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sinó també la meva vida.





Summary
Human body analysis is one of the broadest areas within the computer vision field. Rese-
archers have put a strong effort in the human body analysis area, specially over the last
decade, due to the technological improvements in both video cameras and processing
power. Human body analysis covers topics such as person detection and segmentati-
on, human motion tracking or action and behavior recognition. Even if human beings
perform all these tasks naturally, they build-up a challenging problem from a computer
vision point of view. Adverse situations such as viewing perspective, clutter and occlu-
sions, lighting conditions or variability of behavior amongst persons may turn human
body analysis into an arduous task.

In the computer vision field, the evolution of research works is usually tightly related to
the technological progress of camera sensors and computer processing power. Traditional
human body analysis methods are based on color cameras. Thus, the information is
extracted from the raw color data, strongly limiting the proposals. An interesting quality
leap was achieved by introducing the multiview concept. That is to say, having multiple
color cameras recording a single scene at the same time. With multiview approaches, 3D
information is available by means of stereo matching algorithms. The fact of having 3D
information is a key aspect in human motion analysis, since the human body moves in a
three-dimensional space. Thus, problems such as occlusion and clutter may be overcome
with 3D information.

The appearance of commercial depth cameras has supposed a second leap in the human
body analysis field. While traditional multiview approaches required a cumbersome
and expensive setup, as well as a fine camera calibration; novel depth cameras directly
provide 3D information with a single camera sensor. Furthermore, depth cameras may
be rapidly installed in a wide range of situations, enlarging the range of applications with
respect to multiview approaches. Moreover, since depth cameras are based on infra-red
light, they do not suffer from illumination variations.

In this thesis, we focus on the study of depth data applied to the human body analysis
problem. We propose novel ways of describing depth data through specific descriptors, so
that they emphasize helpful characteristics of the scene for further body analysis. These
descriptors exploit the special 3D structure of depth data to outperform generalist 3D
descriptors or color based ones. We also study the problem of person detection, proposing
a highly robust and fast method to detect heads. Such method is extended to a hand
tracker, which is used throughout the thesis as a helpful tool to enable further research.
In the remainder of this dissertation, we focus on the hand analysis problem as a subarea
of human body analysis. Given the recent appearance of depth cameras, there is a lack of
public datasets. We contribute with a dataset for hand gesture recognition and fingertip
localization using depth data. This dataset acts as a starting point of two proposals for
hand gesture recognition and fingertip localization based on classification techniques. In
these methods, we also exploit the above mentioned descriptor proposals to finely adapt
to the nature of depth data.





Resum
L’anàlisi del cos humà és una de les àrees més àmplies del camp de la visió per compu-
tador. Els investigadors han posat un gran esforç en el camp de l’anàlisi del cos humà,
sobretot durant la darrera dècada, degut als grans avenços tecnològics, tant pel que fa
a les càmeres com a la potència de càlcul. L’anàlisi del cos humà engloba varis temes
com la detecció i segmentació de persones, el seguiment del moviment del cos, o el reco-
neixement d’accions. Tot i que els éssers humans duen a terme aquestes tasques d’una
manera natural, es converteixen en un dif́ıcil problema quan s’ataca des de l’òptica de
la visió per computador. Situacions adverses, com poden ser la perspectiva del punt de
vista, les oclusions, les condicions d’il·luminació o la variabilitat de comportament entre
persones, converteixen l’anàlisi del cos humà en una tasca complicada.

En el camp de la visió per computador, l’evolució de la recerca va sovint lligada al progrés
tecnològic, tant dels sensors com de la potència de càlcul dels ordinadors. Els mètodes
tradicionals d’anàlisi del cos humà estan basats en càmeres de color. Això limita molt
els enfocaments, ja que la informació disponible prové únicament de les dades de color.
El concepte multivista va suposar salt de qualitat important. En els enfocaments multi-
vista es tenen múltiples càmeres gravant una mateixa escena simultàniament, permetent
utilitzar informació 3D gràcies a algorismes de combinació estèreo. El fet de disposar de
informació 3D és un punt clau, ja que el cos humà es mou en un espai tri-dimensional.
Aix́ı doncs, problemes com les oclusions es poden apaivagar si es disposa de informació
3D.

L’aparició de les càmeres de profunditat comercials ha suposat un segon salt en el camp
de l’anàlisi del cos humà. Mentre els mètodes multivista tradicionals requereixen un
muntatge pesat i car, i una calibració precisa de totes les càmeres; les noves càmeres
de profunditat ofereixen informació 3D de forma directa amb un sol sensor. Aquestes
càmeres es poden instal·lar ràpidament en una gran varietat d’entorns, ampliant enor-
mement l’espectre d’aplicacions, que era molt redüıt amb enfocaments multivista. A més
a més, com que les càmeres de profunditat estan basades en llum infraroja, no pateixen
problemes relacionats amb canvis d’il·luminació.

En aquesta tesi, ens centrem en l’estudi de la informació que ofereixen les càmeres de
profunditat, i la seva aplicació al problema d’anàlisi del cos humà. Proposem noves
vies per descriure les dades de profunditat mitjançant descriptors espećıfics, capaços
d’emfatitzar caracteŕıstiques de l’escena que seran útils de cara a una posterior anàlisi
del cos humà. Aquests descriptors exploten l’estructura 3D de les dades de profunditat
per superar descriptors 3D generalistes o basats en color. També estudiem el problema
de detecció de persones, proposant un mètode per detectar caps robust i ràpid. Ampliem
aquest mètode per obtenir un algorisme de seguiment de mans que ha estat utilitzat al
llarg de la tesi. En la part final del document, ens centrem en l’anàlisi de les mans
com a subàrea de l’anàlisi del cos humà. Degut a la recent aparició de les càmeres de
profunditat, hi ha una manca de bases de dades públiques. Contribüım amb una base
de dades pensada per la localització de dits i el reconeixement de gestos utilitzant dades
de profunditat. Aquesta base de dades és el punt de partida de dues contribucions sobre
localització de dits i reconeixement de gestos basades en tècniques de classificació. En
aquests mètodes, també explotem les ja mencionades propostes de descriptors per millor
adaptar-nos a la naturalesa de les dades de profunditat.
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1
Introduction

Humans naturally understand the human body. From childhood, one is intrinsically

capable of interpreting a human body, being able to recognize its pose and to differen-

tiate its parts. Moreover, it is fairly easy for humans to carry out such interpretation

under unfavorable conditions, i.e. cropped views, bad illumination or schematic repre-

sentations. For example, one may say whether a given part is a hand or a foot from

an uncommon, hand-made drawing (Figure 1.1), and even which gesture is that hand

performing.

Such easy understanding of the human body by humans has stirred up the interest of

the computer vision community. During the last years, cameras have spread almost

everywhere, from mobile phones and web-cams to shopping malls and operating rooms.

Moreover, the explosion of internet has put an enormous amount of pictures and videos

at a click distance, many of them containing human beings. These two recent facts have

pushed Human Body Analysis to the position of being one of the main computer vision

research topics nowadays.

The computer vision community has addressed the Human Body Analysis (HBA) pro-

blem from various perspectives over the last years. Some works study the human body

1
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Figura 1.1: Hand-made drawing. Any human being is able to detect both hands and
what are they doing, despite the uncommon representation.

using markers and other devices. Such approaches will not be mentioned in this docu-

ment, focusing on the marker-less strategies. Indeed, in order to provide a truly immersi-

ve experience, marker-less body pose estimation is a must in this field [MHK06, Pop07].

The Human Body Analysis field is a wide research topic; however, one may identify

some main research branches. Many works deal with human detection, that is to say,

knowing where people are in an image or video capture. Other works focus on human

parts detection and human pose estimation. Moreover, the analysis of specific body

parts, mostly hands, has recently evolved as a main topic itself.

No matter the approach, being able to interpret the human body from a camera capture

opens the door to completely new applications.

1.1 Humans and Human Body Analysis

Humans interact most of the time. Either with other humans, with animals or objects,

interaction is omnipresent in our life. Interaction between humans is based on language,

but also on signs and gesturing. Language understanding requires very strong hypot-

heses: both persons should speak the same language. However, gesture understanding

is not that evident, since both interlocutors should have some cultural background in

common. For example, in the Middle Ages, humans represented themselves to one anot-

her by means of gestures in political, religious and secular life [Sch90]. Hand gestures

had a specific semantic meaning from the perspective of legal history in Middle Ages

manuscripts [SCO11] (Figure 1.2). However, few people of the XXI century are able to

understand such gestures. In general, a knowledge of gestures meaning and which parts

of the body are representative is assumed in order to achieve gesture understanding.
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Figura 1.2: Medieval gestures, picture extracted from [SCO11].

This way, our interlocutor is able to analyze our body and try to estimate what we are

communicating.

The same problem may be posed to Human-Computer Interaction (HCI). One could

expect the same gesture understanding achieved between humans, and indeed, this is

the main objective of computer vision approaches to Human Body Analysis: machines

should understand human gestures as humans do. The eyes of the interlocutor are

replaced by a camera sensor, whilst man intelligence is transferred to computer vision

algorithms.

Applications are straightforward and extremely varied.

• Novel HCI interactive paradigms, where touch-less gestures become available.

• Sign language communication between a deaf person and a machine is a relevant

application.

• Health related applications such as the analysis of athletic performance, as well as

medical diagnostics.

• The capability to automatically monitor human activities using computers in

security-sensitive areas such as airports or borders.

• Automatic annotation of large datasets for content-based queries in digital envi-

ronments.

• Animation of virtual characters for movie production.

• And many applications to come.

1.2 The Emergence of Depth Data

Human Body Analysis techniques exploit the information provided by video cameras.

Having 3D information at one’s disposal is of great interest, since the human body moves

in a 3-dimensional space. Traditional approaches use color, noted as RGB, as input

information. By locating an array of cameras pointing to the object of interest (i.e.
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human body), 3D information may be obtained by means of stereo triangulation, noted

as RGBD (or color+depth). These family of methods are called multiview triangulation

methods. Adding such spatial dimension to the available information enables a paradigm

change in the definition of HBA algorithms. However, adopting multiview methods

implies the verification of a series of hypotheses:

• The scene must be recorded with more than one camera. These cameras should

have slightly different points of view.

• Cameras must be finely calibrated.

• Illumination should be controlled.

• The scene must have some kind of texture.

Such hypotheses are strongly restrictive in many situations. In addition, the recording

setup turns out to be expensive and cumbersome, due to the number of cameras and

the calibration procedure.

The appearance of depth cameras (Figure 1.3) has supposed a revolution, since a new

dimension is added to the color information provided by conventional cameras. Indeed,

these cameras provide an estimation of the distance D between the camera origin an the

position of a given pixel in the scene.

A more in-depth overview of depth cameras and their characteristics is presented in

Chapter 2.1.

Figura 1.3: Depth cameras have been commonly used in recent years. From left to
right, PMD CamCube and MESA SR4000 (TOF cameras), Microsoft Kinect and ASUS

Xtion (IR Stereo Cameras).

Depth cameras already provide 3D information using a single, low-cost, device. This

property allows a considerable simplification of the above mentioned hypotheses for

multiview methods. Furthermore, since recent depth cameras are based on matricial

active triangulation and IR light coding [MZC12], illumination and texture are not as

restrictive.

However, depth cameras present some important drawbacks to be taken into account:
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• The operating range usually goes from 0.5 to 5 meters.

• Strong sunlight may degrade the depth estimation.

• Low image resolution (up to 640× 480 pixels) if compared with color cameras.

Despite these drawbacks, the performance of RGB algorithms may be strongly improved

by using depth information. Moreover, novel features and approaches may be developed

solely based on depth data.

1.3 Contributions

This thesis summarizes a list of proposals for Human Motion Analysis using depth data.

The work is divided into two main areas of contributions (Parts I and II), listed hereafter:

Part I Description of Depth Data How depth data is represented and described

is a key aspect for a successful analysis. Description procedures aim at extracting

specific features intrinsically available from the data that may be more useful than

raw data for further analysis.

• An extension of Geometric Deformable Models to depth data, allowing to

obtain end-effectors of a point-cloud, with special emphasis in the human

body case.

• A descriptor for depth data analysis, called Oriented Radial Distribution

(ORD). The proposed descriptor highlights extremal and prominent zones of

a point cloud, as well as flat zones. Moreover, ORD is formulated in a multi-

scale way, allowing size-wise filtering of prominent zones. We show that the

ORD descriptor helps improving detection and classification methods using

depth data.

Part II Hand Analysis Analyzing hand pose and gesturing has gradually become

a sole research axis itself. Since humans intensely communicate through hands,

being able to interpret them by means of Computer Vision techniques is crucial

for the future of HCI. In this thesis we propose:

• HandBox : A baseline method for hand detection We address the

problem of detecting human hands in a non-cumbersome way. The purpose

of this method is to serve as a tool for further research on human hands. We

propose the following contributions in this area:

– A light-weight and robust head detector and tracker based on depth data.
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– A novel real-time hand tracking paradigm, called HandBox, which takes

advantage of the previous head tracking proposal. HandBox enables auto-

matic gesture segmentation and a wide range of interactive applications.

• ColorTip, a public dataset for hand gesture recognition and fingertip locali-

zation using depth data. We provide gesture and fingertip annotations for

further training of classification methods or performance analysis of detection

and tracking methods.

• A complete real-time framework for gesture recognition and fingertip locali-

zation, that exploits the Oriented Radial Distribution multi-scale feature for

both tasks.

• A voting framework that jointly classifies object parts and global object clas-

ses. Special focus is put on fingertip localization.

A list of references to journal papers, international conference publications, contribu-

tions to projects and submitted publications is included in the conclusions Part III.

Contributions discussed throughout the thesis document are also summarized in that

part.

1.4 Thesis Organization

This thesis document is organized as follows:

Chapter 1 Introduction to the thesis subject and organization of the document.

Chapter 2 An overview of the relevant state-of-the-art publications and methods

related to depth data acquisition and description, human body analysis and

hand analysis.

Part I Description of Depth Data In this part we present our contributions to

the field of depth data description.

Chapter 3 The 3D descriptor named Oriented Radial Distribution feature is pre-

sented in this Chapter.

Chapter 4 We propose a method to extend Geometrical Deformable Models to

depth data

Chapter 5 Experimental results and conclusions about the two methods are pre-

sented.
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Part II Hand Analysis This part contains the contributions to the Hand Analysis

field using depth cameras.

Chapter 6 The HandBox approach is presented in this chapter, with special focus

on the human body part detection case.

Chapter 7 A public dataset named ColorTip is presented.

Chapters 8 and 9 This chapters contains two proposed hand analysis methods.

Chapter 10 Experimental results about hand analysis are summarized in this

chapter. Conclusions of these methods are also discussed.

Part III Overall Conclusion The final conclusions and list of contributions are

included in this part.

Chapter 11 The contributions of the thesis are listed in this chapter.

Chapter 12 A final discussion on the work carried out in this thesis is included.

Also, some future work directions are explored.





2
State of the Art

The computer vision community has addressed an increasing number of contributions to

the problem of Human Body Analysis in recent years. The emergence of depth cameras

has been one of the main driving forces. Some HBA topics are considered in this thesis:

depth data acquisition, depth data description, body parts detection and tracking, and,

finally, human hand analysis. We present hereafter a summary of the state-of-the-art

approaches for each of these topics of interest.

2.1 Depth Data Acquisition

The first family of depth cameras was called Time-of-Flight (TOF) cameras. Such

cameras measure the time of flight of a light signal between the camera and the subject

for each point of the image. No complex processing is needed to convert a signal to an

explicit distance, providing real-time captures of up to 100fps. One of the most used

TOF cameras is the MESA SR4000 [tofcM], which provides a 176 × 144 pixel depth

image.

In 2010, Microsoft released the Kinect sensor [Mic]. Kinect projects an IR pattern onto

the scene, and applies 3D stereo techniques to recover the depth configuration of the

scene. The depth estimation obtained with Kinect is more stable and accurate than

9
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current TOF estimations. Moreover, Kinect provides a 640 × 480 pixel depth image,

which means a considerably higher resolution than current TOF cameras [MZC12].

In this thesis, both the SR4000 and the Kinect sensor are used. However, most of the

work is performed with the Kinect sensor, given its better characteristics. In addition,

Kinect provides an RGB capture which is registered to the depth estimation. Thus,

Kinect may be truly considered as an RGBD sensor.

Very recently, Kinect manufacturer PrimeSense has announced the release of a reduced

version of Kinect, called Capri [Pri13]. Such device fits in regular tablets and mobi-

le phones, and may be powered by USB, enabling novel applications that exploit the

portability and power of tablets.

In 2012, a company called LeapMotion [Lea12] advertised a device able to provide hand

tracking with sub-millimeter resolution. LeapMotion is also based on computer vision

technology, consisting of 2 cameras and IR emitters. Its irruption caused a huge interest,

however, after its very recent release [Rel13], some beta-testers indicate that the per-

formance of LeapMotion is far from what it should be according to the advertisement

[MIT13, Clu].

2.2 Depth Data Description

Depth data is obtained from the sensor as a depth map image. However, one may project

each depth value to its 3D position. Thus, after back-projecting the values from a depth

map, a 3D point cloud is obtained. Such point cloud contains 3D points which belong

to the surfaces of the scene visible from the camera viewpoint. In this document, the

term depth image refers to the 2D depth map, whilst the term depth point cloud refers

to the 3D point cloud obtained from the projection of the values in the depth image.

2.2.1 3D Features

Depth point clouds may present specific characteristics which are barely observable

from the raw data. In order to emphasize such characteristics, mathematical tools and

methods can be specifically defined. Since we are faced with depth point clouds, the

following summary considers features that take 3D structure into account.

One of the simplest 3D features is curvature, usually computed as λ0
λ0+λ1+λ2

, where λi are

the eigenvalues of the eigen-decomposition of a neighborhood of a given point. 3D Shape

Contexts (3DSC) [FHK+04] capture, for a given point, the distribution over neighboring
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positions of other shape points and summarizing global shape in a rich, local descriptor.

Viewpoint Feature Histogram (VFH) [RBTH10] is a descriptor for depth point clouds

that encodes geometry and viewpoint. More precisely VFH constructs a histogram that

collects the pairwise pan, tilt and yaw angles between every pair of normals on a surface

patch, and also between the viewpoint direction and each normal. Aldomà et al. have

proposed the OUT-CVFH [ATRV12] extension to VFH that exploit color cues besides

depth information . Tombari et al. [TSD10] propose the Signature of Histograms of

OrienTations (SHOT) descriptor, using histograms of normals of the 3D volumes.

2.3 Body Parts Detection and Tracking

Computer vision methods have been applied to the field of Human Body Analysis with

various objectives. Detection and segmentation of body parts is usually the foremost

task of an HBA system, and usually, the rest of the processing strongly relies on the

output of this first step. For that reason, detection and segmentation methods are still

a major research topic within the computer vision community.

Human motion is understandable, most of the times, if analyzed over time. Thus, body

part detection is tightly linked to the tracking of the body along time. That is to say,

extracting motion information from a video sequence to establish matching between

consecutive frames and exploiting their correlation in order to add robustness and to

increase the performance of a system.

Depth cameras are being used both in generative and discriminative approaches for the

detection and tracking of body parts.

Generative approaches use an explicit model to explain the data. Usually, an energy

function is minimized to adapt the model to the observed data. The performance of

these methods is tightly related to the model suitability (its ability to describe data),

which turns the energy minimization step into an expensive task.

Discriminative approaches exploit machine learning techniques to directly infer parts

from the data. Usually, no temporal information is used, resulting in frame-wise al-

gorithms. Although we focus on depth-based approaches, interesting results could be

obtained by adding color information.

Generative approaches may take advantage of discriminative techniques to handle model

initialization and ambiguities [BMB+11].
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2.3.1 Generative Approaches

In the literature, many of the works based on generative approaches come from the mul-

tiview problem, which consists in obtaining human body pose from a set of calibrated

color cameras. Results in this area are impressive [SHG+11, WVT12] since complete

3D movement information is available. Gall et al. [GRBS08] introduce a multi-layer

framework that combines stochastic optimization, filtering, and local optimization. In

[GSD+09], Gall et al. go beyond pose estimation and cover possible non-rigid deforma-

tions of the body, such as moving clothes. Sundaresan and Chellappa [SC09] predict

pose estimation from silhouettes and 2D/3D motion queues. Corazza et al. [CMG+09]

generate a person-wise model which is updated through Iterative Closest Point (ICP)

measures on visual-hull data. Pons-Moll et al. [PMBH+10] combine video images with

a small number of inertial sensors to improve smoothness and precision of the human

body pose estimation problem. Nevertheless, these 3D capture environments are very

expensive and cumbersome to setup, since they require precise calibration and, usually,

controlled illumination conditions. In addition, the computational cost of 3D methods is

prohibitive and real-time is hardly achieved (i.e. we may have 24 parallel video streams).

On the other hand, very interesting works have studied how to extract human pose from

single color cameras. In this direction, Guan et al. [GWBB09] obtain a synthesized

shaded body. Body pose is estimated by searching into the learned poses, reflectance

and scene lighting which most likely produced the observed pose. Yan and Pollefeys

[YP08] recover the articulated structure of a body from single images with no prior

information. In their work, trajectories of segmented body parts are mapped on linear

subspaces to model the global body movement. Brubaker et al. [BFH09] use a simple

lower-body model based on physical walking movement called Antropomorphic Walker,

proposed by Kuo [Kuo02]. Hasler et al. [HAR+10] propose a pose estimation algorithm

which performs on mono and multiple uncalibrated cameras. Unfortunately, single color

cameras inherently provide poor information, due to information loss originated from

perspective projection. Single-camera based methods are usually very specific and hardly

generalize to different kinds of movement, scenes and view points.

Depth-based methods enable fast processing (1 video stream) and easy setups, at the

expense of lower resolution and partial 3D information (single viewpoint). Recent depth-

based methods take advantage of smart definition of an energy function, especifically

designed for depth data, that may lead to impressive results [SM10, GPKT10a], and

also extremely fast [GPKT12]. Schwarz et al. [SMMN11] robustly detect anatomical

landmarks in the depth point cloud and fit a skeleton body model using constrained

inverse kinematics. Zhu et al. [ZDF08] propose a tracking algorithm which exploits

temporal consistency to estimate the pose of a constrained human model. Knoop et al.
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[KVD06] propose a fitting of depth data with a 3D model by means of ICP. Grest et al.

