reconstructed surfaces with the original
background or, in other words, it contains most of the information contained
in the foreground of the original images.

• The reconstructed surface can also be used for visualization, since it is closed
and contains the texture information –as already seen in the first part of this
chapter–.

Using the same data, it is also shown that the presented methodology is efficient,
since under acceptable level of losses, it is able to compress the multi-view data for
video sequences.

Effectiveness

The effectiveness of the methodology presented in this thesis is showcased by pre-
senting two types of qualitative results: the resemblance between the re-projection
of the reconstructed surfaces and the original views and the comparison of the re-
constructed surface with that obtained with a state-of-the-art method, the Exact
Polyhedral Visual Hull (EPVH) [Franco and Boyer, 2003]. For this experiment, the
complete set of multi-view sequences of each dataset has been used.

Dancer dataset. In Fig. 10.4, some sampled time instants of the results obtained
using the dancer sequence are shown. In this figure, some of the original input im-
ages are shown next to novel images generated by composing the re-projection of
the reconstructed surface with the original image in order to add the missing back-
ground information in 3D –separate background was not available–. The surfaces
reconstructed with the proposed method –with and without surface colors– and
with EPVH are also shown at the bottom of the figure, seen from a novel virtual
viewpoint.

As it can be observed at the top of the figure, the resulting surface, once
projected onto the original views, presents some artifacts, due to the conserva-
tive method to determine surface sample visibility in the coloring stage and, most
importantly, the type of reconstruction –silhouette-consistent–. However, the re-
constructed surface still accurately describes the surface of the actual dancer up to
a point where it closely resembles the original views after re-projection.

As it is shown at the bottom, the sampling density is high enough to represent
with an acceptable level of precision the texture of the face of the dancer and some
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Figure 10.4: Dancer (8 views). Top: comparison of three original images (left) and the overlay

of the reconstructed surface over the original background (right). Some artifacts are visible, (e.g.

under the arm in the top right view. Bottom: reconstructed surfaces (a) EPVH; (b) proposed and

(c) proposed with color. The proposed method is better oriented to represent per-vertex features

thanks to the dense surface sampling
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details in her dress. This contrasts with the reconstruction provided by the EPVH,
in which most of the triangular faces are of great dimensions, because it is not
oriented to represent per-vertex color information.

Children dataset. At the top of Figures 10.5, 10.6, 10.7, 10.8, 10.9 and 10.10,
some sampled time instants of the sequences of the Children dataset are shown. As
with the previous dataset, some of the original input images are shown next to novel
images generated by composing the projection of the reconstructed surface onto the
original image in order to add the background information. At the bottom of these
figures, both the surfaces reconstructed with the proposed method and EPVH are
also shown.

As a comment about the reconstructed surfaces, the specular reflections at the
top of the red ball in Figs. 10.5 or 10.8 are lost due to the color average that takes
place in the coloring stage (Section 6.5.3 from the chapter devoted to statistical
surface sampling). One limitation of the proposed method is shown in Fig. 10.10.
Due to the specific geometry of the string, which does not present a clear orientation
for its surface –it constitutes an almost one-dimensional body immersed in 3D space–
, it is unlikely that its surface can be reconstructed by the statistical surface sampling
method.

Martial dataset. As with the two previous datasets, at the top of Figs. 10.11,
10.12, 10.13, 10.14, 10.15, 10.16 and 10.17, some results for sampled time instants
of the sequences in the Martial dataset are shown. At the bottom of each figure,
the surfaces corresponding to some of these sampled time instants are seen for novel
virtual viewpoints.

Again, a problem related to the geometry of the surface arises in Fig. 10.11.
Although this time most of the surface of the stick held by the performer is recon-
structed, it clearly shows that the sampling strategy does not adapt properly to
these structures. In the other sequences, the behavior of the method is such that
the re-projected surfaces closely resemble the original images, although they lack
specular reflections and present some coloring artifacts due to the high resolution
of the input images and the relatively sparse surface sampling.

Overall, the experiments presented in this section are useful as a validation of
the effectiveness of the proposed approach. Indeed, at its output, the proposed
methodology is able to accurately represent the surfaces of the foreground objects
in multi-view scenes, including color information. This representation is useful for
visualization, as demonstrated by the projection of the reconstructed surfaces onto
novel viewpoints shown at the bottom of each figure.

Furthermore, since the information about these surfaces is presented as a single
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Figure 10.5: Antoine, from the Children dataset (16 views). Top: comparison of three original

images (left) and the overlay of the reconstructed surface over the original background (right).

There are some visible artifacts (e.g. the missing specular reflections on the top of the ball in the

middle right image). Bottom: reconstructed surfaces (a) EPVH; (b) proposed and (c) proposed

with color
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Figure 10.6: Antoine assis ballon (16 views). Top: comparison of three original images (left)

and the overlay of the reconstructed surface over the original background (right). The most visible

artifact is in the transition between the ball and the left leg in the bottom right image. Bottom:

composition of reconstructed surfaces in the three time instants for (a) EPVH; (b) proposed and

(c) proposed with color
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Figure 10.7: Antoine Edmond ballon (16 views). Top: comparison of three original images (left)

and the overlay of the reconstructed surface over the original background (right). Some artifacts

are visible, e.g. the missing color at the bottom of the ball in the bottom right image, or the

missing specular reflection on the top of the ball. Bottom: reconstructed surfaces (a) EPVH; (b)

proposed and (c) proposed with color
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Figure 10.8: Antoine Lucie (16 views). Top: comparison of three original images (left) and the

overlay of the reconstructed surface over the original background (right). The most noticeable

artifacts are the missing specular reflections at the top of the ball in the right images and the loss

of geometric detail around the chest of Antoine. Bottom: reconstructed surfaces (a) EPVH; (b)

proposed and (c) proposed with color
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Figure 10.9: Antoine roue (16 views). Top: comparison of three original images (left) and

the overlay of the reconstructed surface over the original background (right). The most visible

artifact is the loss of detail on the orange hood in the bottom right image. Bottom: composition

of reconstructed surfaces in the three time instants (a) EPVH; (b) proposed and (c) proposed with

color
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Figure 10.10: Lucie corde (16 views). Top: comparison of three original images (left) and

the overlay of the reconstructed surface over the original background (right). A clear artifact

is the loss of the string, which is masked in the top views by the composition with the original

images. Bottom: reconstructed surfaces (a) EPVH; (b) proposed and (c) proposed with color.

The sampling strategy does not adapt well to the geometry of the string
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Figure 10.11: Benjamin baton, from the Martial dataset (16 views). Top: comparison of three

original images (left) and the overlay of the reconstructed surface over the original background

(right). Some artifacts are visible: e.g. the missing colors on the chin in the bottom right image.

Bottom: reconstructed surfaces (a) EPVH; (b) proposed and (c) proposed with color. As in Fig.

10.10, the sampling strategy does not adapt well to the geometry of the stick
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Figure 10.12: Coup de pied 1 (16 views). Top: comparison of three original images (left)

and the overlay of the reconstructed surface over the original background (right). The most

visible artifact is the wrong coloring of the chest of the standing man in the bottom right image.

