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Abstract

This dissertion research explores two of the most-used image models for object detection,
3D reconstruction, visual search: region-based and interest-points image representations;
and will try to provide a new image model to take advantage of the strengths and over-
come the weaknesses of both approaches. More specifically, we will focus on the gPb-
owt-ucm segmentation algorithm and the SIFT local features since they are the most
contrasted techniques in their respective fields. Furthermore, using an object retrieval
benchmark, this dissertation research will analyze three basic questions: (i) the useful-
ness of an interest points hierarchy based on a contour strength signal, (ii) the influence
of the context on both interest points location and description, and (iii) the analysis of
regions as spatial support for bundling interest points.
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Chapter 1

Motivation

Object detection, image matching, query by example, etc. are some of the applications
that in the recent years have kept image processing and computer vision fields active. The
most common input of these applications is a digital image, which can be defined as a 2-d
matrix of pixel colors. In images, objects are represented at low level as a set of pixels,
most of which have some perceptual characteristics that follows some model. However,
trying to indentify these models is a difficult task because instances of a same object
can vary drastically due to different factors such as scale, illumination and viewpoint
changes, rotation, occlusion, etc. that makes object detection and recognition more
challenging. With this goal, high-level algorithms are usually based on richer image
representations that take into account either homogeneous or saliency characteristics.
This dissertation research will explore two of the most used: region-based and interest-
points image representations.

Region-based image representation considers an image as a set of groups of coherent
pixels, called regions, obtained by a segmentation algorithm. This way, an object is
described as a set of regions and their internal properties, or descriptors, can be used to
perform a query by example or to detect those areas where there is possibly a face.

Interest-points image representation is one of the most popular approaches for state-of-
the-art applications, such as image classification, object detection, object recognition,
and object retrieval. It represents the image as a set of interest points or local features.
An object, for instance, can be described as a structured set of local features.

The main objective of this dissertation research will be to analyze the relationship be-
tween region-based and interest-points image representations and try to propose a new
hybrid representation that takes advantage of the strengths and overcomes the weak-
nesses of both approaches. This Thesis Proposal is structured in three main parts: (i)
Section 2 analyzes how hierarchical region-based segmentation and interest points repre-
sentation can benefit one from the other, (ii) Section 3 focuses on exploring the influence
of the context on interest points location and description, and (iii) Section 4 analyzes the
use of regions as spatial support for bundling interest points. Each of these three parts
is divided into the following subsections: (i) Related work, (ii) Proposed approach, and
(iii) Experiments. Finally, Section 5 shows the results of some preliminary experiments.
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Chapter 2

Hierarchical segmentations and
interest points

2.1 Related work

Several image representations have been used for many computer vision problems such
as object recognition/detection, object recognition, image classification, etc. First, in
Section 2.1.1 we describe one of the state-of-the-art segmentation algorithm: the gPb-
owt-ucm. Then, we introduce different interest point detectors and descriptors in Sec-
tion 2.1.2. Finally, in Section 2.1.3, other image representations such as Bag-of-Features,
Spatial Pyramid, Histograms of Oriented Gradients (HOG) and Pyramid Histograms of
Orientation Gradients (PHOG).

2.1.1 The gPb-owt-ucm segmentation algorithm

Up to now, the gPb-owt-ucm [AMFM11] is among the state-of-art segmentation algo-
rithms. Segmentation techniques are evaluated on the Berkeley Segmentation Dataset
[MFTM01] benchmark and gPb-owt-ucm gives the best performance. It consists of 3
different blocks: (i) the gPb contour detector, (ii) the Oriented Watershed Transform
(OWT), and (iii) the Ultrametric Contour Map (UCM).

The gPb contour detector

The gPb contour detector aims at obtaining a set of images where the pixels of each
image represent the boundary strength at a given orientation. With this goal, it couples
multiscale local brightness, color and texture cues to a powerful globalization framework
using spectral clustering.

The local cues are computed by applying oriented gradient operators at every location
in the image. Thus, a circular disk split into two half-disks by a diameter at angle θ is
placed at location (x, y). The gradient magnitude at (x, y) is defined by the χ2 distance
between the two half-disk intensity histograms. Figure 2.1 shows the histograms obtained
from splitting a disk in two halves at orientation π/4 over the brightness channel. The
result of comparing the two histograms for each image pixel at this orientation is also
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4 Hierarchical segmentations and interest points

Figure 2.1: Oriented gradient of histograms. Figure taken from [AMFM11]. The left image
show a circular disk placed at a pixel from the brightness channel of an image and split by a
diameter at angle θ = π/4. The central image shows the intensity histograms resulting from
the upper and lower half-disks. The right image represents the gradient magnitude at the given

orientation for each pixel from the brightness channel.

shown.

The gradient magnitudes are computed over four feature channels (brightness, chromi-
nance and texture) and at different scales, all of which are linearly combined into a
multiscale oriented signal:

mPb(x, y, θ) =
∑
s

∑
i

αi,sGi,σ(i,s)(x, y, θ) (2.1)

where s indexes scales, i indexes feature channels, and Gi,σ(i,s)(x, y, θ) measures the
histogram difference in channel i between two halves of a disc of radius σ(i, s) centered
at (x, y) and divided by a diameter at angle θ. The parameters αi,s weight the relative
contribution of each gradient signal. Figure 2.2 shows a general scheme of Gi,σ(i,s)(x, y, θ)
computation. Figure 2.3 shows the resulting contour signal for each channel at two
specific orientations and the maximum response over eight orientations. The mPb(x, y)
contour signal resulting from averaging the contour signals across all four channels and
across three scales is also shown.

The spectral Pb (sPb) detector is derived from the eigenvectors of a spectral clustering.
Since eigenvectors vk carry contour information (see Figure 2.4), they are treated as
images and convolved with Gaussian directional derivative filters at multiple orientations
θ to obtain oriented signals {∇θvk(x, y)}. The contour information from n different
eigenvectors is combined to provide the spectral component of the gPb contour detector:
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Figure 2.2: General scheme for local cues. For each intensity channel i (brightness, chrominance
and texture), gradient intensity is computed at each pixel (x, y) and orientation θ by placing on
it a disk with scale s split at orientation θ and computing the χ2 distance between the local

histogram from the two disk halves.

sPb(x, y, θ) =
n∑
k=1

1√
λk
∇θvk(x, y) (2.2)

where λk are their corresponding eigenvalues. Figure 2.5 shows a general scheme of how
the spectral component is computed.

