Foreground segmentation in video sequences is an important area of the image processing that attracts great interest among the scientist community, since it makes possible the detection of the objects that appear in the sequences under analysis, and allows us to achieve a correct performance of high level applications which use foreground segmentation as an initial step. The current Ph.D. thesis entitled Parametric Region-Based Foreground Segmentation in Planar and Multi-View Sequences details, in the following pages, the research work carried out within this field. In this investigation, we propose to use parametric probabilistic models at pixel-wise and region level in order to model the different classes that are involved in the classification process of the different regions of the image: foreground, background and, in some sequences, shadow. The development is presented in the following chapters as a generalization of the techniques proposed for objects segmentation in 2D planar sequences to 3D multi-view environment, where we establish a cooperative relationship between all the sensors that are recording the scene. Hence, different scenarios have been analyzed in this thesis in order to improve the foreground segmentation techniques: In the first part of this research, we present segmentation methods appropriate for 2D planar scenarios. We start dealing with foreground segmentation in static camera sequences, where a system that combines pixel-wise background model with region-based foreground and shadow models is proposed in a Bayesian classification framework. The research continues with the application of this method to moving camera scenarios, where the Bayesian framework is developed between foreground and background classes, both characterized with region-based models, in order to obtain a robust foreground segmentation for this kind of sequences. The second stage of the research is devoted to apply these 2D techniques to multi-view acquisition setups, where several cameras are recording the scene at the same time. At the beginning of this section, we propose a foreground segmentation system for sequences recorded by means of color and depth sensors, which combines different probabilistic models created for the background and foreground classes in each one of the views, by taking into account the reliability that each sensor presents. The investigation goes ahead by proposing foreground segregation methods for multi-view smart room scenarios. In these sections, we design two systems where foreground segmentation and 3D reconstruction are combined in order to improve the results of each process. The proposals end with the presentation of a multi-view segmentation system where a foreground probabilistic model is proposed in the 3D space to gather all the object information that appears in the views. The results presented in each one of the proposals show that the foreground segmentation and also the 3D reconstruction can be improved, in these scenarios, by using parametric probabilistic models for modeling the objects to segment, thus introducing the information of the object in a Bayesian classification framework.

Demos and Resources