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Abstract. This paper presents an image sequence analysis scheme. It
combines, in a hierarchical manner, four different homogeneity criteria:
gray level, motion, depth and semantic. In order to create each layer in
the hierarchy, a specific approach is proposed. Finally, an example of the
results obtained with the complete scheme is shown.

1 INTRODUCTION

In the framework of the current standardization processes MPEG-4 and MPEG-
7, it is clear that video image analysis is and will be playing a key role. To really
exploit all the functionalities provided by MPEG-4 and to help in the description
of image sequences in MPEG-7, generic analysis techniques are necessary.

The complexity of the problem leads to combining several homogeneity cri-
teria. Useful partitions should contain regions being homogeneous in gray level,
color, motion, depth and/or semantic meaning. However, the correct approach
to combine and estimate these types of information is not fixed yet.

The paper discusses in section 2 a general hierarchical scheme for video analy-
sis. Specific implementations of each one of the four levels of analysis is presented
in the following sections: texture, motion, depth and semantic levels in sections
3,4, 5 and 6, respectively. Finally, section 7 shows an example of the complete
scheme.

2 GENERAL ANALYSIS SCHEME

In this section, we propose a hierarchical segmentation scheme combining four
homogeneity or segmentation criteria: gray level, motion, depth and semantic.
The goal of the algorithm is to segment a video sequence in a recursive and
causal way. To this end, at each time instant ¢, a gray level partition Py(t), a
motion partition P, (t), a depth partition Py(t) and a semantic partition Pg(t)
are defined. The gray level, motion and depth partitions are made of regions that
are homogeneous respectively in gray level?, in motion and in depth (relative

* This work has been partially supported by the ACTS projects VIDAS, by France-
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C05-05 of the Spanish government

% Note that we have actually implemented and tested a gray level segmentation scheme,
however the approach can be easily extended to color segmentation.
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Fig. 1. Hierarchical analysis scheme

distance from the camera). The goal of the semantic partition is to define the
presence of a set of regions representing a known object with a semantic meaning.
In the sequel, we assume that the object of interest is a face. However, the
approach is fairly general and can be extended to other type of objects.

The partitions are organized in a hierarchical way: the gray level partition is
created by merging regions belonging to an initial partition which is the partition
of flat zones Py, (t) of the original frame?®. Similarly, the motion partition P, (¢) is
created by merging regions of the gray level partition P, (t) and, finally, regions of
the depth partition P;(t) are built by merging of regions of the motion partition
P,,(t). As can be seen, the partitions are structured in a hierarchical way by
merging. This structure has been selected for the following reasons:

1. Objects can be structured in a hierarchical way: objects are composed of
regions belonging to the same depth plane. These regions are themselves
made of a set of regions that are homogeneous in motion. Finally, each
region homogeneous in motion may be composed of several regions that are
homogeneous in gray level value.

2. Contours at a given level of the hierarchy are constrained by contours of
the lower levels. For instance, a contour between two “motion regions”, that
are regions homogeneous in motion, should coincide with a contour between
two “spatial regions”. Similarly, contours of “depth regions” should coincide
with contours of “motion regions”. These restrictions have been used because
a precise spatial definition of contours can only be achieved in the gray
level partition since no (gray level) estimation has to be performed. Motion
and depth contours may be less accurate because of the motion and depth
estimation process.

% The flat zone partition [5] is the partition made of the largest connected components
where the image is constant (a flat zone can be reduced to a single point). It can be
computed either on the original frame or after preprocessing by a connected operator.



3. In order to estimate the motion and to perform a reliable motion segmenta-
tion, elementary regions should have been previously defined. In this case,
the motion estimation can rely on a partition that is related to the image.
This approach avoids drawbacks of block-based motion estimation. Similarly,
the estimation of the depth requires the knowledge of a reduced set of re-
gions that are homogeneous in motion so that overlapping and uncovered
areas can be extracted and studied.

Moreover, we would like to track regions in time, that is to relate regions of
partitions Py (t), Pn(t) and Py(t) with regions of partitions Py (¢t — 1), Py, (t — 1)
and P;(t —1). Region tracking creates a temporal coherence in the hierarchy of
partitions which is useful for the segmentation itself. For example, when estima-
ting the motion of a region of the gray level partition at time ¢, one can discard
pixels not belonging to this region at time ¢ — 1. Moreover, region tracking is
mandatory if one wants to analyze the time evolution of the regions.