Bottom: composition of reconstructed surfaces in two time instants (a) EPVH; (b) proposed and

(c) proposed with color. As seen below, 100000 samples are in the sparse side with this dataset



10.2 Validation 163

Frame Original Overlay

0

120

239

(a) (b) (c)

Figure 10.13: Coup de pied 2 (16 views). Top: comparison of three original images (left) and

the overlay of the reconstructed surface over the original background (right). A visible artifact

is the lack of detail around the belt of the man at the left side of the bottom right image. Bot-

tom: composition of reconstructed surfaces in two time instants (a) EPVH; (b) proposed and (c)

proposed with color. Again, 100000 samples are sparse for representing all the detail
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Figure 10.14: Parade coup de point 1 (16 views). Top: comparison of three original images (left)

and the overlay of the reconstructed surface over the original background (right). Some artifacts

are visible, e.g. the missing detail on the hair of the man getting up in the bottom right image.

Bottom: composition of reconstructed surfaces in two time instants (a) EPVH; (b) proposed and

(c) proposed with color
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Figure 10.15: Parade coup de point 2 (16 views). Top: comparison of three original images

(left) and the overlay of the reconstructed surface over the original background (right). The most

visible artifact is the lack of detail around the belt of the man facing the camera in the top right

image. Bottom: reconstructed surfaces (a) EPVH; (b) proposed and (c) proposed with color. The

face of the man looking down has not been completely colored due to its orientation
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Figure 10.16: Saisie col (16 views). Top: comparison of three original images (left) and the

overlay of the reconstructed surface over the original background (right). A visible artifact is the

lack of resolution on the face of the turning man in the bottom right image. Bottom: composition

of reconstructed surfaces in two time instants (a) EPVH; (b) proposed and (c) proposed with

color. The reconstruction from EPVH cuts the head of the man in one of the time instants
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Figure 10.17: Saisie poigne (16 views). Top: comparison of three original images (left) and

the overlay of the reconstructed surface over the original background (right). Some artifacts are

visible: e.g. the missing detail on the hair of the man facing the camera in the bottom right image.

Bottom: composition of reconstructed surfaces in two time instants (a) EPVH; (b) proposed and

(c) proposed with color
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Figure 10.18: Average PSNR of the foreground pixels of the re-projection of the dancer sequence

on the view with largest silhouette for different amounts of surface samples. From 20000 samples

on, the method performs at its best level of quality

instance, containing both geometry –topology and orientation– and color informa-
tion, it can also be used for further analysis. The correctness of the surface topology
obtained with the meshing approach presented in Part II of this thesis has proven
useful in order to correctly interpolate the surface color between samples.

Efficiency

The efficiency of the methodology presented in this thesis is also based on the suit-
able representation of highly redundant data from multi-view settings as a unique
instance, containing all the relevant information about the foreground objects. This
is possible when the background is known and static, as occurs in the sequences
presented for the experiments in this section.

The main idea behind this experiment is to compare the transmission or stor-
age resources that are required to represent the relevant information of multi-view
sequences when either an image-based representation of the scene or a 3D model of
the foreground are chosen for representing the multi-view data.

The first question that arises when trying to compare the resources required by
either approach is how to choose a reasonable surface sampling resolution given a
set of multi-view video sequences. A possible answer to such question, which is the
one we apply here, is to choose a surface sampling density such that an increase of
such density does not produce a significant gain in accuracy.
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Figure 10.19: Average PSNR of the foreground pixels of the re-projection of the antoine edmond

sequence on the view with largest silhouette for different amounts of surface samples. From 50000

samples on, the method performs at its best level of quality

Accuracy. In order to quantify the accuracy, we use the PSNR between the re-
projected surface onto the original viewpoints and the foreground pixels of the
original images, which are the only ones used for reconstruction. In the sequences
used for our experiments, we have found that the most limiting view in terms of
PSNR is that in which the foreground objects occupy most space in the image.
This seems reasonable, since more samples are expected to be required in order to
accurately represent the contents of a larger number of pixels.

In Fig. 10.18, the average PSNR in the most limiting view of the dancer se-
quence, with increasing number of surface samples, is shown. Equivalently, in Fig.
10.19 and Fig. 10.20, the average PSNR of the antoine edmond ballon sequence from
the children dataset and that of the saisie col sequence from the martial dataset
are shown, respectively.

In all cases we observe that the surface reconstruction system reaches a limit of
PSNR for a certain sampling density (∼50 dB for the sequences from the dancer
and martial datasets and ∼70 dB for the sequence from the children dataset),
beyond which little variation in the average PSNR occurs. In some cases it can
even decrease. We attribute this to the reconstruction of regions corresponding to
shadows for certain sampling densities.

In Fig. 10.21, the re-projection on the most limiting view of the surfaces obtained
from a frame in each sequence are shown for increasing number of surface samples.
As suggested by the charts, given a sufficient surface sampling, further increasing
the sampling density does not produce a significant gain in re-projection accuracy.

For the sequence from the dancer dataset, a number of 20000 surface samples
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Figure 10.20: Average PSNR of the foreground pixels of the re-projection of the saisie col

sequence on the view with largest silhouette for different amounts of surface samples. From

200000 samples on, the method performs almost at its best level of quality

(between the second and third row in Fig. 10.21) already reaches a reasonable level
of accuracy for the most limiting image in the multi-view set. For the sequence
from the children dataset, a number of 50000 surface samples (third row in the
same figure) is already approaching the limiting accuracy, whereas for the sequence
from the martial dataset, 200000 surface samples (fourth row) retrieves the right
level of detail.

Sampling density. In order to put these figures in a common framework, we
normalize both the average PSNR by its maximum value and the number of surface
samples by the maximal number of pixels in the most limiting view of each of the
processed sequences and show the resulting evolutions in Fig. 10.22.

As shown in the chart, a reasonable choice for the number of surface samples
in the sequences used for these experiments would be approximately equal to the
number of foreground pixels in the most limiting view. However, in order to be on
the safe side, a more conservative, yet still economical, choice would be to take a
number of surface samples of approximately twice as many as foreground pixels in
the most limiting view –that with the largest silhouette–.

This choice seems also reasonable when we think about an approximately sym-
metric foreground object –like a cylinder– with a very small scale texture covering
its surface. In such a scenario, approximately half of the surface samples would
project onto the most limiting view, since half the complete surface would be hid-
den by the visible half. In that case, in order to retrieve the small scale texture by
re-projection of the samples, a sampling density of at least one visible surface sam-
ple per pixel would be required, assuming a uniform distribution of the projection
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Figure 10.21: From top to bottom, surfaces reconstructed using 2000, 10000, 50000, 200000 and

1000000 output surface samples. 10% of these samples are obtained as seed samples and the rest

through the propagation mechanism in statistical surface sampling
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Figure 10.22: Relative PSNR with respect to the maximum in sequences from the dancer,

children and martial datasets as a function of the ratio between the number of surface samples and

the number of foreground pixels in the view where they take most image pixels. As a consequence,

a number of surface samples of around twice the number of pixels occupied by the foreground

objects in the most limiting view seems to be a safe, yet economical, choice

of the samples. Since most of the surfaces in natural scenes are expected to have
less detail than the assumed in this example, a total number of surface samples of
around twice as many as foreground pixels in the most limiting view is a plausible
choice. With this result, we can assume to have an efficient, accurate sampling,
with controlled losses, when the rule of thumb presented above is considered.

Resources. From the charts in Figs. 10.18, 10.19 and 10.20, a number of surface
samples larger than 20000, 50000 and 200000 suffice in order to accurately represent
the information contained in the views of the sequences from the dancer, children
and martial datasets, respectively. In order to stay in the safe side, 50000 surface
samples are used for dancer, 100000 for children and 500000 for martial.

Using these values, which provide the best accuracy in terms of re-projection
while using a slightly over-dimensioned amount of resources, a fair comparison can
be made about the resources needed to store or transmit the multi-view sequences
with a classical image-based manner and with the representation proposed in this
thesis, which still introduces losses. This comparison highlights the efficiency of the
proposed method, but it does not pretend to introduce the methodology presented
in this thesis as a coding mechanism –e.g. [Mueller et al., 2009]–.