[GKK07] use a non-linear least squares estimation based on silhouette edges, which is

able to track limbs in adverse background conditions. While many methods focus on

upper-body pose, Plagemann et al. [PGKT10] present a fast method which localizes

body parts on depth data at about 15 frames per second.

Baak et al. [BMB+11] combine local feature matching with a database look-up, achie-

ving a fast and robust end-effector tracking. As mentioned, the human body model in

[BMB+11] is initialized using a discriminative strategy, compensating the draw-back of

one method with the second one.

Ganapathi et al. provide a useful dataset for human body analysis using depth data

in [GPKT10a], which consists of 27 short sequences with increasing body motion and

occlusion (increasing difficulty). Such dataset has widely been used during the last

two years. Very recently, Ganapathi et al. published a second, much more challenging

dataset [GPKT12].

Zhang et al. [ZSCL12] successfully propose one of the firsts attempts of multiview human

body tracking using depth cameras.

2.3.2 Discriminative Approaches

Before diving into depth-based methods, we want to point out that interesting results are

obtained on color images [VKMV09]. Hough Forests, proposed by Gall et al. [GYR+11],

are also a successful example of the usage of a discriminative approach on color images

for the detection of body parts.

Concerning depth information, the algorithm behind Kinect’s human body pose estima-

tion [SFC+11] trains a Random Forest to detect body parts. Recently, [TSSF12] take the

part detection problem to the extreme, considering every pixel a body part. In a second

step, they perform a one-step matching of a canonical body pose to the test pose, using

the classified pixels as objective. All of these methods require a large training dataset

(i.e. +900K images in [SFC+11]), usually cumbersome to obtain. The use of synthetic

data is an interesting strategy to easily enlarge the dataset [SFC+11, KKKA12b].

López and Casas [AC12] propose to detect specific body gestures by means of an un-

balanced Random Forest approach. Their approach is largely real-time and robust,

allowing frame-wise tracking of these gestures over time.
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2.4 Hand Analysis

Early works tackled only static hand gesture recognition on depth images. They whe-

re mainly based on local and very specific descriptors. Mo and Neumann propose in

[MN06] one of the first works attempting hand gesture recognition using a laser-based

camera to produce low-resolution depth images. They interpolate hand pose using ba-

sic sets of finger poses and inter-relations. Liu and Fujimura [LF04] recognize dynamic

hand gestures using Time-of-Flight depth images. Hands are detected measuring shape

similarity by means of the Chamfer distance. They analyze the trajectory of the hand

and classify gestures using shape, location, trajectory, orientation and speed features.

Recent methods attempt to obtain hand parts and to track them over time, as well as

recognizing hand poses. These recent works can also be classified into generative and

discriminative.

2.4.1 Generative Approaches

As has happened with complete body tracking algorithms, multiview approaches ha-

ve achieved great precision [BTG+12]. However, computational time is still a major

drawback of these methods (i.e. about 30 seconds per frame in [BTG+12]).

A few works have recently obtained interesting results by means of generative approac-

hes using depth cameras. Oikonomidis et al. [OKA11] formulate the hand pose recovery

problem as an optimization approach, measuring the discrepancy between a model and

the observed hand. Full hand pose is provided (including fingertips), requiring initiali-

zation at a known initial pose. On the other hand, their cost function relies on color

information, reducing the performance to controlled scenarios.

A small number of works perform fingertip localization using a generative approach. The

work in[HMB11, MIT11] perform fingertip detection, but do not distinguish between

fingers. In the latter, palm and fingers orientation are estimated. Both approaches

exploit geometrical features to detect fingertips on the hand point cloud.

2.4.2 Discriminative Approaches

More works have tackled the hand analysis problem from a discriminative point of view.

Most of these works focus on two kinds of application:

• Interactive interfaces [SPHK08, VKMBV09, RYZ11, HMB11].
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• Deaf language systems, with a strong effort put on the American Sign Language

(ASL) [KKKA12a, ZYT13, ZW12, PB11, UGVV11].

Many authors have adopted a Nearest Neighbor (NN) classification strategy to over-

come fingertip localization. In [SPHK08] a NN classification into five hand gestures is

proposed, using geometrical descriptors. Color cues are added to depth data in [VV11]

in order to build a NN classification framework. In [KPHB08], simple features are pro-

jected on two axis, and NN is then performed into 12 ASL letters. Novel descriptors like

in [ZYT13] have also been recently proposed. In [RYZ11], the Earth Movers Distance is

adapted to finger signatures and used as cost function for further NN classification.

Another commonly adopted strategy is to classify gestures using variations of the Ran-

dom Forests (RF)[Bre01] approach. In et al. [KKKA11, KKKA12a] a set of randomized

decision trees is used to classify hand shapes, in a similar manner than in [SFC+11],

taking advantage of a large synthetic dataset. A multi-resolution Gabor filtering of the

hand patch is used to train a RF classifier in [PB11].

Other classification strategies may also be adopted. For example, linear Support Vector

Machines (SVM) are used in [ZW12], combining color and depth descriptors to predict

the hand gesture.





Part I

Description of Depth Data
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Overall introduction

Obtaining information of the human body from camera frames is a challenging task.

There exists a large variety of 2D descriptors [BETV08, BTV06, Low04, AOV12, LCS11,

RRKB11], widely used for color image description and matching. Such descriptors are

based on color or intensity gradient at specific salient points of the input image. Thus,

they require a detection step (i.e. FAST detector [RD06]) that selects the best suited

points where to calculate the descriptor.

However, these 2D descriptors rely on rich images with a minimum amount of variation

so that the detector is able to locate points, and the descriptor is selective enough.

Depth images do not provide such richness. Indeed, depth images are usually composed

of fairly flat patches (surfaces) [RHMA+11] surrounded by sharp edges (objects border).

Color and intensity variations are lost during the depth map estimation procedure. This

lack of texture makes classical 2D descriptors not sufficient at describing depth images.

We propose to use 3D features, that is to say, descriptors that take 3D structure into ac-

count. A summary of existing 3D features has been included in Chapter 2. These family

of descriptors are able to characterize a point cloud by analyzing structural information,

such as topology, salience, flatness or density.

We propose hereafter two novel descriptors on depth data. In chapter 3 we propose the

Oriented Radial Distribution (ORD) descriptor, which emphasizes prominent zones of

the input point cloud at various scales. We show the ability of ORD in describing the

overall image, as well as local zones of the point cloud.

In chapter 4, we propose an extension of the Geometric Deformable Models theory that

takes the 3D connectivity of depth point clouds into account, obtaining an alternative

formulation of the geodesic distance.

The concepts of physical area and connectivity that appear in this thesis are detailed in

Appendix A.





3
Oriented Radial Distribution

3.1 Introduction

We introduce in this chapter the Oriented Radial Distribution (ORD) descriptor for

3D point clouds. ORD exploits 3D points neighborhoods in order to characterize the

distribution of points around the central one. Moreover, ORD adapts to the surface

normals, providing an improved invariance with respect to other non-oriented methods

[FHK+04]. Such feature presents high values on prominent zones of the point cloud,

and low values on flat and interior zones. Therefore, it is convenient to use this feature

to detect end-effectors on depth data.

We also provide a simple method to classify end-effectors into head, hand and foot solely

based on the ORD output. Some probabilistic descriptors, which categorize position,

size and shape, are computed over the ORD high-responsive zones. The obtained end-

effectors are used to reinforce the detection in further frames, providing a temporal

dimension which increases the robustness of the algorithm.

21
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3.2 Related Work

Some authors have proposed 3D descriptors that are mainly used in the robotics field.

For example, Rusu et al. [RBTH10] propose the Viewpoint Feature Histogram (VFH)

descriptor, which is able to characterize a point cloud depending on its geometry, but

also on the viewpoint. Some extensions to this world have recently been proposed. We

remark the color extension proposed by Aldomà et al. [ATRV12]. Frome et al. [FHK+04]

proposed the 3D Shape Contexts (3DSC) descriptor, providing a dense description of

the shape of a point cloud using a partitioned sphere. Our proposal is inspired by this

approach, replacing the sphere by a partitioned disk oriented coherently with the point

cloud normals. Tombari et al. [TSD10] propose the Signature of Histograms of Orien-

Tations (SHOT) feature. In the SHOT method, a set of local histograms of normals is

calculated over the 3D volumes defined by a 3D grid superimposed on the support and

then grouping together all local histograms to form the final descriptor. The normal es-

timation is based on the Eigenvalue Decomposition of a novel scatter matrix defined by

a weighted linear combination of neighbor point distances to the feature point, lying wit-

hin the spherical support. The eigen-vectors of this matrix define repeatable, orthogonal

directions in presence of noise and clutter. In Section 10.4.1.3 we provide a comparison

of ORD with the mentioned 3D features at the task of hand gesture recognition.

3.3 Description of the Oriented Radial Distribution

A depth point cloud is obtained after mapping the depth pixels in the real world coor-

dinate system. Such point cloud corresponds to a sampling of the visible scene surface

from the camera viewpoint. With a simple foreground segmentation, using a depth

threshold with respect to the empty scene (background), the subset Ω containing the

foreground objects is obtained (mainly human body, in this thesis).

After simple inspection of Ω (Figure 3.1), one may notice that the head, hands and feet

are relatively visible on the depth map. Indeed, these five end-effectors share the common

characteristics of being extrema of Ω, and also of having a similar size. Therefore, being

able to determine whether a pixel is located in an extremal zone of a given size is

convenient to detect the end-effectors of a human body.

With this purpose, we propose a feature Θ : {z,Ω, ξ} 7−→ R to measure the Oriented

Radial Distribution of the neighborhood N ρ
z around a point z ∈ Ω (an example is

provided in Figure 3.1). More precisely, let the neighborhood N ρ
z of z be all those points

{zi} ∈ Ω such that |z − zi| < ρ. In other words, N ρ
z contains all the points located in
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Figura 3.1: Oriented Radial Distribution feature computation example. The point a
belongs to an extreme, the distances between the dark crosses δ̄j and the barycenter of
each zone 1√

2
ρ present high values. On the other hand, point b belongs to a relatively

uniform area, and most of the |δ̄j − 1√
2
ρ| distance values are very low.

a ball of radius ρ centered at z. Therefore, the radius ρ is a parameter of the proposed

feature. Such radius, and other parameters explained in this chapter, are noted as ξ.

The tangential plane Tz at z is roughly estimated by Principal Component Analysis

(PCA) of the points surrounding z, the two principal axis of the PCA determining Tz.

Then, all the points zi ∈ N ρ
z are projected onto Tz. Therefore, a disk Dρz of radius

ρ is obtained, containing all the projections of the points in the neighborhood of p.

Projecting the neighborhood of every point in Ω onto its tangent plane is a key aspect

of the proposed algorithm (Figure 3.2), making the feature Θ consistent over the whole

point cloud Ω.

If the central point p is not located close to an extreme, it is likely to be surrounded by

a regular amount of points in all directions. On the other hand, points located close to

extremal zones only present neighbors in some directions. In order to measure whether

point p is located close to an extremal zone of Ω or not, the content of Dρz is analyzed.

Indeed, Dρz is divided into K equal zones as shown in Figure 3.1 (K = 16 in the example),

where K ∈ ξ is a parameter. These zones, noted ∆j with j = 1..K, present two equal

sides of length ρ and a third side of length 2πρ
K . The average distance δ̄j between the

points in each zone ∆j and the central point p is calculated, as shown in Figure 3.1.

Therefore, a δ̄j value characterizes every zone ∆j . Different situations may happen:

• Those ∆j zones being completely filled with points will have a δ̄j value very close

to 1√
2
ρ, which is the radius of barycenter of the zone (divides the zones into two

equal areas).
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Figura 3.2: Orientation of the measure disks Dρz depending on the tangent plane to
the depth surface at the measuring point (center of the disk). Two disks are illustrated
in this example, and the resulting Θ feature on the right (lighter color corresponds to

high Θ values).

• On the contrary, partially filled zones will result in a higher distance between δ̄j

and 1√
2
ρ.

The ORD feature Θ is constructed as the average distance between the δ̄j and 1√
2
ρ,

as shown in Equation (3.1). The obtained result is normalized with the maximal value
1√
2
ρ, so that Θ ∈ [1−

√
2√

2
, 1√

2
]. Therefore, the dynamic range of Θ is 1. Only those zones

∆j filled with more than 10 points are considered, resulting in a subset of Kf zones

taken into account to compute Θ.

Θ(z,Ω, ξ) =
1

1√
2
ρKf

Kf∑
j=0

(
δ̄j −

1√
2
ρ
)

with ξ = {ρ,K} (3.1)

3.3.1 Effect of the parametrization ξ

Two main parameters are involved in the computation of Θ, noted as ξ = {ρ,K}.
The radius ρ determines the size of the neighborhood around p which will be analyzed.

Indeed, the feature Θ, parametrized with a given ρ, will return its greatest values at the

extrema presenting a radius similar to ρ. Thus, small radius return high values at thin

extrema of Ω, while larger radius detect larger extrema. Therefore, the radius value may

be used to filter some extrema while preserving others. For example, to find a human

head, a radius of about ρ = 15 cm should be appropriate, which will filter other noisy

and smaller extrema. The second parameter in the calculation of Θ is the number of

zones K into which the oriented disk Dρz is divided. Low values of K (i.e. K=2) lead to

noisy and non-robust detection of end-effectors, the spatial resolution of the Θ feature

being too poor. On the other hand, high values of K (i.e. K=128) provide a too smooth

transition between end-effectors and the non-desired zones. Reasonable trade-off values

is between 8 and 16 divisions (see Figure 3.3).
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K=2 K=8 K=32 K=128 

Figura 3.3: Effect of the parameter K on the ORD feature.

3.3.2 GPU implementation of ORD

The way the proposed ORD descriptor is defined nicely suits a parallel implementa-

tion. Indeed, ORD is computed for every point z in the point cloud, only using the

neighborhood of z as input data. If we are capable of providing an input point and its

neighborhood to a GPU core, we may compute the ORD descriptor in an extremely fast

way.

In order to do so, we voxelize the input point cloud Ω into NGPU ×NGPU voxels in the

XY axes. These voxels cover the complete width and height of Ω, and all of them have

a depth equal to maximal depth span of Ω.

We design the implementation so that a GPU kernel can access to the lists of points of

a voxel V and its adjacent voxels {Va}. Therefore, the NGPU value is critical. A small

value will include a large amount of points in every voxel, saturating the GPU memory

and reducing the parallel processes. Thus, the maximal size of a voxel is limited by the

hardware memory.

On the other side, a high value of NGPU creates small voxels, cropping the neighborhoods

of the central points. Since neighborhoods are altered, the output result is erroneous.

The minimal size of a voxel will then be equal to the ORD radius ρ, so that any point

in the central voxel has its complete neighborhood inside V ∪ {Va}.

3.4 Classification of end-effectors using probabilistic des-

criptors

A set of candidate end-effectors is obtained after the calculation of Θ on Ω. As shown

in Figure 3.4, those points z over a threshold Θmin (usually Θmin ≈ 0.15) are labeled as

candidate points, and 1clustered into candidate blobs {B}. We look for those five zones

1Euclidean Clustering
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Θ>Θmin 
Θ(Ω,ξ) Ω head 

hand 
hand 

foot 

foot 

Figura 3.4: Summary of the proposed method. From left to right: Segmented depth
map Ω, Oriented Radial Distribution values Θ, candidate points Θ > Θmin and labeled

end-effectors.

with maximal Θ being large enough to be considered end-effectors. Therefore, all the

very small blobs observed in Figure 3.4 (third column) are omitted, only keeping the

largest ones, up to five candidate blobs. Remark that sometimes less than five blobs are

obtained (i.e. in the case of a hidden hand).

We remark that the size, shape and position of the blobs {B} depends only on the input

point cloud and the ORD feature. Therefore, we propose three descriptors that are cal-

culated for these candidate blobs, in order to classify them into γi = {head, hand, foot},
as in [PGKT10]. These descriptors, for a given blob B with centroid Bc, are:

Y - Position The relative height (vertical y axis) with respect to the centroid Ωc of Ω

is calculated as: Y = (Bcy − Ωc
y) cm (vertical coordinates of Bc and Ωc).

S - Size The estimated size of B, calculated from the apparent area of B on the depth

image. A quadratic law Γ relating this apparent area and the physical one is

obtained empirically for the Kinect sensor. More precisely, the conversion from a

single pixel at depth z to a real world surface is Γpix(z) ≈ 1.12 · 10−6 · z2 + 8.41 ·
10−5 · z − 4.64 · 10−3 (Appendix A.1). Therefore, the size descriptor of a blob B
containing NB points is: S = (NB · Γ(Bcz)) cm2.

A - Shape The shape descriptor is defined as the relation between the second α2 and

first α1 eigenvalues of the PCA decomposition of B. Thus, A = α2
α1

, which gives

an idea of the roundness of B. Very elliptical shapes result in low A values, while

very round B shapes result in A values near to 1.
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These descriptors λk = {Y, S,A} are analyzed over 1300 frames containing various hu-

man poses with annotated head, hand and foot parts. The statistical moments (me-

an µ and variance σ2) of the obtained blobs are calculated for every extremity group

γi = {head, hand, foot} and for every descriptor (Table 3.1).

We propose to construct the probability density functions (PDF or f) which evaluate

the probability of a given descriptor to belong to a given extremity group. Such PDF

are considered Gaussian, centered at µγiλk with a standard deviation σγiλk , as shown in

Equation (3.2). Therefore, for each candidate blob B we may calculate the probability

of belonging to a given group γi depending on the three descriptors. The combined

probability of a blob belonging to a group γi is defined as the product of the separate

probabilities of every descriptor of B belonging to γi (Equation (3.2)).

P (B = γi) = P
(

(YB = γi) ∧ (SB = γi) ∧ (AB = γi)
)

= fγiY (B) · fγiS (B) · fγiA (B)

with PDF: fγiλk (B) = 1

σ
γi
λk

√
2π
e
− 1

2

(
λk(B)−µγi

λk

σ
γi
λk

)2
(3.2)

A decision about whether a blob belongs to any of the γi groups is taken, based on the

obtained probabilities. Those candidate blobs with a probability of belonging to any

of the groups γi smaller than P (B = γi) < 10−6 are not considered. The remaining

candidate blobs are classified into {head, hand, foot} depending on their probabilities,

restricted to two feet, two hands and one head (Figure 3.4, farther right).

λk µheadλk
σheadλk

µhandλk
σhandλk

µfootλk
σfootλk

Y 62.18 7.48 29.43 29.06 −71.31 10.89

S 58.58 10.00 64.24 24.89 46.68 10.75

A 0.58 0.17 0.11 0.13 0.41 0.19

Taula 3.1: Statistical moments of the descriptors

Temporal weighting of the Oriented Radial Distribution feature

The objective of this operation is to increase the robustness and consistence of the

detection of end-effectors over time. The Θ values at time t+ 1 are weighted according

to the location of the end-effectors at time t. The set of end-effectors locations is noted

L. More precisely, a distance factor τ ∈ [0, 0.25] is added to every Θ(z,Ω, ξ) value,

where τ decreases exponentially with the distance between the point z and L, as shown

in Equation (3.3).

Θ̃t+1(z,Ω, ξ) = Θt+1(z,Ω, ξ) + τt | τt =
1

4
e−
|z−L|

10 (3.3)





4
Extending Geometric Deformable Models to

Depth Data

4.1 Introduction

Some priors may be used for the detection of human body parts. We know before-hand

how a human body should look like, its probable size and distribution, the length of

its limbs, etc. However, these magnitudes must be measured in some way, and usual

distances (i.e. Euclidean) are sometimes not sufficient.

The use of geodesic distances provides interesting results for human pose estimation

[CMMM08], thus methods able to compute such distance may be of interest in the

research community. We propose a method to compute geodesic distances on point

clouds from a root zone, by extending Geometric Deformable Models (GDM) to depth

data. Furthermore, the method formulation enables the creation of a directed graph

that may be exploited to detect end-effectors and infer human pose.

29
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4.2 Related Work

Geometric deformable models, proposed independently by Caselles et al. [CCCD93] and

Malladi et al. [MSV95], have proved performance and flexibility at describing topology,

as stated by Han et al. [HXP03]. GDM have been widely applied in the field of image

[MM09] and volume [WBMS01] segmentation and component analysis.

Even if the GDM theory is formulated on the continuum, it may be implemented in

a discrete domain. An efficient and simple implementation of the GDM is known as

the Narrow Band Level Set method (NBLS), introduced by Adalsteinsson and Sethian

[AS95], which restricts computation in thin bands surrounding a zero level. Periodic up-

dates of these bands gradually cover the full area (or volume) of the analyzed data set,

preserving its topology. The NBLS method is defined for organized points in an evenly

spaced grid (pixels in 2D, voxels in 3D), which limits accuracy due to re-sampling. Ro-

senthal et al. [RML10] propose an implementation of the NBLS method for unorganized

3D points, preserving their actual position.

4.3 Geodesic distance estimation using Geometric Defor-

mable Models and Narrow Band Level Sets

Geometric deformable models are based on the theory of curve evolution and the level

set method [Set99]. The basic idea is to deform an initial curve or contour, which is

registered to the data domain, depending on some pre-defined external and internal

forces. Internal forces will expand the actual curve over the data keeping it smooth.

External forces are computed from the available data and have an effect on the curve

evolution. By way of example, imagine a drop of corrosive acid eating an object. The

initial curve will be the drop at time zero, internal forces depend on the amount of acid

in the drop, its corrosive power, etc. and external forces depend on the resistance of the

underlying material. Thus, corrosion will slow down in resistive zones of the material

and advance faster in areas more prone to corrosion.

In our case, external forces are computed from the depth point cloud D = {zi} ∈ R3

and are defined to respect and preserve data features like topology or borders. We recall

that D is the depth point cloud corresponding to the object of interest, obtained from

the captured depth image I.
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Figura 4.1: Summary of the steps involved in the proposed algorithm for human
pose estimation. From left to right: Foreground mask, R-NBLS propagation, R-NBLS
filtering, end-effector graph nodes and end-effectors found with the associated skeleton.

We propose an adapted version of the NBLS method in the context of depth data. The

input depth point cloud is analyzed as a sampling of the actual surfaces in the scene

(from the camera viewpoint). The objective is to exploit connectivities over these depth

surfaces in order to extract topological features. Generally speaking, the proposed met-

hod locates the end-effectors of any 3D object sampled into a 3D point cloud. Since our

work focuses on body pose estimation, the end-effectors are mainly the four extremities

of a human body (Figure 4.1). However, other 3D objects have been studied, showing

and example with the human hand in Section 5.3.3.

