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Abstract

This thesis proposes a novel active learning framework capable to train effectively a convo-
lutional neural network for semantic segmentation of medical imaging, with a limited amount
of training labeled data. Our approach tries to apply in segmentation existing active learning
techniques, which is becoming an important topic today because of the many problems caused
by the lack of large amounts of data.

We explore different strategies to study the image information and introduce a previously
used cost-effective active learning method based on the selection of high confidence predictions
to assign automatically pseudo-labels with the aim of reducing the manual annotations.

First, we made a simple application for handwritten digit classification to get started to the
methodology and then we test the system with a medical image database for the treatment of
melanoma skin cancer. Finally, we compared the traditional training methods with our active
learning proposals, specifying the conditions and parameters required for it to be optimal.
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Resum

Aquesta tesi proposa un nou marc d’aprenentatge actiu capaç d’entrenar de forma efectiva una
xarxa neuronal convolucional per la segmentació semàntica d’imatges mèdiques, a través d’una
quantitat limitada d’instàncies d’entrenament. El nostre enfocament intenta introduir tècniques
existents d’aprenentatge actiu en el camp de la segmentació, un tema poc tractat en l’actualitat
a causa dels nombrosos problemes que poden ocasionar la falta de dades d’entrenament.

Explorem diferents estratègies per l’estudi de l’informació de la imatge, que ens permeten
dissenyar un mètode rentable de selecció de les instàncies més optimes per l’entrenament del
nostre sistema. Aquestes tècniques ens permeten introduir en segmentació el mètode actiu
de cost efectiu, molt utilitzat en tasques de classificació, que es basa a utilitzar de manera
iterativa prediccions d’alta confiança com pseudo etiquetes amb l’objectiu de reduir la quantitat
d’anotacions manuals.

En primer lloc, desenvolupem una simple aplicació per a la classificació de d́ıgits manuscrits per
iniciar-nos amb la metodologia i després testegem el sistema amb una base de dades d’imatges
mèdiques per al tractament del càncer de pell de melanoma. Finalment, comparem el model
clàssic d’entrenament amb les diferents modalitats actives proposades, especificant les condicions
i els paràmetres pertinents perquè aquestes siguin òptimes.
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Resumen

Esta tesis propone un nuevo marco de aprendizaje activo capaz de entrenar de manera efectiva
una red neuronal convolucional para la segmentación semántica de imágenes médicas, a través
de una cantidad limitada de instancias de entrenamiento. Nuestro enfoque trata de introducir
técnicas existentes de aprendizaje activo en el campo de la segmentación, tema poco tratado
en la actualidad debido a los numerosos problemas que puede causar la falta de datos en el
entrenamiento de sistemas con gran cantidad de parametros.

Exploramos estrategias para el estudio de la información de la imagen, que nos permiten
diseñar un método rentable de selección de instancias óptimas para el entrenamiento de nuestro
sistema. Estas técnicas nos permiten introducir en segmentación el método activo de coste
efectivo, muy usado en clasificación, que trata de usar de manera iterativa predicciones de alta
confianza como pseudo etiquetas, haciendo disminuir la cantidad de anotaciones requeridas de
forma manual.

En primer lugar, desarrollamos una simple aplicación para la clasificación de d́ıgitos manuscritos
para iniciarnos con la metodoloǵıa y luego testeamos el sistema con una base de datos de imágenes
médicas para el tratamiento del cáncer de piel de melanoma. Finalmente, comparamos el modelo
clásico de entrenamiento con las distintas versiones de entrenamiento activo propuestas, especi-
ficando las condiciones y los paramentaras necesarios para que estas sean óptimo.
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Chapter 1

Introduction

1.1 Statement of purpose

In general, one of the major problems in medical diagnosis is the subjectivity of the specialist’s
decisions. More concretely, in the fields of medical imaging interpretation, the experience of
the specialist can greatly determine the outcome of the final diagnosis. Manual methods of
visualization can sometimes be very tedious, time-consuming and subject to errors on part of the
interpreter. This has led the growing of intelligent image-based diagnostics as a support, being
one of the most current research topics nowadays.

The emergence of deep learning paradigm working through neural networks followed by the
recent advances in computational power have enabled the development of new intelligent diag-
nostics based on computer vision. These diagnostics are capable to analyze images, performing
accurate segmentations, in order to detect the lesion areas and to make final decisions about the
patient’s health as the best of clinical eyes.

Nevertheless, only very deep convolutional neural networks with large amounts of trainable
parameters are able to approach this kind of semantic segmentations and therefore, huge amounts
of useful and labeled data are required to make the system converge while avoiding over-fitting.
This may be a heavy handicap in the medical imaging field, where the human and logistic costs
could make unfeasible to get large labeled datasets.

Active Learning (AL) is an established way to reduce this labeling workload in order to select
in an iterative way, the most informative examples from a subset of unlabeled instances. This
choice is based on a ranking of scores that can be computed from several methodologies from a
model outcome. The chosen candidates are labeled and subsequently added to the training set. It
has been previously shown that the training done using this active learning methodology is more
efficient and can train a deep network faster and with fewer training samples than traditional
semi-supervised learning methods. However although this would be adequate in most cases and
being highly used in complex classification models, re-applying existing techniques could not be
sufficient in segmentation where the information of small details can be essential in the final
decision.

For all the above, the main contributions of this project are:

• The design and training of a framework for medical imaging semantic segmentation using
deep neuronal networks and the Cost-Effective Active Learning (CEAL) methodology.

• The development of image information interpreters for medical imaging based on Monte
Carlo Dropout for the analysis of the intrinsic network weight distribution.

• The development of an open sourced software package capable to perform all the experi-
ments and with the possibility to further extensions.
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1.2 Requirements and specifications

As already mentioned before, this thesis’ main goal is to implement and adapt an updatable
software oriented to perform semantic segmentation. The requirements of this project are:

• Design and train a convolutional neuronal network architecture for medical imaging seman-
tic segmentation using Active Learning techniques to prevent overfitting with insufficient
data resources.

• Possibility to adapt the trained model for incremental training using new labeled data in
the future.

The framework chosen is Keras that uses TensorFlow as backend, providing high level ab-
straction of the Google’s developed software-based framework widely used in deep learning ap-
plications. The package is compatible with Python 2.7+, programming language that will be
used to develop all the project. Due to the high computational requirements of the code and the
impossibility to be executed in a conventional CPU computer, a GPU (Graphics Processing Unit)
is required to train and evaluate the models. In addition to CUDA libraries developed by NVIDIA
to compile and perform the parallel computations on the GPU. The software resources and power
supply of the NVIDIA GeForce GTX TITAN X GPUs will be provided by Image Processing Group
(GPI ) from UPC Barcelona.

