Search Publication

Export 1092 results:
Author [ Title(Desc)] Type Year
Filters: Filter is   [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
Frias-Velazquez A, Morros JR, García M, Philips W. Hierarchical stack filtering: a bitplane-based algorithm for massively parallel processors. Journal of Real-Time Image Processing. 2017;.  (868.82 KB)
Garrido L, Marqués F, Pardàs M, Salembier P, Vilaplana V. A hierarchical technique for image sequence analysis. In Workshop on Image Analysis for Multimedia Application Services, WIAMIS'97. Louvain-la-Neuve, Belgium; 1997. pp. 13–20.  (182.34 KB)
Dorea C, Pardàs M, Marqués F. A hierarchical trajectory-based representation for video. In Fith International Workshop on Content-Based Multimedia Indexing. 2007. pp. 275–282.
Palou G, Salembier P. Hierarchical Video Representation with Trajectory Binary Partition Tree. In Computer Vision and Pattern Recognition (CVPR). Portland, Oregon; 2013.  (4.69 MB)
Salembier P, O'Connor N, Correia P, Pereira F. Hierarchical visual description schemes for still images and video sequences. In 1999 IEEE International Conference on Image Processing, ICIP 1999. Kobe, Japan; 1999.  (375.21 KB)
Sayrol E. Higher-order statistics applications in image sequence processing. Gasull A. Universitat Politècnica de Catalunya (UPC); 1994.
Frias-Velazquez A, Morros JR. Histogram computation based on image bitwise decomposition. In ICIP 2009. 2009.
Landabaso J-L, Pardàs M, Bonafonte A. HMM recognition of expressions in unrestrained video intervals. In International conference on Acoustics, Speech, and Signal Processing. 2003. pp. 197–200.
Marqués F, Menezes M, Ruiz-Hidalgo J. How are digital images compressed in the web?. In: Dutoit T, Marqués F. Applied signal processing. 2009. pp. 265–310.
Marqués F, Menezes M, Ruiz-Hidalgo J. How are digital TV programs compressed to allow broadcasting?. In: Dutoit T, Marqués F. Applied signal processing. 2009. pp. 311–359.
Bach M, Thiran J, Marqués F. How can physicians quantify brain degeneration?. In: Dutoit T, Marqués F. Applied signal processing. 2009. pp. 411–449.
Descamps A, De Vleeschouwer C, Jacques L, Marqués F. How does digital cinema compress images?. In: Dutoit T, Marqués F. Applied signal processing. 2009. pp. 361–410.
Duarte A, Palaskar S, Ventura L, Ghadiyaram D, DeHaan K, Metze F, et al.. How2Sign: A Large-scale Multimodal Dataset for Continuous American Sign Language. In CVPR 2021. 2021.  (5.94 MB)
Suau X. Human body analysis using depth data. Casas J, Ruiz-Hidalgo J. Universitat Politècnica de Catalunya (UPC); 2013.  (10.67 MB)
Turkan M, Pardàs M, Cetin E. Human eye localization using edge projections. In International Conference on Computer Vision Theory and Applications, VISAPP 2007. 2007. pp. 410–415.
Marqués F, Vilaplana V, Buxes A. Human face segmentation and tracking using connected components and partition projection. In 1999 IEEE INternational Conference on Image Processing. 1999.
Canton-Ferrer C, Canton-Ferrer C, Casas J, Pardàs M. Human Model and Motion Based 3D Action Recognition in Multiple View Scenarios. In 14th European Signal Processing Conference. 2006. pp. 1–1.
Canton-Ferrer C, Casas J, Pardàs M. Human motion capture using scalable body models. Computer vision and image understanding. 2011;115:1363–1374.
Canton-Ferrer C. Human Motion Capture with Scalable Body Models. Casas J, Pardàs M. Universitat Politècnica de Catalunya (UPC); 2009.  (13.45 MB)
Sanchez-Escobedo D, Lin X, Casas J, Pardàs M. HybridNet for Depth Estimation and Semantic Segmentation. In ICASSP 2018. Calgary, Alberta, Canada: IEEE; 2018.  (1.14 MB)
Bonet D, Mas-Montserrat D, Giró-i-Nieto X, Ioannidis AG. HyperFast: Instant Classification for Tabular Data. In 38th Annual AAAI Conference on Artificial Intelligence (AAAI). 2024.  (3.15 MB)
Ramon E, Ruiz G, Batard T, Giró-i-Nieto X. Hyperparameter-Free Losses for Model-Based Monocular Reconstruction. In ICCV 2019 Workshop on Geometry Meets Deep Learning. Seoul, South Corea: IEEE / Computer Vision Foundation; 2019.  (749.7 KB)
Schürholt K, Knyazev B, Giró-i-Nieto X, Borth D. Hyper-Representations as Generative Models: Sampling Unseen Neural Network Weights. In NeurIPS 2022 - Neural Information Processing Systems. 2022.  (4.6 MB)
Schürholt K. Hyper-Representations: Learning from Populations of Neural Networks. Mahoney M, Giró-i-Nieto X, Borth D. Unievrsity of St. Gallen. 2024.  (18.12 MB)
Valero S. Hyperspectral image representation and Processing with Binary Partition Trees. Salembier P. Universitat Politècnica de Catalunya (UPC); 2011.  (20.92 MB)