Additionally, Human pose is inferred from the NBLS output together with the obtained

end-effectors: firstly populating a graph from the previously computed NBLS and, se-

condly, extracting extremity pose with a shortest path algorithm from the end-effectors.

Let φ(z, t) : R3 → R be a level set function whose sole purpose is to provide an implicit

representation of the evolving curve. Let also C(s, t) : R2 → R3 be a contour parame-

trized by s as the zero level set of φ(z, t) and L0
t ⊂ D be the subset enclosed by C(s, t).

Remark that C is parametrized in a two dimensional space, which is particular to the

depth data case. Equation (4.1) defines φ at a given time instant t. In the level set

notation, time represents the advance of C(s, t), t = 0 being the time-stamp of the initial

curve. In order to efficiently perform nearest neighbor queries to evaluate the Euclidean

distance distE between points, D is organized as a kd-tree structure.

φ(z, t) =

{
0 ∀z ∈ L0

t

min {distE(z, C(s, t))} ∀z /∈ L0
t

(4.1)

The objective is to make the contour C evolve over D preserving the topological pro-

perties of the latter. As cited in [HXP03], the NBLS method is a simple solution to

implement GDM evolution. An NBLS version for unorganized R3 points has also been

presented in [RML10]. In the NBLS method, the level set function φ is evaluated in
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Figura 4.2: R-NBLS propagation example. The green points are the actual zero level
set L0

t , and those with a thick black boundary form the actual contour C(s, t). The blue
points in the middle are the candidate narrow band of with δL, with its contour also
marked with thick point boundaries. Points labeled A (orange) are rejected because of
the density condition in Equation (4.2). Points labeled B (red) are rejected because of

the proximity condition also in Equation (4.2).

Figura 4.3: Example of the proposed R-NBLS propagation algorithm. The image on
the left shows the foreground raw depth data D and the initial zero level set, in blue.
From left to right, propagation iterations k = 5, 10, 15, 23 respectively. Propagation
stopped at k = 23. Note the noise filtering at depth edges (zones in gray in the last

column) as well as the correct propagation of the forearm.

a thin layer surrounding the actual zero level set in order to update the zero level set

for the next time instant. Such approach limits the number of calculations to these few

surrounding points.

We propose to add a density condition to the existing proximity condition. The role

of this density condition is to filter the data, especially those points near depth edges.

Using the above mentioned acid drop example, the density condition may be considered

as an external force, since it is implicitly derived from the dataset. Propagation will slow

down or stop in zones with low data density, and continue in highly populated zones.

Thus, only those end-effectors densely connected to the main body will be considered,

filtering sparsely represented or very thin ones.

We propose to update the zero level set according to Equation (4.2). We note that time

t may be considered as a discrete time, where tk := t+ k with k ∈ {0,N}.
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Lt+1 = {zi} if


φ(zi, t) < δL (proximity)

and

zi is (ηL, δL)-connected (density)

L0
t+1 = L0

t ∪ Lt+1

(4.2)

The candidate narrow band is noted as Lt+1 and its maximal width is δL, determined

by the proximity condition. The connectivity property of zi is used as density condition,

ensuring that the space surrounding zi is dense enough (at least ηL are close enough to

zi), as shown in Figure 4.2. Therefore, δL and ηL are parameters of the proposed NLBS

variant, called Restricted-NBLS or R-NBLS.

In order to complete the formulation, we should define how the contour C is updated

in the depth context. In practice, the candidate points Lt+1 which are farther from the

previous zero level set are taken as the new contour C(s, t + 1) as shown in Equation

(4.3).

C(s, t+ 1) = {zs} ∈ Lt+1 with φ(zs, t) ∈
[
3
4δL, δL

]
(4.3)

Thus, iterating through Equations (4.1), (4.2) and (4.3) from an initial zero level set

L0
t0=0, the sufficiently dense zones of D will be covered.

The geodesic distance between L0
t0 and a given point zk which was added to L0 at the

time instant tk (or iteration k) may be calculated with Equation (4.4).

distG(L0
t0 , zk) ≈ k · δL + φ(zk, tk) (4.4)

The iterative R-NBLS method stops when the number of points NC
t of the actual contour

C(s, t) is smaller than a given stop threshold. The proposed iterative framework stops

when NC
t = 0 (see the second shape in Figure 4.1 for an example). An example of

the R-NBLS method is shown in Figure 4.3, the narrow bands at every iteration being

colored from the initial zero level set, which has been calculated as the contiguous region

to the central line (see Section 4.5.1) of D.

4.4 Narrow band filtering by physical area

Zones of the scene being strongly oblique with respect to camera image plane will be

sparsely sampled with 3D points, and will not be taken into account when constructing

narrow bands. Consequently, the considered narrow band points are relatively parallel

to the image plane axes, and the hypotheses in Appendix A.1 are valid.
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Figura 4.4: On the left, a narrow band filtering with a standalone Amax restriction,
which results in a Nmax = 10 maximal size. Note the residual region of 5 points (in
orange). On the right, the filtering step with the additional restriction on connectivity
with ηL = 5. The non-filled points have been filtered since they are not (ηL, δL)-

connected.

Narrow bands cover the visible and connected parts of the scene surface. However, a

given band may be composed of points from both arms, since they contain points at

similar distG (Equation (4.4)). In order to separate points of a same band that belong

to different contexts, narrow bands are filtered depending on their physical area. Indeed,

a maximal area Amax is set, so that any narrow band b with a physical area Ab larger

than Amax is divided into a maximum of α regions, as shown in Equation (4.5).

Nregions 6 α = d Ab

Amax
e (4.5)

Let N(b) be the number of points in b and z̄b its mean depth. By applying the approxi-

mation described in Appendix A.1, there exists a maximum number of points Nmax(zb)

which keeps α constant at every depth level zb (Equation (4.6)). Therefore, if z̄b varies

(i.e. a person moving towards or away from the camera), narrow bands will still be

divided into no more than α regions.

Nmax(z̄b) =
Amax

ΓC(z̄b)
(4.6)

Remark that a standalone Amax restriction could result in very small residual regions

as shown in Figure 4.4. Therefore, besides the maximal area condition given by Amax,

some additional restrictions must be verified in the narrow band filtering step. More

precisely, the filtered regions must be (ηL, δL)-connected regions themselves (which im-

plicitly forces a minimal region size of ηL points). After the filtering step, a set of regions

is obtained for every narrow band, all of them being (ηL, δL)-connected. Some examples

of the filtering step are presented in Figure 4.5.
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Figura 4.5: Three examples of narrow band filtering. The obtained regions are ran-
domly painted. In this case, an Amax = 70 cm2 has been applied together with a

(ηL = 30, δL = 4 cm)-connectivity.

4.5 Detecting end-effectors in a topologically weighted graph

End-effectors are topologically prominent protuberances in the object under study, res-

tricted to the viewpoint of the range camera. A method to detect end-effectors from the

result of the R-NBLS method is discussed in this Section (see Figure 4.1).

4.5.1 Graph root

The proposed R-NBLS method requires the specification of an initial zero level set L0
t0=0

as starting point. Such origin region, called graph root, may be a single 3D point or a

set of points. The definition of the graph root will strongly depend on the application.

In this chapter, the cases of a whole human body and a human hand are studied, with

their specific graph roots.

The human body case For this specific case, we propose to use a straight line as

graph root (blue line in Figure 4.1). Such line connects the centroid zC of D with zM , the

latter being the midpoint between zC and the head position zH , which is obtained with

[SRHC12b]. Those points placed at a given distance δ0 of lC are labeled as initial zero

level set L0
t0 , from which the R-NBLS propagation can start. Despite head estimation,

which exploits some temporal information to increase tracking robustness [SRHC12b],

the rest of the proposed algorithm is frame-wise, without any temporal dependency.
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4.5.2 End-effector graph construction

In general, R-NBLS filtered regions belong to prominent parts of the analyzed object

(i.e. arms, legs) due to the band splitting considering connectivity (Section 4.4). Our

objective being that of finding end-effectors, it seems reasonable to use these context-wise

regions.

In a consecutive phase to the narrow band filtering (Section 4.4), a graph is constructed

on the filtered regions. The centroid of every region is taken as a graph node, with

an associated creation time tk coming from the R-NBLS propagation step explained in

Section 4.3.

Graph nodes are linked in pairs with graph edges. We propose to only include those

edges which link a source node ni with time ti and a sink node nj with time tj such

that i < j, resulting in a directed graph (from inner to outer narrow bands). This way,

any path constructed on the graph will be consistent with the node creation instants,

not linking nodes with previously created ones.

A distance weight wi,j is calculated for every edge linking nodes ni and nj , with an

additional distance penalty depending on the time elapsed between the creation of the

nodes. Such penalty limits the construction of graph paths with strong jumps in creation

time, this effect happening only in strictly necessary occasions. A 10% gain is added to

the penalty α = 1.1, so that it penalizes slightly more than an integer number of jumps.

The proposed node weights are calculated with Equation (4.7).

wi,j = |ni − nj |︸ ︷︷ ︸
distance

+ (j − i− 1) · δL · α︸ ︷︷ ︸
penalty

(4.7)

4.5.3 End-effector Estimation: Shortest Path from Farthest Level

A Dijkstra shortest path algorithm is run on the graph constructed in Section 4.5.2.

End-effectors are extracted as the shortest paths from the farthest nodes to the graph

root. Paths are searched starting at the node with greater tk and ending at zM (arms)

or zC (legs). If it does not exist any path from that node, successive nodes are taken as

path sources by decreasing tk until all paths have been found. Indeed, two paths ending

at zM are searched and labeled as arms, and two other paths are searched to end at zC ,

which are taken as legs. End-effectors are often referred as extremities when working

with the human body. Some conditions should be verified in order to accept a path as

and end-effector of a human body.

• A path must have at least 3 segments, avoiding too short noisy detections.
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• For a given graph, those nodes which belong to an already accepted path become

inaccessible for further path estimations.

• Those nodes at a geodesic distance smaller than 30 cm from the central line lC

are not taken into account, since we are looking for human extremities. Such

restriction limits the detection of extremities starting close to the body centroid.

We assume this draw-back of the algorithm, as shown in Figure 5.5.

When both arms and both legs have been found, path search stops. The result com-

puted by the presented algorithm constitutes the end-effector positions along with a

skeletal-like structure describing the limbs. It should be noted that some poses may re-

sult in undetectable extremities, since their topological prominence is not clear enough.

Therefore, only those end-effectors which are sufficiently detached from the body will

be detected. Figure 4.1 presents a summary of the proposed algorithm, containing from

left to right: raw depth estimation, R-NBLS propagation with ηL = 80 and δL = 4 cm,

narrow band filtering with Amax = 50 cm2, graph nodes, and the obtained end-effector

estimation on the right of the figure. The head has been found as in [SRHC12b]. Ne-

vertheless, note that it could be detected as an extra path from zM .

4.5.4 Right and Left extremity decision

Taking advantage of the extremity graph, a decision whether a limb corresponds to the

right or left hand is taken. Remark that no temporal cues are involved in the decision.

For hands, the direction of first segment (t0 to t1) of every graph path (gA and gB)

is calculated, obtaining two vectors fA and fB. A simple decision depending on the

orientation of fA and fB is performed, taking as right hand the path with fi more

oriented to the horizontal axis to the right (positive X coordinates). Remark that using

the first graph segment is strongly invariant to the position of the end-effector associated

to the graph path. A similar reasoning is done for feet, using their two graph paths.

Yet being a basic classification approach, experimental results show that the proposed

decision framework is effective.





5
Experimental Results

5.1 Setup

The experiments are obtained with a Kinect sensor. The color information is discarded

and only the depth estimation is exploited in the experiments below. Firstly, we provide

experimental results of the proposed stand-alone methods, analyzing their parametri-

zation and discussing the advantages and drawbacks observed during the evaluation.

Such experiments are carried out on a set of self-recorded sequences seqUPC, containing

various movements and body poses. In Section 5.4, the proposed methods are compared

with two reference methods [SFC+11, GPKT10a] on the dataset provided by the latter.

We have uploaded videos of the experimental results in https://www.dropbox.com/sh/

f6tls37lb9rezex/qRsTU5sjTh.

5.2 ORD stand-alone results

We consider the Kinect’s original resolution of 640 × 480 px, and also a down-sampled

version by a factor N = 4 (160× 120 px respectively).
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A frame-rate of 9 fps is achieved with the N = 4 solution, which is considered real-time.

As expected, the full resolution version executes much slower, at about 0.05 fps.

The results presented hereafter correspond to the real-time version (N = 4) with a

parametrization ξ = {ρ,K} = {15 cm, 8}.

Figura 5.1: Compilation of different poses in the experiment sequence. The proposed
algorithm performs properly in such challenging situations. Poses partially out of frame
(farther left and right) are overcome. Remark that extremities are not detected when
they are not prominent enough or when they are occluded (from left to right: 2nd, 7th

and 8th poses).

We consider the manual annotations of seqUPC used in Section 5.3. The seqUPC se-

quence contains challenging poses, as well as some frames with partial body capture

(person slightly out of frame). A compilation with some poses may be consulted in

Figure 5.1.

An end-effector is considered properly detected when the distance to the ground-truth

is smaller than 30 cm, as proposed in [GPKT10b].

The obtained head detection rate is of 97.7%, with an average error of 2.7 cm. As far as

hands are concerned, none, one or two hands may appear marked in the ground-truth

sequence. No distinction is considered between right and left hand, but between first

(or only) hand and second hand (detection order). The first hand is detected in 90.31%

of the cases, with an average error of 8.15 cm; while the second hand detection rate is

of 76.31% with an average error of 9.2 cm. If an end-effector is detected as hand, and

does not exist as ground-truth, a false positive is counted. About 8% of the overall hand

detections are false positives in our experiments.

The detection rate of the first foot is of 86% with an average error of 11.2 cm. The

second foot is detected in 71.6% of the cases, with an average error of 13.1 cm. The

number of false positives is about 8.2% of the detections.

A confusion matrix is presented in Figure 5.2, built after the detected end-effectors, to

give an overview of the precision of the classification. The values in brackets correspond

to the full resolution version. Feet are the best-classified end-effectors, with only 1.07%

of the detections being labeled as hands. The head is also well detected, being confused
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head hand foot 
head 98.9% (95.8%) 1.12% (4.20%) 0% (0%) 
hand 3.2% (5.1%) 96.3% (93.3%) 0.52% (1.61%) 
foot 0% 1.07% (0%) 98.9% (100%) 

Figura 5.2: Classification confusion matrix for the ORD real-time version, and the
ORD full resolution version (in brackets).

with hands about 1.12% of the times. Cross-confusion between feet and head are not

observed in our experiments. Hands are more often confused, even if achieving a high

classification percentage of 96.3%, they are confused with the head (3.2%) and less often

with feet (0.52%).

Slightly worse percentages are obtained with the full resolution version, due to the use of

the N = 4 statistical moments in the experiment. However, the confusion matrix is still

acceptable in both cases. The average errors of the full resolution version are 2.58 cm

(head), 4.13 cm (first hand), 4.53 cm (second hand), 5.81 cm (first foot), 6.90 cm (second

foot). Therefore, the main advantage of the full resolution is a better average precision,

which is about twice better for hands and feet.

The experiments show that the ORD approach performs better than the R-NBLS ap-

proach on the seqUPC dataset. Indeed, the ORD approach has been specifically trained

with a subsequence of seqUPC (the statistical moments of the {Y, S,A} descriptors).

Therefore, it is expectable to obtain such better results with ORD than with the R-NBLS

approach, which does not have a dedicated parametrization.

5.3 R-NBLS stand-alone results

5.3.1 Effect of the parametrization on the human pose estimation

Some aspects related to the tuning of the parameters of the proposed algorithm are

shown in this section. We examine the parameters δL and Amax, since they are the most

influential ones. ηL is a filtering parameter which may be kept invariant for a given

sensor). For the Kinect camera, a value of 0.5 points per cm2 during propagation has

proven to be adequate. Therefore, the value of ηL is tightly related to the δL parameter

(ηL = 0.5 · π · δL2).

The narrow band maximal width, δL, determines the resolution of the propagation, and

also the areas which will be covered. A too low value of δL leads to propagation cuts,
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the advancing contour being too poor (few or no points) at some topologically narrow

zones. On the other hand, a high δL value affects precision and extremities are less

frequently detected (greater topological prominence is needed). Figure 5.3.a shows two

R-NBLS propagations with δL = 4 cm and δL = 10 cm. Both arms are close to the body

and their topological prominence cannot be detected with a large δL.

The maximal area Amax controls the population of the end-effector graph. The smaller

Amax, the more nodes are included in the graph, allowing more freedom for finding

plausible paths. However, extremity detection is less stable with very low Amax values.

On the contrary, if Amax is increased, the graph is poorly populated, resulting in a very

rigid extremity estimation. In Figure 5.3.b, three examples are shown to illustrate the

effect of various Amax values on the extremity detection.

Figura 5.3: (a) Low values of δL provide more precision for the detection of topological
prominence, even if the resulting paths are less straight (noticeable at the legs). (b) The
maximal area parameter (left to right, Amax = 20 cm2, 70 cm2 and 200 cm2) determines
the population of the end-effector graph. Values of Amax which allow a proper detection
of close legs are considered as trade-off values. Indeed, the narrow bands covering the
legs will split into two regions, allowing the computation of two paths to xC . In the
example, 20 cm2 is too low and 200 cm2 too high, while 70 cm2 seems to be a convenient

trade-off.

5.3.2 Effect of the parametrization on the detection error and detec-

tion rate

In order to evaluate the proposed method, more than 1000 depth frames of seqUPC

have been manually marked (hands and feet) as ground-truth. Only those extremities

noticeable to the naked eye on the depth images are marked, avoiding guessing limbs’

position from the input data.

Results after various parametrizations are summarized in Figure 5.4. The error is mea-

sured as the Euclidean distance between the 3D ground-truth points and the estimated

ones. In order to include the variance of the estimation, we plot ε̄ and σε on the hori-

zontal axis, where ε̄ is the average error and σε the standard deviation. On the vertical

axis, the percentage of detections over the number of ground-truth detections is plotted,

taking into account only those detections with an error smaller than 30 cm. Therefore,



Description of Depth Data 43

35% 

40% 

45% 

50% 

55% 

60% 

65% 

70% 

75% 

80% 

0 2 4 6 8 10 12 14 

%
 o

f d
et

ec
tio

n 

error (avg + std) in cm 

A 

B 
C 

D 

E 

Figura 5.4: Detection error vs. detection rate (%) for various parametrizati-
ons (δL, A

max). A = (10 cm, 120 cm2), B = (8 cm, 70 cm2), C = (6 cm, 60 cm2),
D = (5 cm, 50 cm2) and E = (4 cm, 40 cm2). Parametrization B seems to provide
the best trade-off, with an average error of about 3.94 cm and a standard deviation of

4.79 cm for a detection rate of about 70%.

Figura 5.5: Some examples of the proposed human pose estimation algorithm. Re-
mark that we do not perform any temporal tracking of the extremities, estimating
human pose independently at each frame. One may notice how the strategy copes well
with some adverse situations (i.e. . punching or bending the body). On the other hand,
not prominent enough extremities are not detected with the proposed algorithm (i.e.

third from the left, walking man).

parametrizations with higher detection rate and lower (ε̄ + σε) will provide the best

results.

Experimental results show that parametrization B = (δL = 8 cm,Amax = 70 cm2) ob-

tains the best results with the Kinect camera. More precisely, it achieves extremity

detection with an error smaller than 30 cm (maximal size of a foot or hand) in about

77% of the over one thousand annotated frames. The average error is ε̄ = 3.94 cm and

its standard deviation σε = 4.79 cm. The percentage of detection increases while the

error does so. Such effect shows the trade-off between obtaining many poor detections

or less precise detections.
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A summary of different situations has been presented in Figure 5.5 to show how the

proposed human pose estimation algorithm performs with various human poses. Both

easy situations (cross pose, farther left) and more difficult ones (punching, farther right)

are properly solved, providing a 3D estimation of the position of the extremities. When

extremities are not topologically prominent (i.e. third pose from the left), they are not

detected. This is a logical draw-back of the proposed method. Remark that these

estimations are obtained without any temporal tracking of the extremities, providing a

frame-wise solution to the human pose estimation problem.

5.3.3 Generalization to other objects

The proposed algorithm to detect end-effectors may be applied to other objects besides

the already presented human body case. With a suitable zero level set L0
t0 and an

adapted parametrization (δL, A
max), the prominent end-effectors of any object may be

found.

Figura 5.6: Obtention of end-effectors from a generalized object: example of finger
detection.

In [SRHC12b], a fast and robust algorithm for head and hand detection is proposed.

We utilize the obtained hand positions, onto which we apply the proposed R-NBLS

end-effector detector, aiming to detect the number of extended fingers.

Some finger detection examples are shown in Figure 5.6, where one, two, three and four

fingers are detected. In this example, the person is located about 2.5 meters far from

the range camera. The initial zero level set L0
t0 is set as the centroid of the hand blob

(graph root), and the parametrization (δL, A
max) = (2 cm, 7 cm2).
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5.4 Stanford’10 Dataset

Two reference methods are used to evaluate the proposed method. In [SFC+11], Shotton

et al. propose a body part classification by means of a Random Forest strategy. Ganapat-

hi et al. propose in [GPKT10a] a model-based approach exploiting temporal consistency.

They also provide a dataset consisting of 27 sequences of increasing difficulty, recorded

with a Time-of-Flight (TOF) camera. Moreover, ground-truth positions obtained with a

motion capture device are provided. The experiments presented hereafter are obtained

on the Stanford’10 Dataset [GPKT10a].

5.4.1 Classification Precision

The proposed methods detect head, hands and feet of a human body. Therefore, we

select the subset of markers in the Stanford’10 Dataset that represent these body parts.

In Figure 5.7, a summary of the obtained average precision (AP) is provided. The R-

NBLS method outperforms [GPKT10a], only being slightly surpassed in the cases of

the head and right foot. The method in [SFC+11] obtains slightly better results in

average. However, it is a specific classification method, whilst the other two methods

are focused on detection, making no classification effort. Regarding the ORD method,

the classification results are poorer. As mentioned before, this method has been trained

with data from the seqUPC sequence (different person, camera and viewpoint than in

[GPKT10a]). Given the simplicity of the method and the specific training, the results

on [GPKT10a] are acceptable.
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Figura 5.7: Average precision comparison with [SFC+11, GPKT10a] over the 27
sequences provided by [GPKT10a].