The global scheme is depicted in Fig. 1. Assume that the partition hierarchy
Ps (t—1), Py(t—1), Pp(t—1) and Py(t—1) at time ¢t —1 is known. The purpose
of the algorithm is to create a similar hierarchy at time ¢. Note that Py.(t) can
be directly extracted from the original frame. The first step of the algorithm is to
motion compensate partitions P,(t—1) and Py, (¢ —1). This creates two predicted
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partitions P, (t) and P, (t). The depth partition P;(t—1) is not compensated as a
whole because its regions are not homogeneous in motion. However, information

—

about the past can be obtained by using P,,(t). Then, the first segmentation
to be performed is the gray level segmentation. It creates P,(t) based on the
knowledge of the current partition of flat zones Py.(t) and the predicted gray

—

level partition Py(t). Once, P,(t) has been created, the motion of each region
is estimated and a second segmentation step is performed to built the motion
segmentation P,,(t). The next step is to estimate the relative depth of the regions
of P,,(t) and to create the depth partition P;(t).

"Semantic" estimatiol
& segmentation

Py (1) or Pp(0)

Fig. 2. Semantic analysis

The semantic partition is not directly integrated in the generic analysis sc-
heme of Fig. 1. Indeed, this analysis level is highly related to specific applications.
As shown in Fig. 2, it can be considered as a separate parallel hierarchy. The



semantic partition Ps(¢) is created by merging regions of either the gray level or
the motion partitions (P, (t) or P, (t)).

In the following, each part of the analysis scheme referring to a specific cri-
terion is called a “layer” and is more precisely discussed.

3 TEXTURE LAYER

The first layer to be built is the pure intra frame partition Py (0). This partition
is created starting from Py.(0). Regions, which may be formed by single pixels,
will be merged together until a termination criterion such as Peak Signal to
Noise Ratio (PSNR) or a certain number of regions is reached. The merging
of regions is done in an order defined by a distance computed for every pair
of neighboring regions. This distance will be based in a measure of the cost of
fusing two regions such as the square error related to the coding of the merged
region with a constant model. As a result, the merging process creates regions
that are homogeneous in gray level.

For the following frames, the gray level layer and the upper ones in the
hierarchy handle as well the tracking of regions in time; that is, they relate
regions of the partition of one layer ¢ — 1 to the regions of the partition ¢ of
the same layer. The creation of the gray layer partition is done in several steps.
First, assuming that partition P, (¢t — 1) is known, the forward compensation of

P,(t—1) is computed P,(t). For that purpose, the forward motion of each region
of partition P, (¢t — 1) is estimated. Then, the partition P, (¢ — 1) is compensated
using the technique described in [4].

The compensation defines three set of areas: areas where the prediction is
done without conflict, overlapping areas and uncovered areas. Overlapping areas
correspond to pixels where more that one region is compensated whereas unco-
vered areas are zones where no region is compensated. The overlapping areas
conflict can be solved using information of the depth layer, i.e. if two or more
regions overlap the output at the overlapping area is the region which is closest
in the sense of depth.

The compensated partition gives us an approximation of where the regions
of t — 1 are located in the new partition. In order to get reliable temporal links,
a second step is performed. Using as initial partition Py., some regions of this
partition are merged relying on a quality criterion (such as PSNR) with the
constraint that only regions of Py, contained in the same connected component
of the compensated frame can be fused. The merging criterion uses gray level
information from neighbor regions of Py, (t) and P,(t), so that past information
is introduced in the process.

Finally, once the temporal link is established, a partition is created by con-
tinuing the merging process relaxing the PSNR criterion of the temporal link.
Note that, in this process, some regions of Pr. may be merged with regions de-
fined during the temporal link. These regions allow the precise definition of the
shape of the regions that were present at time ¢ — 1. By contrast, some regions



of Py, are merged together without involving any of the regions defined by the
temporal link. These regions are new regions appearing at time t.

4 MOTION ANALYSIS AND SEGMENTATION

As in the gray level layer, the segmentation is achieved in two steps: first, a
motion compensation and, then, a merging of regions from the previous layer.
The compensation is done as the gray level layer by forward motion estimation of
regions of P, (t — 1) and forward compensation. It creates a first approximation

—

of the motion partition called P, (t).

For the merging itself, a motion estimation is performed to assign a dense
motion field to each region of the gray level partition Py (t). Here also, the tech-
nique proposed in [1, 6] is used to assign to each region a polynomial model
describing the apparent motion in the horizontal and the vertical directions.
The model is estimated using differential methods. From this motion model,
two dense motion fields are created by assigning to each pixel the values of its
horizontal and vertical displacements. These two dense motion field images are
now used as input to the merging algorithm. So, the merging process has to deal
with a two component image. As a result, the algorithm defines regions that are
homogeneous in the sense of its input images, that is in the sense of motion. Du-
ring the merging process, the motion field can be re-estimated. However, in our
current implementation this re-estimation is not done to limit the computational
complexity of the algorithm. In future work, we will investigate fast techniques
to re-estimate the motion and we will study the improvement that is obtained.