1.3 Methods and procedures

This project tries to offer a viable solution to adapt existing Active Learning methodologies
in imaging semantic segmentation. The solution proposed is to follow the guidelines of Cost-
Effective Active Learning used for classification, changing the image information analysis methods
to carry out segmentation problems. The core of our methodology is the image uncertainty
computation as an information measurement, calculating the variance of the network decisions
using Monte Carlo Dropout on test time.

The project proposes an exhaustive data information study during the training process, in
order to define a criteria to automatically select the best data instances for the model outcome
to be labeled, optimizing the overall workload in the annotation process. Taking the uncertainty
computation, the data is projected on a region diagram to study the intrinsic nature of the images
and their impact in the training.

All the tests were done with the ISIC 2017 Challenge dataset [4] for Skin Lesion Analysis
towards melanoma detection, splitting the training set into labeled and unlabeled amount of data
to simulate the Active Learning problem with large amounts of unlabeled data at the beginning.

The first contribution of the project is to apply in segmentation the CEAL methodology that
uses the complementary sample selection within the active learning procedure, recognizing the
best predictions to be used as an automatic pseudo-labels with the aim to increase the amount
of training data in each iteration.
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Figure 1.1: Overall methodology architecture proposed for this project

1.4 Work Plan

This project has followed the established work plan, with a few exceptions and modifications
explained in the section [1.5.

1.4.1 Work Packages

• WP 1: Documentation

• WP 2: Research for the State of the Art

• WP 3: Software and Hardware configurations

• WP 4: Datasets

• WP 5: Implementation

• WP 6: Results and improvements

• WP 7: Final tasks
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1.4.2 Gantt Diagram

Figure 1.2: Gantt Diagram of the Degree Thesis

1.5 Incidents and Modification

The initial plan was to test different medical imaging datasets to get a extensible and adaptable
software. But in order to understand and improve the Active Learning methodology it has been
added a classification application out of the aim of the project and therefore to the initial plan.
The practical classification application has modified the work plan, but in spite of this, it was
possible the project in the agreed date, fulfilling all the expected objectives.
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Chapter 2

State of the art

2.1 Convolutional Neural Networks

Deep convolutional neural networks (also known as CNN’s or ConvNets) have recently become
popular in computer vision, since they have dramatically advanced the state-of-the-art in tasks
such as image classification [5], retrieval [6] or object detection [16] [12].

ConvNets are a type of feed-forward artificial neural network in which the connectivity pattern
between its neurons, is inspired by the organization of the animal visual cortex. Individual
cortical neurons respond to stimuli in a restricted region of space known as the receptive field.
The receptive fields of different neurons partially overlap such that they tile the visual field.
The response of an individual neuron to stimuli within its receptive field can be approximated
mathematically by a convolution operation.

A CNN works similarly to Neural Networks: each neuron receive an input, a dot product
(Hadamard product or elementwise multiplication) between each input and its associated weight is
performed, followed with a non-linearity. The most common hierarchical distribution of ConvNets
layers contains:

• Input layer, containing the raw pixel values from input images.

• Convolutional layers, the core block of ConvNets, computes a locally dot product (2D in
the case of images) between the weights and a certain tiny region of the input volume.

• Non-linear layers, most of the times using a ReLU activation function which applies an
elementwise activation by thresholding at zero.

• Pooling layers that apply a spatial downsampling along the output volume.

• Fully Connected layers that compute the class scores

Figure 2.1: Convolutional Neural Network architecture

The learning process (also referred to network training) where weights are optimized is achieved
through backpropagation [20], a technique to efficiently compute gradients for its weights with
respect to the loss function.
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2.1.1 Convolutional Neural Networks for Image Classification

Image classification is the task of taking an input image and outputting a class (a cat, dog,
etc) or a probability of classes that best describes the image. For humans, this recognition task
is one of the first skills we learn from the moment we are born and is one that comes naturally
and effortlessly as adults. Without even thinking twice, we are able to quickly and seamlessly
identify the environment we are in, as well as the objects that surround us. When we see an
image or just when we look at the world around us, most of the time we are able to immediately
characterize the scene and give each object a label, all without even consciously noticing.

Image classification has been one of the most important topics in the field of computer
vision, trying to give to the machines the capability to recognize patterns, generalize from prior
knowledge, and adapt to different image environments. Face recognition, vehicle detection,
medical diagnosis and digit recognition are all excellent examples.

Convolutional neural networks have became a great revolution in this field, producing promising
results. Examples of related work include:

• The work of Alex Krizhevsky, et al. [5] creating a ”large, deep convolutional neural network”
for image classification being the first model performing so well on a historically difficult
ImageNet dataset. Utilizing techniques that are still used today, such as data augmentation
and dropout.

• LeCun, Yann, et al. [17] reviews various methods applied to handwritten character recog-
nition using CNN’s. Related to this work, appears MNIST database (Modified National
Institute of Standards and Technology database) a large dataset of handwritten digits
widely used for training and testing in machine learning.

• S. Lawrence, et al. [16] explores the idea to use a ConvNet for face recognition in order to
extract successively larger features in a hierarchical set of layers.

• B. Sahiner, Heang-Ping Chan, et al. [12] applies CNN’s to medical imaging classifying
regions of interest (ROI’s) on mammograms as either mass or normal tissue.

2.1.2 Convolutional Neural Networks for Image Segmentation

Although ConvNets are widely used in classification, in many visual tasks, especially in biomed-
ical image processing, the desired output should include localization, requiring an assignation of
a class label to each pixel. This is the main idea of a semantic segmentation using ConvNets.

Recent semantic segmentation algorithms [14], convert an existing CNN architecture con-
structed for classification to a fully convolutional network (FCN). They obtain a coarse label map
from the network by classifying every local region in image, and perform a simple deconvolution,
which is implemented as bilinear interpolation, for pixel-level labeling. In addition, novel pro-
posals [21][22], introduce the idea of deconvolution network to generate a dense pixel-wise class
probability map by consecutive operations of unpooling, deconvolution, and rectification.
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2.2 Active Learning

Usually, all of supervised and unsupervised learning tasks, first gather a significant quantity
of data that is randomly sampled from the underlying population distribution and then induce a
classifier or model. This methodology is called passive learning . Often the most hardly task in
these applications is the labeling process in the data collection, since in many cases it must be
manual annotated by an expert, being usually a time-consuming and costly task.