Regarding the average detection error, we compute the 3D error between the obtained

end-effectors and the selected ground-truth markers. Results are presented in Figure 5.8,

comparing the R-NBLS results to the results obtained by [GPKT10a]. The proposed

method behaves in a similar manner over the whole dataset, obtaining an average error of

about 9 cm even in the most challenging sequences (24-27). The method in [GPKT10a],
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obtains a slightly better detection error in the first sequences, strongly degrading its

results when facing the challenging sequences.
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Figura 5.8: R-NBLS Detection 3D error comparison with [GPKT10a] over the 27
sequences provided by the Stanford’10 Dataset [GPKT10a].

5.5 Computational Performance

As far as processing speed is concerned, the R-NBLS method executes at about 57 fps

using the dataset in [GPKT10a] (176× 144 resolution). In this chapter, we have used a

single core of an Intel Xeon CPU at 3GHz. The work in [GPKT10a] achieves a frame

rate of about 4− 10 fps with a specific GPU implementation. The method in [SFC+11]

claims a 50 fps execution frame-rate on full Kinect images (640×480 px) using an 8-core

desktop CPU, and 200 fps using a dedicated powerful GPU. In [BMB+11], a frame-rate

of 60 fps is achieved using a commercial CPU and a similar resolution.

The ORD proposal compares to the work in [GPKT10a], since their image resolution

(SR4000 TOF camera, 176 × 144 px) and objective (detection of human end-effectors)

are similar as ours. Our proposal executes at 9 fps on a regular CPU core and at about

400 fps using the GPU implementation of ORD explained in Section 3.3.2. Since the

proposal in [GPKT10a] achieves a frame-rate of 4− 10 fps on GPU, the ORD strategy

performs much faster.

5.6 Conclusions

We propose the Oriented Radial Distribution descriptor for depth data. Its effectiveness

at detecting end-effectors is shown, with special emphasis on the human body case. A

fast classification strategy which exploits the statistics of local and global descriptors of

these blobs, is also proposed.

Further usage of ORD is detailed in Chapters 8 and 9, where we exploit the multi-

resolution characteristic of ORD for human hand analysis purposes. In these chapters
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we also discuss the ability of ORD to both globally characterize an object and locally

detect its end-effectors.

We also propose an extension of the Narrow Band Level Set formulation, named R-NBLS,

to implement the GDM. A density restriction is added to the formulation, in order to

better respect the topological properties of the object under analysis. The obtained level

set provides a fast method to calculate geodesic distances over the original depth data.

Taking the R-NBLS results, we propose to build skeletal-like structure using a shortest

path algorithm. We show how such structure is effective at detecting extremities in a

frame-wise manner. In the specific human body case, the skeleton is tightly related to

human pose. We also provide a simple model to initialize the R-NBLS method in the

case of human body.

The proposed method performs about 5× to 50× faster than [GPKT10a], even in the

adverse case of comparing our CPU implementation to the GPU implementation in

the reference work. Using a similar resolution, a frame-rate of 60 fps is achieved by

[BMB+11], taking advantage of using a pre-computed training dataset.

R-NBLS outperforms the method in [GPKT10a] in classification precision, and achi-

eves similar results in terms of detection error. The method in [SFC+11] obtains a

slightly better classification precision, taking advantage of a large training dataset and

a dedicated classification task.

The R-NBLS method may be generalized to other objects.
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Hand Analysis
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Overall introduction

Humans move in countless ways, we run, jump, gesticulate, hold objects and a large

etcetera. Many of these activities may be studied using by focusing on specific body

parts, and analyzing their behavior (Figure 5.9). For example, for a human observer, it

is fairly easy to tell if someone is walking by just taking a look at the movement of feet

over a small time period of time.

Figura 5.9: Human activities are still understandable by analyzing the silhouette,
and even just some body parts. When observing motion, body parts are astonishingly

representative of the activity.

Human activity can be represented as a compact set of body parts and their properties

(position, trajectory, hierarchy, ...), which enables the usage of further computer vision

methods to study human behavior. Therefore, some works have re-studied the problem

of detecting body parts from the depth data point of view [SGF+12, GSK+11, BMB+11,

GPKT10a] with impressive results. Some of these works estimate the position and label

of different body parts based on a pre-processed dataset (discriminative approaches),

whilst others fit a human body model onto the data in order to obtain body parts

(generative approaches).

Amongst all body parts, hands occupy a top position in an expressivity ranking. We

humans use hands to communicate, to express our emotions or to manipulate objects.

Studying human hands from a computer vision point of view may enable novel human-

machine interfaces, as well as providing intelligent communication systems for deaf pe-

ople amongst other applications.

However, in order to apply hand recognition methods, we must know where hands

are. Therefore, hand detectors are mandatory for the hand recognition task. Having

a non-intrusive method to detect hand as a tool for further research on hand analysis

is important. To be considered non-intrusive, such tool should be fast and lightweight

(so that does not steal CPU power and memory to other methods), robust (to enable

experiments over different datasets) and easy-to-setup.
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Beyond hand detection

Recent successful interfaces like Apple’s Trackpad [App12] or multi-touch devices, allow

interaction by combining simple movements with finger configurations. However, device-

based interaction is always limited, since the user must be touching the device.

Inspired by the way we interact with currently available multi-touch devices, we propose

a touch-less interactive paradigm where hand gestures and fingertip configurations are

combined with simple movements. In order to provide a similar usability, a precise and

real-time detection of fingertip locations is required.

Detection of fingers or hand gestures is a complex task, given the high number of degrees-

of-freedom of a hand, the usual presence of self-occlusions and the large amount of

possible gestures. Few works have achieved performant fingertip detection results using

Kinect [HMB11, MIT11, KKKA11, OKA11], mostly due to resolution problems and

noisy depth estimations around fingers.

In addition, given the sudden appearance of the Kinect sensor, there is a lack of datasets

using depth data for hand analysis, which makes the usage of discriminative methods

more complicated.

In this part we firstly propose a baseline method called HandBox in Chapter 6. This

approach is based on a method that detects human heads in a robust manner. Hands

are consequently detected in a workspace zone attached to the obtained head estimate.

The HandBox method is used as a low-level tool to localize hands in a depth data video

sequence, given its robustness and fast execution. We show that the HandBox approach,

yet simple in its concept, is highly effective in many real-time applications.

Regarding detailed hand analysis, we contribute with ColorTip, a public dataset for hand

gesture recognition and fingertip localization on depth data. Details on the footage and

obtention of the ground truth data are also included in Chapter 7.

Also, in Chapters 8 and 9 we propose two discriminative approaches for the problem of

hand gesture recognition and fingertip localization (estimate where fingertips are and

which finger is each):

• In the first approach, we propose a hand gesture classification method based on

the ORD descriptor (Chapter 3). We show that ORD provides an effective re-

presentation for hand gesture recognition that helps reducing the search space for

further fingertip localization. We make use of ColorTip as training dataset for

both gesture recognition and fingertip localization.
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• In the second method, we propose a collaborative voting framework that casts votes

from ORD anchor points to fingertip positions, using ColorTip as training data.

We include the hand gesture as an auxiliary variable in the problem formulation,

obtaining it jointly with the fingertip positions. We show how this approach may

be generalized to the classification of any object’s parts and auxiliary properties.





6
HandBox : A baseline method for hand detection

6.1 Introduction

Obtaining the position of hands is an indispensable step for hand analysis methods. Yet

mandatory, it is usually not a simple task, due to self-occlusions, clutter, hand-shape

variability and speed of movement.

Moreover, hand detection algorithms that are intended to be used together with hand

analysis methods should be robust and fast. Robust because erroneous detections are

critical since hand analysis methods usually rely on consistent hand positions over time.

And fast because hand analysis methods are usually thought to be run in real time,

enabling a fluid human-machine interaction. The computational bottleneck, if exists,

should be caused by the hand analysis step and not by the hand detection one.

With this purpose, we propose a hand detection algorithm that fulfills the robustness

and speed requirements. Moreover, the fact of having our own method helps adapting to

variations of the posterior hand analysis methods, especially during the research steps,

where flexibility is an important factor to obtain interesting results.

55



Hand Analysis 56

6.2 Related Work

In the literature, some works explicitly tackle the head tracking problem. Haker et al.

[HBMB07] compute principal curvatures on depth data as features to estimate the posi-

tion of the head. Bohme et al. [BHMB09] improve Haker’s proposal. Nichau and Blanz

[NB10] present an algorithm to detect the tip of the nose in depth data by comparing

the extracted silhouette to an average head profile template. Malassiotis et al. [MS05]

estimate head pose by fitting an ellipse to the depth data and detecting the nose tip,

which helps determining head orientation.

Most of the recent works concerning hand detection are focused on human pose extrac-

tion, the hands being a collateral result, since they are part of the body. The work

by Bevilacqua et al. [BSA06] is one of the first attempts to track multiple persons in

a crowded scene with a TOF zenital camera. Knoop et al. [KVD06] fit a 3D model to

depth data by means of an adapted Iterative Closest Point (ICP) method. This way,

hands are directly obtained from the model. Grest et al. [GKK07] use silhouette edges

to track human extremities in complicated background conditions. They propose to use

a non-linear least squares estimation. The tracking algorithm proposed by Zhu et al.

[ZDF08] includes temporal consistency over frames to estimate the pose of a constrai-

ned human model. Lehment et al. [LKAR10] propose a model-based annealing particle

filter approach on data coming from a TOF camera. More recently, Plagemann et al.

[PGKT10] present a fast method which localizes body parts on depth point clouds at

about 15 frames per second. Ganapathi et al. [GPKT10a] extend the work in [PGKT10]

and extract full body pose by filtering the depth point cloud, using the body parts loca-

tions. In their work, they provide the Stanford dataset, which is used for evaluation in

Chapter 10.4.3. Shotton et al. [SFC+11] presented recently the pose recognition algo-

rithm running in the Microsoft Kinect depth sensor, which exploits an enormous dataset

to perform a pixel-wise classification into more than 30 different body parts. In their

work, they also make use of the Stanford dataset for evaluation. Strongly inspired by the

work in [SFC+11], a Kinect SDK has been released by [Pri11]. They provide complete

body pose in real-time.

6.3 Robust Head Tracking

Many persons at different distances from the camera may coincide in the same scene.

Such persons may enter, exit and freely move around the camera field-of-view. Therefore,

some aspects have to be taken into account when undertaking the head tracking problem.



Hand Analysis 57

F, P 

E 
elliptical 

template creation 

M 
matching score 

RN 
rendering node 

H1 head tracking range sensor 

H3 
open/closed hand 

H2 
hand detection 

Figura 6.1: Summarized block diagram of the proposed head+hand tracking system,
from the capture with a range camera to the final feed-back visualization on the ren-
dering node (i.e. TV set). Both a Kinect sensor or a custom TOF camera have been

used in this chapter, highlighting the flexibility of the proposed approach.

• Occlusions: Partial and total occlusions are a common problem of (single view-

point) visual analysis systems, since moving objects may overlap.

• Apparent head size: User’s heads may be placed at different depth levels, re-

sulting in different head sizes when projected onto the image plane.

In order to overcome such problems, we propose to firstly estimate the size of the head

on the depth image, step (E) in the scheme of Figure 6.1. Then, we estimate the head

position (M), composing the complete head tracking step H1 .

6.3.1 (E) Head size estimation

Human heads may present many different sizes on the recorded images depending on

the depth level where they are placed. Nevertheless, most of people’s heads are likely

to have an elliptical shape, no matter the distance they are away from the camera.

Furthermore, the elliptical shape of heads is invariant to rotation of the human body

around the vertical axis. Such invariant properties related to the elliptical shape of

heads is exploited thanks to depth estimations from the range camera. We remark that

hair could strongly change the shape of the head. However, the effect of hair is reduced,

given its low reflectivity and high scattering of IR light.

Indeed, we assume that people will stand-up or be seated, laying down and other poses

are not considered. Therefore, the depth of the whole body is likely to be similar to the

depth of the head dH .

An elliptical mask of the size of a regular adult head is placed at the calculated dH depth

level and projected onto the camera image plane, obtaining an ellipse of the apparent

head size (Hx, Hy) in pixels (see Figure 6.5). Such ellipse, which is called template or

(E) is then used to find a head position estimate.
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In order to better distinguish between the head ellipse and other elliptical shapes in the

scene, some margins are added to E . More precisely, the upper, right and left margins

are extended with background pixels; while the lower margin is not modified, as shown

in Figure 6.2.

Figura 6.2: On the right, a graphical example of the elliptical mask E used in the
algorithm. On the left, a representation of a human head and its foreground mask F ,

onto which a matching score is calculated.

6.3.2 (M) Head position estimation

With the aim of finding the image zone which better matches the elliptical shape, a

matching score between the template ellipse (E) and the global foreground mask (F) is

calculated at every pixel position (m,n) of the image. Such matching is performed within

a rectangular search zone (see Section 6.3.3), by shifting the template ellipse across the

image plane. The matching score is calculated according to conditions Ck presented in

(6.1), where bg = background and fg = foreground. Conditions are checked at every

pixel position (u, v) ∈ E of the template, which is itself centered at (m,n). When a

condition Ck is satisfied, Ck = 1, otherwise Ck = 0. The final matching score for the

Figura 6.3: Head position estimation in two video frames (each row) obtained with a
SR4000 TOF camera. From left column to right: IR amplitude, depth estimation, raw
foreground mask and the obtained head matching score. The whitest zone is chosen as

the most likely head position.
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pixel (m,n) is calculated as the sum of all the scores obtained on the template pixels,

as shown in Equation (6.1).

The pixel (m,n) with a higher score MH = max{Mm,n} is selected, by simple max-

pulling, as the best head position estimation ẑH in a given search zone. Conditions C2

and C3 provide robustness against partial occlusions. Indeed, the elliptical shape of the

head would be very polluted by occlusions, since we are working on a foreground mask

F which does not take depth into account. By means of conditions C2 and C3, depth is

incorporated to the matching score, not taking into account those pixels which are not

consistent with the calculated head depth dH . Remark that a depth threshold dmax is

used to decide whether a depth value is consistent or not.

C1
u,v : (Eu,v = bg) ∧ (Fu,v = bg)

C2
u,v : (Eu,v = fg) ∧ (Fu,v = fg) ∧ (|du,v − dHi | < dmax)

C3
u,v : (Eu,v = bg) ∧ (Fu,v = fg) ∧ (|du,v − dHi | > dmax)

Mm,n =
∑

∀(u,v)∈E

(C1
u,v + C2

u,v + C3
u,v) (6.1)

Two examples of the proposed solution are presented in Figure 6.3. It may be seen how,

even with a noisy F mask, the algorithm manages to find the best estimate in the center

of the head. Such inherent robustness is still increased with the search zone resizing

step, presented in Section 6.3.3.

Furthermore, such approach is robust against horizontal head rotation and slight lateral

head tilt, since the elliptical shape is still recognizable. As shown in Figure 6.4, the

proposed algorithm succeeds when dealing with side and back views of the head (rotation

along the vertical axis), as well as with long-haired heads, even if a slightly lower score

is obtained in such case. Using either a SR4000 TOF camera or a Kinect camera has

Figura 6.4: Head matching score in various situations obtained with a Kinect camera,
including (from left to right): back view, side view (with slight head tilt), far person
and long-haired person. In all these cases, the matching score presents a maximum in
the head zone. Indeed, the user viewpoint does not strongly affect our algorithm, since

the elliptical shape of heads does not substantially vary with vertical rotation.

insignificant impact on the proposed head estimation. Of course, the higher resolution

provided by Kinect makes our algorithm slower. For real-time experiments, the Kinect
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frames are down-sampled by 4, obtaining a 160 × 120 px images, which are similar in

resolution to TOF images.

6.3.3 Search zone resizing

In order to increase the robustness of the presented head estimation algorithm we propose

to resize the search zone where the matching score Mm,n is calculated. The fact of

stretching the search zone to the previous estimate helps ignoring other possible elliptical

shapes in the scene. For example, a second person entering the scene could lead to two

similar maxima of Mm,n. However, by limiting the search zone size, such second head

is not taken into account in the matching score Mm,n. A second thread could be run

on the remaining pixels to find and track the second head, as shown in Figure 6.5.

Moreover, reducing the search zone drastically reduces the computational load of the

algorithm, which processes the complete image only during the initialization frames.

The position and size of the head search zone is adapted to the head position variance,

and also to the confidence on the estimation. More precisely, the new search zone size is

calculated as a function of last matching score MH , the head size estimation (Hx, Hy),

and the spatial variance of the estimation σ. The latter is calculated over the previous L

frames, obtaining σx and σy for each axis. As for the matching score, it is normalized by

the best achievable score for the current template Mmax such that M̄ = MH

Mmax ∈ [0, 1].

The new rectangular search zone is centered at the last head position estimation, while

the rectangle sides Rx and Ry are resized according to Equation (6.2).

Rx = σx + (1 + µ) ·Hx

Ry = σy + (1 + µ) ·Hy

with µ = e
−M̄
1−M̄ (6.2)

Figura 6.5: Head tracking snapshots from our experiments obtained with the SR4000
TOF camera. Head position is estimated by shape matching with an ellipse which is
continuously resized depending on the distance between the camera and the person.
Ellipses being currently used are presented at the upper-left corner of the image. The

rectangles in the image correspond to the current search zones.

Such resizing is effective against fast head movements as the search zone is adapted to

the variance of the estimations. For example, horizontal movements will enlarge the

search zone along the horizontal axis.
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Furthermore, including the matching score in Equation (6.2) makes the system robust

against bad estimations, making the search zone slightly larger in case of bad matching.

The objective is to include some more pixels to the matching score computation in case

some better matches appear close to the previous processed zone.

Note that when the head estimation is stable (σ ≈ 0) and confident (M̄ ≈ 1), the search

zone is about the size of a human head (Rx, Ry) ≈ (Hx, Hy).

6.4 Hand Detection and Tracking

Hands are probably one of the most difficult parts of the body to track, given their mobi-

lity and size, but also one of the most important targets for many applications. Gesture

recognition is tightly related to hand tracking, most of the information being obtained

from hand movement. An accurate and robust hand tracking system is desirable to face

complex gesture recognition, as well as to achieve interactive and immersive multimedia

systems.

Figura 6.6: Snapshot of the proposed head+hand tracking system output. In this
sequence, the head (blue cross) and both hands (green and red blobs) are being tracked.
Movement is restricted to the HandBox (green box), which is attached to the estimated

head position. Results are presented on a lateral view for visualization purposes.

The hand tracking system proposed in this section (block H2 in Figure 6.1) relies on the

robust head estimation presented in Section 6.3. Hands are supposed to be active (per-

forming gestures) in a zone placed in front of the body. Following this basic assumption,

the HandBox ♦ is defined as a 3D box of size ♦x × ♦y × ♦z cm, as shown in Figure 6.6.

Hands are supposed to lay within it when moving. ♦ is attached to the head position

ẑH so that ♦ follows the user’s head at every time instant.
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L hand R handfiltered by
depth

filtered by size

merged

Figura 6.7: Example of cluster merging and filtering for hand detection. Color re-
presents candidate clusters obtained with a kd-tree structure. The red cluster is too
small. The blue and yellow clusters are merged since the Hausdorff distance between
them is small enough. Three clusters remain, but the green one is filtered since it is
placed farther in depth (represented with smaller squares). Thus, the remaining two

clusters are labeled as R and L hands.

Hands are to be detected among the points {z} ∈ ♦. Dense clusters are searched by

means of a kd-tree structure, which allows fast neighbor queries among 3D point clouds

[FBF77, MM99]. A list of candidate clusters is obtained and filtered according to the

following sequential criteria:

1. Merging: Two clusters are merged as a single cluster if the Hausdorff distance

between them is smaller than a given distance threshold δmin (typically δmin ≈
10 cm).

2. Size filtering: The resulting merged clusters are filtered by size (number of points

in cluster), keeping the largest ones. A size threshold smin (typically smin ≈
15 cm2) is set to determine what clusters are accepted as hand candidates.

3. Depth filtering: Clusters that fulfill the previous criteria are sorted by depth.

Those clusters placed closer to the camera are selected, knowing that a maximum

of two clusters may be chosen.

Thresholds δmin and smin should be tuned depending on the type of camera and scene.

A graphical illustration of these criteria is shown in Figure 6.7. The number of detected

hands depends on the number of clusters that pass the merging and filtering steps,

resulting in two, one or no hands being detected in ♦. For example, two hands are being

detected in the example of Figure 6.6.

Following the proposed criteria, one could mislead the system by introducing, for exam-

ple, an elbow in ♦. Such issue may be overcome by placing the ♦ box at a convenient

distance of ẑH . A distance of 25− 30 cm has proven to be robust enough in our experi-

ments with non-trained users.

In addition, spatio-temporal coherence is included in the hand tracking scheme, which

increases its robustness. Hand estimates at time t + 1 are compared to those in time t
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by means of Hausdorff distance measurements, in order to provide coherence to tracking

and avoid right-left hand shifting. Furthermore, when only one hand is being detected,

it is labeled (right / left) depending on the previous estimates and its relative position

in ♦. For example, a cluster placed further right in ♦ probably corresponds to the right

hand.

No significant differences have been appreciated between Kinect and TOF input data

regarding hand detection.





7
ColorTip: A Dataset for Hand Analysis on Depth

Data

7.1 Description

Despite the revolution that commercial depth cameras have brought, their recent irrup-

tion supposes a lack of public datasets. Ganapathi et al. [GPKT10b] provide a body

pose estimation dataset using a Time-of-Flight (TOF) camera. Pugeault and Bowden

[PB11] propose a hand gesture dataset using Kinect, which is intended for American

Sign Language (ASL) purposes.

We propose ColorTip [Col], a public dataset for hand gesture recognition and finger-

tip localization captured with Kinect the sensor, which consists of a set of recordings

and annotations with a two-fold objective. To provide a benchmark against which furt-

her research works may be assessed. But also, to enable novel interactive applications

involving hand gesturing and fingertip localization.

In order to ease experimental setups, the ColorTip dataset is divided into folders accor-

ding to:
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• Subject: N subjects performing gestures like those shown in Fig. 7.1, ensuring

intra user variability. Four of them are untrained users, which learned how to

perform the gestures with a single and short explanation.

• Challenge: We consider that a given gesture may vary in orientation and transla-

tion. Therefore, raising 4 fingers is assumed as gesture number 4, but also moving

these 4 fingers towards the camera, side views and hand rotations (Fig. 7.1). The

amount of intra-gesture variability determines how challenging a given sequence is.