The gPb contour detector results from a linear combination of the multiscale mPb and
the spectral sPb oriented signals. Whereas mPb fires at all the edges, the sPb extracts
only the most salient curves in the image.

The Oriented Watershed Transform

The Oriented Watershed Transform (OWT) constructs the set of initial regions from
the oriented contour signal gPb(x, y, θ). The Watershed Transform consists in placing
a water source in each regional minimum, to flood the relief from sources, and build
barriers when different sources are meeting.

First, region minimal of the non-oriented contour signal gPb(x, y) (computed as maxθ gPb(x, y, θ))
are taken as seed locations for homogeneous segments and standard watershed transform
is applied (see Middle Left image from Figure 2.6). As a result, the catchment basins of
the minima provide the regions of the finest partition and the corresponding watershed
arcs the possible locations of the boundaries. Unfortunately, simply weighting each arc
by the mean value of gPb(x, y) for the pixels on the arc can produced artifacts as shown
in Figure 2.6 (Middle image). For instance, horizontal watershed arcs near to strong
vertical contours are erronously upweighted due to a high magnitude of gPb(x, y) over
those pixels caused by the strong vertical gradients. To correct this problem, Oriented
Watershed Transform enforces consistency between the strength of the boundaries (wa-
tershed arcs) and the underlying oriented contour signal. This is done by estimating the
orientation o(x, y) at each pixel on an arc from the local geometry of the arc itself and
assigning each arc pixel a boundary strength of gPb(x, y, o(x, y)) instead of gPb(x, y).
Therefore, the boundary strength assigned to an arc by the OWT can be interpreted as
an estimate of the probability of that arc being a true contour. Figure 2.6 shows how
artifacts are suppressed by applying the OWT.

The Ultrametric Contour Map

Finally, the Ultrametric Contour Map is the hierarchical region tree which results from
an agglomerative clustering by iteratively merging the most similar regions, i.e. the
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Figure 2.3: Multiscale Pb. Figure taken from [AMFM11]. Images from top to down show the
four different channels and the original image. Images from left to right display oriented gradient
of histograms (as outlined in Figure 2.1) for θ = 0 and θ = π/2, and the maximum response over
eight orientations (G(x, y) signal). At the bottom, beside the original image, the combination of

oriented gradients across all four channels and across three scales is displayed.
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Figure 2.4: Spectral Pb. Figure taken from [AMFM11]. Left image shows first four eigenvectors
resulting from spectral clustering. Right image shows the contour signal resulting from computing

the gradients of the eigenvectors.
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Figure 2.5: General scheme for spectral component of the gPb contour detector.

Figure 2.6: Watershed Transform. Figure taken from [AMFM11]. Left image shows the original
image. Middle left image shows the non-oriented contour signal gPb(x, y) resulting from the
maximum response of gPb(x, y, θ) and local minima used as seed locations for the Watershed
Transform. Middle image shows the weights assigned to watershed arcs by averaging gPb(x, y)
along them. This weighting scheme produces artifacts, such as the strong horizontal contours
in the small gap between two statues. Middle right image shows gPb(x, y, θ) for four different
orientations. Right image displays the result of reweighting the watershed arcs according to the
magnitude of gPb(x, y, θ) at the orientation given by the arc. As a result, artifacts are suppressed

as their orientations do not agree with the gPb(x, y, θ) signal.

two adjacent regions which are separated by the minimum weight contour. As a result,
the base level of this hierarchy respects the weak contours and is an oversegmentation,
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whereas the upper levels respect only strong contours, resulting in an undersegmentation.
Figure 2.7 shows an example of the whole gPb-owt-ucm segmentation algorithm.

Figure 2.7: Hierarchical segmentation from contours. Figure taken from [AMFM11]. From left
to right: image, maximal response of gPb over orientations, weighted contours resulting from
OWT using gPb as input, initial oversegmentation resulting from OWT and corresponding to
the finest level of UCM, contours obtained by thresholding UCM at level 0.5, and segmentation

obtained by thresholding UCM at level 0.5.

2.1.2 Interest points

The interest-point based image representation consists of two parts: (i) the interest points
detectors, and (ii) the interest point descriptors. Next, different techniques are described
for both parts.

Detectors

An image can be represented as a set of interest points distributed in the image plane. A
desirable property of any interest point detector is scale invariance and affine invariance,
that is, its result does not vary under a scale change and an affine transformation, respec-
tively. The work in [TM08] presents an exhaustive survey and classification of interest
points detectors.

One of the first well-known detectors is the Hessian detector [Bea78]. A grayscale image
can be understood as a function from the image plane to R. In this context the Hessian
matrix is defined as the matrix containing the second-order image derivatives, which
encode information about how the normal to the image surface changes spatially. The
trace of this matrix, known as Laplacian, is used to detect interest points.

The Harris detector [HS88] is also widely known and it is based on detecting corner points
in the image. To do so, the structure tensor or second moment matrix is computed, which
describes the main directions of the gradient of the image at the neighborhood of a given
location. The determinant and the trace of this matrix was proposed as a measure of
cornerness of the points of the image. The work in [MS04] provided variations of Harris
detector that are scale invariant and affine invariant, named Harris Laplace and Harris
Affine.

Junctions are the subset of corner points defined by the intersection points of three
or more intensity surfaces in an image [Bey91]. The work in [MAFM08] defines the
gPb contour detector (introduced in Section 2.1.1) and propose to use it for localizing
junctions, which may be viewed as points at which two or more distinct contours intersect.
More specifically, given a set of contours Ci specified by the contour detector gPb and
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their corresponding weights wi = |Ci| =
∑

(x,y)∈Ci
gPb(x, y), i.e. the total contrast of

contour Ci, junction location for an image neighborhood IN is computed by an EM-style
algorithm:

• Estimate the optimal junction location L = (xL, yL) by minimizing its weighted
distance from the contours {Ci} ∈ IN

L = argmin(x,y)∈IN

∑
i

wid(Ci, (x, y))

where d(Ci, (x, y)) is the distance from contour Ci to point (x, y).