The emergence of semi-supervised machine learning proposes active learning methodology as a
new solution in which a learning algorithm is able to interactively query the human annotator (or
some other information source) new labeled instances from a pool of unlabeled data. Candidates
to be labeled are chosen through several methods based on informativeness and uncertainty of
the data for the intrinsic model distribution at any given moment.

All active learning algorithms follow the next key steps in an iteratively way: (a) initialization,
the starting point before start learning process, pre-training with a starting labeled pool (b)
selection new training samples, methodologies to choose new samples to be labeled based on
pre-trained model, (c) re-training, training the model again adding the new labels to overall
training set, and come back to new labels selection step, (d) finalization, define a methodology
to stop the process.

Figure 2.2: Cost-Effective Active Learning methodology [25], explained in Section 3.2

2.2.1 Active learning for Computer Vision

”Introduce the human in the loop” have become a popular saying within computer vision
community. There are more and more applications exploring new strategies to interact to the
user in order to get new labeled data.

Examples of real cases applied in image classification and segmentation includes:

• The work of Dhruv Batra, Adarsh Kowdle, et al. presenting iCoseg [8], an algorithm for
Interactive Co-segmentation of a foreground object with Intelligent Scribble Guidance. The
system interacts with the user deciding the most uncertain/informative image regions to
be annotated, optimizing the learning performance.

• The recent work of Steve Branson, et al. is a great example of Active Learning appli-
cation for image classification, presenting a Hybrid Human–Machine Vision System for
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Fine-Grained Categorization [15]. A system composed of a human and a machine work-
ing together and combines the complementary strengths of computer vision algorithms
and (non-expert) human users. The human users provide information of the object by
clicks and answers to multiple choice questions. The machine intelligently selects the most
informative question to pose to the user in order to identify the object class as quickly
as possible. By leveraging computer vision and analyzing the user responses, the overall
amount of human effort required, measured in seconds, is minimized.

Figure 2.3: Examples of questions generated exploring the difficulty for the humans.

2.2.2 Active Deep Learning

One main concern of the deep learning community is to achieve deeper and deeper neuronal
networks in order to increase their capacity of representation. Therefore, an incrementation of
trainable parameters requires to scale up the size of the training database accordingly, falling
once more upon the handicap to gather large amounts of labeled data. However, recent works
[26] tend to show that deep learning may be handled with smaller dataset as long as the training
samples are carefully selected, finding again active learning as a viable solution.

Currently, most of the existing algorithms on the state-of-the art are based on classification
tasks [24][19]. The challenge of this project is to apply active learning methodologies in segmen-
tation tasks. Being a real novel at the moment, in the way of perform pixel-wise criteria in the
sample selection process and to escape from overfitting in the learning process.
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Chapter 3

Active Learning methodology

3.1 Objective

The aim of this project is to train by active learning methodologies, a deep neural network to be
able to perform semantic segmentation of medical images in order to isolate with detail the lesion
areas within them. Interactive algorithms will be applied to achieve a competitive performance
with a limited amount of labeled data. As a review, interactive training with reduced training
datasets is few applied in segmentation due to the networks complexity.

Therefore, the following sections present existing active learning modalities on classification,
studying the different possibilities to extend the framework to the desired segmentation task.

3.2 Cost-Effective Active Learning algorithm

In this section, we present an efficient existing algorithm for the proposed Cost-Effective Active
Learning (CEAL) framework [25], which is enabled to train a ConvNet with sufficient unlabeled
training data, overcoming the relative inconsistency between active learning and convolutional
neural networks.

As a review, an active learning algorithm interacts with an external annotator during the
learning process. Therefore, as shown at the Section 2.2, works by an iterative repetition of
several key phases: initialization, selection new training data, re-train and finalization.

A - Initialization

Suppose we have a dataset of n samples denoted as D = {xi}ni=1. We denote the currently
annotated samples of D as DL while the unlabeled ones as DU . We suppose the most (or all)
of them unlabeled, therefore before start there may origin two possible situations:

• Only unlabeled data: This case starts with the labeled pool DL empty, forcing the oracle
to make a pre-labeling, randomly selecting initial training samples from DU and manually
annotate them as the starting point. This could be hard to face in deep learning, due to
the large amount of data needed to perform a useful training iteration.

• Enough initial labeled data: A certain amount of data to start is a relative parameter
to verify, since it is usually correlated with the model complexity. Once defined, samples
from each class are randomly chosen considering a complexity variety in order to prevent
over-fitting in any specific category.

Initial labeled pool DL will be used to initialize the convolutional neural network parameters
W . We need to verify the training specific hyperparameters for this step such as the number of
epochs, batch size or learning rate. (Appendices, Definition of hyperparameters 7.2)
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B - Complementary sample selection

Fixing the network parameters W , the system must rank all the unlabeled data DU , according
to an active learning criteria based on the prediction confidence, to select two kinds of instances.

One kind is the minority samples with low prediction confidence that will be annotated by
the oracle and posteriorly added to the overall labeled pool DL. The other kind is the majority
samples with high prediction confidence, called high confidence samples. For this set, the system
will automatically assign pseudo-labels with no human labor cost, denoting them as DH .

These two kinds of samples are complementary to each other for representing different confi-
dence levels of the current model on the unlabeled dataset. Therefore, the correct management
of them will have a essential impact on the overall outcome.

C - Re-Training

With all labeled data gathered DL ∪ DH , we will update again the convolutional network
weights W . Once again, we will need to verify the specific training parameters, not needing to
be necessarily the same than the initial ones.

D - Finalization

All iterative algorithms need a stop criteria, in most of the cases, the process runs until
reaching a predefined and verified maximum iteration T . However, the application on deep
learning frameworks forces us to define new parameters to prevent known problematics for lack
of data such as overfitting. Is common the verification of hyperparameters that control a max-
imum number of training epochs or an accuracy convergence before enter in an overfitting phase.

Algorithm 1 Cost-Effective Active learning algorithm

Input:
Unlabeled samples DU , initially labeled samples DL, low confidence selection size KU , hight
confidence selection size KC , initial training epochs t0, loop training epochs tA.

Output:
CNN parameters W .

1: Initialize W with DL, t0 times.
2: while not reach stop criteria do
3: Rank all unlabeled data DU , based on active learning criteria.
4: DL ← KU low confidence samples, annotated by the oracle.
5: DH ← KC hight confidence samples, annotated by the system itself.
6: Update W with DL ∪DH , tA times.