The Set A sequences contain limited intra-gesture variation, which mainly consists

in hand rotations on the vertical plane. On the other hand, the Set B sequences

contain a higher intra-gesture variability, with free rotations and finger movement

(as shown in Fig. 7.1).

In total, ColorTip contains a set of (7 subjects × 2 challenges) = 14 sequences of between

600 and 2000 frames each.

1  2  3  4    5       6        7       8       9    0 

Figura 7.1: Sample of the annotated gestures in the ColorTip dataset. Two examples
per gesture are shown (columns). These examples are extracted from a Set B sequen-
ce, with a high intra-gesture variation. Note the rotations and translations. Label 0

corresponds to no gesture (i.e. other gestures, transitions).

Figura 7.2: Snapshot of the ColorTip dataset content. From left to right: depth
image, color image (remark the colored glove), segmented fingertips (colors are directly
finger labels, and centroids are finger positions) and a similar gesture in a test sequence.

7.2 Annotations

Inspired by the work of Wang and Popović [WP09], a black glove with colored fingertips

is used to capture the training sequences (see Fig. 7.2). In this way, we obtain a dataset
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together with a fingertip annotation in a single footage without requiring expensive

motion capture systems, like those used in [SFC+11, KKKA11]. Furthermore, one

can easily record additional data to update the dataset. Actual fingertip locations are

obtained by first segmenting the Kinect color images with a color-based Binary Partition

Tree [SG00] (see Fig. 7.2) and then computing the region centroids. Color labels have

an associated numerical label l.

Hand gestures are manually annotated among the 1-9 gestures, plus an extra label 0

for those frames with an unknown gesture. Also, a hand location annotation in image

coordinates is provided.





8
NNGM: Nearest Neighbor + Graph Matching

Approach for Fingertip Localization and Gesture

Recognition

8.1 Introduction

The objective of the proposed method is to locate fingertips in real-time, that is, to

know where fingers are placed, and also classify them to know which finger is each.

Instead of facing the problem from raw data, as could be done with a similar approach

to [SFC+11], we propose to use an intermediate step to restrict the search space. We

exploit the statistical correlation between gestures and fingertip locations to perform

such a restriction. This is very intuitive, since fingertip locations are conditioned by

hand gestures, and at the same time allows a highly efficient fingertip inference.

We choose to use the hand gesture as a discriminative auxiliary variable in this inter-

mediate step. Indeed, there exists a real necessity of detecting hand gestures, so we

discard using other auxiliary variables without any semantic meaning. We remark that

algorithmic decisions are strongly motivated by efficiency, since real-time is a strong

objective for any interactive system.
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In a second step, we infer the most probable fingertip locations conditioned on the

obtained hand gesture. We propose a specific graph matching approach, which exploits

fingertip structure, to undertake the fingertip localization task. Thus, both fingertip

locations and hand gesture are obtained from the proposed overall scheme.

A novel usage of the Oriented Radial Distribution (ORD) descriptor (as explained in

Chapter 3). The ORD descriptor characterizes a point cloud in such a way that its

end-effectors are given a high ORD value, providing a high contrast between flat and

extremal zones. Therefore, ORD is suitable to both globally characterize the structure

of a hand gesture and to locally locate its end-effectors. Such ORD property nicely fits in

the above mentioned two-step method. We propose to use the overall ORD structure for

the gesture classification task, and to use local ORD extrema to feed the graph matching

step. Therefore, a single ORD calculation is enough for both tasks.

The proposed method is evaluated with a recent 3D feature benchmark, revealing the

convenience of using ORD. Furthermore, the gesture classification step is assessed with

the ASL database provided by [PB11]. Fingertip localization results are successfully

compared to a state-of-the-art Random Forest (RF) approach.

Summarizing, in this chapter we propose the following main contributions:

• A practical touch-less interaction concept, combining finger configurations, hand

gesture and simple movements.

• A real-time method to obtain locations and labels, as well as hand gestures, using

Kinect. We propose to exploit the statistical correlation between hand gestures

and fingertip locations.

• A novel use of the Oriented Radial Distribution descriptor, exploiting its global

structure for hand gesture characterization and its local values for fingertip detec-

tion.

8.2 Related Work

Many authors propose using depth cameras for human body analysis, ranging from

full body pose estimation [SFC+11, BMB+11, GPKT10b, SMMN11] to hand gesture

classification and fingertip localization.

Obtaining hand gestures with Nearest Neighbors (NN) classification has proven to be a

promising approach when dealing with depth data [SPHK08, RYZ11, KPHB08]. Howe-

ver, most recent works use features that are not specifically designed for depth data.
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Many authors have explored how to control a virtual environment with hands (i.e. PC

desktop, 3D model). Such applications involve, in most of the cases, dynamic hand

gesturing. In this direction, Soutschek et al. [SPHK08] propose a user interface for the

navigation through 3D datasets using a Time-of-Flight (TOF) camera. They perform

a polar crop of the hand over a distance threshold to the centroid, and a subsequent

NN classification into five hand gestures. With a similar objective, Van den Berg and

Van Gool [VV11] improve their work in [VKMBV09] by combining RGB and depth

to construct classification vectors. Their alphabet consists of four gestures that enable

selecting, rotating, panning and zooming of a 3D model on a screen. Hackenberg et al.

[HMB11] estimate hand pose by identifying palm and finger candidates, after a pixel-wise

classification into tips and pipes. The final hand structure is obtained with optical flow

techniques. Ren et al. [RYZ11] segment the hand under some restrictive assumptions

and adapt the Earth Movers Distance to a finger signature, finding the NN according to

this metric. Malassiotis and Strintzis [MS08] extract PCA features from depth images

of synthetic 3D hand models for training.

Other works have focused on finger-spelling using the American Sign Language (ASL).

While still being an alphabet, the ASL contains 26 hand poses and their accurate classi-

fication becomes a challenging task. We remark that 24 of the 26 hand poses are static

gestures and 2 of them are dynamic (involve trajectory). Most of the related works are

focused on the static subset. Ceskin et al. [KKKA12a] take advantage of Randomized

Decision Trees to classify hand shapes. Zhang et al. [ZYT13] recently propose a descrip-

tor for depth data which encodes 3D facets into a histogram. They proof the suitability

of this descriptor for hand gesture recognition on ASL datasets. Zhu and Wong[ZW12]

propose to fuse common color and depth descriptors and use linear SVM’s to predict

the hand gesture. Kollorz et al. [KPHB08] obtain a fast NN classification using simple

feature projection on two axis, which they apply to the first 12 letters of the ASL (static

gestures). Uebersax et al. [UGVV11] perform an iterative hand segmentation by optimi-

zing the center, orientation and size of the hand. They smartly aggregate three classifiers

that take shape and orientation into account. Pugeault and Bowden [PB11] propose a

multi-resolution Gabor filtering of the hand patch to train a Random Forest classifier.

In their work, they provide a complete dataset of the 24 American Sign Language (ASL)

static gestures captured with the Kinect sensor, with both color and depth information

available. Their dataset contains patches roughly centered at the hand centroid.

Fewer works have tackled the fingertip localization problem. In [HMB11], fingertips are

detected but not labeled, as well as in [MIT11] where also the palm and fingers orien-

tation are estimated. Both approaches exploit geometrical features to detect fingertips

on the hand point cloud. The body part classification approach proposed by Shotton

et al. in [SFC+11] is applied to hand parts by Keskin et al. [KKKA11], obtaining full
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hand poses at the expense of a costly training. Recently, Oikonomidis et al. [OKA11]

formulate the hand pose recovery problem as an optimization approach, measuring the

discrepancy between a model and the observed hand. Full hand pose is provided (in-

cluding fingertips), requiring initialization at a known initial pose. On the other hand,

their cost function relies on color information, reducing the performance to controlled

scenarios.

8.3 Method Overview

body 
segmentation 

ORD 
ρ=3cm 

ORD 
ρ=12cm 

hand 
detection 

+ 
segmentation 

depth 
camera 

k-NN reduced 
search space 

hand gesture 
prediction 

finger 
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2 

Figura 8.1: General scheme of the proposed NNGM (Nearest Neighbor + Graph
Matching) method. Fingertip locations are obtained (2) through an intermediate step,

where the hand gesture is obtained as auxiliary variable (1).

The scheme in Fig. 8.1 summarizes the main blocks involved in the proposed method. In

a preliminary step, we perform a body segmentation by means of background subtraction

with depth data. Then, we detect and segment the hand by using the ORD at hand

scale (in this chapter ρ = 12 cm).

In case the application requires strict real-time, one may use fast methods to detect

hands like that proposed in Chapter 6. However, a nice advantage of using ORD is

that one may perform hand detection with a quarter body viewport, or even observing

a single arm. In addition, ORD may be used to detect other body parts by tuning the

scale.

ORD is very sensitive to depth gaps, so hands will still return high ORD values when

placed few centimeters away from another body part. Of course, hands “touching” other

parts (such as the head), will cause problems. At that precision level, both ORD and

the depth camera resolution are pushed to the limit. We can say that hands placed at

a distance > ρ will be properly detected.
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A two-step approach is proposed to perform hand gesture recognition and fingertip lo-

calization on the detected hand. We compute the ORD at finger scale (ρ = 3 cm) on

a small patch containing the segmented hand, thus obtaining high ORD responses at

fingertips and eventually at knuckles (see Fig. 8.2). The objective of this finger scale

ORD is two-fold:

1. On the one hand, we use the ORD values to select the most likely hand poses

(gestures) by computing distances between feature vectors, obtaining a subspace

of likely hands from the ColorTip (Section 8.4). We note this step as gesture

recognition.

2. On the other hand, higher ORD responses are used as sparse fingertip candida-

tes, and serve us to infer fingertip locations (fingertip localization) conditioned on

the previously selected subspace. A structured inference framework is proposed,

formulated as a graph matching problem (Section 8.5).

The whole framework is based on the ORD feature data. We consider ORD a strong

enough representation for this task, which, in addition, may be fast computed enabling

real-time applications.

We introduce some notation hereafter, describing some of the variables handled in the

proposed method. Training patches Π = {π1, . . . , πi, . . . , πN} are squared patches of

different sizes containing depth data of the segmented hand. We start by computing

the ORD(πi) at finger scale on each training patch. Then, we re-sample into a regular

grid of m × m blocks to characterize the training patches (Fig. 8.2). Each block gets

the mean ORD value of the pixels inside it, obtaining a set of m2-dimensional feature

vectors X = {x1, . . . ,xi, . . . ,xN}. Besides, let ri ∈ R2×5 denote the ground truth

fingertip locations (in pixel coordinates) corresponding to the i-th training sample, being

ri[m] ∈ R2 with m = 1, . . . , 5 each fingertip location (used in Section 8.5). Additionally,

let yi be gesture labels. Then, training templates are defined as λi = {xi, ri, yi}, and

the complete training dataset H.

Given a test patch π, the objective is to locate fingertip positions in it, that is p(r|π).

We propose to break the problem of obtaining fingertips from data p(r|π) into two more

tractable problems, that can be efficiently solved. In order to do so, we introduce the

hand gesture y as an auxiliary variable. By doing so, the problem of inferring fingertip

locations from data can be posed as:

p(r|π) =
∑
y

p(r|y, π) · p(y|π) (8.1)
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However, the marginalization of gestures implies a time consuming summation. Since

real-time is a requirement, we approximate the problem in Equation (8.1) by firstly

maximizing p(y|π), obtaining the best candidate λ̂ ∈ H. Secondly, we infer fingertip

locations from the best template obtained after this maximization. The problem results

as posed in Equation (8.2):

p(r|π) ≈ p(r|λ̂, π) with
{
λ̂ ∈ H | ŷ = argmax y{p(y|π)}

}
(8.2)

We propose to solve the gesture recognition problem p(y|π) using a k-Nearest Neighbors

(k-NN) classifier. k-NN techniques are strongly sensitive to the data nature. Thus, an

inappropriate feature selection could lead to a bad k-NN classification. Choosing a k-

NN classifier helps to test the suitability of the ORD feature, as well as providing a fast

classification taking advantage of a kd-tree [FBF77] structure.

We remark that the term hand gesture refers to specific hand poses with a given meaning.

Such poses may be static (i.e. ASL dataset) or dynamic (i.e. ColorTip dataset). The

posed gesture recognition problem is solved no matter the movement of the hand.

Concerning the fingertip localization problem p(r|y, π), we propose to solve it using a

graph matching (GM) algorithm with a structure-based cost on edges. Such step is

conditioned on the search space obtained from the p(y|π) problem.

The overall proposal combining NN classification and GM is noted as NNGM.

8.4 Hand Gesture Recognition

In pattern recognition problems, the accuracy of a method ultimately depends on the

distance metrics on the feature space, i.e., whether classes in the feature space appear

separate enough to learn a robust classification rule. In this chapter, we propose a

feature space based on the ORD descriptor. Feature vectors obtained by computing

the ORD descriptor on the input data provide a representation of salient regions of the

hand. In other words, ORD-feature vectors of hand poses can be seen as distribution of

important parts of the hand and even interpreted as where the knuckles and fingers lay

within the patch. For that reason, an ORD-based feature space is a suitable space for

matching hand poses.

We choose to use a k-NN classifier for pose and gesture recognition. In this way, we

show that even by simple matching techniques, the ORD feature space is adequate for

hand analysis.
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Figura 8.2: Examples of feature vectors at various m re-sampling values. From left
to right, m = {4, 6, 8, 10, 14, full ORD patch}

To use a k-NN classifier on a large set of instances, we use a m2-dimensional kd-tree

[MD09] that efficiently organizes feature vectors, allowing fast NN queries. The L2 norm

is used in this chapter, since it offers a good trade-off between speed and performance.

For a test patch at a given time instant (we omit the temporal subscript t in this

section for readability reasons) , the k-NN search returns a set of k training templates

Hk = {λ1, . . . , λj , . . . λk} with associated distances to the test patch δ : Hk 7→ R. Let

Φy(Hk) be the distribution of gestures obtained from Hk.

We note λ̂ the k-NN best match by majority, as specified in Eq. (8.3). The obtention

of λ̂ is conditioned on the gesture which maximizes Φy(Hk). Therefore, maximizing

Φy(Hk) is equivalent to the maximization in (8.2). Remark that one may refer to 1-NN

best match, which is the first nearest neighbor in the training dataset.

λ̂ = λj ∈ Hk | j = argmin j
{
δ(λj) | yj = argmax y{Φy(Hk)}

}
(8.3)

The k-NN search may deliver false detections, resulting in a noisy gesture recognition.

We propose hereafter to apply human dynamics restrictions to smooth the result of Eq.

(8.3).

8.4.1 Dynamically Constrained k-NN

In many cases, we are subject to analyze video sequences, which intrinsically have a

temporal consistency over consecutive frames. Hand dynamics are smooth, hence we

assume that hand gestures are not instantly changing, but are maintained during a

minimal number of frames.

In order to exploit such video consistency, we propose to keep a trace of the last Q

predicted gestures ŶQ = {ŷt−Q, . . . , ŷt−1}, obtained from the gesture labels of HQ =

{λ̂t−Q, . . . , λ̂t−1}. Let ỹQ = argmax y{Φy(HQ)} be the statistical mode of the last

gestures ŶQ, and let ŷt be the predicted gesture at time instant t, which is obtained as

detailed in Equation (8.3).
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In the cases where the predicted gesture differs from the statistical mode of the last Q

gestures, we select the closest template among the k-NN set with a gesture equal to the

mentioned mode. This way, transitions between gestures are smoothed, avoiding gesture

flickering, as well as de-noising intra-gesture false detections.

In order to respond to gesture changes, when no gestures in the k-NN set equal the

statistical mode, the 1-NN template is selected. The overall Dynamically-Constrained

(DC) k-NN is detailed in Algorithm 1.

During the first frames (i.e. start of a live demo, begin of a video sequence, etc.) a

simpler k-NN by majority is used, until the number of frames greater than Q. Thus,

during these first Q frames, the performance of the gesture recognition part corresponds

to that shown in Figure 10.7, with label ORD ; and that of label ORD-DC after the first

Q frames. By adopting this strategy, no gesture initialization is required.

1: Input:
2: Hk = {λ1, . . . , λj , . . . λk} = k-NN set at time t
3: ỹQ = mode of the last predicted gestures ŶQ
4: ŷt = predicted gesture at t or argmax y{fy}

5: Output: λ̂ = best k-NN

6: if ŷt = ỹQ then

7: λ̂ = k-NN by majority (Eq. (8.3))
8: else
9: if ∃ yj ∈ ŶQ | yj = ỹQ then

10: λ̂ = λj ∈ Hk | j = argmin
{
δ(λj) | yj = ỹQ

}
11: else
12: λ̂ = 1-NN
13: end if
14: end if

Algorithm 1: Dynamically Constrained k-NN search

8.5 Fingertip Localization

We address the problem of fingertip location by making use of the ORD descriptor in

a structured inference framework. Maxima of the ORD of the input patch are likely to

represent fingertip locations. However, as mentioned before, for some hand poses these

maxima may correspond to other salient points of the hand. But, even if all the maxima

correspond to finger locations, one should be able to classify which finger belongs to

each maximum. Consequently, there is a need to exploit the global hand structure to

overcome these issues.
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Figura 8.3: Fingertip localization scheme. Fingertip locations are inferred from the
ground-truth graph Gh by computing the Maximum Common Subgraph with respect

to the test graph Gz.

Fingertip localization on test patches takes advantage of the pose recognition scheme

presented in Section 8.4. Let us recall that, in the training phase, we define templates

λi = {xi, ri, yi} comprising the feature vectors, ground truth fingertip locations and

gesture labels, respectively. Our method exploits the geometric structure of the ground

truth fingertip locations r̂ of the best template match λ̂ provided by the k-NN pose

recognition block. The objective is to infer which ORD maxima of the test patch cor-

respond to fingertip locations, and which are their finger classes. Let Gh = (Vh, Eh)

be a fully connected graph where vertices vh ∈ Vh correspond to the available fingertip

coordinates in λ̂, which we denote as r[vh] ∈ R2 (if a fingertip is not visible, such ver-

tex is not considered). Let Gz = (Vz, Ez) be the fully connected graph where vertices

vz ∈ Vz correspond to the ORD maxima s of the test patch πt, namely s[vz] ∈ R2. We

obtain a correspondence between vertices in Gh and vertices in Gz by computing the

maximum common subgraph [McG82] (Fig. 8.3). This process consists in obtaining the

graph G with the maximum number of vertices such that there exist subgraph isomorp-

hisms1 from G to Gh and from G to Gz. Note that in general there exists more than

one maximum common subgraph. From the set of maximum common subgraphs we

choose the one that best satisfies a geometric constraint defined on its edges. Let us

denote Gmcs = (V ′, E′) a graph from the set of maximum common subgraphs of Gh and

Gz, which involves the mappings fh : V ′ 7→ Vh and fz : V ′ 7→ Vz. Then, for each edge

(u, v) ∈ E′ we can obtain the vectors eh = r[fh(u)]−r[fh(v)] and ez = s[fz(u)]−s[fz(v)]

which characterize geometrically the graphs Gh and Gz. We propose to select the ma-

ximum common subgraph that minimizes the cost:

C =
∑

(u,v)∈E′
‖eh − ez‖+ 1− eh · ez

‖eh‖ ‖ez‖
(8.4)

1A graph isomorphism of graphs G and H is a bijection f between the vertex sets of G and H such
that any two vertices u and v of G are adjacent in G if and only if f(u) and f(v) are adjacent in H.
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The measure in Eq. (8.4) combines a cost proportional to the difference of relative

distances between fingertips with a cost that penalizes matchings with distinct relative

orientation between fingertips. In this manner, we take account of the geometrical

structure of the whole fingertips set, of both the test and template match, which allow

matching even in case of misses or false fingertip detections.

ORD maxima are found by clustering pixels depending on their thresholded (> tf ) ORD

values into, at most, 5 clusters of a given minimal size sf . For clustering, connectivity

between pixels is verified, but also depth connectivity, thus we are subject to work

with 3D data. For this purpose, we use the 3D Euclidean clustering proposed by Rusu

in [Rus09]. Remark that tf and sf are parameters of the finger localization method.

Summarizing, the method proceeds as follows, also depicted in Algorithm 2:

1. The test feature vector xj is processed by the k-NN pose gesture recognition block.

As a result, we match a template λ̂ and build the graph Gh using the ground truth

finger coordinates r.

2. Coordinates of ORD maxima s are computed using the clustering method and the

graph Gz is built.

3. The maximum common subgraph G that minimizes the cost C in Eq. (8.4) is

obtained, which defines the fingertips matching between the test patch and the

template match.

4. Missing fingers in the test patch with respect to the template match are copied

from the latter according to the average displacement between both sets of fingertip

coordinates.

1: Input:
2: λ̂ = matched template after k-NN
3: πt = test template

4: Output: Test fingertip locations

5: Obtention of graph Gh from λ̂, with nh vertices
6: Obtention of graph Gz from ẑ, with nz vertices
7: Maximum common subgraph G(Gh, Gz) than minimizes cost C in Eq. (8.4)
8: ng fingers are obtained from G, displaced from Gh to Gz
9: if ng < nh then

10: the remaining (nh − ng) fingers are copied from Gh, displaced with the average
shift of the ng first ones.

11: end if

Algorithm 2: Fingertip Localization
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Collaborative Voting

9.1 Introduction

Object recognition algorithms have explored various ways of handling the available data.

For example, in [TSSF12] a pixel-wise approach is proposed. That is to say, they process

every pixel independently, obtaining the probability of that pixel belonging to a given

part of a human body. When all pixels are classified, they are matched to a canonical

body pose called the Vitruvian manifold. On the other side, the NNGM approach

proposed in Chapter 8 handles the whole amount of information at once (depth point

cloud of the hand) and exploits it to obtain the class (gesture) and some of its parts

(fingertips). Between these two extrema, many approaches have been proposed, with

the granularity of information being a major difference. For example, meaningful body

parts are used in [FGMR10]. Bigger parts called pose-lets are used in [BM09]. These

pose-lets are body parts tightly clustered in both appearance and configuration space.

We propose a discriminative approach which builds on the voting idea of Hough Forests

[GYR+11], and also on the idea of describing object parts instead of the whole object,

proposed in [FGMR10]. The objective of both methods is to detect an object given its

parts. We propose to invert the formulation of the problem, trying to detect object parts

given an object. For this purpose, we propose to describe object parts with the Oriented
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Radial Distribution (ORD) feature [SRHC12a], which proved to be highly discriminative

for hand gesture recognition using depth data [SALM+12]. In our method, object parts

are meaningful from the ORD point of view. Each of these parts casts votes to other

annotated parts, with a given confidence. Thus, a dataset of annotated object parts is

required.