• Update the weight wi of each contour Ci in order to select only those contours
passing close to the junction

wi = |Ci|exp(−d(Ci, L)2/ε2)

where ε is a factor controlling the distance tolerance

• Repeat the above two steps for a set number of iterations or until the optimal
junction location L reaches a fixed point.

Saliency is another distinctive characteristic which has been used in a number of computer
vision algorithms. The work in [Gil98] defines saliency in terms of local signal complexity
or unpredictability. The idea is to find a point neighborhood with high complexity as a
measure of saliency or information content. The method measures the change in entropy
of a gray-value histogram computed in a point neighborhood. The search was extended
to scale [KB01] and affine [KZB04] parameterized regions. Since color provides additional
information, some methods as [IKN98] use color for building saliency maps.

The work in [MCUP02] proposes a technique, known as Maximally Stable Extremal
Regions detector (MSER detector), to find correspondences from two images of a scene
taken from different points and in different conditions. To do so, the local features
they use as anchor are the so-called extremal regions, whose set is shown to be closed
by perspective transformations and monotonic transformations of intensity, so they are
reliable for finding correspondences between views. Extremal regions are found using a
region-based image representation known as Component Tree.

Efficient implementations The set of interest points in an image can be very large
so efficient implementations to compute the interest points are desirable.

The technique called Difference of Gaussians (DoG) [Low04] is used to efficiently approx-
imate the Laplacian used by other detectors, as explained above. It is proved that the
Laplacian is equal to the derivative in the scale direction. A difference in scale can be
approximated by a blurring by a Gaussian. The derivative is therefore approximated by
the difference between the image and a blurred version of it.

The technique known as Speeded Up Robust Features (SURF) [BETVG08] computes
a fast approximation of the Hessian matrix based on the well-known integral images
introduced in [VJ01].
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Descriptors

Apart from the interest point themselves, algorithms based on local features compute
local descriptors. A large variety of feature descriptors has been proposed, such as Gaus-
sian derivatives, moment invariants, complex features, steerable filters, phase-based local
features, and descriptors representing the distribution of smaller-scale features within the
interest point neighbourhood. Based on the latter, one of the most known and used local
descriptor is the so-called Scale Invariant Feature Transform (SIFT) [Low04], which is
invariant to affine transformations, partially invariant to illumination changes and robust
to local geometric distortion. The major stages of computation used to generate the set
of local features are the following:

• Scale-space extrema detection. It searches over all scales and image locations to
identify potential interest points that are invariant to scale and orientation. It is
implemented efficiently by using a difference-of-Gaussian function convolved with
the image, D(x, y, σ), which can be computed from the difference of two nearby
scales separated by a constant multiplicative factor k. In order to detect the lo-
cal maxima and minima of D(x, y, σ), each sample point is compared to its eight
neighbors in the current image and nine neighbors in the scale above and below. It
is selected only if it is larger than all of these neighbors or smaller than all of them.

• Keypoint localization. At each candidate location, a detailed model is fit to de-
termine location and scale and reject points that have low contrast or are poorly
localized along an edge and, therefore, are unstable to small amounts of noise.

• Orientation assignment. One or more orientations are assigned to each keypoint
location based on local image gradient directions. Image data is transformed rela-
tive to the assigned orientation, scale, and location for each feature to be invariant
to these transformations. Dominant directions of local gradients correspond to the
peaks in an 36-bin orientation histogram which is formed from the gradient orien-
tations of sample points within a region around the keypoint. The highest peak in
the histogram is used to assign the keypoint orientation. Other local peaks within
80% of the highest peak are used to create multiple keypoints at the same scale
location and scale but different orientation. Figure 2.8 shows an example where
keypoints are displayed as vectors indicating scale, orientation, and location.

• Keypoint descriptor. Local image gradients in a region around each keypoint are
transformed into a representation that is invariant to local shape distortion and
change in illumination. First, the image gradient magnitudes and orientations are
sampled around the keypoint location using its scale and weighted a Gaussian
function that gives less emphasis to gradients that are far from the center of the
descriptor. Then, 8-bin orientation histograms are created over 4× 4 sample regions
(see Figure 2.9). Therefore, each keypoint is represented by a 128 (4×4×8) element
feature vector. The contribution of each gradient to its corresponding orientation
bin depends on the gradient magnitude. However, trilinear interpolation is used
to distribute the sample into adjacent histogram bins, avoiding that the descriptor
changes abruptly as a sample shifts smoothly from one orientation to another.
Furthermore, using less orientation bins than in the orientation assignment stage (36
bins) allows for significant shift in gradient positions. Finally, the feature vector is
modified to reduce the effects of illumination change. First, the vector is normalized
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Figure 2.8: Figure taken from [Low04]. The right image shows the keypoints extracted from
the original image on the left. Keypoints are displayed as vectors indicating scale, orientation,

and location.

Figure 2.9: Figure taken from [Low04]. A keypoint descriptor is created by first computing the
gradient magnitude and orientation at each image sample point in a region around the keypoint
location, as shown on the left. These are weighted by a Gaussian window, indicated by the
overlaid circle. These samples are then accumulated into orientation histograms summarizing the
contents over 4x4 subregions, as shown on the right, with the length of each arrow corresponding
to the sum of the gradient magnitudes near that direction within the region. This figure shows a
2×2 descriptor array computed from an 8×8 set of samples, whereas SIFT uses 4x4 descriptors

computed from a 16x16 sample array.

to unit length. Then, values in the unit feature vector are threshold to each be no
larger than 0.2 and renormalized to unit length in order to reduce the influence
of large gradient magnitudes. This means that the distribution of orientations has
greater emphasis than matching the magnitudes for large gradients.