The merging algorithm itself works as the gray level algorithm: first, a tem-
poral link is created and then the final partition is obtained by merging regions
of P,(t). The merging criterion involves distances between the motion of neigh-

—

boring regions of P,(t) and of Pp,(t). The main difference with the gray level
layer is that the region model deals with the horizontal and vertical displace-
ments. A first order polynomial model is used to take into account a wide range
of motions (e.g.: translation, zoom and rotation).

5 DEPTH ANALYSIS AND SEGMENTATION

In this layer the partition Py(t) is created from the estimation of the relative
depth between the regions of Pp,(t). Those neighboring regions which are found
to be in the same depth level are considered as a unique region in this segmen-
tation level. The relative depth of the regions is estimated by considering the
occlusions between regions. This estimation procedure can be described in two
steps.

The clues for the depth estimaﬂcln are obtained from the overlapping zones
which appear when the partition P, (t) is created. When there is relative motion
between two neighboring regions (A and B) belonging to different depth levels,

an overlapping zone appears at the partition P, (t). To decide which one of



the two regions is in the foreground it has to be checked whether the pixels of
the overlapping zone belong to region A or B at P,,(t). The region to which
they belong for the most part is assumed to be in the foreground of the other
region. When processing sequences of images this overlapping information can
be accumulated along the sequence, in order to have more reliable information.

In the overlapping computation step, an ordering relation between neighbo-
ring regions is obtained if there is a relative motion between them. This relation
will be more reliable for some regions than for other, depending on the size of
the overlapping zones, on the certainty of the overlapping decision, and on the
correspondence of the overlapping with the relative motion detected between the
two regions. In this step every region is assigned to a depth level considering this
information. For this aim a relaxation labeling algorithm is used [3]. The inputs
to this algorithm are an initial probability p;(A) for every region i of being at
every depth level A. These initial probabilities are updated considering the com-
patibilities between neighboring regions being at different depth levels and the
relative certainties of the order relation between regions, obtained in the over-
lapping computation step. Finally, every region is assigned to the depth level A
which maximizes p;(A). The regions of P4(t) are composed of connected regions
belonging to the same depth level. In order to achieve a temporal stability the
relaxation algorithm is initialized with the information of Py(t — 1).

6 SEMANTIC LAYER: FACE SEGMENTATION

The semantic segmentation Ps(t) is built up as a two step process: the detection
of a subimage that contains the object (a face) and a merging step, that specifies
which regions of the subimage form the face. As it is a general class detection
problem, the underlying probability distribution of the object must be consi-
dered. A subspace method and an eigenvector decomposition are used to find a
parametric and compact description of faces, taking into account their statistical
variability. According to [2], the class membership or likelihood function P(z/(2)
is modeled as a unimodal gaussian density

exp[-3(z — )72 1(z — )]

e ¥z

P(z/Q) =

where the mean and the covariance matrices are estimated using a training
data set. In our case, frontal view photographs of different people.

The Mahalanobis distance d(z) = (z —Z)T ¥~ (x — Z) is a sufficient statistic
for characterizing the likelihood. Using the eigenvector and eigenvalue decom-
position of X' it is possible to derive a tractable estimate of this distance. The
estimate involves just the first M principal coefficients -those of the projection of
the input pattern x over the first principal components- and a residual recons-
truction error,
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where \; are the M principal eigenvalues, p is the average of the unused
eigenvalues, and

N M
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With this estimate, the detection problem can be formulated in a maximum
likelihood framework. For each point in the input image, the distance between
the class and a rectangular subimage centered in that point is calculated. The
point with the lowest distance -the maximum likelihood- gives the center of the
subimage that contains the object. In order to detect faces of different sizes the
search is performed on linearly scaled versions of the input image.

Given this subimage and its partition in homogeneous regions (either P,(t)
or P,,(t)), the next step consists in deciding which of these regions belong to a
face and which ones are part of the background. The criterion for the merging
step is that the union of two regions that belong to the same object should be
more similar to the whole object (a face) than only one region.

The subimage and its partition are warped in order to normalize them to
the eigenvectors size. The process starts from the region with minimum distance
to the face class. The distance between a region and the class is calculated by
placing the region on a new subimage with the database background behind and
projecting it over the principal components. Next, the distance between the class
and the union of this first region with each neighboring region is calculated. The
region that produces the greatest decrease in distance is merged to the first one.

The process continues, in an iterative way, merging a new region if it is
adjacent to any of the previous merged ones and if it produces the greatest
decrease in distance, until no more regions can be merged; that is, no further
union decreases the distance.

7 RESULTS

In Figure 3, frame #48 of the Foreman sequence is analyzed. This analysis is
based on the results obtained for frame #46 and, therefore, P,(46) and P,,(46)
are presented. For frame #48, the four analysis layers are shown: P,(48) and
P,,(48) contain 50 and 12 regions, respectively. On turn, P;(48) has detected
three different regions, where the region represented with a gray level value of
128 has not been assigned to any depth level.
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