Fingertip localization of our Voting proposal is evaluated against a reference Random

Forests method similar to [SFC+11], using the ColorTip dataset. The Voting method

generalization to other objects is evaluated for the specific case of the human body. The

Stanford dataset and its associated method [GPKT10a] is used, as well as the R-NBLS

method proposed in Chapter 4.

We show experimental results on the ColorTip dataset and the Stanford human pose

dataset [GPKT10a]. In addition, each object part may cast votes for additional infor-

mation related to the object (i.e. overall pose). The Voting method ability to estimate a

global property of the object under analysis is also evaluated. In this case, a benchmark

of methods is used for comparison using the ASL dataset [ASL], showing how hand

gestures are recognized.

9.2 Related Work

Object parts often are more characteristic of an object than global features of the object

itself, as shown in [FGMR10]. With this idea, Gall et al. [GYR+11] propose a generalized

method to obtain an object’s centroid by casting votes from detected parts. These works

use color images from a single camera.

Discriminative approaches have shown to be effective to detect parts of a given object

using depth data. The Kinect’s human body pose estimation [SFC+11] uses a Ran-

dom Forest classifier to detect body parts (the object is a human body). In [GSK+11,

SGF+12], such approach is extended for regression of human body parts. In [TSSF12],

the classifier is pushed to the limit, considering every pixel a body part. In [KKKA12b],

the approach proposed by [SFC+11] is extended to hand parts detection. The above

mentioned methods require a large dataset in a training phase, which sometimes may be

impossible to obtain or very cumbersome to manage in terms of memory allocation and

processing power. Using a synthetic dataset has proven to be smart strategy to avoid

endless shootings [SFC+11, KKKA12b]. However, the dataset size is does not decrease,

and tends to increase due to the easily available data.
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9.3 Voting Framework

In [GYR+11], each part of an object casts votes with the objective of finding the object’s

centroid. A dataset of objects with annotated object parts and votes is used for training

a Hough Forest, which is utilized in the test phase to infer votes from the testing object

parts.

Inspired by [GYR+11], we propose to cast votes from each object part to other object

parts, constructing a collaborative object part detector.

9.3.1 Training Templates

A given object O in the database may contain N annotated parts at positions {gj} with

j = 1..N , and a maximum of 2M anchor points {ai} with i 6 2M . The object O is

enclosed by an L× L pixel bounding box.

We define a training template λi, located at position ai (anchor point), and enclosed by

a smaller bounding box of size li× li, as λi = (Ii, si, {vi,j}, {ci,j}) (see Figure 9.1). More

precisely,

Ii are the features extracted from the li × li image patch surrounding the object part,

si is the normalized position of the object part with respect to the center of the L× L
object patch, such that si = ai

L − (1
2 ,

1
2) ∈ R2 ,

{v(ai,gj)} are the normalized votes from the current anchor point to the parts of

the object, such that v(ai,gj) =
gj−ai
L ∈ R2. Remark that we vote at position v

for a given class c(gj),

{ci,j} are the class labels of the voted object parts. We consider NC classes, belonging

to the class space C (i.e. finger label amongst the 5 possible fingers in the case of

human hand analysis).

In this chapter we refer to I for the ORD values of the pixels in the L×L object patch.

Consequently, the Ii term contain the ORD values for the pixels in the li × li part

patches. In order to normalize the result for further comparison with other templates,

these ORD values are re-sampled to an m×m grid for each part, with m < li ∀i. Anchor

points {ai} of O are also obtained from the ORD calculation. We consider the ORD as

a function ORD : R2 7→ [0, 1]. Those ORD values higher than 0.7 are thresholded and

clustered, taking the centroids of the M most prominent clusters as {ai} components,

if they exist. In a similar way, those ORD values smaller than 0.3 are thresholded and



Hand Analysis 82

g2 

v(ai,g2) 

s 
i 

ai 

L × L 

li × li 

g1 

v(ai,g1) 

Figura 9.1: Training template definition. In this case, two votes {vi,j} for j = 1, 2
are obtained from anchor point ai. The classes of g1 and g2 will compose {ci,j}.
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Figura 9.2: Object parts dataset construction. From a given object’s ORD, anchor
points are obtained as ORD maxima (red dots) and minima (orange crosses). A training
template is built from every anchor point, composing the whole dataset. More details

about training templates in Figure 9.1.

clustered, obtaining the remaining M components of {ai} (Figure 9.2). Therefore, {ai}
will have, at most, 2M components. It may happen that less than 2M anchor points are

obtained for a given object (i.e. few ORD values over 0.7). We have considered M = 5

in our work, resulting in a maximum of 10 anchor points per template.

9.3.2 Detection

In the detection step we consider a given testing object O with unknown parts {ĝj}.
Nevertheless, we can extract anchor points from O by applying the same ORD function

used in the training step, and taking the M first maxima and M first minima. Thus, we

obtain a maximum of 2M anchor points {ai} which are suspicious of being similar the

training ones, since they are obtained in the same manner.
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The objective is to infer the unknown locations {ĝj} of the parts of the testing object,

as well as their classes {ĉj}. Let ĥ({ĝj}, {ĉj}) be the hypothesis for the parts of the

object Ô, located at positions {ĝj} ∈ R2 of class {ĉj} ∈ C.

The object parts detection problem is then to maximize p(ĥ|I). The exact solution of

this problem leads to evaluating the complete template dataset and extracting the best

result that fulfills the hypothesis. To avoid such cumbersome calculation, we decompose

the problem as shown in Equation (9.1)

p(ĥ|I) =
∑
i

p(ĥ|Ii,ai) p(ai|I)

=
∑
i

p(ĥ|Ii,ai, λ) p(λ|Ii,ai) p(ai|Ii)

=
∑
i

p(ai|Ii)

(∑
k

p(ĥ|Ii,ai, λk) p(λk|Ii,ai)

)
(9.1)

where λ is an auxiliary variable, measured directly from I. We propose λ to be the

closest K-Nearest Neighbors (K-NN) from the testing template. Thus, λ = {λk} with

k = 1..K, each element being a training template (Figure 9.3). In order to obtain λ

we propose to use the cost function in Equation (9.2). The component µi(λk) is the L2

distance1 between the testing Ii and those in the whole dataset. We propose to add

the spatial constraint |si − sk| to the cost function, which helps to select patches that

occupy similar zones in the overall object patch. The K training templates are obtained

by means of a kd-tree structure, selecting those with minimal C.

Ci,k =
1

2

(
µi(λk) + |si − sk|

)
(9.2)

Following with Equation (9.1), the term p(λk|Ii,ai) expresses the probability of selecting

a given template λk. Thus, we may write p(λk|Ii,ai) = Ci,k

The term p(ai|I) in Equation (9.1), noted as wi, corresponds to the probability of

obtaining the anchor point ai. Such probability is related to the value of the ORD

maximum (or minimum) in it. More precisely, we note wi = 2 · |ORD(ai)− 1
2 | ∈ [0, 1]. It

is preferable to have weights with values between 0 and 1, so that their behave properly

in Equation (9.3). Finally, the term p(ĥ|Ii,ai, λk) =
∑
∀λk(g) v(ai, λk(g)) = δ(ai, λk)

may be explained as the normalized votes casted by the training template λk with origin

at the current anchor point ai. Remark that δ(ai, λk) casts votes of different classes (the

class of each λk(g)). Thus the initial problem is handled as a set of NC scoring maps

{S} of size L× L, each one containing the votes of a given class c ∈ C.

1we have tried the Battacharyya distance, obtaining similar results with a higher computational cost
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Figura 9.3: Graphical illustration of the proposed Voting framework. A set of anchor
points is extracted from the testing object. The trained dataset is used in every k-NN
operation. These obtained NN cast votes for parts on the scoring maps (see Figure 9.4
for an example). Finally, maxima of the scoring maps are found and parts are detected.

The global class classification is also included in the scheme.

The initial problem may be re-written in a simplified form of known terms, as shown in

Equation (9.3).

p(ĥ|I) = {Sc} =
∑
i

wi

(∑
k

δ(ai, λk) · Ci,k

)
(9.3)

Each of the scoring maps Sc contains a sparse set points which correspond to the votes

of class c casted by {λk} from {ai}. We apply a Gaussian filter with σ = L
10 , obtaining

a filtered map S̃c like those in Figure 9.4. The locations of the unknown {ĝj} are the

locations of the maximum of each S̃c, whilst ĉj is directly the class of S̃c.

We note here that this formulation assumes j = 1..N so that N = Nc (equal number of

parts and classes in C). Such assumption is valid for a fingertip classification problem,
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Figura 9.4: Fingertip localization example. The first row contains the filtered scoring

maps S̃c for each finer. The second row shows (left) the test hand, (middle) the obtained
anchor points {ai} on the ORD values and (right) the estimated fingertip positions.

for example. In case N > Nc, some parts belong to the same class. If we know how

many classes are repeated in a given object, we may search for multiple maxima of S̃c
in order to obtain the locations of those {ĝ} of the same class c.

9.3.3 Global class inference

One could assign a global class ξ ∈ D to an object, with ND possible values. For

example, in a fingertip classification problem, classes are the label of each finger (up to

5), whilst ξ may represent the overall hand gesture. More formally, an extra parameter

ξ is added to the training templates, containing the type of object such part belongs. In
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Figura 9.5: Example of the global class histogram Sξ for a patch containing gesture
number 2. We observe that gestures 3 and 8 also obtain a high score, since they have

many similar parts with gesture 2.
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order to estimate the unknown ξ̂ of a testing object, we propose to analyze the obtained

{λk} (see Equations (9.1) and (9.3)). More precisely, a 1-dimensional score histogram

Sξ is constructed, with ND bins. Thus, each bin λk(ξ) is filled with the matching score∑
i Ci,k between the template λk and all the anchor points {ai} (see Figure 9.5).

The unknown ξ̂ is straightforward obtained as the bin of Sξ with maximal value.



10
Experimental Results

10.1 Handbox Head tracking results

In order to evaluate the performance of the proposed head tracking, we analyze the

convenience of conditions C2 and C3 in Equation (6.1), and how robustness is increased

by exploiting depth data. We compare the proposed algorithm with a reduced version

which only verifies condition C1. This way, the contribution of C2 and C3 is shown.

The estimation error between a ground-truth (manually marked) head position gH and

the estimated head position is calculated as ε = |gH − ẑH |, and presented in Figure 10.1

for the two versions of the algorithm. Note that, even if C1 plays the role of 2D method,

depth data is used for the initial head size estimation.

Figure 10.1 shows the estimation error of a sequence which contains two persons and

three main events. Around frame 50, a single person waves hands before his head,

hiding it. At frame 135, he performs a gesture with both hands which partially cover

the head zone. At frame 300 the second person enters the scene and walks behind the

first person. These events are illustrated in Figure 10.2, showing the successful behavior

against occlusions and clutter.

87



Hand Analysis 88

2
1

4
2

6
3

8
5

0
6

2
7

4
8

6
9

8
11

0
1

2
2

1
3

4
1

4
6

1
5

8
1

7
0

1
8

2
1

9
4

2
0

6
2

1
8

2
3

0
2

4
2

2
5

4
2

6
6

2
7

8
2

9
0

3
0

2
3

1
4

3
2

6
3

3
8

3
5

0
3

6
2

3
7

4
3

8
6

3
9

8
4

1
0

4
2

2

0,00

20,00

40,00

60,00

80,00

100,00

120,00

140,00

Error C1
Error C1+C2+C3

frame

E
st

im
a

tio
n

 e
rr

or
 in

 p
ix

e
ls

b

a

c

d

Figura 10.1: Error between the obtained head estimations and the ground-truth.
C1 + C2 + C3 error does not go above 10 pixels, which is about the head radius. The
C1 version loses target twice, a reset of the algorithm being needed (frames 74 and
398). The labeled arrows in Figure 10.1 correspond to the frames shown in Figure 10.2.

(a) (b) (c) (d)

Figura 10.2: Head tracking snapshots (SR4000 TOF camera) of the sequence pre-
sented in Figure 10.1. In red, the C1 version, in green the C1 + C2 + C3 and in blue
the ground-truth position. Note how the C1 +C2 +C3 is more robust in these adverse

situations (occlusions and clutter).

The proposed C1 +C2 +C3 algorithm is able to track the first user’s head despite these

three polluting events, while the C1 versions loses the target when the shape of the head

is changed (hands moving, persons walking, etc.).

10.2 Handbox Head+Hands tracking results

As stated in Section 6.4, hand tracking depends on the robustness of head tracking. A set

of gestures have been considered to analyze the performance of hand tracking, including

gestures with one or two hands such as waving, pointing or separating hands apart (see

Table 10.1). Hand centroids are manually marked on the depth video sequences. Thanks

to the depth information, 3D ground-truth trajectories may be extracted from the 2D

manually marked points. Such 3D ground-truth trajectories are used for comparison

hereafter.



Hand Analysis 89

160 180 200 220 240 260 280 300 320

X position [cm]

50

60

70

80

90

100

110

Y
 p

o
si

ti
o
n
 [

cm
]

R hand tracked
R hand groundtruth
L hand tracked
L hand groundtruth

Figura 10.3: Ground-truth and estimated trajectories of the (R)ight and (L)eft hands.
The estimated hand positions are fairly close to the reference ground-truth positions.

Only the XY projection of these 3D trajectories is shown.
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Figura 10.4: Hand estimation error, calculated as the Euclidean distance between
the estimated and ground-truth 3D positions. The maximum error is about 10 cm for

this sequence.

In Figure 10.3 the marked and estimated trajectories of both hands are presented cor-

responding to a gesture where each hand moves horizontally, like a slow hand clap (only

the frontal projection of these 3D trajectories is shown for visual clarity). The error

between the estimated and ground-truth trajectories is shown in Figure 10.4.

Hands are detected from the moment that they enter ♦ (frame 7). During the first

10 frames, both hands are touching each other, misleading the tracker which only sees

one hand. However, once they are separated for a few cm, the tracker is able to detect

and track both hands. It should be emphasized that both ground-truth and estimated

trajectories are polluted by noise from the depth estimate. In addition, ground-truth

trajectories have been extracted by hand, selecting a reasonable hand center which

may vary in some cm along frames. Despite these adverse noisy conditions, the hand

estimation error rarely goes above 10 cm.

Table 10.1 summarizes the average error for different one-handed and two-handed gestu-

res gestures, computed as the average 3D error (with respect to the ground-truth hand

positions) along the duration of the gestures. For example, the errors for separate hands

gesture are calculated from the errors in Figure 10.4. Even if accuracy along the depth
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Taula 10.1: Hand detection 3D accuracy on different gestures

Gesture # frames error R hand error L hand

push 30 2.62 cm -
circle 30 6.61 cm -
replay 35 2.86 cm -

hand up-down 115 5.87 cm -
separate hands 75 2.36 cm 3.80 cm
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Figura 10.5: Trajectories obtained in a real-time experiment for the push and replay
gestures. These results could be an interesting input for a classification step. Only the

YZ plane is presented as movement is mainly contained in such plane.

axis depends on the type of sensor, we found it interesting to include it in the overall

error, since both the Kinect and SR4000 used sensors provide a similar ∼ 1 cm depth

precision.

The average error is higher for fast movements such as the circle and the up-down

gestures, resulting in about 6 cm of error. For the other gestures, the error is of about

3 cm, which is fairly adequate given the size of a human hand.

For the sake of illustration, the trajectories corresponding to the push and replay gestures

are presented in Figure 10.5. The push gesture consists in extending one arm from the

body towards the camera and backwards. The replay gesture consists in describing

circles with one hand in the YZ plane. Since both gestures are representative on the

YZ plane, only these coordinates are presented, relative to the HandBox ♦ origin. The

nature of the gesture may be easily derived from the trajectory, hence, such results may

be interesting for further classification purposes.
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10.3 Handbox vs. reference methods

Experimental results of the compared methods are summarized in Table 10.2. The

proposed method largely overcomes the referred state of the art methods in terms of

speed of execution. The fastest method is the work of Knoop et al. [KVD06], with a

frame-rate up to 14 fps using a similar resolution. Our proposal achieves 68 fps on a

regular CPU, which is about 4−5× faster than the cited method. Moreover, some of the

proposals in Table 10.2 use GPU implementations [LKAR10, GPKT10a], which should

speed their performance up.

As for the accuracy of the hand detection and tracking, the proposed method performs

with an average error of about 3 − 6 cm while gestures are performed. Such error is

similar to that claimed by Zhu et al. [ZDF08]. It should be remarked, in favor of the

latter work, that hands are tracked at every time instant, no matter whether a gesture

is being performed or not. This detail makes tracking more difficult, since hands may

suffer of more occlusions or they may be located very near the body. Keeping an average

error between 3− 10 cm is impressive.

Ganapathi et al. [GPKT10a] state that a 10 cm error may be considered as a perfect

match with the ground-truth, and that an error smaller than 30 cm is good extremity

match. In their work, they address the problem of a global full-body pose estimation and

they detect all the visible extremities of a human body with an average error between

10 cm and 20 cm. Our proposal takes advantage of a local and focused approach to

overcome such results, as far as hand and head are concerned. The trade-off between

accuracy and amount of information (full-body vs. only hands) is clearly observed after

these results.

Recently, a Kinect SDK [Pri11] has been released, providing a complete human body

pose estimation at about 20 fps. Head and hands may be extracted from the complete

body, providing a comparable usage to the proposed method with a similar accuracy.

However, the tracking in [Pri11] is slower than the proposed method, and it is partly

performed in the Kinect hardware, reducing the flexibility of the approach.

10.3.1 Computational Performance

The main applications of the proposed head+hand tracking algorithm require real-time

processing, otherwise natural interactivity would not be possible. In order to evaluate the

real-time performance of our proposal, execution speed experiments have been carried

out on a Intel Xeon 3GHz CPU.



Hand Analysis 92

Taula 10.2: Comparative summary

Authors Camera Resolution Full body Speed GPU Accuracy

[KVD06] SR4000 176× 144 yes 10− 14 fps no -
[GKK07] PMD 64× 48 yes 5 fps no -
[ZDF08] SR3000 176× 144 no 10 fps no 3− 10 cm

[LKAR10] XB3 1280× 960 yes 2.5 fps yes -
[GPKT10a] SR4000 128× 128 yes 4− 6 fps yes 10− 20 cm

HandBox Kinect, SR4000 160× 120 no 68 fps no 3− 6 cm

Real-time experiments are performed with a Kinect depth camera, which is down-

sampled by a factor of 4, resulting in depth images of R4 = 160 × 120 pixels, which

is the resolution used for the accuracy experiments presented in Sections 10.1 and 10.2.

Experiments are run in sequences where the head and both hands are detected, which

is the worst case in terms of computational load.

After hundreds of experiments with different two-handed gestures, we obtain a processing

frame rate fP ≈ 68 fps, which is largely enough for real-time applications. Moreover, it

should be remarked that no GPU computing power is used in this proposal.

However, some experiments are also performed at other resolutions, specially R2 =

320× 240 (down-sampling by 2) and R1 = 640× 480 (original Kinect resolution). Real-

time is slightly achieved with R2, with a frame-rate of about 9 fps, while R1 is too slow

for any real-time purpose.

When dividing the overall processing time into tasks, it may be noticed that the head

tracking task takes 92.4% of the total, while hand tracking is much faster (7.6%) of CPU

time.

10.3.2 Handbox public demonstrations

The proposed method has been set up for many public demonstrations. Satisfactory

qualitative results and feed-back of the users have been retained up to the moment. The

reliability of the algorithm has specially been assessed in two main shows:

• The 2011 International Conference on Multimedia and Expo (ICME) in Barcelona.

Over 70 persons where able to test the demonstration at ICME.

• The 2011 International Broadcasting Convention (IBC) in Amsterdam, as a part

of the FascinatE project [Fas]. At IBC, the hand tracking positions where used to
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control a panoramic video stream, being able to navigate within it (pan, tilt, zoom)

and to grab the screen with the open/closed hand detector. Over 150 persons

where able to interact with the demonstration with very encouraging results and

feedback.

After these public experiments, some conclusions where drawn. The head detection

algorithm performed with extreme robustness, only missing the head position at initiali-

zation for very few users (less than 1%). The hand tracker also proved to be robust with

many different users (in height, shape, hand size, arm length, etc.). Open and closed

hand distinction was somehow hard for users with very big or small hands. However, af-

ter some tries, users got used to the system operation, all of them managing to properly

interact.

10.4 NNGM and Voting results

In this Section, we provide experimental results and evaluation of the hand analysis

methods presented in this part, referred as NNGM (Chapter 8) and Voting (Chapter 9).

We show the performance of both methods using different datasets (i.e. ColorTip [Col],

Stanford Dataset [GPKT10a] and Pugeault ASL Dataset [ASL]), which indeed helps

showing the results obtained for various applications: fingertip localization (ColorTip),

hand gesture recognition (ColorTip and ASL) and object part detection (Stanford).

Video results can be consulted in https://www.dropbox.com/sh/f6tls37lb9rezex/

qRsTU5sjTh.

10.4.1 ColorTip

The ColorTip dataset, consisting of a total of 14 sequences (Chapter 7), is used for eva-

luation in the following experiments. We distinguish between Set A and Set B sequences

in the results, given the considerable difference of intra-gesture variation.

10.4.1.1 Experimental Setup

Gesture classification results are obtained considering a leave-one-subject-out-cross-validation

(LOSOCV) strategy. Thus, results for subject-i are obtained using as training dataset

the remaining subjects’ sequences. Remark that if we are considering the subject-i Set A,

the sequence subject-i Set B is not used for training, and viceversa. The same strategy

is used for fingertip localization results.

https://www.dropbox.com/sh/f6tls37lb9rezex/qRsTU5sjTh
https://www.dropbox.com/sh/f6tls37lb9rezex/qRsTU5sjTh
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10.4.1.2 Selection of NNGM parameters

A study to select the most suitable parametrization is presented in this section. Para-

meters

• k : number of NN neighbors

• Q : temporal buffer of the kNN DC version

• m : grid sampling m×m of the ORD patch

are varied, maximizing the gesture detection F-Measure over the whole ColorTip dataset.

