Abstract
Acoustic events produced in meeting environments may contain useful information for perceptually aware interfaces and multimodal behavior analysis. In this paper, a system to detect and recognize these events from a multimodal perspective is presented combining information from multiple cameras and microphones. First, spectral and temporal features are extracted from a single audio channel and spatial localization is achieved by exploiting cross-correlation among microphone arrays. Second, several video cues obtained from multi-person tracking, motion analysis, face recognition, and object detection provide the visual counterpart of the acoustic events to be detected. A multimodal data fusion at score level is carried out using two approaches: weighted mean average and fuzzy integral. Finally, a multimodal database containing a rich variety of acoustic events has been recorded including manual annotations of the data. A set of metrics allow assessing the performance of the presented algorithms. This dataset is made publicly available for research purposes.