Search Publication

Export 19 results:
Author [ Title(Desc)] Type Year
Filters: Author is Marc Combalia  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
P
Podlipnik S, Hernandez C, Kiroglu A, García S, Ficapal J, Burgos J, et al.. Personalized medicine in melanoma patients aided by artificial intelligence. In Clinical Translation of Medical Image Computing and Computer Assisted Interventions (CLINICCAI) Workshop at MICCAI. 2021.
M
Combalia M, Vilaplana V. Monte-Carlo Sampling applied to Multiple Instance Learning for Whole Slide Image Classification. In International Conference on Medical Imaging with Deep Learning. Amsterdam, The Netherlands; 2018.
Combalia M, Vilaplana V. Monte-Carlo Sampling applied to Multiple Instance Learning for Histological Image Classification. In Workshop on Deep Learning in Medical Image Analysis, MICCAI. Granada, Spain; 2018.
Combalia M, Vilaplana V. Monte-Carlo Sampling Applied to Multiple Instance Learning for Histological Image Classification. In Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support. Springer International Publishing; 2018. pp. 274-281.
Catà M, Casamitjana A, Sánchez I, Combalia M, Vilaplana V. Masked V-Net: an approach to brain tumor segmentation. In Multimodal Brain Tumor Segmentation Benchmark, Brain-lesion Workshop, MICCAI 2017 . 2017.
D
Combalia M, Pérez-Anker J, García-Herrera A, Alos L, Vilaplana V, Marques F, et al.. Digitally Stained Confocal Microscopy through Deep Learning. In International Conference on Medical Imaging with Deep Learning (MIDL 2019). London; 2019.
C
Hernandez C, Combalia M, Puig S, Malvehy J, Vilaplana V. Contrastive and attention-based multiple instance learning for the prediction of sentinel lymph node status from histopathologies of primary melanoma tumours. In Cancer Prevention through early detecTion (Caption) Workshop at 25th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI 2022). 2022.
Tarrés L. Clasificación de lesiones de piel con un ensemble de redes neuronales residuales. Vilaplana V, Combalia M. 2019.
Pelegrí JBustos. Clasificación de imágenes histológicas mediante redes neuronales convolucionales. Combalia M, Vilaplana V. 2018.
Casamitjana A, Catà M, Sánchez I, Combalia M, Vilaplana V. Cascaded V-Net Using ROI Masks for Brain Tumor Segmentation. In Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. BrainLes 2017. Crimi A., Bakas S., Kuijf H., Menze B., Reyes M. (eds). Cham: Springer; 2018. pp. 381-391.
B
Combalia M, Codella NCF, Rotemberg V, Helba B, Vilaplana V, Reiter O, et al.. BCN20000: Dermoscopic Lesions in the Wild. In International Skin Imaging Collaboration (ISIC) Challenge on Dermoscopic Skin Lesion Analysis 2019. 2019.
Hernandez C, Combalia M, Podlipnik S, Codella NCF, Rotemberg V, Halpern AC, et al.. Bcn20000: Dermoscopic lesions in the wild. Nature - Scientific Data. In Press;11.
A
Casamitjana A, Sánchez I, Combalia M, Vilaplana V. Augmented V-Net for White Matter Hyperintensities segmentation. In WMH Segmentation Challenge, Brain-lesion Workshop, MICCAI 2017 . 2017.
Casamitjana A, Sánchez I, Combalia M, Vilaplana V. Augmented V-Net for infant brain segmentation. In MICCAI Grand Challenge on 6-month Infant Brain MRI Segmentation, MICCAI 2017. 2017.
Combalia M, Podlipnik S, Hernandez C, García S, Ficapal J, Burgos J, et al.. Artificial intelligence to predict positivity of sentinel lymph node biopsy in melanoma patients. In European Association of Dermato Oncology (EADO 2022). 2022.