7: return W
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3.3 Active Learning methodology for classification tasks

Using the same terminology as defined on previous Section 3.2, suppose we have a dataset for
classification of m categories and n samples denoted as D = {xi}ni=1. The classifier will assign
a category to each data instance. We denote the label of xi as yi = j, j ∈ {1, ...,m}, i.e., xi
belongs to the jth category.

The active learning criteria used to perform the complementary sample selection will be based
on uncertainty sampling [18], selecting left in unlabeled pool DU , the KU most uncertain samples
for oracle labeling and the KC most certain ones for pseudo-labels assignation. The ranking will
be based on the probability of each sample to belong on a specific category p(yi = j|xi;W ),
considering the model state in each moment. The most common approaches includes:

1. Least confidence: Rank all unlabeled samples in an ascending order according to lci value,
defined as:

lci = max
j

p(yi = j|xi;W ), (1)

If the probability of the most probable class for a sample is low then the classifier is uncertain
about the sample.

2. Margin sampling: Rank all the unlabeled samples in an ascending order according to the
msi value, defined as:

msi = p(yi = j1|xi;W )− p(yi = j2|xi;W ), (2)

where j1 and j2 represent the first and second most probable class labels predicted by the
classifiers. The smaller of the margin means more uncertainty.

3. Entropy: Rank all the unlabeled samples in an descending order according to their eni

value, defined as:

eni = −
m∑
j=1

p(yi = j|xi;W ) log p(yi = j|xi;W ), (3)

This method takes into account all class scores, hight entropy means hight uncertainty.

The amount of certain KC and uncertain KU samples selected from the ranking in each
iteration, will be a key parameter to verify. During the training process, the prediction confidence
will grow because of the uncertainty decrease, producing better and better predictions. Therefore,
the amount of certain pseudo-annotations will follow this progression, being very low at the
beginning and go increasing as the system goes achieving a better performance. On the other
hand, the amount of uncertain samples will be verified depending on real world requirements
such as the complexity of the samples and the human availability to label them. In general, the
selection amount will be constant, although it could also be progressive up to a certain limit.
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3.4 Active Learning methodology for segmentation tasks

As shown at the Section 2.1.2 a convolutional neuronal network for semantic segmentation
must be able to make binary segmentation maps through pixel-wise predictions. Therefore, we
will keep again the terminology used throughout this chapter, adding to the samples spatial
dimensions in order to define their pixel-wise structure.

The active learning criteria used to perform the complementary sample selection is based
on the intrinsic distribution of the unlabeled data, ranking the unlabeled pool DU based on
their influence on the model. Being DU

x , DU
y the unlabeled data and their labels respectively,

we are interested in finding the posterior network distribution p(W |DU
x , D

U
y ). In general, this

posterior distribution is not tractable, therefore we need to approximate the distribution of these
weights using variational inference [10]. This technique allows us to learn the distribution over
the network’s weights, q(W ), by minimizing the Kullback-Leibler (KL) divergence between this
approximating distribution and the full posterior one:

KL(q(W )||p(W |DU
x , D

U
y )), (4)

In [13] it is explored the possibility to use Monte Carlo Dropout to approximate the variational
weights distribution q(W ) term. We suppose a ConvNet architecture composed of L layers
indexing all of its weighs, taking into account their depth, by K x K matrices. For one single
layer i each indexed index will be denoted as ki,j , j ∈ {1, ...,Ki}, i ∈ {1, ..., L}. The dropout
works by randomly deactivating network activations, therefore if dropout is applied, each index
ki,j will be modeled through a Bernulli distribution:

ki,j = mi,j ∗ bi,j , (5)

bi,j ∼

{
Bernulli(pi) i = j

1 i 6= j
, (6)

being pi the dropout probability and mi,j the weight index value without dropout.

On the other hand, in [9] it was shown that minimizing the cross-entropy loss objective function
has the effect of minimizing the Kullback-Leibler divergence term. Therefore training the network
with stochastic gradient descent will allow to introduce this approach on our methodology.

With all the above, the introduction of Dropout during the training will prevent overfitting,
while will allow us to compute the pixel-wise sample uncertainty on test time. Being Ix a image
pixel, we can estimate the uncertainty of its predicted label Ĩy computing the variance of T
different predictions on the same pixel by the effect of Dropout through the network weights:

uncert(Ĩy) =
1

T − 1

√√√√ T∑
t=1

(Ĩy,t − Ĩy) , (7)

Ĩy =
1

T

T∑
t=1

Ĩy,t, (8)
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In algorithmic terms, we apply the above proposal to compute the uncertainty of one data instance
following the next pseudo-code:

Algorithm 2 Dropout uncertainty computation

Input:
Unlabeled data instance I, CNN parameters W with Dropout layers, Dropout steps T , Dropout
probability pd.

Output:
Pixe-wise uncertainty UPW , overall uncertainty U .

1: Initialize P empty. . 3D Structure to index all Dropout step predictions.
2: while not reach T do
3: P ← Ĩt step prediction using W with pd in Dropout layers.

4: UPW = var(P )
5: U = sum(UPW )
6: return UPW , U

The precision of pixel-wise uncertainty maps will depend on the Dropout steps T and the
Dropout probability pd. Hight pd means hight variation of network weights making difficult a
consistent result with a finite number of step predictions. As was shown in [13] the ideal pd value
is 0.5 and a maximum precision will be obtained when T →∞.

In Chapter 5 is shown the application of this methodology in the practical case of medical
imaging semantic segmentation, as an advance here it is shown an example computing the
uncertainty map of a melanoma skin cancer image, using a convolutional neuronal network
already trained. For this example, it is not important to know the nature of the image database
or the network used, just to understand in a graphical way, all methodology described above:

Figure 3.1: Pixel-wise uncertainty UPW computation using T = 10 step predictions
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Chapter 4

Practical Classification Application

The project starts with a pre-application of the active learning methodology on a classification
task, designing and training a convolution neural network able to perform handwritten digit
recognition. The objective is to be initiated into active learning framework trough a practical
and simple toy application. The implementation and the subsequent results will help to define
an order of magnitude of the parameters that will later be extended on the medical imaging
semantic segmentation task.

4.1 MNIST database

The MNIST database was constructed out of the original NIST database; hence, modified
NIST or MNIST. There are 60,000 training images (some of these training images can also be used
for cross-validation purposes) and 10,000 test images, both drawn from the same distribution.
All these black and white digits are size normalized, and centered in a fixed-size image where the
center of gravity of the intensity lies at the center of the image with 28x28 pixels. [17] This is a
relatively simple database containing 10 categories, that represent the numerical digits.

