Search Publication

Export 1097 results:
[ Author(Asc)] Title Type Year
Filters: Filter is   [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
H
Hernandez C, Combalia M, Podlipnik S, Codella NCF, Rotemberg V, Halpern AC, et al.. Bcn20000: Dermoscopic lesions in the wild. Nature - Scientific Data. In Press;11.
Hernandez C, Combalia M, Puig S, Malvehy J, Vilaplana V. Contrastive and attention-based multiple instance learning for the prediction of sentinel lymph node status from histopathologies of primary melanoma tumours. In Cancer Prevention through early detecTion (Caption) Workshop at 25th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI 2022). 2022.
Hernandez C, Kiroglu A, García S, Ficapal J, Burgos J, Podlipnik S, et al.. Implementation of personalized medicine in cutaneous melanoma patients aided by artificial intelligence. In 10th World Congress of2 Melanoma / 17th EADO Congress. 2021.
Hernandez C, Vilaplana V, Combalia M, García S, Podlipnik S, Burgos J, et al.. Sentinel lymph node status prediction with self-attention neural networks using histologies of primary melanoma tumours. In European Association of Dermato Oncology (EADO 2022). 2022.
Hernandez C, Combalia M, Malvehy J, Vilaplana V. Sentinel lymph node status prediction using self-attention networks and contrastive learning from routine histology images of primary tumours. In Medical Imaging with Deep Learning MIDL 2022. 2022.
Hernandez C, Jimenez L, Vilaplana V. Bridging Domains in Melanoma Diagnostics: Predicting BRAF Mutations and Sentinel Lymph Node Positivity with Attention-Based Models in Histological Images. In IEEE/CVF Conference on Computer Vision and Pattern Recognition (DEF-AI-MIA workshop). In Press.
Hernandez C, Pachón-García C, Delicado P, Vilaplana V. Interpreting Machine Learning Models for Survival Analysis: A Study of Cutaneous Melanoma Using the SEER Database. In Explainable Artificial Intelligence and Process Mining Applications for Healthcare,. Submitted.
Hernandez C, Pachón-García C, Delicado P, Vilaplana V. Interpreting Machine Learning models for Survival Analysis: A study of Cutaneous Melanoma using the SEER Database. In XAI-Healthcare 2023 Workshop at 21st International Conference of Artificial Intelligence in Medicine (AIME 2023). Portoroz, Slovenia; 2023.
Haro G, Pardàs M. 3D shape from multi-camera views by error projection minimization. In 10th Workshop on Image Analysis for Multimedia Interactive Services. 2010. pp. 250–253.
Haro G, Randall G, Sapiro G. Stratification Learning: Detecting Mixed Density and Dimensionality in High Dimensional Point Clouds. In Neural Information Processing Systems NIPS. Montreal: NIPS; 2007.  (702.08 KB)
Haro G, Pardàs M. Shape from incomplete silhouettes based on the reprojection error. Image and vision computing. 2010;28:1354–1368.
Haro G, Lenglet C, Sapiro G, Thompson P. On the non-uniform complexity of brain connectivity. In 5th IEEE International Symposium on Biomedical Imaging (ISBI 2008). Paris: IEEE; 2008.  (2.2 MB)
G
D Gutiérrez C. Comparació d'algoritmes de classificació de tipus de pla en imatges de futbol. Varas D, Marqués F. 2014.
Gurrin C, Giró-i-Nieto X, Radeva P, Dimiccoli M, Dang-Nguyen D-T, Joho H. LTA 2017: The Second Workshop on Lifelogging Tools and Applications. In ACM Multimedia. Mountain View, California USA: ACM; 2017.  (309.94 KB)
Gurrin C, Giró-i-Nieto X, Radeva P, Dimiccoli M, Johansen H, Joho H, et al.. LTA 2016 - The First Workshop on Lifelogging Tools and Applications. In ACM Multimedia. Amsterdam, The Netherlands: ACM; 2016.  (385.75 KB)
Gullón N. Retinal lesions segmentation using CNNs and adversarial training. Vilaplana V. 2018.
Gullón N, Vilaplana V. Retinal lesions segmentation using CNNs and adversarial training. In International Symposium on Biomedical Imaging (ISBI 2019). 2019.
Gudmundsson S, Pardàs M, Casas J, Aanaes H, Larsen R. TOF Imaging in Smart Room Environments towards Improved People Tracking. In Computer Vision and Pattern Recognition: Workshop on Time of Flight based Computer Vision (CVPR/TOF-CV). 2008. pp. 1–6.
Gudmundsson S, Sveinsson J, Pardàs M, Aanaes H, Larsen R. Model-based hand gesture tracking in ToF image sequences. Lecture notes in computer science. 2010;6169/2010:118–127.
Gudmundsson S, Pardàs M, Casas J, Sveinsson J, Aanaes H, Larsen R. Improved 3D reconstruction in smart-room environments using ToF imaging. Computer vision and image understanding. 2010;114(12):1376–1384.
Gris-Sarabia I. Pyxel, una llibreria per a l’anotació automàtica de fotografies. Giró-i-Nieto X. 2015.  (1.12 MB)
Granero M. A Video Database for Analyzing Affective Physiological Responses. Borth D, Weber B, Giró-i-Nieto X. 2019.  (23.66 MB)
Górriz M, Aparicio A, Raventós B, Vilaplana V, Sayrol E, López-Codina D. Leishmaniasis Parasite Segmentation and Classification Using Deep Learning. In Articulated Motion and Deformable Objects. Springer International Publishing; 2018. pp. 53-62.
Górriz M. Active Deep Learning for Medical Imaging Segmentation. Giró-i-Nieto X, Carlier A, Faure E. 2017.  (2.84 MB)
Górriz M, Giró-i-Nieto X, Carlier A, Faure E. Cost-Effective Active Learning for Melanoma Segmentation. In ML4H: Machine Learning for Health Workshop at NIPS 2017. Long Beach, CA, USA; 2017.  (521.82 KB)

Pages