Abstract
Semantic image retrieval from large amounts of egocentric visual data requires to leverage powerful techniques for filling in the semantic gap. This paper introduces LEMoRe, a Lifelog Engine for Moments Retrieval, developed in the context of the Lifelog Semantic Access Task (LSAT) of the the NTCIR-12 challenge and discusses its performance variation on different trials. LEMoRe integrates classical image descriptors with high-level semantic concepts extracted by Convolutional Neural Networks (CNN), powered by a graphic user interface that uses natural language processing. Although this is just a first attempt towards interactive image retrieval from large egocentric datasets and there is a large room for improvement of the system components and the user interface, the structure of the system itself and the way the single components cooperate are very promising.