4.2 Convolutional Neural Network architecture

The network architecture is illustrated in Figure 5.1 and explained in Section 2.1 (Convolu-
tional Neural Networks). The input layer of the network expects a 28x28 pixel gray image. The
input image is passed through two convolutional blocks, including a 2D convolutional filters with
a receptive field of 5x5 pixels, followed by a ReLU (nonlinearity operation) activation layer and a
spatial max-pooling layer, performing a 2x2 subsampling. The network is concluded with a clas-
sifier block consisting of two Fully-Connected (FC) layers with 1024 and 10 neurons respectively.

Figure 4.1: ConvNet architecture for handwritten digit recognition

The output FC layer is equipped with a Sigmoid activation in order to obtain a ranged score
of each class. This probability, p(yi = j|xi;W ) will be used for the sample selection approach.
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4.3 Experimental setup

The ConvNet architecture proposed to classify the MNIST handwritten digits, will be trained
using the Cost-Effective Active Learning methodology explained in Section 3.2, with its specific
modalities for classification tasks explained in Section 3.3. The aim of this chapter implementing
a practical application, is to play with the parameters defined in each phase of the algorithm,
seeing directly their effects on the system evaluation.

Since there are many parameters and infinite possible situations to test in each phase, we
propose values for each parameter choosing a model that it has been tested during the imple-
mentation for be the most standard, with the aim to fix all the parameters while we are testing
a specific one. The parameters terminology are explained in Section 3.2.

Step Parameter Value Selection

Initialization

Initial DL size
50

200
600 X

2000
4000

Training epochs
1 X
2
3

Complementary
Sample Selection

KU size

0
20
50

200 X
2000

KC size
Constant

0
50

200 X
600

2000

Method
Least Confidance
Margin Sampling

Entropy X

Re - Training
Training epochs

1 X
2
3

Table 4.1: Classification experimental setup

The metric used to evaluate the classification experiments were the accuracy:

accuracy =
number of correct predictions

number of samples
, (9)
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4.4 Results

This section describes the results of the experiments performed in each CEAL algorithm step.
All the experiments follow the table above to initialize all the parameters.

4.4.1 Initialization experiments

The first experiment were related to the size of the initial labeled set. This parameter splits
the MNIST training set, first selecting randomly the amount of labeled data to initialize DL and
then deleting the rest of the labels to initialize DU . The evaluation has been based on MNIST
test set but reduced being proportional to amount of training samples. The Figure 4.2 illustrates
the accuracy values after initial train for different initial DL sizes. Naturally, the more data we
have the better result we will get but in the real world will depend on the nature of the problem
and the real gathered data. However, we need to consider that few initial data could produce
erroneous predictions for the pseudo annotations on the first interactions.

Another experiment was performed around the initial training epochs. Note in Figure 4.3 that
one training epoch is enough to handle the standard model due to the simplicity of the data.

Figure 4.2: Initial evaluation for different DL sizes

Figure 4.3: CEAL evaluation depending on the initial training epochs
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4.4.2 Complementary sample selection experiments

The first experiments were related to the complementary sample selection. This is the most
important step of the Cost-Effective Active Learning algorithm and its parameters will influence
the overall system performance.

First was evaluated the sample selection method, Figure 4.4, choosing among the several
solutions shown in Section 3.3. All the methods presents a similar performance, but it is chosen
the entropy version in the standard model, following the CEAL state-of-the art [25]. In Figure
4.5 it is illustrated the entropy histogram in 2 interactions. Note the evolution of the uncertainty,
being at the beginning the most of the instances located around a hight entropy value, and
decreasing in the second figure, verifying therefore the correct performance of the learning process.

Figure 4.4: Complementary sample selection methods evaluation

Figure 4.5: Uncertainty evolution during the interaction

The second experiment was related to the influence of the annotator during the interaction.
Note the substantial improvement using the oracle annotations through the most informative
samples. The pseudo-annotations are useful to complement them but they could be erroneous
at the beginning. Next, it was evaluated the amount of manual and pseudo annotations in each
iteration. In Figures 4.6 and 4.8 it is shown the system performance for different amounts of data.
Note that the total of manual annotations is a decisive parameter while the pseudo-annotations
have no relevance in this problem, but could be useful to complement certain problems when the
data resources are very limited.

In order to see the effects of the amount of manual annotations in the iteration, in Figure
4.7 is illustrated the amount of active training iterations needed to spend the same labeled data
than the 2000/iteration active model. Taking into account that an accuracy improvement is only
achieved after a model update, the 20/interaction model needs around 60 training epochs to
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achieve the same performance than the 2000/iteration model in only 5 epochs. However, it is
interesting to observe that 1000 samples will be enough for all the models, therefore between 200
and 800 samples/interaction there are the models with an optimum balance between the amount
of data and the needed interactive iterations.

Figure 4.6: Amount of oracle annotations evaluation

Figure 4.7: Effects of manual annotations in the interaction

Figure 4.8: Amount of pseudo annotations evaluation

Finally it was been compared the classical method, using all the MNIST labeled training set,
with the active learning interaction, using the parameters defined in the standard model.

Total manual annotations (+600 DL size) 0 400 600 1200 2000 2600

% MNIST training set (40,000 samples) 1.5 % 2.5 % 3 % 5 % 6.5 % 8 %

% Classical training accuracy 52 % 80 % 85 % 90 % 95 % 99 %

Table 4.2: Classical training for classification comparative

Seeing the results we can conclude that it is possible to train a deep neuronal network for
image classification with active learning methodologies, achieving a similar convergence with only
the 8 % of the labeled samples.
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Chapter 5

Medical Imagining Segmentation

The main contribution of this work is the development of an active learning methodology to
be applied in an imaging segmentation system. By training a well-known Convolutional Neural
Network architecture for semantic segmentation, applying the methods presented in the Section
5.2, this chapter discuses the practical application in medical imaging segmentation, defining the
solutions that best fits the nature of the problem, achieving the best possible performance.

5.1 ISIC Dataset: Melanoma Skin Cancer

The ISIC 2016 Challenge dataset [4] for Skin Lesion Analysis towards melanoma detection
was used for this work as a possible kind of medical data instances.

The dataset is publicly available and contains 2000 RGB dermoscopy images manually an-
notated by medical experts, by manual tracing the lesion boundaries in the form of a binary
mask. The dataset was modified for this work, transforming the original images to gray scale
and modifying their aspect ratio to adapt to the convNet input requirements.