In case of representing the multi-view streams of the sequence from the dancer
dataset as sets of lossless PNG images, a total of 808 MB need to be stored (or trans-
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Representation Compression
dancer children martial
8 views 16 views 16 views
780×582 1624×1224 1624×1224

Image-based
PNG frames 808 MB 12 GB 27.2 GB
H.264 lossless 352 MB 4.6 GB 4.3 GB

Surface-based
FG Uncompressed 756 MB 2.4 GB 12.1 GB
FG OpenCTM 76 MB 242 MB 1.2 GB
(PSNR) 50.72 dB 70.85 dB 48.40 dB

Table 10.5: Comparison of the data required to represent multi-view sequences in a classical

image-based manner –either as individual frames or exploiting temporal redundancies as lossless

video sequences– and using the approach presented in this thesis, keeping the background as a set

of PNG images and exploiting spatial redundancies in order to represent the foreground

mitted), without considering the additional capacity required for the foreground
silhouettes. In contrast, a surface-based representation where a set of images con-
taining the static background is stored (transmitted) only once as a set of PNG
images, and the complete geometry and color of the foreground elements is rep-
resented in a compact form for each frame –without compression–, requires 756
MB.

The gain in this case is not dramatic, due to the relatively sparse set of views
(only 8) and the low resolution of the input images. However, lossless compressing
the geometry using the open source mesh file format OpenCTM [Geelnard, 2010],
the latter figure shrinks to just 76 MB. This does not only introduce a clear gain
with respect to the former figure, but also when compared to the introduction of
lossless video coding –H.264 lossless–, where the initial 808 MB are reduced to just
352 MB by the exploitation of temporal correlation.

In the other two sequences, where the number of views (16) and the image
resolution are both larger, further shrinkage of storage or transmission resources
are achieved. All these figures are summarized in Table 10.5. The main conclusion
that can be extracted from the presented figures is that the introduction of losses
with respect to the original images due to the reconstruction process –silhouette-
consistent in this case– is counter-balanced by the efficiency of the representation
in terms of required resources.

This last experiment showcases the suitability of the proposed approach in terms
of its efficiency. It clearly provides a suitable representation of the multi-view data
by exploiting the spatial redundancies in the original views, which could still be
enhanced by exploiting temporal redundancies using a dense motion estimation as
the one presented in Chapter 5. This efficiency justifies its potential for real-time
analysis and visualization applications.
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10.3 Conclusions

In this chapter, two different types of experiments have been presented, which
validate the multi-view reconstruction approach followed in this thesis, based on
the division of the surface reconstruction task in two stages: the first one devoted
to the sampling of the surfaces of foreground objects and the second one devoted
to their interpolation in order to retrieve continuous surfaces. These two types of
experiments, which are grouped in two sets of results, are:

• A comparison to a baseline system, in order to characterize the speediness
and effectiveness –usability of the reconstructed surfaces– of the proposed
approach, using both synthetic and real data.

• A validation of the effectiveness –retrieval of the original images by re-projection,
quality of the surfaces- and the efficiency –compression of the multi-view
redundancies– of the proposed methodology, using high-quality multi-view
data from [4D Repository, 2010].

The first set of experiments has shown how the proposed methodology permits
obtaining more accurate reconstructions faster, with smaller computing times when
compared to a system composed by classical techniques for volumetric reconstruc-
tion –voxelized shape-from-silhouette– and surface extraction –marching cubes–.
This reflects the suitability of the design decision of directly reconstructing the sur-
faces with a set of conveniently designed algorithms in contrast with volumetric
techniques, which spend a large part of their computational resources in regions
not containing surfaces.

The last part of this first set of experiments also presents, qualitatively, the
idea that the proposed representation is effective, for it can be used for a potential
free-viewpoint video application. This idea is followed by the first part of the
second set of experiments, where the proposed methodology shows its capability
for recovering the contents of the original images with a high degree of fidelity
by re-projecting the surface reconstructions of the foreground objects and adding
background information. It also shows that the quality of the reconstructed surface
can rival with that of a state-of-the-art technique (EPVH).

The last experiment in the second set demonstrates the efficiency of the re-
sulting data representation for multi-view video sequences with known and static
background. Accepting a reasonable level of losses, due to the reconstruction process
–silhouette-consistent–, the resulting surface-based representation greatly reduces
the required amount of computational resources for storing or transmitting the
multi-view data. This could still be improved by exploiting temporal redundancies
in order to represent the foreground –moving– elements in multi-view sequences.
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As a result of the presented experiments, we have also derived a rule of thumb for
the required surface sampling density in order to represent the information contained
in the original images with minimal losses: a reasonable number of surface samples
is approximately twice the number of foreground pixels in the view with the largest
foreground silhouette.





Chapter 11

Conclusions

T
he main goal of this thesis, summarized in a single sentence, was to
obtain a fast –towards real-time–, efficient –within a compressed/lim-
ited support–, effective –exploitable by forthcoming applications– and

unique surface-based representation of each frame in multi-view video sequences,
which provides all the relevant information contained in the original streams and
can be used for both interactive visualization and analysis applications.

In order to obtain such surface-based representation, a strategy consisting in
dividing the surface reconstruction task in two stages has been chosen. First, one
of the surface sampling strategies proposed in the first main part of the dissertation
manages to find a dense cloud of surface points with additional information, such
as orientation or color. Next, a fast meshing algorithm is responsible for obtaining
the closed, continuous surface out of the samples, which can be used to interpolate
the sampled surface features, let them be color, texture, orientation, velocity or any
other features of interest.

In this closing chapter, we will first summarize the contributions that resulted
from the research on effective, efficient and fast strategies for obtaining surface
representations suitable for both analysis and visualization. Then, a number of
future lines of work are proposed as either extensions or alternatives to the proposed
framework.

11.1 Summary of Contributions

Checking the contents of the two parts of this thesis, different achievements have
been made in each of the chapters, effectively contributing to the ultimate goals
presented in the introduction in Chapter 1. These contributions basically consist in
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the design of methods to obtain the required output representation in every stage
–surface sampling and surface interpolation– which are oriented towards real-time
applications.

11.1.1 Surface sampling

In Part I, different strategies for sampling the surfaces of objects of interest (fore-
ground objects in scenes with known, static, background) in multi-view settings
have been presented, each with its advantages and drawbacks. However, they all
fulfill one of the conditions of the proposed thesis, which is that they should be
able to work in scenarios with arbitrarily wide baselines. Three different sampling
strategies have been presented, comprising one chapter each.

Image-based surface sampling

In the first chapter devoted to surface sampling, an image-based sampling strategy
has been presented, which succeeds at obtaining a pixel-wise photo-consistent sur-
face from a set of views in an arbitrarily-wide baseline setup. This approach, which
provides an accurate sampling of the visible features and an implicit handling of
visibility, has two important drawbacks: on the one hand, it does not provide of
closed surfaces; on the other, the strategy for search of surface samples does not
provide a natural mechanism to exploit temporal redundancies in multi-view video
sequences.

Surface sampling by deformation

In the second presented strategy for surface sampling, the design is driven by the
search of a solution to the two main drawbacks of the previous approach. The tech-
nique, which consists in a continuous deformation of an existing surface from frame
to frame in order to fit the multi-view silhouette constraints, succeeds at providing
a closed surface. Not only the reconstructed surfaces are closed, but the proposed
technique is also able to track their evolution in sequences, reducing the search area
for surfaces in every instant and, therefore, also reducing the computational cost of
reconstruction by exploiting temporal correlations.

