Machine translation and computer vision have greatly benefited of the advances in deep learning. The large and diverse amount of textual and visual data have been used to train neural networks whether in a supervised or self-supervised manner. Nevertheless, the convergence of the two field in sign language translation and production is still poses multiple open challenges, like the low video resources, limitations in hand pose estimation, or 3D spatial grounding from poses. This talk will present these challenges and the How2✌️Sign dataset recorded at CMU in collaboration with UPC, BSC, Gallaudet University and Facebook.