Figure 5.1: ISIC Archive Dataset example

5.2 U-Net architecture

The U-Net [23] is a convolutional neural network architecture specifically designed by O.
Ronneberger et al. from the University of Freiburg to solve Biomedical Image Segmentation
problems. It was successfully rated for winning the ISBI cell tracking challenge [1] 2015.

The network architecture is illustrated in Figure 5.2. As explained in Section 2.1.2, the network
merges a convolutional network architecture with a deconvolutional architecture to obtain the
semantic segmentation. The convolutional network is composed of a repetitive pattern of two 3
x 3 convolutions operations, followed by a ReLU layer and a downsampling process through a 2
x 2 maxpooling operation with stride 2.

29



On the other hand, the deconvolutional architecture includes a upsampling operation of the
feature map obtained during the contracting path, followed by a 2 x 2 deconvolution that fractions
the feature map channels into 2. A posteriori concatenation of the resulting feature map and the
obtained during the contracting path is needed, followed by a 3 x 3 convolutions and a ReLU
layer. The entire network is 23 convolutional layers deep, where the last layer is used to map
each component feature vector related to the number of classes.

Figure 5.2: U-Net architecture (example)

5.3 Training parameters

The Section 3.4 related to the Active Learning methodology, shows that training the ConvNet
learning weights with Stochastic Gradient Descent (SGD) in order to minimize the cross-entropy
loss function, has the same effect than minimize the Kullback-Leibler divergence term, that tries
to approximate the intractable posterior network distribution p(W |DU

x , D
U
y )) with the full weights

distribution q(W ), approximated in that case by Monte Carlo Dropout.

However, in this work it is used the Dice Coefficient loss function because of its pixel-wise
discrimination for segmentation. The coefficient compares the pixel-wise agreement between the
ground truth (Y ) and its corresponding predicted segmentation (Ỹ ).

dice coef =
2 ∗ |Y ∩ Ỹ |
|Y |+ |Ỹ |

, (10)

dice loss function = −dice coef , (11)

The results prove that the Dice Coefficient loss function can be also used instead of cross-
entropy, without breaking the correlation between the sample uncertainty and the system perfor-
mance, considering thus, the weights learning difficulties for the image nature.
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5.4 Initialization

Before starting the interactive learning process, the training sets are initialized based on the
Cost-Effective Active Learning methodology. First, it is randomly selected the labeled amount
DL from the ISIC dataset and then the other labels are deleted initializing the unlabeled set DU .

In addition, few previous preprocessing techniques are needed to adapt the data to the con-
volutional neuronal network architecture:

• Image boundaries transformation. The original images are preprocessed using OpenCV
library, by cropping the images to the same aspect ratio and adapting their size to 192 x
240 following the U-Net input requirements.

• Image channels reduction. ConvNet input layer has an only depth map, requiring a gray
scale transformation to reduce the original number of channels.

• Mean subtraction. In order to center the cloud of values from input data around zero, a
mean subtraction is applied across the image features.

• Image normalization. By dividing each input image by its standard deviation, a normal-
ization is obtained from its original 0 and 255 pixel values to 1 and 0 normalized values.
This technique is commonly used in computer vision to avoid contrast issues.

5.5 Data augmentation

One powerful solution at the beginning of the CEAL methodology is the data augmentation.
A widely used technique in matching learning to generate more training instances, performing
basic transformations with the initial dataset. This methods help the initial training to achieve
highest accuracy in less training epochs, in order to start the complementary sample selection
with the best possible generalization ability, preventing further overfitting issues.

The transformations are performed by the data generator framework from Keras, generating
random sets of new training data through the following transformations: rotations, horizontal
and vertical shifts and horizontal flips.

Figure 5.3: Data augmentation preview: random data generation by basic transformations.
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5.6 Complementary Sample Selection

In order to select the most informative samples to be annotated, it is ranked all the unlabeled
data by computing the overall uncertainty of each instance following the method shown in Section
3.4. The best ranking should achieve a perfect correlation between the uncertainty and the
evaluation metric for the system, performing bad predictions the most uncertainty samples. As a
review, the overall value it is computed by adding all pixel-wise values from the uncertainty map,
therefore the samples containing more doubtful pixels, will achieve a highest final value.

This methodology is not always consistent with the nature of the images and their size. ISIC
dataset is based on skin images with hight concentrations of melanin shaping structured cells.
The size of the cells has a hight variance and it could determine the results. Figure 5.5 shows a
real example where two samples with different cell size but with the same prior uncertainty, the
bigger cell get hight uncertainty because of its large boundary extension.

To solve the problem it is performed a size normalization by the euclidean distance transform
[11] of the uncertainty maps. The idea seems redundant but basically consists on make more
thicker the thicker contours and more thinner the thinner ones. To do that, it is calculated the
distance map of the sample prediction, by computing the euclidean distance of each pixel to the
closest obstacle pixel (border pixels), being higher at the cell center and lower near the contours.
Multiplying the distance map with the uncertainty pixels, it is obtained a new uncertainty map
where the furthest pixels are penalized, getting size-normalized the size boundaries.

Figure 5.4: Size normalization summary: (a) Image prediction, (b) Uncertainty map, (c) Distance
transform map, (d) Size-normalized uncertainty map: product between distance transform map
and uncertainty map.

Once all the overall uncertain values are computed, we can use the ISIC training ground truth
(deleted labels in the unlabeled set creation) to perform an experiment to visualize the correlation
between the predictions goodness and their overall uncertain values. Remember that we used
the word accuracy as the prediction goodness, although we are using the Dice coefficient as the
evaluation metric.

In Figure 5.6 it is distinguished four regions according to the sample nature:

1. The samples in this regions have null accuracy while the uncertainty is low but variate, this
samples are no-detected by the system, and although they have low uncertainty are more
informative than the highest uncertain ones to be first manually annotated.

2. This region contains the hight uncertain samples, other possible candidates to be annotated
by the oracle.
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Figure 5.5: Size normalization example: This figure illustrates the size correlation problem with
two different cells. For each one it is shown the ground truth (GT), its prediction with the
evaluation metric (Dice coefficient), and on the bottom the uncertainty map with and without
size normalization (left to right) with the respective overall uncertainty. Note the effect after
applying the size normalization, being the second cell most uncertain in spite of its small size.

3. This region concentrates the most of the samples, there are located the highest accurate
predictions with less uncertain values. These are perfect candidates to be selected as a
pseudo-labels.