Another descriptor very popular is Speeded Up Robust Features (SURF) [BETVG08]. It
describes a distribution of Haar-wavelet responses within the interest point neighborhood.
The first step consists of constructing a square region centered around the interest point,
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Figure 2.10: Figure taken from [BETVG08]. The descriptor components of a sub-region rep-
resent the different image intensity patterns. For a homogeneous region (left), all Haar-wavelet
responses are relatively low. For a region of vertical stripes (middle), the value of

∑
|dx| is high,

but all other remain low. For a region with gradually increasing intensity in x direction, both
values

∑
dx and

∑
|dx| are high.

and oriented along the keypoint orientation. The region is split up regularly into smaller
4×4 square sub-regions and, for each sub-region, a few simple features at 5×5 regularly
spaced sample points are computed. Then, horizontal and vertical Haar wavelet responses
dx and dy are summed up over each subregion, as well as their absolute values |dx| and
|dy|. Hence, each sub-region has a four-dimensional descriptor vector v for uts underlying
intensity structure v = (

∑
dx,

∑
dy,

∑
|dx|,

∑
|dy|). This results in a descriptor vector

for all 4× 4 sub-regions of length 64. Figure 2.10 shows the properties of the descriptor
for three distinctively different image intensity patterns within a subregion. The work in
[BETVG08] also proposes an extented version of the SURF descriptor called SURF-128,
which adds a couple of similar features. It uses the same sums as before, but splits these
values up further. The sums of dx and |dx| are computed separately for dy < 0 and
dy ≥ 0, as well as the sums of dy and |dy| are also split up according to the sign of dx.
This extended version is more distinctive and not much slower to compute, but slower to
match due to its higher dimensionality. It comes out to perform better.

2.1.3 Other image representations

Bag-of-Features

Traditionally, local features such as SIFT and SURF are clustered in unsupervised ways
to create visual words [SZ03], which are equivalent to words for text retrieval. After
clustering, each cluster center is taken as a visual word and a corresponding visual vo-
cabulary is generated. Figure 2.11 shows examples of regions belonging to particular
clusters, i.e. which will be treated as the same visual word. With the visual vocabulary,
each image local feature is assigned its nearest visual word and, therefore, the image can
be represented as a vector of visual word frequencies. This image representation is known
as Bag-of-VisualWords (BoVW) and as Bag-of-Features (BoF), which is the dual of the
extended Bag-of-Words (BoW) used in text retrieval, where each document is represented
as a vector of word frequencies. Despite the lack of spatial information, the BoF image
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Figure 2.11: Figure taken from [SZ03]. It shows two sets of regions from two different clusters.
Each region set is assigned the same visual word.

representation has been very popular in computer vision and visual content analysis in
recent years. It has shown promising results for a wide variety of applications such as
object recognition, image and video annotation, video event recognition, etc. Further-
more, the framework of traditional information retrieval [BYRN+99], i.e. the inverted
file structured indexing and TF-IDF (Term Frequency Inverted Document Frequency)
weighting, has been adopted as a solution for large-scale image and video retrieval.

Spatial Pyramid

Bag-of-Features methods, which represent an image as an orderless collection of local
features, disregard all information about the spatial layout of the features and are in-
capable of capturing shape or of segmenting an object from its background. The work
in [LSP06] proposes to partition the image into increasingly fine sub-regions and com-
pute histograms of local features found inside each sub-region. Figure 2.12 shows a toy
example of a three-level pyramid.

Histograms of Oriented Gradients (HOG)

The basic idea in [DT05] is that local object appearance and shape can often be charac-
terized by the distribution of local instensity gradients or edge directions, even without
precise knowledge of the corresponding gradient or edge positions. It is usually computed
to represent image windows rather than the whole image. Thus, in object detection and
retrieval applications, classic exhaustive window sliding approach is usually combined
with this representation. In practice, this is implemented by dividing the image window
into small spatial regions, which are called cells. Then, for each cell, a local 1-D his-
togram of gradient directions or edge orientations is computed over the pixels of the cell.
Each pixel calculates a weighted vote for an edge orientation histogram channel based on
the orientation of the gradient element centred on it, and the votes are accumulated into
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Figure 2.12: Figure taken from [LSP06]. Toy example of a three-level pyramid. The image has
three feature types, indicated by circles, diamonds, and crosses. At the top, we subdivide the
image at three different levels of resolution. Next, for each level of resolution and each channel,

we count the features that fall in each spatial bin.

Figure 2.13: Figure taken from [DT05]. Image of a pedestrian (left) is divided into 7× 15 cells,
over which 1-D histograms of gradient directions are computed (right).

orientation bins over the cells. The combined histogram entries form the representation.
Figure 2.13 shows an example of the HOG descriptor for an image of a pedestrian. In
fact, HOG descriptor was designed for human detection. SIFT descriptor [Low04] was
one of its precursors in the use of orientation histograms.

Pyramid of Histograms of Orientation Gradients (PHOG)

The work in [BZM07] proposes an image descriptor named Pyramid of Histograms of
Orientation Gradients (PHOG), which is mainly inspired by two sources: (i) the image
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Figure 2.14: Figure taken from [BZM07]. Top row images shows an input image and grids for
three levels over its contour image. The image below its level represent the concatenation of the
histograms of oriented gradients computed over the grid cells at the corresponding level. The
following row shows an example for an image of the same category (flower) and the last two rows

two images from a different category (aeroplanes).

pyramid representation [LSP06], and (ii) the Histogram of Oriented Gradients (HOG)
[DT05]. The PHOG descriptor represents an image by its local shape and the spatial
layout, together with a spatial pyramid kernel. It consists of a histogram of orientation
gradients over each image subregion at different resolution levels. Each image is divided
into a sequence of increasingly finer spatial grids by repeatedly doubling the number of
divisions in each axis direction. The idea is illustrated in Figure 2.14. If only the coarsest
level is used, then the descriptor reduces to a global edge or orientation histogram. On
the other hand, if only the finest level is used, the descriptor captures the distribution
of local intensity gradients or edge directions, such as HOG descriptor [DT05]. The final
PHOG descriptor for the image is a concatenation of all the HOG vectors computed over
them.
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2.2 Proposed approach

We propose to analyze if there exists any relationship between the gPb-owt-ucm segmen-
tation algorithm and interest points. In such a case, we would like to study if one family
could benefit from the other, in both directions.