However, this technique looses the efficiency at imposing photo-consistency of
the previous approach and presents a feature that makes it difficult to use in a
platform for massive parallelization, such as a GPU, due to the design of its initial-
ization algorithm. Furthermore, it is costly to obtain a high sampling density in its
initialization stage when the working space around objects of interest is large.
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Statistical surface sampling

In the third chapter devoted to surface sampling, an alternative approach that
drives the search for surface samples in a statistical manner is presented. The
main advantage of this approach is that, although it initially generates a sparse
surface sampling with a low search efficiency in large volumes –scouting–, an efficient
search strategy in regions very likely containing surface samples around existing
ones provides a fast sampling of surfaces –propagation–. This feature improves this
sampling strategy’s ability –compared to that of the one based in the deformation of
an existing closed surface– of providing surfaces with a sampling density such that,
once re-projected onto the original viewpoints, accurately describe the contents of
the original images. In this sense, the algorithm does not only exploit multi-view
redundancies, but also spatial correlation on the distribution of surface samples.
Furthermore, the algorithm can also benefit from the correlations in the temporal
axis. The inefficient initial search for a sparse sampling of the surface is not required
from frame to frame. Instead, a search over a suitably smaller range around each
sample can be used for scouting. The exploitation of multi-resolution also provides
a comparable improvement of the efficiency of the scouting stage.

Even though this technique still presents a limitation when compared to the
image-based approach (the application of photo-consistency constraints still requires
costly global visibility computations), the algorithm on which it is based is easy to
parallelize, which makes it suitable to its application in GPU contexts. In this
sense, recent results in a Master’s Thesis, developed by the undergraduate student
Marc Maceira and co-directed with my advisor, have shown the advantages of using
a surface-oriented, massively-parallel algorithm as the statistical surface sampling
in a GPU, resulting in a real-time implementation. Furthermore, this sampling
strategy is the fastest among the three presented in this thesis, showing the smallest
computation time for a given number of surface samples, especially with a large
number of input views, where the proposed approach best shows its potential by
the efficient exploitation of spatial correlation.

11.1.2 Surface interpolation

In Part II, a fast strategy for generating a closed, continuous surface out of a dense
enough set of surface samples is presented, which results in a triangle mesh that
can be used to interpolate the information contained in the surface samples. Com-
pared to other meshing techniques in the state-of-the-art, the proposed algorithm
is generally faster and provides better accuracy –in terms of Hausdorff distance to
ground-truth surfaces–. It is based on a propagation-based scheme which robustly
generates a starting triangular oriented face and iteratively propagates through the
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current contour on the set of available surface samples until completely covering the
surface.

The technique is efficient, using suitable data structures both for spatial queries
–kd -tree– and for topology control –half-edge structure–. The algorithm also shows
robustness to uneven distributions of surface samples. The spatial queries provided
by the kd -tree, in contrast to the use of volumetric, fixed-size bins with close surface
samples, are such that even samples unevenly distributed can be retrieved at the
expense of an increase of computational cost by varying the number of nearest-
neighbors query results. Thus, the algorithm does not require additional iterations
at different scales in order to provide a closed surface.

A limitation of the proposed, propagation-based meshing algorithm exists with
respect to another family of existing techniques, based on the definition of a volu-
metric representation by the application of a certain spatial regularization method
and final surface extraction via marching cubes. This limitation is that the loca-
tion of noisy samples is not corrected by imposing global constraints. However,
the reverse of this limitation is that every vertex in the resulting mesh will exactly
coincide with an input surface sample. Given a noise-free set of surface samples,
this is the most accurate and fastest method to linearly interpolate a continuous
surface with the information contained in the samples.

11.1.3 Accomplishments

Regarding the ultimate goals of this thesis as presented in the introduction, the
contributions of this thesis can be summarized as follows:

• A unique surface-based representation of the multi-view information data,
which is efficient –it compresses the multi-view information–, effective –suitable
for analysis and visualization– and accurate –minimizing losses– has been ob-
tained.

• The original images can be approximated –with minimal losses– by re-projection
of the unique surface-based representation, which means all the relevant in-
formation regarding the original views is kept, with the addition of the 3D
structure of the scene.

• Spatial and temporal correlations in multi-view video sequences have been
exploited in order to reduce the computation time and make the surface re-
construction strategy suitable for real-time operation for both visualization
and analysis applications.

• A triangular mesh that represents a closed surface has been obtained in a
usable computation time, as a contrast with many of the techniques in the
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state-of-the-art. Such a surface produces a compression of the multi-view data
when the static background can be separately treated.

Several publications have resulted, which directly reflect, or are derived from,
the achievements related to the methods and the results obtained during the devel-
opment of this thesis. These are listed in Appendix D.

11.2 Future Work

As stated above, this thesis has succeeded in providing a solution to the problems of
defining a methodology to compactly represent multi-view data by approximating
the 3D information lost during the imaging process taking part in each camera.

Indeed, the followed approach, consisting in a division of the reconstruction
process of the surfaces of foreground objects in multi-view sequences in two stages
–surface sampling and surface interpolation– has successfully provided a means to
determine the location and orientation of surfaces using a sample-based represen-
tation –Part I– and provide topologically correct, closed, continuous surfaces that
approximate those of the actual 3D scene –Part II–.

However, some extensions to the methodology proposed in this thesis could be
introduced in order to increase the suitability or applicability of the provided 3D
data representation to different types of applications, which are out of the scope of
this thesis.

11.2.1 Surface sampling

Common to all the surface sampling strategies presented in this thesis, and specially
indicated for the image-based surface sampling strategy, it would be interesting to
consider a tighter scenario, such as the typical one in Multi-View Stereo (MVS).
With small-baseline setups, photo-consistency measurements of higher quality, such
as normalized cross-correlation, can be applied when surfaces contain a suitable
amount of texture. Combining high-quality photometric measurements with good
quality silhouettes by imposing spatial regularization in a variational formulation
could provide a higher level of accuracy than the one obtained under the consider-
ation of arbitrarily wide-baseline setups.

Regarding the strategy for surface sampling by deformation, it would be wise
to introduce spatial regularization in the tracking part of the algorithm in a more
principled manner. This could be done by introducing the meshing of the surface
samples in the sampling strategy with the use of MVS in small-baseline scenarios and
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without the strong limitation of close-to-real-time performance: once the initial set
of high-quality surface samples have been obtained, the surface can be assumed to
have the correct topology –which cannot be said from silhouette-consistent surfaces–
and subsequent deformations can be applied on the resulting surface by using linear
programming [Botsch and Sorkine, 2008], or even non-linear approaches [Botsch
et al., 2006] in order to fit the new data constraints imposed by each new frame.

In the statistical strategy for surface sampling, it would be interesting to drive
the sampling procedure by the scene contents of interest for a given application. For
example, if gesture recognition was to be applied on multi-view data, an enhanced
level of detail in the representation of limbs and head could be used to improve
the fitting of an existing model –with approximately known pose– to the recon-
structed data, using algorithms such as Iterative Closest Point or other variants
[Rusinkiewicz and Levoy, 2001]. Such improvement in accuracy could be obtained
by favoring the propagation in those areas of interest at the cost of a smaller sam-
pling density over the rest of the surface. It would furthermore conform an interest-
ing showcase of the suitability of the proposed statistical sampling strategy, driven
by the exploitation of spatial correlation on the location of surface samples.