4. The central region contains a random amount of samples that will difficult the comple-
mentary sample selection.

In the real world, the system will only know the uncertain values and this region representation
it wont be able, therefore the sample selection must be based only on the uncertainty axis, using
the histogram of the uncertain values to get the overall distribution. Seeing the histogram
in Figure 5.6, we can perform the region representation for one dimension to define the sample
selection criteria. In the lowest side there will be the samples located on the first region, selecting
K1 samples around the highest bins to be manually annotated. Next, in the highest side there
will be the samples located on the second region, selecting K2 samples around the highest bins
to be also manually annotated.

Then, in the central part, there will be the supposed samples to be pseudo annotated, but
the instances in the fourth region will interfere to get good candidates from the thirst region. To
solve that we will consider to select randomly K4 samples from all unlabeled set, to be labeled
by oracle, with the aim to reduce the concentration of bad predictions in the central area and to
be able to select good KC pseudo candidates in further iterations. This amount is expected to
be incremental considering the progressively system improvement: KC = KC0 + i ∗KCi, being
KC0 the initial certain amount and KCi the amount for the active learning interaction i.

In summary, the complementary sample selection will gather the next labeled data: KU =
K1 +K2 +K4 samples for oracle labeling and KC samples for pseudo labeling. Following the
Cost-Effective Active Learning methodology shown in Section 3.2, the KU samples will be added
to the labeled set DL and the KC will be added to an auxiliary set DH used for the re-training
but returned to the unlabeled set DU again for the next complementary sample selection.
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Figure 5.6: Regions diagram representation: comparative with the real world sampling selection
criteria. Note the interference between regions 3 and 4 to choose the pseudo labeling candidates.

5.7 Experimental setup

Following the same methodology used in the classification experimentation, we defined a
standard model of parameters to be fixed in all the experiments. The complexity of the problem
could origin correlation between parameters being difficult to test all the possibilities. Despite all
we proposed the following standard.

Step Parameter Value

Initialization
Inital DL 600

Training epochs 10
Data augmentation X

Complementary
Sample Selection

Oracle
annotations

K1 10
K2 10
K4 10

Starting epoch 0

Pseudo
annotations

Initial size 20
Rate 20 ∗ iteration

Starting epoch 5
Dropout Step predictions 20

Distance transform X

Re-Train Training epochs 2

Finalization Iterations 20

Table 5.1: Segmentation experimental setup

The metric used in all the evaluations is the Dice coefficient shown in equation (10).

ISIC training dataset was split to gather a test set of 400 samples, therefore we only disposed
of 1600 samples for the train that was split again to shape the initial labeled DL and unlabeled
DU sets. Dice index was computed through the evaluation average of all the test data.
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The following experiments were performed:

• Experiment 1. Initialization step. Evaluate the initialization parameters: the initial DL

size, the training epochs and the use of data augmentation to improve the initial point.

• Experiment 2. Complementary data selection. Effect of oracle labeling for no-detection
K1 sets.

• Experiment 3. Complementary data selection. Effect of oracle labeling for the most uncer-
tain K2 and random K4 sets.

• Experiment 4. Complementary data selection. Effect of the pseudo labeling.

• Experiment 5. Comparative between the best achieved active learning performance and
the classical training in terms of labeled data and the system performance.

5.8 Results

This section presents the results of the experiments on the medical imaging segmentation
system described in this Chapter, based on the Cost-Effective Active Learning methodologies for
segmentation presented in Section 3.2.

5.8.1 Initialization experiments

The first experiment was related to the initial training. This step is crucial for the system
outcome, since it defines the starting point for the interactive loop. First we evaluated the
number of training epochs in Figure 5.8, noting that unlike in classification tasks, they are more
determinant due to the system complexity, needing more epochs but having a hight risk to
converge in a bad performance and to disable the effect of further active learning iterations.
Then we evaluated the effect of apply data augmentation in Figure 5.7, noting that it makes the
system converge faster and with better performance, but it requires a high computational time
for the augmentation procedures.

The evaluation of the DL size it was not possible due the computational time. However, we
had certain criteria about the magnitude order information of the classification task. For this
project we chosen a initial labeled set of 600 samples but note that as same as classification this
chose only depends on the real world application. Of course the more data we have the better
performance we will get but we need to consider again the nature of the problem and the possible
gathered amount of initial labeled data.

5.8.2 Effect of oracle labeling for no-detection K1 set

In Section 5.6 was shown the importance of the K1 set within the complementary sample
selection methodology. As a review, no-detections are the most informative instances to be
labeled by the oracle since they do not produce any stimulus to the ConvNet. Note in Figures 5.9
and 5.10 that we obtained great results training only with this kind of samples, but the regions
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diagram does not converge in the expected way, having large amounts of data in the central and
highest regions. Seeing in the Figure 5.7 a initial training convergence, it has been selected the
CNN model corresponding to 9 epoch to save unless trainings in order to avoid overfitting. The
following Figures show the system evaluation and the region diagrams for 10 iterations, using the
parameter values defined in Table 5.1.

Initial Labeled Data 600 samples

30 annotations/iteration 300 samples

Total (10 iterations) 900 samples

Table 5.2: Experiment 1: Total of labeled data

5.8.3 Effect of oracle labeling for the most uncertain K2 and random K4 sets

The proposed solution to decrease the concentration of samples in the central and highest
regions, in order to improve the pseudo sample selection is to select for the oracle labeling, the
most uncertain K2 and random K4 sets together with the no-detections K1.

In the results of regions graph for the first experiment in Figure 5.10, we observe a not
optimal performance at the latest iterations, being assigned the most of the oracle candidates
in the certain region. In this experiment we tried to introduce the sets progressively giving the
K1 more importance at the beginning and increasing the K4 one at the end by reducing the
no-detections. Note in Figure 5.9 the wanted convergence, increasing the overall performance.
In summary, we followed the procedure defined in the following Table:

Iteration 0 - 4 Iteration 5 - 9 Partial Total

Initial Labeled Data 600 samples

K1 annotations/iteration 10 samples 5 samples 75 samples

K2 annotations/iteration 10 samples 100 samples

K4 annotations/iteration 10 samples 15 samples 125 samples

Total (10 iterations) 900 samples

Table 5.3: Experiment 2: Total of labeled data

5.8.4 Effect of pseudo annotations

This experiment were related to the effect of the pseudo-labels in the interaction. In the last
sections we described the best possible environments to introduce this kind of annotations trying
to concentrate the most of the samples at the certain region, increasing the system performance
before this step. The results are satisfactory, but not as much as desired, noting in Figure 5.11
that there are still samples in the central region that interfere with the system improvement.