For the sake of example, we provide experimental results for the selection of the number

of k-NN and Q to be used (Figure 10.6). These results show that considering about

k = 15 nearest neighbors and Q = 5 provides the best results. Parameter m = 12 was

already fixed by experimentation.
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Figura 10.6: Selection of the optimal parametrization {k-NN, Q} to use. Experiments
show that the best trade-off between gesture recognition and fingertip localization per-

formance is k-NN=15 and Q = 5.

10.4.1.3 ORD vs. Benchmark

The suitability of using the ORD feature for gesture recognition is evaluated. With this

purpose, we compare the results obtained with ORD using both proposals (NNGM and

Voting) against a benchmark of various 3D features. We note P the 3D point cloud of

the segmented hand, and ρ(z) the neighborhood of radius ρ of a point z. The proposed

benchmark consists of:

• Depth Computed with respect to the average depth of P.
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• Curvature Computed as λ0
λ0+λ1+λ2

, where λi are the eigenvalues of the eigen-

decomposition of ρ(z).

• 3DSC 3D Shape Context, Frome et al. in [FHK+04].

• VFH Viewpoint Feature Histogram, Rusu et al. in [RBTH10].

• SHOT Signature of Histograms of OrienTations, Tombari et al. in [TSD10]

The 3DSC and SHOT features provide pixel-wise histograms. As proposed in [RHBB09],

to obtain scalar values per pixel, we compute the Kullback-Leibler divergence between

each histogram and the average histogram. Then, the same m ×m sub-sampling as in

Section 8.4 is performed, obtaining m2 sized feature vectors. The depth and curvature

features provide a scalar values per pixel, and the VFH feature already delivers a feature

vector of size 308, which is used untouched.

In order to compare ORD against the benchmark, a k-NN by majority classification is

performed with every feature (see Eq. (8.3)). For this experiment, we use our 14 training

sequences, with a LOSOCV strategy. We present in Fig. 10.7 the average F-Measure

of the 14 tested sequences (about 18000 frames). The F-Measure is calculated as 2·P ·R
P+R ,

where P = precision and R = recall. Results obtained with Dynamically Constrained

(DC) k-NN classification using ORD (Section 8.4.1) are also included.
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Figura 10.7: Comparison between using a 3D feature benchmark and ORD. All the
experiments are obtained with k-NN classification by majority.

The ORD feature outperforms the benchmark, with an average F-Measure of 0.75 for

the NNGM method and 80.7 with the Voting method. The fact that ORD is focused on

characterizing 3D surfaces (by adapting orientation locally) helps achieving such results,

since P is indeed a 3D surface. We remark that, looking at frame-wise methods, the
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Voting strategy obtains better results than NNGM. We can state that the parts-based

classification strategy adopted in the Voting method is better when using the ColorTip

dataset.

The DC k-NN version of NNGM proposed in Section 8.4.1 helps increasing the F-Measure

from 0.75 to 0.86 by exploiting video temporal consistency of gestures.

The best features in the benchmark are depth with an average F-Measure of 0.67 and

VFH with 0.50. The benchmark features do not take into account the 3D surface nature

of P, and analyze it as it was a 3D point cloud.

10.4.1.4 Influence of the feature vector size

The dimension m×m of the feature vectors {xi} has a noticeable impact on the hand

gesture recognition results. In order to assess such effect, and with the objective of

selecting an optimal value for m, we extract hand gesture recognition results for various

values of m (Fig. 10.8) using the NNGM method. We recall that a feature vector consists

of the re-sampling of an ORD patch to an m×m grid.

Experiments show that low m ≈ 4 values lead to feature vectors which are not represen-

tative enough to distinguish between gestures. On the other hand, large m > 14 values

lead to an over-fitting problem, since feature vectors become too related to data (usu-

ally noisy). In such case, the predictive performance degrades. Thus, values of m ≈ 12

provide the best results in terms of hand gesture recognition.

We apply the same re-sampling of ORD in the Voting framework. The only difference

being the meaning of the patch that is described with ORD. In NNGM, the patch covers

the whole object, while in the Voting scheme, a patch covers the surrounding of an anchor

point.

10.4.1.5 Influence of the dataset size using NNGM

The size of training datasets may suppose the bottleneck of a classification system.

Designing scalable methods is crucial, allowing further incorporation of new training

data if required. Furthermore, memory access and capacity problems may also occur

due to large datasets.

We analyze in this experiment how the proposed NNGM method behaves with small

training datasets. A basic clustering by Euclidean distance is performed to reduce

the original training dataset H, taking advantage of the already built k-d tree. More
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Figura 10.8: Effect of the re-sampling factor m on the hand gesture classification.
We observe how re-samplings to m ≈ 12 provide the best results.

precisely, a template λj ∈ H is randomly selected, grouping all those templates λi at

a certain distance ‖xj − xi‖ < D into a new average training template h̄j . Such step

is repeated until all the original templates are checked, obtaining the reduced dataset

H̄ = {h̄j}. We note F% = H̄
H as reduction factor.

In Fig. 10.9 we present the F-Measure degradation as H is reduced, using a LOSOCV

strategy. The original experiment at (F% = 100%) consists of an average of 15200

training templates.
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Figura 10.9: F-Measure degradation for various reduction factors of the training
dataset. Remark that the k-NN search degrades slower than k-NN DC. However, the
latter performs better with the complete dataset, as already shown in Fig. 10.7. Such

effect is more visible in the Set B sequence.

The proposed NNGM method successfully tolerates drastic reductions of the training

dataset. Such scalable behavior allows reducing the training dataset until F% = 20%
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(3040 templates) with a degradation of less than 5%.

The k-NN DC search performs better with the complete dataset, even if in the case of Set

A sequences such effect is barely visible given the good performance of the stand-alone

k-NN. We remark that, in the case of Set A, the performance without DC is already

close to the annotation error due to transitions between gestures. However, we note that

k-NN DC degrades faster.

In the Set B case, at F% ≈ 35% the stand-alone k-NN search already outperforms the

DC version, since the number of erroneous gestures being smoothed grows.

In our case, a training template λi = {xi, ri, yi} occupies 12 · 12 · 4 + 10 · 4 + 1 = 587 by-

tes. Thus, at F% = 20%, the reduced dataset only occupies about 3040 · 587 ≈ 1.78 Mb.

Scalability is achieved taking advantage of the robustness against drastic reductions of

the dataset, allowing the incorporation of new training sequences at low memory cost.

10.4.1.6 Fingertip Localization results

We conduct several experiments to evaluate the ORD and the proposed framework

in the fingertip localization task. First, we compare the proposed fingertip inference

method with a state-of-the-art fingertip detector based on Random Forests (RF). The

RF method is also used to demonstrate the suitability of the ORD feature for hand

analysis tasks. Then, we show the computational performance of the proposed method.

The fingertip evaluation protocol consists in a LOSOCV. We consider that a finger

has been correctly localized if the estimated location and the ground-truth location are

within a distance of 10 pixels.

In order to evaluate the proposed algorithm, we implement a fingertip localization met-

hod using Random Forests (RF) [Bre01]. The RF localization method is based on the

successful system for detecting body parts from range data proposed by Shotton et al.

[SFC+11]. We use very similar depth-invariant features, but in addition to depth data,

we include the ORD feature.

We employ 1RFs comprising 10 trees of maximum depth 15. Three baselines are trained:

one using depth (D) information exclusively, another using ORD exclusively and a base-

line combining both features. The precision and recall performance of the RF approach

is evaluated with 50 different detection thresholds (Fig. 10.10). The experiments reveal

that RF trained with the stand-alone ORD values provide the best results (in red in

1see a detailed explanation in Appendix B
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Figura 10.10: Fingertip classification results using the RF baseline approach. 50
different detection thresholds are used. Note that RF using the stand-alone ORD

values obtain the best results.

Fig. 10.10), showing that ORD is also a suitable feature to locally describe parts of an

object.

Results stepping over the gesture recognition are also included as onlyGM. In this case,

we perform graph matching with the whole dataset templates, keeping the one with mi-

nimum cost C (see Equation (8.4)). The results show that, depending on the complexity

of the test graph (Gz), doing graph matching with the complete dataset takes between

0.1 and 50 seconds per frame (ColorTip provides about 15000 templates). Also, this

approach strongly degrades the performance of the fingertip localization task, obtaining

an average precision/recall of 0.317/0.125, which means an F-Measure of 0.180. Such

results are far worse (both in computational time and performance) than those obtained

with the proposed combined approach.

Our approach is evaluated with 3 different tf and 8 different sf parameters, obtaining

the best results with tf = 0.3 and sf = 0.8 cm2. Some visual results are provided in

Fig. 10.11.

Comparative results between our approaches and the best RF baseline are presented in
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Figura 10.11: NNGM fingertip localization results (columns). The upper row con-

tains the k-NN selected patch λ̂ from the database, which intrinsically represents the
recognized gesture. In the middle row, we show the ORD maxima to which fingers r̂ of
λ̂ are matched. The resulting fingertip localization on the testing hand is shown in the

bottom row. Two erroneous examples are shown in the farthest right columns.

Taula 10.3: Set A sequences - Comparative fingertip localization F-Measure.

RF(D) RF(ORD) RF(ORD+D) onlyGM NNGM Voting

f1 0.62 0.61 0.59 0.34 0.67 0.80
f2 0.64 0.69 0.64 0.26 0.66 0.86
f3 0.68 0.67 0.67 0.12 0.68 0.83
f4 0.46 0.49 0.46 0.09 0.54 0.72
f5 0.21 0.24 0.21 0.05 0.54 0.80

avg. 0.52 0.54 0.51 0.18 0.62 0.81

Taula 10.4: Set B sequences - Comparative fingertip localization F-Measure.

RF(D) RF(ORD) RF(ORD+D) onlyGM NNGM Voting

f1 0.53 0.51 0.52 0.23 0.59 0.41
f2 0.47 0.50 0.46 0.17 0.57 0.35
f3 0.42 0.41 0.42 0.13 0.51 0.25
f4 0.27 0.29 0.26 0.06 0.34 0.30
f5 0.13 0.17 0.14 0.03 0.37 0.32

avg. 0.37 0.38 0.36 0.12 0.48 0.33

Table 10.3 (Set A) and Table 10.4 (Set B). The proposed methods consistently outper-

form all the RF baseline configurations. The main reason is the ability of our methods

to infer fingertip locations using structured inference given a template pose (NNGM) or

given a set of anchor points (Voting).

In the NNGM case, hand pose matching allows to robustly locate fingertips under several

hand rotations, which is the main limitation of the RF approach. Moreover, the global

structure of the hand pose helps to robustly detect fingertips even when there is weak
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evidence of a finger location. In contrast, the RF approach requires each finger to have

strong evidence in order to be robustly detected.

The Voting method provides impressive results (80.8% F-Measure) in the Set A sequence.

An explanation for that is that a voting patch casts votes to the fingers that were present

in the training step. Therefore, we have patches of different gestures casting strong votes

for the actual fingers. A second point we may remark is that both ORD maxima and

minima are taken as anchor points, exploiting the hand structure in a more complete

way than in NNGM.

However, we appreciate that the Voting method degrades strongly when using the Set

B sequence. Given the variability of hand poses in the sequence, the Voting framework

struggles at detecting hand parts properly. We may conclude that the Voting parts

detector presented in Chapter 9 is much more sensitive to dataset variability than the

NNGM method.

The RF baseline results also show the suitability of the ORD for the fingertip localiza-

tion task, in terms of F-Measure. Best RF performance is achieved when binary tests

exclusively use the ORD descriptor. Interestingly, the ORD contributes to a significant

increase in the index finger localization (finger 2).

In Figure 10.12 we show the behavior of the Voting fingertip localization in terms of

F-Measure. We provide results with a fixed threshold (left) and a relative threshold

(th = fingermax

factor ). The best results are obtained with a fixed threshold of 3.0, achieving

an average F-Measure of 80.8 (which is indeed the result reported in Table 10.3).
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Figura 10.12: F-Measure of the fingertip localization performed with the Voting
method.



Hand Analysis 102

10.4.2 ASL dataset

The ASL dataset provided by [PB11] in [ASL] is used in the following experiment. Such

dataset contains annotated hand patches of 5 subjects recorded with the Kinect camera,

performing 24 ASL alphabet gestures. Accuracy is used as a measure to be able to

compare with other reference methods.

As in [PB11], the dataset is randomly split into equally sized training and test subsets.

Doing so is advantageous for a k-NN strategy, since the probability of having a conse-

cutive frame (very similar) in the training subset is very high. Such effect is reflected

in the Random column of Table 10.5, achieving an accuracy of 99.3% against a 73% of

[PB11] on the same dataset. Other classification methods achieve similar performance

[ZYT13, KKKA12a].

A LOSOCV is also carried out. In that case, the Voting method achieves 78.1% and

NNGM obtains an accuracy of 76.1%, still about 25 points higher than [PB11] (49%,

results provided in [ASL]). Both the NNGM and Voting methods achieve state-of-the-

art compared to methods [ZYT13, UGVV11], although results in [UGVV11] results

are obtained in slightly different dataset. Only [KKKA12a] obtains significantly better

results, taking advantage of a large training dataset built with synthetic data. We

also include the confusion matrix of the Voting method (Figure 10.13) for a better

visualization of the obtained classification.

It should be remarked that the reference methods [PB11, ZW12, UGVV11, ZYT13] are

strictly gesture recognition methods, none of them provides fingertip localization. The

proposed methods use the same ORD feature calculation to additionally provide such

fingertip locations.

Method Random LOSOCV

[UGVV11]∗ Uebersax 88.0 76.0
[PB11] Pugeault (depth) 69.0 n/a
[PB11] Pugeault (depth+color) 73.0 49.0
[ZW12] Zhu (No Pyramid) 77.4 n/a
[ZW12] Zhu (Image Pyramid) 88.9 n/a
[KKKA12a] Keskin 97.8 84.3
[ZYT13] Zhang 98.9 73.3

NNGM 98.6 76.1
Voting 99.3 78.1

Taula 10.5: Comparative ASL [ASL] hand gesture recognition accuracy
∗Evaluated on a different dataset.



Hand Analysis 103

Gesture 1 2 3 4 5 6 7 8 9 11 12 13 14 15 16 17 18 20 21 22 23 24 

1 0,86 0,00 0,00 0,00 0,00 0,00 0,00 0,02 0,00 0,00 0,00 0,02 0,02 0,00 0,00 0,00 0,00 0,06 0,00 0,00 0,00 0,00 

2 0,00 0,93 0,01 0,00 0,00 0,01 0,00 0,01 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,02 0,00 

3 0,01 0,03 0,87 0,00 0,02 0,01 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,01 0,00 0,01 0,00 0,01 0,02 0,00 0,00 0,00 

4 0,00 0,00 0,00 0,93 0,01 0,00 0,00 0,00 0,00 0,01 0,00 0,00 0,00 0,01 0,00 0,00 0,02 0,00 0,00 0,00 0,00 0,01 

5 0,01 0,00 0,00 0,00 0,60 0,00 0,00 0,00 0,01 0,00 0,00 0,08 0,02 0,06 0,00 0,00 0,00 0,09 0,00 0,00 0,00 0,00 

6 0,00 0,01 0,00 0,00 0,00 0,94 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,01 0,02 0,00 

7 0,01 0,00 0,01 0,00 0,00 0,00 0,65 0,25 0,00 0,02 0,00 0,01 0,01 0,00 0,00 0,00 0,00 0,01 0,00 0,00 0,00 0,01 

8 0,00 0,00 0,00 0,00 0,00 0,00 0,04 0,95 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 

9 0,09 0,00 0,00 0,00 0,01 0,00 0,00 0,00 0,81 0,00 0,00 0,00 0,00 0,01 0,00 0,00 0,00 0,01 0,00 0,00 0,00 0,00 

11 0,00 0,00 0,00 0,04 0,00 0,00 0,03 0,04 0,00 0,55 0,03 0,03 0,00 0,00 0,01 0,00 0,06 0,00 0,02 0,17 0,00 0,01 

12 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,98 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 

13 0,07 0,00 0,00 0,00 0,01 0,00 0,00 0,00 0,00 0,00 0,00 0,53 0,21 0,00 0,00 0,00 0,00 0,12 0,00 0,00 0,00 0,00 

14 0,02 0,00 0,00 0,00 0,01 0,00 0,00 0,00 0,00 0,00 0,00 0,11 0,66 0,00 0,00 0,01 0,00 0,15 0,00 0,00 0,00 0,01 

15 0,00 0,00 0,00 0,00 0,07 0,00 0,00 0,00 0,00 0,00 0,00 0,01 0,01 0,86 0,00 0,01 0,00 0,00 0,00 0,00 0,00 0,00 

16 0,00 0,01 0,00 0,06 0,01 0,00 0,01 0,03 0,00 0,00 0,00 0,01 0,00 0,03 0,64 0,12 0,00 0,00 0,00 0,00 0,02 0,03 

17 0,00 0,00 0,02 0,01 0,02 0,00 0,01 0,01 0,01 0,00 0,00 0,00 0,07 0,08 0,07 0,65 0,00 0,00 0,00 0,00 0,01 0,00 

18 0,00 0,00 0,00 0,01 0,00 0,00 0,00 0,00 0,00 0,02 0,01 0,00 0,00 0,00 0,00 0,00 0,76 0,00 0,19 0,00 0,00 0,00 

20 0,10 0,00 0,00 0,00 0,01 0,00 0,00 0,01 0,00 0,00 0,00 0,07 0,23 0,00 0,00 0,00 0,00 0,47 0,00 0,00 0,00 0,00 

21 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,01 0,00 0,00 0,00 0,00 0,00 0,00 0,05 0,00 0,93 0,00 0,00 0,00 

22 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,05 0,00 0,00 0,00 0,00 0,00 0,00 0,02 0,00 0,01 0,90 0,01 0,00 

23 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,02 0,96 0,00 

24 0,00 0,00 0,00 0,03 0,00 0,01 0,02 0,00 0,00 0,05 0,00 0,00 0,05 0,01 0,04 0,03 0,07 0,01 0,01 0,01 0,02 0,63 

Figura 10.13: Confusion matrix obtained with the Voting method on the ASL dataset.

10.4.3 Stanford’10 Dataset

We use the Stanford human pose dataset to show how the proposed Voting method may

be generalized to obtain object parts, different than hands.

10.4.3.1 Experimental Setup

The Stanford dataset contains 28 sequences captured with a MESA SR4000 Time-of-

Flight camera. A set of 23 ground truth markers is provided in the dataset, covering

the main body parts such as head, hands, feet, elbows, shoulders, torso and pelvis. For

these experiments, we use a LOSOCV strategy, using sequence i for testing and the

complementary j = 1 . . . 28 (j 6= i) sequences for training.

10.4.3.2 Body Parts Classification

The average detection error is provided in Figure 10.14. We have also included the results

obtained with the R-NBLS method presented in Chapter 4. The method proposed by

Ganapathi et al. [GPKT10a] in the same work where the Stanford dataset is published

obtains an average error of 7.3 cm. The R-NBLS achieves 9.1 cm taking only 5 markers

into account (head, hands and feet). The proposed Voting method obtains an average

error of about 9.7 cm on the whole marker set. Therefore, we achieve an average error

about 2.4 cm higher than [GPKT10a] with a generalized object parts detector. We

remind the work in [GPKT10a] is fully dedicated to human body, incorporating a 3D

model to fulfill these requirements.
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Moreover, the Stanford dataset is composed of 28 different sequences. Therefore, it

is difficult to find training examples similar to the test ones, since we are using the

complementary sequences as training for a given test sequence. Despite this inconvenient

setup, the proposed Voting approach manages to select appropriate training templates,

achieving good classification results.

Results show that the most stable parts are torso, head, shoulders and pelvis (Figure

10.15), since they are more repeated in the complementary sequences. Such observation

corroborates the above paragraph.
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Figura 10.14: Average detection error in centimeters. We include in the comparison
the R-NBLS method of Chapter 4.

Figura 10.15: Examples of the body parts classification using the Voting framework.
We show 3 satisfactory examples on the left, and 2 partially erroneous examples on
the right. Note that errors are mainly located on arms (less similar examples in the

training set). The green square represents the size of the voting patches.

10.4.4 Computational Performance

The hand analysis experiments are carried out on an Intel Core2 Duo CPU E7400

@ 2.80GHz. To calculate the ORD feature, we have coded a parallel implementation

on a NVIDIA GeForce GTX 295 GPU, performing about 70 − 140× faster than the

CPU implementation. The overall NNGM approach (gesture recognition + fingertip

localization) performs in real-time, at a frame-rate of about 15−17 fps. A frame-rate of

16 fps is achieved by [UGVV11]. Remark that our proposal delivers fingertip positions
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in addition to hand gestures. Moreover, a 176 × 144 camera is used in [UGVV11],

with a smaller resolution than Kinect. Real-time is also attained by [PB11] for gesture

recognition, using a state-of-the-art body tracker to detect hands. Public real-time

demonstrations using NNGM have been carried out at ECCV’12 [SALM+12], and also

within the FascinatE Project [Fas].

The Voting approach performs slower than NNGM since more processing steps are re-

quired. A higher amount of ORD re-samplings, distance calculations, update of score

maps, etc. make the frame-rate slow down to about 6− 7 fps. Moreover, in the Voting

framework, the training dataset is composed of body parts, making it larger than in

NNGM case. Even using a kd-tree for querying, the size of the dataset has some impact

on the final processing time.

10.5 Conclusions

We have proposed two methods to locate fingertips and classify hand gestures. In both

methods we make use of the ORD descriptor, which is used to characterize globally a

hand point cloud, and to locally identify candidate fingertip locations.

In the NNGM proposal, the ORD output is used to feed a NN classifier, obtaining the

estimated hand gesture. Based on this result, the search space where to find fingertip

locations is reduced, limiting the search to a graph matching step. We use the ColorTip

dataset to train the hand gesture classifier, and also to construct the graph to be matched

in order to obtain fingertip positions and labels.

The second method consists of a voting framework to detect parts of a given object. We

construct a parts dataset out from the ColorTip dataset, the overall ORD calculation at

every part is used to obtain NN matches in a similar way than in the NNGM approach.