First, we consider how gPb-owt-ucm could benefit from interest points. In this direction,
we propose to analyze whether the interest points scales could be used to adaptively select
the appropriate scale at each location. This idea emerges from [AMFM11], in which the
authors detected that high resolution images of complex scenes require more than a naive
weighted average of signals across the scale range to achive good detection of contours at
any scale. This is because such an average (see Equation 2.1) blurs information, resulting
in good performance for medius-scale contours, but poor detection of both fine-scale and
large-scale contours. The authors claimed that it would be desirable to adaptively select
the appropriate scale at each location.

Second, we consider how interest points could take advantage of gPb-owt-ucm. In this
direction, we propose to analyze whether a hierarchy of interest points obtained from
gPb-owt-ucm could improve object retrieval performance. This idea is based on the
intuition that interest points located on strong contours could be more relevant than
the ones located on smoother contours. In such case, we could use from gPb(x, y, θ),
which has rich information about contours strength at different orientations, to establish
a hierarchy among the interest points. More formally, we propose two ways of weighting
a keypoint:

• Without considering the keypoint orientation:

W (ki) = max
θ
gPb(x(ki), y(ki), θ) (2.3)

where W (ki) is the weight assigned to the keypoint ki, θ refers to the different ori-
entations considered by gPb contour detector, and x(ki) and y(ki) are the location
coordinates of the keypoint ki. The weight is assigned taking the contour strength
at the orientation which gives the maximum value.

• Considering the keypoint orientation:

W (ki) = gPb(x(ki), y(ki), θ(ki)) (2.4)

where θ(ki) is the keypoint orientation. Therefore, the weight is assigned taking
the contour strenght at the orientation given by the keypoint.

Once each keypoint has been assigned a weight, we could sort them and create a hierarchy
where keypoints with the largest weights would form the upper part, whereas the ones
with the smallest weights would belong to the bottom of the hierarchy. This hierarchy
can be used in the matching process for object retrieval or in the classification process
for object recognition as a top-down approach, making more robust the process and
decreasing the computational cost. Suppose that we have a hierarchy of L levels, where
level l = 0 consists of the keypoints with the smallest weights and level l = L−1 contains
the ones with the largest weights. For object retrieval, matching between keypoints from
level l is only considered if matching between between keypoints from level l+ 1 exceeds
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a minimum threshold. Analogously, for object recognition, each classifier is applied over
keypoints at level l only if the classifier at level l + 1 exceeds a minimum threshold.

For object retrieval, another way would be using directly the weights instead of creating
a hierarchy of keypoints:

d(Oq, Ot) =
∑
i

W (ki)d(ki,m(ki)) (2.5)

where Oq and Ot are the query object and a target object from the database respectively,
ki is the ith keypoint from Oq, W (ki) is its weight, and m(ki) is its matched keypoint
from Ot.

Furthermore, we also propose another way to benefit from gPb-owt-ucm segmentation al-
gorithm, which consists in using the junctions detected as interest points as in [MAFM08].
Junctions are defined as the points where watershed arcs intersect. Since each watershed
arc is assigned a weight, each junction can also be assigned a weight as a function of
the weights corresponding to the arcs from which the junction is created. Therefore, we
propose to analyze which would be the impact on object retrieval performance of replac-
ing interest points by the junctions detected using the gPb contour detector. A similar
approach for object recognition using junctions has been adopted in [WBW+10].

2.3 Experiments

With regard to the evaluation of gPb-owt-ucm benefiting from interest points, we propose
to use the precision-recall framework [MFM04] on the Berkeley Segmentation Datasets
(BSDS300 and BSDS500) [MFTM01]. This benchmark operates by comparing machine
generated contours to human ground-truth data and allows evaluation of segmentations
in the same framework by regarding region boundaries as contours.

On the other hand, we propose to study the object retrieval performance by using only
the interest points at an increasing depth in the hierarchy. Therefore, given a hierarchy
of keypoints with L levels, we will compute the retrieval performance using keypoints
belonging to top level L−1, keypoints belonging to the two uppermost levels L−1, L−2
and so on until considering keypoints from all levels L − 1, L − 2, ..., 1, 0. We expect
that the upper the level, the more discriminative their keypoints. In other words, the
performance increase of including keypoints from level l − 1 to keypoints from levels
L − 1, ..., l decreases as l also decreases. We plan to use the TRECVID benchmark
dataset provided for the Instance Search task [SOK06].

With regard to object recognition, we also plan to analyze the impact of using a hierarchy
of keypoints in bechmark datasets such as MSRC [SWRC06] and PASCAL [EVGW+10].





Chapter 3

Use of context in object retrieval
and recognition

3.1 Related work

In object recognition and retrieval, there have been suggestions that a bounding box
may be able to provide some degree of context and may actually be beneficial. Many
state-of-the-art techniques are based on exhaustive search over the image by using a
sliding window with multiple scales to find the best object positions [DT05] [FGMR10]
[HJS09] [VJ04] [ZCYF10]. [DT05] proposes grids of histograms of oriented gradient
(HOG) descriptors for human detection and uses a detection window which includes a
margin around the person on all four sides to provide a significant amount of content
that helps detection. Experimental results showed that decreasing the context decreases
the performance. The approach of [FGMR10] builds on a framework that represents
objects by a collection of parts arranged in a deformable configuration, which is referred
to as deformable part models. These models are trained using a discriminative procedure
that only requires bounding boxes for the objects. [HJS09] proposes a two stage sliding
window object localization method that combines the efficiency of a linear classifier for
pre-selection with the robustness of a sophisticated non-linear one for scoring. [VJ04]
describes a face detector framework that uses a method for combining successively more
complex classifiers in a cascade structure over sub-windows at different locations and
scales. [ZCYF10] presents a latent hierarchical learning method for object detection
where an object is represented by a 3-layer tree structure model. The first layer has
one root node that represents the entire object. The root node has 9 child nodes at the
second layer in a 3 by 3 grid layput, and each of them has 4 child nodes at the third layer.
All tree nodes are rectangular windows over which HOG descriptors are computed.