11.2.2 Surface interpolation

With respect to the meshing algorithm presented in this thesis, which is used in
the surface interpolation stage, it could be sped-up by dividing the meshing of the
complete surface into the meshing of several parts and posterior stitching. This ap-
proach would better exploit the multi-core architecture of current CPUs, although it
would also introduce the problem of correctly stitching the different surface patches
reconstructed in each thread without producing topological errors.

11.2.3 Background reconstruction

Last but not least, in the development of this thesis it has not been discussed how
to proceed with the background. Indeed, assuming all the information of interest
is contained in the foreground of the scene, this part of the image contents –which,
in wide-lens cameras can take around 90% of the area– has been deliberately left
apart for only using it in order to approximate the original images by re-projection
of the reconstructed surfaces.

When the background occludes any of the foreground objects for any of the
views, this cannot be ignored and its effect has to be considered in the recon-
struction of the dynamic part of the scene. In order to be able to obtain a 3D
representation of the background, expensive laser-scan techniques could be used
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at a pre-processing stage. However, more flexible methods for reconstructing well-
structured large regions without rich texture could also be applied, related to the
approach presented in [Furukawa et al., 2009].

11.3 Perspectives

Observing the impact of multi-view systems in the research community, it seems
reasonable to imagine a future arrival of systems exploiting the enriched available
information of multi-view recording to the mainstream audio-visual industry.

Following the evolution of TV systems –first from black-and-white to color sys-
tems, then from color to high-definition systems, now from high-definition to stereo-
scopic (3D) systems–, a likely step ahead in the future is free-viewpoint video. In
order to create realistic applications of this type, it will be necessary to augment the
audio-visual transmitted information. Whereas there are on-going works about the
efficient transmission of multi-view streams, with this thesis we clearly recall the
alternative solution, consisting in representing the dynamic part of the multi-view
scene (foreground) by using a unique 3D support, treated separately from the rest
of the elements of the scene included in the background.

In the last years, an increasing part of the bi-directional communication has
jumped from telephonic calls to video-conferencing, providing an enriched telecom-
munication experience. Related research on haptic technology attempts to provide
a new dimension of realism to this experience, as well as in the field of human-
computer interaction (HCI). There is also on-going research in systems for bi-
directional video-communication with multi-view systems [3D Presence, 2010, Vi-
sion, 2010]. These can also contribute to the realistic perception for the interlocutors
by allowing free mobility in a virtual conferencing space.

In order to achieve this, an important challenge will have to be faced by the
audiovisual industry: the introduction of multi-view settings as part of mainstream
audiovisual setups not only in recording studios, but also in homes. In this aspect,
we have already seen how monocular cameras have been added to all types of devices
–e.g. laptops, cell phones or video-gaming systems–. Also, one of the most quickly
market-penetrating new technology devices in history –Microsoft’s Kinect– has open
the door to visual communication increased with depth and advanced HCI to the
mainstream.

The next step is to increase the number of sensors in the user space. Although
this is a critical step, it has already proven to be accessible in audio applications:
starting from the last decade of the 20th century, a large amount of users have
switched from stereo reproduction systems to multi-channel ones, despite of the
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higher space, cabling and cost requirements of the latter. This shows that, given a
sufficient amount of new applications, quality and features of interest for the target
user, may be motivating enough to adopt multi-view bi-directional communication.

In this second application field, the restriction on the smallest achievable baseline
shows up even more clearly than in the scenarios considered in this thesis. It is in
these new scenarios where the segregation of foreground and background parts of
the scene is not only convenient, but also necessary in order to successfully process
the rather sparse multi-view data that is expected to be available, at least in a near
future.

To sum up, we expect to see a growing number of systems exploiting multi-view
data, either for communication, analysis for HCI or free-viewpoint television, where
some of the concepts in this thesis find an application towards economical, accessible
systems for the mainstream audiovisual industry.
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Appendix A

Camera Model

I
n order to relate the contents of the real world with that of a number of
cameras capturing views of it, a parametric model of the camera has to be
considered. The parameters of such a model can be obtained by different

camera calibration methods, the working principle of which lies beyond the scope of
this appendix. In the following, the availability of calibrated parameters is assumed,
with a re-projection error smaller than one pixel.

A camera model is generally described by means of two types of parameters,
which either model the position and orientation of the camera –extrinsic param-
eters– or geometric aspects regarding the image creation process of the device
–intrinsic parameters–. Then, few concepts about back-projection and epipolar
geometry are discussed. A more complete introduction to camera geometry can be
found in [Hartley and Zisserman, 2000].

A.1 Extrinsic Parameters

The extrinsic parameters describe the orientation and position of a camera with
respect to a reference coordinate system. Therefore, this part of the camera model
can be properly described by means of a rigid transformation, consisting in a rota-
tion followed by a translation. Such transformation, once applied onto a 3D point
described by means of the reference coordinate system, provides the new coordi-
nates of the point referred to a new coordinate system aligned with the camera with
its origin at its center of projections –the “camera position”–.

Let X be a 3D point in the reference coordinate system of the real world, R the
axis rotation, T the translation and X� the same 3D point referred to the coordinate
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system aligned with the camera. Then,

X� = RX + T =





R11 R12 R13

R21 R22 R23

R31 R32 R33



X +





T1

T2

T3



 (A.1)

Although it could also be equivalently described in reverse order –a translation
followed by a rotation–, it is more convenient the former option. The reason is that,
when using homogeneous coordinates, the previous expression can be compacted
to a single matrix operation. Let X̃ be the point X in homogeneous coordinates,
obtained as

X̃ =

�
X
1

�
. (A.2)

Using homogeneous coordinates, Equation A.1 can be written as

X� =





R11 R12 R13 T1

R21 R22 R23 T2

R31 R32 R33 T3



 X̃. (A.3)

A.1.1 Camera position

The position of the camera can be described by the position in world coordinates
at which its center of projections lies. Let XCoP be such point and X�

CoP
the same

point described in the coordinate system aligned with the camera. By construction
of the camera-aligned coordinate system,

X�
CoP

=





0
0
0



 . (A.4)

Then, XCoP can be obtained as

XCoP = R−1 (X�
CoP

−T) = −R−1T. (A.5)

Using the property that a rotation matrix is orthogonal (RR� = R�R = I), the
previous expression can be written as

XCoP = −R�T. (A.6)

A.1.2 Camera orientation

The camera-aligned coordinate system has the z�-axis orthogonal to the image plane,
oriented towards the scene. The x�-axis has the usual horizontal direction on the
image plane, oriented from left to right, whereas the y�-axis corresponds to the
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vertical axis on the image plane, oriented from top to bottom. Thus, the camera
orientation z� equals the third row of the rotation matrix R:

z� =





R31

R32

R33



 . (A.7)

A.2 Intrinsic Parameters

The intrinsic parameters describe the geometry of the imaging process that takes
place in the camera. Some models assume the absence of image distortion that
appear when using optical lenses, whereas others take this effect into account and
model it conveniently.

A.2.1 Pinhole camera model

The pinhole camera consists in a small aperture without a lens through which light
rays traverse. Therefore, it does not contain optical distortion that appears when
using a lens. This model can be conveniently expressed in terms of the calibration
matrix K:

K =





f · sx λ cx

0 f · sy cy

0 0 1



 . (A.8)

In this model, f · sx and f · sy are the horizontal and vertical focal lengths, re-
spectively, expressed in pixels units. Since most cameras nowadays do not present
centering imperfections, the skewness parameter λ can be assumed to be zero. Fi-
nally, (cx, cy) are the coordinates of the camera’s principal point (ideally at the
image center) also in pixel units. With this, the pixel coordinates x = (u, v) corre-
sponding to the projection of a 3D point expressed in the camera coordinate system
X� can be obtained as

z�





u

v

1



 = KX�, (A.9)

where the natural perspective correction (scaling the pixel coordinates by the point’s
depth with respect to the camera z�) is also applied.