Moreover, the ORD maxima and minima are selected as anchor points from where votes

are casted to fingertip positions, depending on the obtained NN matches. This Voting

method is indeed a general parts detector, showing successful results with hands but also

with the whole human body. We propose to infer auxiliary variables from the Voting

framework, such as the hand gesture. The Voting framework shows a performance

degradation with strongly variable datasets such as ColorTip Set B

The ColorTip dataset itself is proposed to the research community, providing useful data

for hand gesture recognition and fingertip localization.
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Additionally, we have proposed HandBox, a fast and robust method to detect hands and

head using depth data. This method has been used as a tool to extract hand positions

for the above mentioned hand analysis methods.
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11
Contributions

11.1 Main contributions

1. Description of Depth Data : The sudden irruption of commercial depth came-

ras has enabled the incorporation of easy-to-obtain 3D information into existing

works. However, classical color-based and 2D features may not be suited for such

new data. We have focused on exploiting the depth information nature to propose

novel ways to describe such data. Many present methods to analyze the human

body rely on descriptors to enable a further classification step, using a discri-

minative strategy. Others, use descriptors to anchor a pre-defined body model,

iteratively, in a generative way. In both cases, descriptors are crucial to obtain

good results. It is interesting, then, to have adapted descriptors that extract as

much information as possible from this new depth data.

Our contributions to these problems and challenges are summarized as follows:

• We propose an extension of the Narrow Bands Level Set to incorporate depth

point clouds characteristics. More precisely, a density restriction is added to

the formulation to better respect the topological properties of the analyzed

object. We rely on the fact that current depth cameras provide point clouds

with a typical structure and density, which is used as a prior in our proposal.

109
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We also propose to filter the narrow bands depending on their physical area,

which helps obtaining meaningful zones on the body under analysis. These

zones may be used, for example, to populate a directed graph. We have shown

that such graph may be exploited using shortest path algorithms to obtain

the main end-effectors of a human body.

• The new Oriented Radial Distribution descriptor for depth is proposed. Such

descriptor adapts to the local normal of a point cloud, treating it as a surface.

The ORD returns high values at prominent parts of a point cloud, and low

values on flat zones. Moreover, its multi scale formulation allows selecting

prominent parts of a given size, filtering the remaining protuberances.

We show that ORD also provides a good global representation of the point

cloud, emphasizing its topology and structure.

A GPU implementation of ORD is also proposed, which enables its usage in

real-time applications.

Publications:

• [SRhC13] X. Suau, J. Ruiz-Hidalgo, and J. Casas, “Detecting End-Effectors

on 2.5D data using Geometric Deformable Models: Application to Human

Pose Estimation”, Computer Vision and Image Understanding (CVIU), vol.

117, no. 3, 2013.

• [SRHC12a] X. Suau, J. Ruiz-Hidalgo, and J. Casas, “Oriented radial distri-

bution on depth data: Application to the detection of end-effectors”, in IEEE

International Conference on Acoustics, Speech, and Signal Processing, Kyoto,

Japan, 2012.

2. A Baseline Method for Hand Detection : Having an easy-to-setup and fast

method to detect hands is an invaluable tool when doing research on hand analysis.

Such tool should be tunable to fulfill the requirements of a given experimental

setup. Also, it should not be time consuming, so that methods being analyzed

are not affected by the hand detection memory and CPU consumption. Moreover,

such a method should be robust, in order to minimize errors due to hand extraction

in the final experimental results.

Using the Kinect camera, there exist some SDK that provide hand positions. Howe-

ver, they are quite time consuming, not tunable and require full body frames to

perform the detection.

Our contributions to these topic are the following:

• A fast and robust head detection algorithm based on depth cues. We propose

to match human heads in the camera viewport with an elliptical template.
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We incorporate an adaptive search zone that varies depending on the user’s

movement. Results have shown that, despite its simplicity, this method pro-

vides an extremely robust head detection.

• A hand detection method that relies on the above head detection proposal.

This method is called HandBox, and basically consists in a 3D workspace

placed in front of the user’s head at every time instant. Some 3D heuristics

are proposed to accept blobs in the HandBox as hands.

Publications:

• [SCRh11] X. Suau, J. Casas, and J. Ruiz-Hidalgo, “Real-time head and hand

tracking based on 2.5D data”, in IEEE International Conference on Multi-

media and Expo (ICME), 2011, pp. 1–6.

• [SRHC12b] X. Suau, J. Ruiz-Hidalgo, and J. Casas, “Real-time head and

hand tracking based on 2.5D data”, IEEE Transactions on Multimedia (TMM),

vol. 14, no. 3, pp. 575-585 , 2012.

• [ASM+] M. Alcoverro, X. Suau, J.R. Morros, A. López-Méndez, A. Gil, J.

Ruiz-Hidalgo, J.R. Casas, “Gesture Control Interface for immersive panora-

mic displays”. Multimedia Tools and Applications, Springer. 2013.

3. Hand Analysis : Hands are probably the most difficult part of a human body to

analyze using Computer Vision. Indeed, hands may conform an enormous amount

of poses, with many degrees of freedom in their movement. Occlusions and self-

occlusions are another very common issue when doing hand analysis. Some works

have focused on classifying hand gestures within a gesture dictionary. Very few

works have addressed the problem of locating fingertips and classifying them, what

we call fingertip localization.

In this thesis, we have addressed both hand gesture recognition and fingertip lo-

calization, making the following contributions:

• A public dataset for fingertip localization and hand gesture recognition is

proposed, named ColorTip. The ColorTip dataset [Col] is composed of 7

users performing 9 different hand gestures. We provide fingertip annotations

(position and label) as well as overall hand gesture annotations.

• We propose to use the ORD descriptor to characterize depth point clouds

for further classification purposes. We show that ORD is highly effective

at describing a hand globally, enabling a precise gesture classification using

both Nearest Neighbor and Random Forest strategies. A comparison with

other existing features is provided, showing the suitability of using ORD for
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such a task. Even with drastic reductions of the training dataset, the gesture

classification is still acceptable using ORD.

• The ORD descriptor is also proposed to locally describe point clouds, ob-

taining its end-effectors. We exploit the multi scale formulation of ORD to

detect hands and finger candidates.

• We have shown that the obtained finger candidates are stable enough to

enable fingertip localization using a graph matching algorithm with ground

truth finger positions. We propose a matching cost that exploits fingertip

structure.

• A Voting framework to detect object parts using depth point clouds is pro-

posed. In this framework, votes are casted from anchor points obtained from

ORD maxima and minima, to different body parts. These votes are nor-

malized and geometrically modified from the training template to the test

template, to increase precision and robustness. Also, this framework accepts

defining global classes, that may also receive votes, allowing global classifica-

tion (i.e. hand gesture, body pose, etc). This way, we jointly obtain global

information of an objects as well as its parts.

Publications:

• [SALM+12] X. Suau, M. Alcoverro, A. A. López-Méndez, J. Ruiz-Hidalgo,

and J. Casas, “INTAIRACT: Joint Hand Gesture and Fingertip Classificati-

on for Touchless Interaction”, in Computer Vision – ECCV 2012, vol. 7585,

Heidelberg: Springer, 2012, pp. 602-606.

• [SALM+] X. Suau, M. Alcoverro, A. López-Méndez, J. Ruiz-Hidalgo, J.R.

Casas, ”Real-time Fingertip Localization Conditioned on Hand Gesture Clas-

sification”, Submitted to Image and Vision Computing.

• “A Colaborative Voting Framework for Parts Detection (journal submission

in process)

11.2 Side Contributions

Besides the main contributions mentioned above, additional work has been carried out

during this thesis. Some of these works, even if not central to the research axis of this

thesis, have provided interesting results for the research community, and have served as

starting point for many of this thesis ideas.
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• Multi-resolution illumination compensation for foreground extraction:

Illumination changes may lead to false foreground segmentation and tracking re-

sults. Most of the existing foreground extraction algorithms obtain a background

estimation from temporal statistical parameters. Such algorithms consider a quasi-

static background which does not change but slowly. Therefore, fast illumination

changes are not taken into account by the background estimator and they are con-

sidered as foreground. The aim of the proposed algorithm is to reduce illumination

effects in video sequences in order to improve foreground segmentation performan-

ces. For that, we propose to compensate illumination in a zone-wise manner, by

adapting their contrast and mean to canonical ones. We do this compensation at

different resolutions (zone sizes).

Publication:

– [SCRH09] X. Suau, J. Casas, and J. Ruiz-Hidalgo, “Multi-resolution illumi-

nation compensation for foreground extraction”, in 16th International Con-

ference on Image Processing, 2009, pp. 3225-3228.

• Surface reconstruction by restricted and oriented propagation : We ad-

dress the problem of reconstructing a surface from a point cloud. More specifically,

we propose a method which focuses on obtaining fast surface reconstructions for

visual purposes. The proposed scheme is based on propagation in a voxelized spa-

ce, which is performed in the directions defined by a propagation pattern, during

an optimal number of iterations. Real-time applications are conceivable thanks to

a low execution time and computational cost, keeping an acceptable visual quality

of the reconstruction.

Publication:

– [SCRH10] X. Suau, J. Casas, and J. Ruiz-Hidalgo, “Surface reconstruction by

restricted and oriented propagation”, in 2010 IEEE International Conference

on Image Processing, 2010, pp. 813-816. (Best Student Paper Award)

• From silhouettes to 3D points to mesh: towards free viewpoint video In

this proposal, we extend the previous work above on surface reconstruction. We

propose a system for 3D reconstruction from video sequences acquired in multi-

camera environments. In particular, the 3D surfaces of foreground objects in the

scene are extracted and represented by polygon meshes. Three stages are con-

catenated to process multi-view data. First, a foreground segmentation method

extracts silhouettes of objects of interest. Then, a 3D reconstruction strategy ob-

tains a cloud of oriented points that lie on the surfaces of the objects of interest

in a spatially bounded volume. Finally, a fast meshing algorithm provides a to-

pologically correct interpolation of the surface points that can be used for both
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visualization and further mesh processing purposes. The quality of the results

(computational load) obtained by our system compares favorably against a ba-

seline system built from state-of-the-art techniques for similar processing times

(quality of the results).

Publication:

– [SSC10] J. Salvador, X. Suau, and J. Casas, “From silhouettes to 3D points

to mesh: towards free viewpoint video”, in ACM Workshop on 3D Video

Processing (3DVP), 2010, pp. 19-24.

11.3 Summary of Contributions

11.3.1 Journal Articles

• [SRHC12b] X. Suau, J. Ruiz-Hidalgo, and J. Casas, “Real-time head and hand

tracking based on 2.5D data”, IEEE Transactions on Multimedia (TMM), vol. 14,

no. 3, pp. 575-585 , 2012.

• [SRhC13] X. Suau, J. Ruiz-Hidalgo, and J. Casas, “Detecting End-Effectors on

2.5D data using Geometric Deformable Models: Application to Human Pose Es-

timation”, Computer Vision and Image Understanding (CVIU), vol. 117, no. 3,

2013.

• [ASM+] M. Alcoverro, X. Suau, J.R. Morros, A. López-Méndez, A. Gil, J. Ruiz-

Hidalgo, J.R. Casas, “Gesture Control Interface for immersive panoramic dis-

plays”. Multimedia Tools and Applications, Springer. 2013.

* [SALM+] X. Suau, M. Alcoverro, A. López-Méndez, J. Ruiz-Hidalgo, J.R. Casas,

”Real-time Fingertip Localization Conditioned on Hand Gesture Classification”,

Submitted to Image and Vision Computing.

11.3.2 Book Chapters

• [SALM+12] X. Suau, M. Alcoverro, A. A. López-Méndez, J. Ruiz-Hidalgo, and J.

Casas, “INTAIRACT: Joint Hand Gesture and Fingertip Classification for Touch-

less Interaction”, in Computer Vision – ECCV 2012, vol. 7585, Heidelberg: Sprin-

ger, 2012, pp. 602-606.
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11.3.3 Conference Papers

• [SCRH09] X. Suau, J. Casas, and J. Ruiz-Hidalgo, “Multi-resolution illuminati-

on compensation for foreground extraction”, in 16th International Conference on

Image Processing, 2009, pp. 3225-3228.

• [SCRH10] X. Suau, J. Casas, and J. Ruiz-Hidalgo, “Surface reconstruction by

restricted and oriented propagation”, in 2010 IEEE International Conference on

Image Processing, 2010, pp. 813-816. (Best Student Paper Award)

• [SSC10] J. Salvador, X. Suau, and J. Casas, “From silhouettes to 3D points to

mesh: towards free viewpoint video”, in ACM Workshop on 3D Video Processing

(3DVP), 2010, pp. 19-24.

• [SCRh11] X. Suau, J. Casas, and J. Ruiz-Hidalgo, “Real-time head and hand

tracking based on 2.5D data”, in IEEE International Conference on Multimedia

and Expo (ICME), 2011, pp. 1–6.

• [SRHC12a] X. Suau, J. Ruiz-Hidalgo, and J. Casas, “Oriented radial distribution

on depth data: Application to the detection of end-effectors”, in IEEE Internatio-

nal Conference on Acoustics, Speech, and Signal Processing, Kyoto, Japan, 2012.





12
Discussion

The work carried out during this thesis has been focused on two main parts, (I) Des-

cription of Depth Data and (II) Hand Analysis, that are also the main parts of this

document.

Regarding the description of depth data, we show that 3D descriptors are very effective

at emphasizing specific characteristics of a depth point cloud. The proposed Oriented

Radial Distribution feature proves to be a good alternative to detect end-effectors of

depth point clouds, especially hands and feet (Chapter 3). Indeed, our ORD proposal

behaves in a multi-resolution manner, which makes it very effective and flexible to detect

end-effectors of a given size.

In Chapter 4 we propose to describe depth data using 3D connectivity properties, which

leads to an alternative formulation of the geodesic distance adapting the Narrow Bands

Level Set formulation (R-NBLS). We have shown that the proposed R-NBLS method

is very effective in terms of computational cost. R-NBLS is combined with a shortest

path algorithm that shows its performance at detecting end effectors (hand, feet and

head). We make use of a very simple model for the human body, obtaining state-of-

the-art detection results. These point out that generative methods strongly rely on the

underlying data, so that, even with an extremely simple model, satisfying results are
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achievable. The narrow bands obtained throughout the R-NBLS formulation prove to

be very useful at feeding the body model.

With respect to the Hand Analysis part, in Chapters 8 and 9, we show that ORD

is also able to globally describe a depth point cloud. More precisely, the objective

in these chapters is to recognize various hand gestures. In order to do so, we apply

classification strategies onto the ORD data, achieving satisfactory results in the hand

gesture recognition task. Indeed, the proposed methods behave better than most of the

reference works on a public ASL dataset.

In Chapter 8, we have proposed to localize fingertips using the recognized hand gesture

as a prior, which helps reducing drastically the search space for fingertips. This so-called

NNGM approach proves to be successful in various real-time demonstrations performed

throughout this thesis. For this kind of applications, where the input data is a video

sequence, we have proposed to exploit the temporal consistency of hand gestures to

enhance both the gesture recognition and fingertip localization performance in about

10%.

In Chapter 9 we propose to invert the formulation of the fingertip localization problem.

We tackle such task as it was a parts detection problem, which leads to a direct obtention

of fingertip locations. The hand gesture is treated as an auxiliary property of the hand

object. We have shown that the proposed Voting method obtains even better results

than the NNGM method. Moreover, the Voting method may be generalized to any

object represented by a point cloud, being able to detect its parts and estimate the

posed auxiliary properties.

Both methods in Chapters 8 and 9 utilize the ColorTip dataset presented in Chapter

7, which is one of the main contributions of this thesis. ColorTip is a dataset for

hand gesture recognition and fingertip localizations that can be used both for training

purposes and evaluation. Given the recent irruption of depth cameras, there is a lack of

public datasets, and, up to our knowledge, there does not exist any dataset providing

the information ColorTip contains.

12.1 Future Work

Some computer vision problems have been addressed with satisfactory formulation and

results. However, we foresee improvements in the various proposed methods, that we

summarize here-after.
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Including topological borders or frontiers is an interesting point for further work in

the RNBLS formulation. Such borders could help to improve the propagation in order

to better respect the topology. We envisage to use color information and other local

descriptors to complement the depth estimation, which will help solving ambiguities

and increase the detection rate. Also, physical magnitudes such as force fields may

be incorporated to the RNBLS model, in order to slow down or speed-up propagation

velocity depending on the confidence we have on a given part of the point cloud.

We have exploited the Oriented Radial Distribution using a pixel-wise value. But inde-

ed, the ORD formulation involves the computation of a radial histogram of distribution,

which could be exploited for feature matching for example. Using the histogram could

also be extremely helpful for hand gesture recognition (in the NNGM and Voting met-

hods, for example), at the expense of more processing power and time. Extending ORD

to color images is another foreseen issue This formulation would drastically shift the pa-

radigm, since the depth-based ORD is based on Euclidean distances that are meaningless

on the RGB space.

The baseline HandBox method could be improved by re-enforcing the head detection

algorithm. Strong head tilt should be handled, as well as leaning positions. Moreover,

the hand detection heuristics may be improved using a discriminative approach like

Random Forests. These, could be helpful to find hands if trained with a large amount

of hand poses and using a relatively low acceptance threshold. Some experiments have

been carried out in the last project FascinatE [Fas] demonstration substantiating this

idea.

With respect to the NNGM approach, we have proposed to re-sample the ORD output

to an m × m grid, in order to enable further comparison using usual distances. We

foresee using various resolutions simultaneously (various grid sizes), implementing a

learning method able to decide which resolutions are better suited to detect hand gestures

depending on the feature output. This way, the classification result should be improved

compared to using a fixed arbitrary resolution. This strategy could also be included in

the Voting framework.





A
Preliminary Concepts on Depth Data

A.1 Apparent and Physical area on Depth Data

Generally speaking, a real world object is seen as a 2D area on the image plane when

recorded with a camera. Such area, called apparent area Ã, depends on the distance

between the object and the camera.

Since depth data is obtained from a single viewpoint, the concept of apparent area

arises. Depth estimates are obtained in pixels, organized as images. If a surface S with

a physical area A is captured by the depth sensor, its area A has to be translated into

an area on the image plane, or apparent area Ã, which is expressed in pixels. Therefore,

the size of Ã will vary depending on the distance d between the camera and the recorded

surface, which makes it impossible to recover A from the image without knowing the

magnitude d.

Such inconsistency may be straightforwardly resolved in the case of depth data, since

d is the estimated depth di for every pixel. A physical pixel-wise area Apixi may be

assigned to a given pixel pixi with depth di. Such assignment depends on the estimated

depth di and the optical behavior of the camera.

An empirical law ΓC is experimentally obtained for a given camera by means of re-

cording a surface of a known physical area at different depth positions (Figure A.1).
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The relationship between physical and apparent area, for a given pixel, which increases

quadratically with depth, is formulated in Equation (A.1), providing a valid approxi-

mation for reasonable depth levels d ∈ (80, 430) cm. Equation (A.1) is the quadratic

approximation of the samples in Figure A.1. Given the empirical nature of the appro-

ach, the camera parameters are not needed, so the approximation may be done without

calibration.

Apixi = ΓC(di) ≈ 1.12 · 10−6 · d2
i + 8.41 · 10−5 · di − 4.64 · 10−3 (A.1)

Let S be a surface with an apparent area ÃS . If S is sufficiently perpendicular to the

camera, its physical area AS may be approximated as shown in Equation (A.2).

AS =
∑
∀pixi∈S

ΓC(di) (A.2)

The depth of each pixel di may be replaced by the mean depth dS of the observed

region, simplifying the physical area calculation using Equation (A.3). The result finally

depends on the number of points (or pixels) NS in the area.

AS ≈
∑

∀ppixi∈S
ΓC(dS) = NS · dS (A.3)

ΓC  = 1,12E-06 z2 + 8,41E-05z - 4,64E-03 
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Figura A.1: Empirical estimation of the law ΓC which gives the actual size of a pixel
at a given depth level. Measurements have been carried out with a known flat surface
(din A2 paper sheet) at various depth levels. The blue points are the division of the
physical area of the paper sheet by the number of pixels it occupies on the image, which
is equal to the physical area per pixel at that depth level. A quadratic approximation

is shown in the figure.
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A.2 (λ, ρ)-connectivity

In order to find connected regions in the point cloud, a connectivity condition should be

defined. We state that a point p is (λ, ρ)-connected if the number of points in a ball of

radius ρ centered at p is greater than λ. Thus, a region will be (λ, ρ)-connected if all its

points are (λ, ρ)-connected too.





B
Description of the Random Forest baseline used

to evaluate the fingertip localization accuracy

B.1 RF Fingertip baseline

In order to evaluate the proposed algorithms, we implement a fingertip localization

method using Random Forests (RF) [Bre01]. The RF localization method is based on

the successful system for detecting body parts from range data proposed by Shotton et

al. [SFC+11]. We use very similar depth-invariant features, but in addition to depth

data, we include the ORD feature.

Specifically, for an input patch π and a given pixel p, the binary test has the following

expression:

f(π,p) = φπ,c

(
x +

m

dπ(p)

)
− φπ,c

(
x +

n

dπ(p)

)
(B.1)

where dπ is the depth map associated to input patch π, φπ,c denotes the c-th feature

computed from π, and m and n are two randomly generated pixel displacements that fall

within a patch size. Pixel displacements are normalized with the depth evaluated at pixel

p in order to make the test features invariant to depth changes. In our implementation,

the depth data is allocated in φπ,0 and the ORD responses in φπ,1.
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We estimate the finger localization pseudo-probability density by means of a Parzen

estimator with Gaussian kernel K:

F (l|π) =
∑
i

p(l|π,pi)K(p− pi) (B.2)

Finally, we compute the l-th finger location pl as the pixel location with maximum

probability:

pl = argmax
p

F (l|π) (B.3)

we ensure that this maximum represents a target gesture by thresholding the probability

volume V computed by locally integrating the estimated pseudo-probability measure :

V =
∑
p∈S

F (l|π(p)) (B.4)

where S is a circular surface element of radius inversely proportional to the depth, and

centered at the l-th finger maximum, i.e:

S = {n | ‖n− pl‖ < r(dπ(pl))} (B.5)

In this way, the fingertip localization is depth-invariant.

B.1.0.1 Benchmark

As explained in Section 10.4.1.6, we employ RFs comprising 10 trees of maximum depth

15. Three baselines are trained: one using depth information exclusively, another using

ORD exclusively and a baseline combining both features. We test different parameters,

and we keep the ones providing best accuracy in each of the 3 presented cases.
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Méndez, Albert Gil, Javier Ruiz-hidalgo, and Josep R. Casas. Gesture

Control Interface for immersive panoramic displays. Springer Multimedia

Tools and Applications.

[ATRV12] Aitor Aldoma, Federico Tombari, Radu Bogdan Rusu, and Markus Vincze.

OUR-CVFH
’
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