However, one of the contributions of [ZMLS07] is the evaluation of background features,
which shows the pitfalls of training on datasets with uncluttered or highly correlated
backgrounds. Thus, this causes overfitting and yields disappointing results on test sets
with more complex backgrounds. Their experiments reveal that the features on the
objects themselves play the key role for recognition. Thus, using foreground (FF) and
background (BF) features together does not improve the performance despite the discrim-
inative information contained by backgrounds. To determine whether background fea-
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tures provides additional cues for classification, they examine the change in performance
when the original background features from an image are replaced by two specially con-
structed alternative sets: random (BF-RAND) and constant natural scene (BF-CONST)
backgrounds. They carry out the experiments for the following set ups:

• FF. It denotes the foreground features.

• AF. It denotes the features extracted from the original image, i.e., a combination
of FF and BF.

• AF-RAND. It denotes the combination of FF and BF-RAND.

• BF-RAND. It denotes the combination of FF and BF-CONST.

In order of decreasing performance, these combinations are: FF, AF-CONST, AF, AFRAND.
FF always gives the highest results, indicating that object features play the key role for
recognition, and recognition with segmented images achieves better performance than
without segmentation. Mixing background features with foreground features does not
give higher recognition rates than FF alone.

In [ME07], it is confirmed that correct spatial support is important for object recogni-
tion. Thus, knowing the right spatial support leads to substantually better recognition
performance for a large number of object categories, especially those that are not well
approximated by a rectangle, such as sheep, bike and airplane object categories. Al-
though classic rectangular sliding window approaches are known for outstanding results
on faces, pedestrians, and front/side views of cars (all rectangular-shaped objects), they
have trouble distinguishing foreground from background when the bounding box does
not cover well an object (see Figure 3.1). They have also demonstrated remarkable per-
formance recognizing more complicated categories, but in datasets such as Caltech-101
where there is a single object per image and with relatively correlated backgrounds. In
[ME07], for each object in an anotated dataset (Microsoft Research Cambridge dataset),
they estimate its class label in two scenarios: (i) using only the pixels inside the object’s
ground-truth support region, and (ii) using all pixels in the object’s tight bounding
box. Experiments show that objects that are poorly approximated by rectangles see the
largest improvement (over 50%) when object’s ground-truth support regions are used and
that categories that do not show improvement with better spatial support already have
remarkable performance. Overall, the recognition performance using ground-truth seg-
ments is 15% better than using the bounding boxes. In the same direction, in [vdSUGS11]
the authors have adopted segmentation as a selective search strategy for object recog-
nition. Instead of an exhaustive search, which needs constraining the computation per
location, using segmentation to generate a limited set of locations allows to compute the
more powerful yet expensive BoF.

In [RVG+07], the authors go further and propose integrating segmentation into the BoF
framework [FPZ03] considering each region as a stand-alone image by masking and zero
padding the original image. Then the signature of the region is computed as in regular
BoF, but discarding any feature that falls entirely outside its boundary. As a conse-
quence, masking greatly enhances the contrast of the region boundaries making features
along the boundaries more shape-informative. Furthermore, coarse spatial information is
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Figure 3.1: Figure taken from [ME07]. Examples from Pascal dataset where up to half of the
bounding box pixels do not belong to the object of interest.

Figure 3.2: Figure taken from [RVG+07]. This image shows how a mis-labeled object is detected
and changed by enforcing semantic context.

incorporated by clustering features in segments. However, once each region has been la-
beled as an object category, semantic context is used as post-processing to assign objects’
category labels with respect to other objects in the scene. Figure 3.2 shows an image
where objects’ category labels ’Tennis court’, ’Tennis racket’, ’Person’ and ’Lemon’ have
been initially assigned. Then, using semantic context, ’Lemon’ label changes to ’Tennis
ball’ since this label fits in context with the other labels more precisely.

According to [Ram07], approaches based on scanning-window template classifiers can be
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Figure 3.3: Figure taken from [Ram07]. Examples of false positives for a face detector (left), a
pedestrian detector (middle), and a car detector (right) using scanning-window template classi-

fiers.

Figure 3.4: Figure taken from [Ram07]. Local figure-ground segmentation for the foliage is
detected as a false positive when it is fed into a linear shape classifier. On the other hand, face

is correctly detected as a true positive.

hindered by their lack of explicit encoding of object shape, resulting in high false-positives.
Figure 3.3 shows examples where a face detector becomes confused by edges in foliage, a
pedestrian detector mistakens strong vertical edges for a person, whereas a car detector
mistakens strong horizontal edges. The authors propose to use the scanning-window
template classifiers to generate possible object locations and compute a local figure-
ground segmentation at each hypothesized detection to prune away those hypotheses
with bad segmentations (see Figure 3.4).

[DHH+09] presents an empirical evaluation of the role of context in object detection,
evaluating several sources of different context and ways to utilize it.

3.2 Proposed approach

Considering each region as a stand-alone image by masking and zero padding the original
image as in [RVG+07], the local features computed in each region do not depend on the
context. Therefore, if two images contain the same object but with different backgrounds
and assuming that the object is rightly segmented, the local features for both objects
will be the same. However, experimental results in [RVG+07] did not estimate which was
the influence of masking the region for feature extraction, since a more general scheme
including masking was evaluated.
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Therefore, we propose to analyze which is the influence of the context in keypoint detec-
tion. We expect that for different instances of the same object in different contexts, the
locations of the keypoints will be more unstable if the object is not masked. In addition
to this, context is also expected to have an impact on the description of the detected
keypoints. In [MS05], local descriptors robustness to image transformations such as ro-
tation, scale and viewpoint changes, image blur, JPEG compression, and illumination is
evaluated. The number of correct correspondences is determined with the overlap error,
which measures how well the regions correspond under a transformation. It is defined
by the ratio of the intersection and union of the regions. With regard to the keypoints
description, the evaluation criterion is based on the number of correct matches and the
number of false matches obtained for an image pair. Based on [MS05], overlap error will
be used to objectively measure the context influence on the keypoints location stability.
Since we are measuring the context influence, the image transformation will consist in
changing the background as in [ZMLS07]. Therefore, no affine transformation is applied
to keypoint regions when compared by the overlap error. Overlap error will be minimum
if keypoint location has not changed due to the background change. On the other hand,
keypoint descriptors robustness will be measured as in [MS05]. Furthermore, since our
final application will be object retrieval, we will also measure the impact of context in
object retrieval benchmarks such as the Instance Search Task of Trecvid.