A.2.2 Lens distortion

However, real lenses usually have some distortion, mostly radial and slight tan-
gential. Let z�x̃� = z�(x̃�, ỹ�, 1)� be the perspective-corrected camera coordinates
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before scaling with the calibration matrix K. The distorted equivalent, z�x̃�
d

=
z�(x̃�

d
, ỹ�

d
, 1)�, can be obtained as:

x̃�
d

= x̃�(1 + k1r2 + k2r4 + . . . ) + 2p1x̃�ỹ� + p2(r2 + 2x̃�2)
ỹ�

d
= ỹ�(1 + k1r2 + k2r4 + . . . ) + p1(r2 + 2ỹ�2) + 2p2x̃�ỹ�

(A.10)

where r2 = x̃�2 + ỹ�2, k1 and k2 are the normalized radial distortion coefficients, and
p1 and p2 are the normalized tangential distortion coefficients. The distorted pixel
coordinates xd = (ud, vd) can be obtained as

z�





ud

vd

1



 = K





z�x̃�
d

z�ỹ�
d

z�



 . (A.11)

Distortion correction

In order to correct the distortion present in the images captured by a real-world
camera –especially those with a wide-angle lens–, the image must be warped by the
inverse function applied in order to distort the projected coordinates. This can be
easily done for every undistorted pixel x = (u, v) by computing its distorted coordi-
nate xd = (ud, vd) using Eqs. A.10 and A.11 and taking the bi-linear interpolation
of the values in the four closest pixels to xd as the value for the undistorted pixel
x.

With this, undistorted images are slightly blurred but, in exchange, camera
calibration can be used without taking distortion into consideration. The complete
set of matrices in order to obtain the image coordinates x = (u, v), corresponding
to the projection a 3D point in homogeneous world coordinates X̃ onto a camera
image with calibration matrix K and pose (R|T) is:

z�





u

v

1



 = K(R|T)X̃ = P X̃, (A.12)

where P is called the projection matrix.

A.3 Back-Projection

Two different types of back-projection of an image point are considered. If the depth
z� of the image point is known (range data, stereo, . . . ), the exact position of the
3D point originating the image point can be obtained in a straightforward manner,
whereas in a more general case where the depth is unknown, the back-projection
will result in a ray passing through the camera center and the pixel on the image
plane.
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A.3.1 Known depth

Given an image point x = (u, v) with known depth z�, the equivalent point before
perspective correction –projective coordinates– is z�x̃ = z�(u, v, 1)�. The corre-
sponding 3D point expressed in world coordinates X with known camera parameters
K and (R|T) can be simply computed as

X = R� �
K−1z�x̃−T

�
= z�(KR)−1x̃ + XCoP , (A.13)

where XCoP = −R�T is the camera center.

A.3.2 Unknown depth

Given a point x without known depth in an image and known camera parameters
K and (R|T), an infinite set of 3D points map to this image point. This set is a
ray in 3D space, Γx, passing through the camera center XCoP = −R�T. The other
known point of the ray is the image point.

Since in this case the depth is unknown, we define a parametric equivalent point
before perspective correction as λx̃ = λ(u, v, 1)�. Proceeding in the same manner
as in the previous case with known depth, we obtain

X(λ) = R� �
K−1λx̃−T

�
= λ(KR)−1x̃ + XCoP , (A.14)

or, expressed as a set,

Γx =
�
X(λ) = XCoP + λ(KR)−1x̃|λ ∈ R+

�
. (A.15)

In this case, the unknown depth z� is used as a parameter, λ, that produces a
back-projected ray with its variation.

A.4 Epipolar Geometry

The epipolar geometry between two views is based on three entities:

• The epipole is the point of intersection of the line joining the two camera
centers (the baseline) with the image plane. Equivalently, the epipole is the
image in one view of the camera center of the other view.

• An epipolar plane is a plane containing the baseline.

• An epipolar line is the intersection of an epipolar plane with the image plane.
As all epipolar planes contain the baseline, all epipolar lines must meet at the
epipole.
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Let x̃1 and x̃2 be two image points in projective coordinates in cameras 1 and
2, respectively, and let l1 and l2 be the epipolar lines of x̃2 in camera 1 and of x̃1

in camera 2, respectively. There exists a rank-2 matrix F12 –which is called the
fundamental matrix– satisfying

l2 = F12x̃1. (A.16)

By definition, x̃ ∈ l2 ⇔ x̃�l2 = 0, which results in

x̃�F12x̃1 = 0, ∀x̃ ∈ l2. (A.17)

As a consequence of this, and the symmetry of the problem, it is also true that

l1 = F21x̃2 = F�
12x̃2. (A.18)

Related to the back-projection of an image point, line l1 corresponds to the image
in camera 1 of the back-projected ray of image point x2 in camera 2.

A.4.1 Derivation of the fundamental matrix

Let P1 and P2 be the projection matrices of cameras 1 and 2, respectively. We denote
by X̃CoP,1 and X̃CoP,2 the centers of projection of cameras 1 and 2, respectively, in
homogeneous world coordinates. Finally, let ẽ1 = P1X̃CoP,2 and ẽ2 = P2X̃CoP,1 be
the epipoles in projective coordinates in cameras 1 and 2, respectively.

Under these assumptions, we can affirm that the following points belong to the
back-projected ray of x1:

• The projection center of camera 1: X̃CoP,1.

• P+
1 x̃1, where P+

1 = P�
1 (P1P�

1 )−1 is a pseudo-inverse matrix of P1, i.e. P1P
+
1 =

I3.

As a consequence, P2(P+
1 x̃1) and ẽ2 = P2X̃CoP,1 will be two points lying in the

epipolar line l2. Thus, the epipolar line l2 can be computed as

l2 = ẽ2 × P2(P+
1 x̃1) = F12x̃1. (A.19)

So the final expression of the fundamental matrix is

F12 = [ẽ2]×P2P
+
1 , (A.20)

where the cross product has been expressed as a matrix product with a skew-
symmetric matrix [ẽ2]× constructed as

[ẽ2]× =





0 −ẽ2,z ẽ2,y

ẽ2,z 0 −ẽ2,x

−ẽ2,y ẽ2,x 0



 . (A.21)



Appendix B

kd-Tree

A
kd-tree or k-dimensional tree is a space-partitioning data structure

for organizing points in a k-dimensional space. It is useful for several
applications, such as searches involving a multi-dimensional search

key, e.g. range searches or nearest-neighbor searches [Friedman et al., 1977].

The kd -tree is a special case of binary partition tree in which every node is a k-
dimensional point. Every non-leaf node can be thought of as implicitly generating
a splitting hyperplane that divides the space into two parts, known as subspaces.
Points to the left of this hyperplane represent the left sub-tree of that node and
points right of the hyperplane are represented by the right sub-tree.

The hyperplane direction is chosen in the following way: every node in the tree
is associated with one of the k-dimensions, with the hyperplane perpendicular to
that dimension’s axis. So, for example, if for a particular split the x axis is chosen,
all points in the subtree with a smaller x value than the node will appear in the left
subtree and all points with larger x value will be in the right sub-tree. In such a
case, the hyperplane would be set by the x-value of the point, and its normal would
be the unit x-axis.

