Search Publication
Export 9 results: 
 Author  Title  Type  [ Year ]
] Filters: Author is E. Perez-Pellitero  [Clear All Filters]
. Bayesian region selection for adaptive dictionary-based Super-Resolution. In British Machine Vision Conference. 2013.  (2.59 MB)
 (2.59 MB)
 (2.59 MB)
 (2.59 MB). An Epipolar-Constrained Prior for Efficient Search in Multi-View Scenarios. In EUSIPCO. Lisbon; 2014.  (3.69 MB)
 (3.69 MB)
 (3.69 MB)
 (3.69 MB). Fast Super-Resolution via Dense Local Training and Inverse Regressor Search. In Asian Conference in Computer Vision (ACCV). Singapore; 2014.  (19.06 MB)
 (19.06 MB)
 (19.06 MB)
 (19.06 MB). Accelerating Super-Resolution for 4K Upscaling. In IEEE International Conference on Consumer Electronics. Las Vegas, NV, USA; 2015.  (1.07 MB)
 (1.07 MB)
 (1.07 MB)
 (1.07 MB). Antipodally Invariant Metrics For Fast Regression-Based Super-Resolution. IEEE Transactions on Image Processing. 2016;25(6):2468.  (5.48 MB)
 (5.48 MB)
 (5.48 MB)
 (5.48 MB). Half Hypersphere Confinement for Piecewise Linear Regression. In IEEE Winter Conference on Applications of Computer Vision. Lake Placid, NY, USA; 2016.  (7.01 MB)
 (7.01 MB)
 (7.01 MB)
 (7.01 MB). PSyCo: Manifold Span Reduction for Super Resolution. In IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, Nevada, USA; 2016.  (1.56 MB)
 (1.56 MB)
 (1.56 MB)
 (1.56 MB). Manifold Learning for Super Resolution. . [Hannover]: Leibniz Universität Hannover; 2017.  (18.6 MB)
 (18.6 MB)
 (18.6 MB)
 (18.6 MB). Method for upscaling an image and apparatus for upscaling an image. US 20170132759 A1; 2018. 