Nonetheless, it remains an open door for future works to continue researching new and more
adapted solutions to achieve better starting points for the pseudo-labels, with the desire to see
their potential power in this field.
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Figure 5.7: Initial training with data augmentation evaluation

Figure 5.8: Initial training epochs evaluation.

Figure 5.9: Experiments evaluation results. In the graph it is also included the initial train
using data augmentation. Note that after the initial train, there was used 2 training epochs
per iteration, being represented 10 active iterations in the graph. As a review: Experiment 1:
Effect of oracle labeling for no-detection K1 set; Experiment 2: Effect of oracle labeling for the
most uncertain K2 and random K4 sets; Experiment 3: Effect of pseudo annotations. Note in
Experiment 2, the effect of sets K2 and K4 after epoch 5 and in the Experiment 3, the effect
of pseudo-labels improving the system but without achieve the expected performance.
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Figure 5.10: Regions digram for experiment 1. Red samples are the choses to oracle labeling

Figure 5.11: Regions digram for experiment 2. Red samples are the choses to oracle labeling.
Note the improvement after epoch 5 by the increment of random samples K4.
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5.8.5 General evaluation

In order to evaluate the Active Learning performance in general terms, we used the results
from the ISBI 2016 Challenge [2] for the training of the U-Net with the ISIC dataset. Each
participant were ranked by several evaluation index, in our case, we based only on the Dice
coefficient index, the metric used in this project. The winner of the Challenge, Urko Sanchez
[3], obtained a Dice index of 0.90 over the 28 participants on the segmentation task. This model
were trained with 300 training epochs using the overall ISIC training set of 2000 labeled samples.
The best proposed model for Active Learning approach achieved a Dice index of 0.78 using 10
initial epochs and 10 interactive iterations totaling 30 training epochs. The total of labeled data
between the initial labeled set and all the annotations was 900 samples.

Classical Method Active Learning Method
Best Dice Index 0,95 0,78

Training epochs 300 30

Total Labeled Data 2000 900

Table 5.4: General evaluation based on ISBI 2016 Challenge.

A visual evaluation may be interesting to made a qualitative idea of the system performance.
In Figure 5.12 there are examples of what are considered satisfactory and poor segmentations.

Figure 5.12: Examples of satisfactory and poor segmentation results.
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Chapter 6

Budget

This project has been developed using the resources provided by Image Processing Group of
UPC, and as it is a comparative study, there are not maintenance costs.

Therefore, the main costs of this projects comes from the salary of the researches and the time
spent in it. I consider that my position has been as junior engineer, while the three professors who
were advising me had a wage/hour of a senior engineer. I will consider that the total duration of
the project was of 22 weeks, as depicted in the Gantt diagram in Figure 1.2.

Amount Wage/hour Dedication Total

Junior engineer 1 12,00 e/h 30 h/week 7,920 e

Senior engineer 3 20,00 e/h 4 h/week 5,280 e

Total 13,200 e

Table 6.1: Budget of the project
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Chapter 7

Appendices

7.1 Variables

DL Labeled set size
DU Unlabeled set size
DH Pseudo candidates set size
KC Hight confidence selection size
KU Low confidence selection size
K1 No-detections selection size
K2 Most uncertain selection size
K4 Central random selection size
T Dropout step predictions
W ConvNet parameters
U Overall uncertainty metric
UPW Pixel-wise uncertainty map

7.2 Definition of hyperparameters

During all the methodology, some parameters are called to be altered in order to get the best
system performance. They are defined as follows:

• Batch size. The batch size is attributed to the number of training images in one forward
or backward pass. It is important to highlight that the higher the batch size, the more
memory will be needed.

• Epoch. The number of epochs measures how many times every image has been seen
during training (i.e. one epoch means that every image has been seen once). It can be
also understood as a one forward pass and one backward pass of all the training examples.
It is numerically computed as:

• Iterations. The number of interactions in the Active Learning loop. Each one contains a
training step with a certain defined number of epochs.

• Loss function. Loss function (also called cost function) evaluates the penalty between the
prediction and the ground truth label in every batch.

• Learning rate. The learning rate parameter defines the step size for which the weights of
a model are updated regarding the stochastic gradient descent. Decay. The weight decay
is an additional weight update parameter that induces the weights to exponentially decay
to zero once the update process is over.

• Optimizer. Keras framework provides optimizers in order to find the most optimal set of
hyperparameters for the model. Some examples are the SGD, RMSprop and Adam.
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Chapter 8

Conclusions

The main objective of this project was to propose a framework able to manage active deep
learning for medical imaging segmentation. The results obtained by the ISIC 2017 Challenge
dataset for Skin Lesion Analysis towards melanoma detection are satisfactory in terms to evaluate
the potential of the methodology, but not enough to be compared to the classical training model.
Taking into account the complexity in segmentation to face the training of deep neuronal networks
from scratch with few data, this thesis proposed strategies to study the nature of the data to
prevent the learning weights to fall into local minimums.

Cost-Effective Active Learning introduced the idea of automatic annotations to able the system
to generate automatically labeled data increasing the amount of training data. Seeing their
potential in classification we tried to follow the idea in segmentation but it had been very difficult
to filter the best instances to the others knowing the importance of the small details in the learning
process, and the negative impact to consider bad predictions as true labels. Several solutions
were proposed to solve the problem and to prepare the best possible environment before start the
process, and the results are satisfactory in terms of data analysis. The called regions diagrams
allowed us to evaluate through a visual way the performance of the interactive methodology by
seeing the effects of the most informative annotations. Although the results are not comparable
than the classical training, in terms of prediction goodness, there remains an open a door for
further works to keep researching new solutions for data analysis to find the instances with big
impact for the overall outcome to prove if the expected potential of the pseudo labels can give
the system a competitive performance.

Finally, as future work, it may be interesting to test new methods in the state-of-the-art for
the complementary data selection, such as the pull the plug? [7], to achieve more correlation
between the informativeness and the system performance. Another possible modifications would
be related to the regions digram criteria, using metrics such as the overall uncertain variance to
adapt the regions frontiers to the data in real time. As a last proposal could be great to use
transfer learning by using pre-trained networks in order to initialize the weights safely.

At last, all the code from this thesis to check and reproduce all the results, is publicly available
on: https://github.com/marc-gorriz/CEAL-Medical-Image-Segmentation
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