B.1 Construction

Since there are many possible ways to choose axis-aligned splitting planes, there
are many different ways to construct kd -trees. The canonical method of kd -tree
construction has the following constraints:

• As one moves down the tree, one cycles through the axes used to select the
splitting planes. (For example, the root would have an x-aligned plane, the
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Figure B.1: Steps in the construction of a kd-tree with maximum-variance splitting axis. From

left to right and top to bottom, a new point from the set at the left side is added to the tree at

the right side of each sub-figure

root’s children would both have y-aligned planes, the root’s grandchildren
would all have z-aligned planes, the next level would have an x-aligned plane,
and so on.)

• Points are inserted by selecting the median of the points being put into the
subtree, with respect to their coordinates in the axis being used to create the
splitting plane. (Note the assumption that we feed the entire set of points
into the algorithm up-front.)

This method leads to a balanced kd -tree, in which each leaf node is about the same
distance from the root. However, balanced trees are not necessarily optimal for all
applications.

Given a list of n points, the following algorithm will construct a kd -tree con-
taining those points. The inputs are a list of ordered points and the position of the
first and last elements to process in the list. Then, the recursive algorithm goes
as follows:
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1. If the first and last element are the same, return immediately.

2. Create a node, containing the splitting axis and the location of the median in
the specified range.

3. Sort the list in the specified range by increasing value in the splitting axis.

4. Recursively create the left sub-tree by calling the function with last := median

and keeping the original first.

5. Recursively create the right sub-tree by calling the function with first :=
median + 1 and keeping the original last.

6. Return the newly created node.

In Fig. B.1, a kd -tree is created by the criterion of maximum-variance splitting
axis. This allows obtaining good search performance in sets including outliers.

B.1.1 Dynamic addition of elements

A new point can also be added to a kd -tree after its construction. First, the tree
must be traversed, starting from the root and moving to either the left or the right
child depending on whether the point to be inserted is on the left or right side
of the splitting plane. Once the node under which the child should be located is
reached, the new point is added as either the left or right child of this leaf node,
again depending on which side of the node’s splitting plane contains the new node.

However, adding points in this manner can cause the tree to become unbalanced,
leading to decreased tree performance. The rate of tree performance degradation is
dependent upon the spatial distribution of tree points being added, and the number
of points added in relation to the tree size. If a tree becomes too unbalanced, it
may need to be re-balanced to restore the performance of queries, such as nearest-
neighbor searching –introduced below–. A reasonable choice for re-balancing the
tree is to construct it from ground, using the current set of points, every time the
ratio between the number of dynamic insertions since the last re-balancing and the
total number of elements of the tree surpasses a certain threshold.

B.2 Queries

Once the tree is constructed, two types of queries can be processed efficiently, in
logarithmic time with respect to the number of elements contained in the tree. The
first one, (k)-nearest-neighbors search, is able to find the k closest points to a given
one, whereas the second one, range search, is able to find all the points at a distance
smaller than a maximum value from a given point.
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B.2.1 Nearest-neighbors search

The nearest-neighbors (NN) algorithm aims to find the points in the tree which are
nearest to a given input point. This search can be done efficiently, in logarithmic
time, by using the tree properties to quickly eliminate large portions of the search
space. Searching for the nearest neighbor in a kd -tree proceeds as follows:

• Starting with the root node, the algorithm moves down the tree recursively,
in the same way that it would if the search point were being inserted (i.e. it
goes right or left depending on whether the point is greater or less than the
current node in the split dimension).

• Once the algorithm reaches a leaf node, it saves that node point as the current
best

The algorithm unwinds the recursion of the tree, performing the following steps at
each node:

• If the current node is closer than the current best, then it becomes the current
best.

• The algorithm checks whether there could be any points on the other side of
the splitting plane that are closer to the search point than the current best.
In concept, this is done by intersecting the splitting hyperplane with a hyper-
sphere around the search point that has a radius equal to the current nearest
distance. Since the hyperplanes are all axis-aligned this is implemented as a
simple comparison to see whether the difference between the splitting coor-
dinate of the search point and current node is less than the distance (overall
coordinates) from the search point to the current best.

• If the hypersphere crosses the plane, there could be nearer points on the
other side of the plane, so the algorithm must move down the other branch
of the tree from the current node looking for closer points, following the same
recursive process as for the entire search.

• If the hypersphere does not intersect the splitting plane, then the algorithm
continues walking up the tree, and the entire branch on the other side of that
node is eliminated from the search.

When the algorithm finishes this process for the root node, then the search is
complete.

The algorithm can be extended in several ways by simple modifications. It can
provide the k-nearest neighbors to a point by maintaining the list of the k current
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bests instead of just one. Branches are only eliminated when they cannot have
points closer than any of the k current bests.

B.2.2 Range search

As seen in [Preparata and Shamos, 1985], the complexity of finding all points within
a given distance of a target point –i.e., performing a range search– is still logarithmic
in the size of the tree –i.e., the number of points it contains, n– for a fixed range
distance.

Let t be the target point and r the range distance for the search. Then, this
operation can be implemented as a modification of the previous NN algorithm:

1. The distances from the visited points to t are not compared to that of the
closest point found, but to the fixed initial value r.

2. As in k-nearest-neighbors, all the discovered points within this distance are
returned in a list, not just the closest.

B.3 Complexity

Building a static kd -tree from n points takes O(n log2 n) time if an O(n log n) sort
is used to compute the median at each level. The insertion of a new point into a
balanced kd -tree takes O(log n) time.

B.3.1 High-dimensional data

Finding the nearest point is an O(log n) operation in the case of randomly dis-
tributed points. However, analysis of binary search trees has found that the worst
case search time for a k-dimensional kd -tree containing n nodes is given by the
following equation:

tworst = O(k · n1−1/k). (B.1)

These poor running times only apply when n is in the order of the number of
dimensions k. In very high dimensional spaces, the curse of dimensionality causes
the algorithm to need to visit many more branches than in lower dimensional spaces.
In particular, when the number of points is only slightly higher than the number of
dimensions, the algorithm is only slightly better than a linear search of all of the
points. As a general rule, if the dimensionality is k, then the number of points in
the data n should be such that n � 2k.
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Hausdorff Distance

T
he Hausdorff distance, named after Felix Hausdorff, measures how far
two subsets of a metric space are from each other. It turns the set of
non-empty compact subsets of a metric space into a metric space in

its own right.

Informally, two sets are close in the Hausdorff distance if every point of either set
is close to some point of the other set. Although more details about the Hausdorff
metric can be found in [Henrikson, 1999], here we will introduce just some basic
notions.

C.1 Definition

The Hausdorff distance dH(X,Y ) between two non-empty subsets X and Y of a
metric space (M, d) is defined as

dH(X,Y ) = max{sup
x∈X

inf
y∈Y

d(x, y), sup
y∈Y

inf
x∈X

d(x, y)}. (C.1)

Equivalently,
dH(X,Y ) = inf{� > 0;X ⊆ Y� and Y ⊆ X�}, (C.2)

where
X� :=

�

x∈X

{z ∈ M ; d(z, x) ≤ �}, (C.3)

that is, the set of all points within � of the set X.

Remark. It is not true in general that, if dH(X,Y ) = �, then

X ⊆ Y� and Y ⊆ X�.
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For instance, consider the metric space of the real numbers R with the usual metric
d induced by the absolute value,

d(x, y) := |y − x|, x, y ∈ R.

Take
X := {1/n;n ∈ N} and Y := {−1/n;n ∈ N}.

Then dH(X,Y ) = 1. However X � Y1 because Y1 = [−2, 1), but 1 ∈ X.