On the other hand, the idea of zero padding proposed in [RVG+07] seems not to be the
best way to get rid of the context. They expected that the masking and zero padding
process made features along boundaries more shape-informative. However, this claim
depends clearly on the colour of the object. In an extreme case, no local features should
be detected in an object totally black, independently of the object shape. Therefore,
we think that other strategies for background should be employed to keep the shape
information.

3.3 Experiments

We plan to evaluate the impact of the context in object retrieval using the TRECVID
benchmark dataset provided for the Instance Search task. The goal of this task is to
retrieve the videos which contain a particular object. Some instances of the object as
well as their masks are given as visual examples. The task is performed for a set of objects
to be retrieved. The decision of evaluate the use of context in object retrieval instead of
object recognition has also been motivated by the fact that objects to be retrieved are
instances of the same query object, whereas in object recognition datasets there exist a
large intra-class variance, which would blur the real impact of the context.

For both query and target images we propose the following set ups:

• Feature detection. Whether regions are masked for keypoints detection or not.

• Feature description. Whether regions are masked for keypoints description or not.

Keypoint detection and description invariance to context will be evaluated in an image
dataset on a benchmark based on [MS05]. For each image, a set of images with different
backgrounds but with the same object will be generated. Then, overlap error will be used
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to measure the keypoint detection invariance, whereas keypoint description invariance
will be evaluated through a matching process.

Finally, impact of context will be also evaluated in object recognition. We plan to evaluate
whether object recognition performance improves when no context is used neither for
learning objects’ classifiers nor for object detection.



Chapter 4

Bundling interest points with
regions

4.1 Related work

Classic visual vocabularies are generated from single image local descriptors. However,
these vocabularies are not able to capture the rich spatial contextual information among
the local features. In fact, several works have verified that modeling these visual con-
texts could greatly improve the performance of many visual matching and recognition
algorithms. Basically, two differents ways of considering such spatial context can be dis-
tinguish: (i) algorithms that apply a post geometric verification step [SZ06], and (ii)
algorithms which consider combination of local features [WKIS09][ZHH+10]. As it will
be proposed in Section 4.2, we want to analyze the benefits from using regions as spa-
tial supports for bundling interest points. This is the reason why we briefly describe
some previous works based on combination of local features. Generally, considering vi-
sual words in groups rather than single visual word could effectively capture the spatial
configuration among them. On the other hand, geometric verification is computationally
expensive and, therefore, in practice, it is only applied to a subset of the top-ranked
candidates.

In [WKIS09], a scheme where local features were bundled into local groups was pre-
sented based on the ideas that (i) each group of bundled features becomes much more
discriminative than a single feature, and (ii) within each group simple and robust geo-
metric constraints can be efficiently enforced. The idea of bundling features arises from
the decrease of the discriminative power of quantized local features when a single local
feature needs matching to billions of local feature in large scale databases, resulting in
many false positive matches between individual features. Although a straightforward
way to increase the discriminative power is to increase its region size and/or the dimen-
sionality of the descriptor, a larger feature has a lower localization accuracy and it is
more sensitive to occlusion and image variations. Unlike a single large feature, a bundled
feature provides a flexible representation that allows to partially match two groups of
local features, which can have different number of local features with only a subset of
them matched. In [WKIS09], SIFT features that falls inside a MSER detection (support
region over which SIFT descriptor is computed) are bundled. In fact, ellipses of the
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Figure 4.1: Figure taken from [ZHH+10]. At the centered local feature Pcenter, three groups
containing two local features are detected. Furthermore, one group of three local features con-

taining the two closest ones is also detected.

bundling MSER are slightly enlarged. The authors define a matching score between two
bundled features that consists of two terms: (i) a membership term, and (ii) a geometric
term. The former uses the number of common visual words. The latter performs a weak
geometric verification using relative ordering, measuring the consistency between the or-
der before matching and the order after matching. Experiments in web image search,
with a database of more than one million images, show that this scheme achieves a 49%
improvement in average precision over the baseline bag-of-words approach.

In [ZHH+10], two or three local features are considered in each local feature group since if
too many local features are combined, the repeatability of the combination will decrease.
In addition, if more local features are contained in each group, there would be more
possible feature-to-feature matches between two groups. Each local feature group is
formed by a centered local feature and one or two other local features within a circle of
radius proportional to the scale of the centered local feature. For local feature groups
containing two local features, each centered local feature provides as many local feature
groups as the number of local features within the circle. On the other hand, local feature
groups containing three local features are built considering only the two nearest local
features within the circle. Figure 4.1 shows an example where three groups containing two
local features and one group of three local features are detected on a centered local feature.
The distance between two local feature groups take into account the spatial context
of each local feature group, which is defined as the orientation and scale relationships
between the local features inside the group. They further learn a discriminant distance
metric between local feature groups by collapsing local features with same semantic labels.
Therefore, the metric learning puts more efforts on those local feature groups with same
semantic label but small spatial contextual similarities. Figure 4.2 shows an example of
two groups of local features that have spatial consistency according to the orientation
and scale relationships among their local features.

4.2 Proposed approach

Discriminative visual phrases were proposed in [ZTH+09] to refer to the frequently co-
occurring visual word pairs. If two visual words frequently co-occur within short spatial
distance in images containing the same object but different backgrounds, spatially con-
sistent visual words are more likely to be located on the object.