C.1.1 Properties

Some properties can be derived from the definition of the Hausdorff distance:

• In general, dH(X,Y ) may be infinite. If both X and Y are bounded, then
dH(X,Y ) is guaranteed to be finite.

• We have dH(X,Y ) = 0 if and only if X and Y have the same closure.

• On the set of all non-empty subsets of M , dH yields an extended pseudometric.

• On the set F (M) of all non-empty compact subsets of M , dH is a metric. If
M is complete, then so is F (M). If M is compact, then so is F (M). The
topology of F (M) depends only on the topology of M , not on the metric d.

C.2 Motivation

The definition of the Hausdorff distance can be derived by a series of natural exten-
sions of the distance function d(x, y) in the underlying metric space M , as follows:

• Define a distance function between any point x of M and any non-empty set
Y of M by:

d(x, Y ) = inf{d(x, y)|y ∈ Y }.

For example, d(1, [3, 6]) = 2 and d(7, [3, 6]) = 1.

• Define a distance function between any two non-empty sets X and Y of M

by:
d(X,Y ) = sup{d(x, Y )|x ∈ X}.

For example, d([1, 7], [3, 6]) = d(1, [3, 6]) = 2.

• If X and Y are compact, then d(X,Y ) will be finite; d(X,X) = 0; and d

inherits the triangle inequality property from the distance function in M . As
it stands, d(X,Y ) is not a metric because d(X,Y ) is not always symmetric,
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and d(X,Y ) = 0 does not imply that X = Y (It does imply that X ⊆ Y ).
For example, d([1, 3, 6, 7], [3, 6]) = 2, but d([3, 6], [1, 3, 6, 7]) = 0. However, we
can create a metric by defining the Hausdorff distance to be:

dH(X,Y ) = max{d(X,Y ), d(Y, X)}.

C.3 Applications

In feature matching, the Hausdorff distance can be used to find a given template
in an arbitrary target image [Alhichri and Kamel, 2002]. The template and target
image can be pre-processed via a certain feature extractor giving a set of detected
feature points. Next, each detected point in the template image is treated as a
point in a set. Similarly, an area of the target image is also treated as a set of
points. The algorithm then tries to minimize the Hausdorff distance between the
template and some area of the target image. The area in the target image with the
minimal Hausdorff distance to the template, can be considered the best candidate
for locating the template in the target.

C.3.1 Polygon mesh dissimilarity

In computer graphics, the Hausdorff distance is used to measure the difference
between two different representations of the same 3D object. Although by definition
the Hausdorff distance is the one-sided maximum of the minimum distance, in
practice the mean or RMS measures are quite useful, since these are much less
sensitive to outliers.

In [Cignoni et al., 1998], a tool is presented, able to compare the difference
between a pair of surfaces (e.g. a ground-truth mesh and an estimate obtained
from a set of oriented points) by adopting a surface sampling approach. It uses
the Hausdorff distance in order to return, among other, maximum and mean error.
Recently, this tool has been integrated in the open source mesh editor Meshlab
[Cignoni et al., 2008].





Appendix D

Related Publications

This appendix contains a list of publications related to the thesis that either have
been accepted or are pending acceptance at the moment of finishing the dissertation.
These publications are classified by their correspondence to the different part in
which this thesis is divided.

D.1 Surface Sampling

Three publications –one corresponding to each proposed sampling strategy– have
resulted from the research on efficient methods for extraction of dense sets of sam-
ples representing surfaces of foreground objects in scenes with known and static
background.

Photo-Consistent Surfaces from a Sparse Set of Viewpoints. In this ICIP
2010 conference article [Salvador and Casas, 2010b], the image-based approach for
surface sampling introduced in Chapter 4 is presented as a method capable of ob-
taining photo-consistent surfaces for foreground objects in arbitrarily wide-baseline
scenarios. A comparison with a volumetric approach, also included in the first sec-
tion of Chapter 7, demonstrates the adequacy of a surface-based approach for 3D
reconstruction of the visible features in multi-view settings.

Joint Estimation of Shape and Motion from Silhouettes. In this second
ICIP 2010 conference article [Salvador and Casas, 2010a], the strategy for sur-
face sampling based on the deformation of an existing closed surface introduced in
Chapter 5 is presented as an efficient technique for obtaining silhouette-consistent
surfaces in multi-view video sequences. Besides this result, the possibility of ob-
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taining a dense motion field estimate on the surface samples as a simple position
difference between consecutive time instants was also introduced as a possible valu-
able feature for further analysis applications. The experiments presented in this
article are also contained in the second section of Chapter 7.

Statistical Surface Sampling for Multi-View Reconstruction. In the ICCV
2011 submission [Salvador and Casas, 2011], the statistical strategy for surface sam-
pling introduced in Chapter 6 is presented as a valuable tool for efficiently extracting
a discrete representation of the silhouettes of foreground objects that can be used
for interactive Free-Viewpoint Video by using it as input in the meshing algorithm
presented in Chapter 8. The experiments, introducing an efficiency improvement in
the scouting stage of the algorithm –dynamic or multi-resolution–, are reflected in
the third section of Chapter 7. The decision upon its acceptance will be announced
to the authors in June 2011.

D.2 Surface Interpolation and Applications

One publication has been made, which introduces the strategy for surface interpo-
lation from a set of oriented surface points.

From Silhouettes to 3D Points to Mesh: Towards Free Viewpoint Video.
In this 3DVP 2010 workshop article [Salvador et al., 2010], the meshing algorithm
presented in Chapter 8 is presented as part of a complete system for efficiently
obtaining surface descriptions suitable for Free-Viewpoint Video applications. Being
the statistical sampling stage still under development, the sampling strategy chosen
for this approach corresponds to the one presented in the first part of Chapter 5 with
the addition of some post-processing stages also used for the statistical sampling
approach. These algorithms are also presented in the last sections of Chapter 6.
The presented results compare the presented surface reconstruction strategy with
a baseline system based on volumetric techniques. Although the differences are not
as great as the ones obtained by using the statistical sampling strategy presented
in the first section of Chapter 10, the experimental results show the adequacy of
the surface-oriented methodology.

Finally, an application for the improvement of foreground silhouettes in multi-
view settings has also been proposed, partially based on some techniques presented
in this thesis.

Joint Multi-view Foreground Segmentation and 3D Reconstruction with
Tolerance Loop. In the ICIP 2011 submission [Gallego et al., 2011], an applica-
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tion of the conservative estimate of the visual hull with tolerance to segmentation
errors is introduced. The main idea is to iteratively refine noisy foreground sil-
houettes by introducing a priori information from the projections of gradually less
conservative visual hulls. In this case, a volumetric representation is chosen in or-
der to introduce spatial regularization using a state-of-the-art energy minimization
technique (graph-cuts). Then, the surface extracted using marching cubes is fitted
to the noisy silhouettes –with tolerance to errors– by using a technique similar to
the one presented in the part corresponding to the dynamic sampling of Chapter 5.
This application of the method allows to improve the precision of the projection of
the reconstructed low-resolution surface. The results show a clear improvement on
the quality of the final estimate of the visual hull. The decision upon its acceptance
will be announced to the authors in April 2011.

At the moment of finishing this thesis, a new article intended for its publication
in Transaction on Image Processing is in preparation. This article will present the
complete reconstruction approach (surface sampling and interpolation) with new
experiments, comparing the proposed technique to state of the art methods like
the concatenation of Patch-based Multi-view Stereo [Furukawa and Ponce, 2009a,
PMVS, 2010] and Poisson reconstruction [Kazhdan et al., 2006].
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