Assuming this, we propose to work with regions resulting from a robust contour detector,
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Figure 4.2: Figure taken from [ZHH+10]. When comparing spatially two groups of two local
features, there are two possible matchings (showed on the left). When first matching is considered,

local matched features have the same orientation and scale relationships.

such as gPb, since they can provide a good suport for bundling local features, ensuring
that local features being groupped belong to a support area with minimal boundary
strength. Furthermore, any boundary strength threshold on the gPb-owt-ucm segmen-
tation algorithm generates an image partition whose regions contain internal boundaries
which are smoother than the given threshold. Therefore, using regions provided by gPb-
owt-ucm we can guarantee that local features being bundled have not boundaries between
them that are stronger than the given threshold. In this way, the probability of local
features from the object and from the background being groupped together decreases. In
contrast, previous works [ZHH+10][WKIS09] do not consider contour information when
bundling local features to the same group.

Once segmented regions are adopted as spatial supports for bundling local features, the
question of how to describe the region from the set of local features arises. Therefore, we
plan to study if support regions are enough to encode the spatial context and, therefore,
classic BoF could represent the region content, or geometric relationships between the
local features within the same group should be also encoded. As pointed in [ZHH+10],
scale and orientation of keypoints can also be considered to encode spatial context.

4.3 Experiments

We propose to evaluate the performance for different set ups which consider: (i) combi-
nation of local features, and (ii) the representation form.

With regard to the combination of local features, we propose three different cases:

• Individual local features. This is the classic approach for both object retrieval and
recognition.

• Bundling local features within the support region given by the interest point de-
tector [ZHH+10] [WKIS09].

• Bundling local features within gPb-owt-ucm regions from different hierarchical lev-
els.
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With regard to the representation form for a group of local features, the options can be
mainly divided in two categories:

• No spatial information. In such case, region is consider to inherently convey enough
spatial information. Classic BoF approach can be used to describe the region.

• With spatial information. Spatial coding techniques are used to enforce some geo-
metric constraints when matching two group of local features.



Chapter 5

Work in progress

We have carried out some preliminary experiments on using regions for bundling interest
points. The images showed in Figure 5.1 belong to the aeroplane object category of the
Pascal VOC 2012 Dataset. The goal of the experiment is to detect and localize the object
(aeroplane) in the target image (right image of Figure 5.1) by using a visual example (left
image of Figure 5.1). Keypoints and local descriptors have been obtained on each image
by using the default implementation of SIFT descriptor available in OpenCV. Figure 5.1
shows the results of matching individually the keypoints and keeping the best matches.
On the other hand, Figure 5.2 shows the results of region matching. For this, both query
and target images have been first segmented by the gPb-owt algorithm which gives a finest
partition. Then, SIFT features belonging to the each region are bundled and matched.
For these preliminary experiments, the distance between two local feature groups G1 and
G2 has been computed by averaging the distance values from each local feature of G1

to its nearest feature of G2. One of the advantages of using segmented regions during
the matching process is that provides a hypotheses of the object segmentation. From
these preliminary experiments, we also propose to consider spatial consistency among
the regions during the matching process. Therefore, if two regions have been matched as
well as their neighbour regions, then the probabilty of being a true match increases. In
this way, some spatial compactness is enforced, avoiding isolated regions being matched.

Figure 5.1: Matching individually SIFT descriptors
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Figure 5.2: Matching region-bundled SIFT descriptors



Chapter 6

Work Plan and Progress

The following table presents the work plan during the 4-year period that lasts the FPU
grant from the Spanish Science and Innovation Ministry that the author holds. The
progress done in the past is also reflected in the table. The author has been working for
two years in other computer vision fiels, such as indexing techniques and video summa-
rization, due to the involvement in a research project named Buscamedia in collaboration
with the Corporació Catalana de Mitjans Audiovisuals (CCMA). Previously, the author
had also been involved in the i3media project designing an image retrieval system based
on MPEG-7 visual descriptors. Once Buscamedia project has already finished, the re-
search work has turned to object retrieval and recognition since these topics are richer
and more appealing for research.

2011 2012 2013 2014 2015

FPU grant

MERIT Master

Buscamedia - Indexing techniques

Buscamedia - Video summarization

Object recognition and retrieval -
State-of-the-art

Relation Hierarchical segmentation
- Interest points

Bundling interest points with re-
gions

Analyzing context impact

Dissertation writing

Thesis defense

Present

The scientific publications done so far are the following:

• [In review process] C. Ventura, V. Vilaplana, X. Giro, F. Marques. Improving Retrieval
Accuracy of Hierarchical Cellular Trees for Generic Metric Spaces., Multimedia Tools
and Applications 2013.
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• [To be published] C. Ventura, X. Giro, V. Vilaplana, D. Giribet, E. Carasusan. Au-
tomatic Keyframe Selection based on Mutual Reinforcement Algorithm, International
Workshop on Content-Based Multimedia Indexing (CBMI) 2013.

• C. Ventura, M. Martos, X. Giro, V. Vilaplana, F. Marques. Hierarchical Navigation
and Visual Search for Video Keyframe Retrieval, Advances in Multimedia Modeling.
Springer Berlin / Heidelberg; 2012 p. 652-654.

• X. Giro, C. Ventura, J. Pont-Tuset, S. Cortes, and F. Marques, System architecture
of a web service for content-based image retrieval, ACM International Conference On
Image And Video Retrieval 2010, 2010, p. 358-365.

The author has also been involved in the following projects:

• Project CENIT-2009-1026 BuscaMedia: Hacia una adaptacin semntica de medios dig-
itales multirred-multiterminal, BUSCAMEDIA (http://www.cenitbuscamedia.es). In
collaboration with the Corporació Catalana de Mitjans Audiovisuals (CCMA). In-
volved from 2011.

• Project CENIT-CENIT-2007-1012 Tecnologas para la creacin y gestin automtica de
contenidos audiovisuales inteligentes, I3MEDIA (https://i3media.barcelonamedia.org).
In collaboration with the Corporació Catalana de Mitjans Audiovisuals (CCMA) and
MediaPro.
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