Tools for Image Retrieval in Large Multimedia Databases

by Carles Ventura Royo

Directors: Verónica Vilaplana Xavier Giró

Tutor: Ferran Marqués

Barcelona, September 2011

- Identifying the problem
- State of art: indexing techniques
- State of art: Hierarchical Cellular Tree (HCT)
- Modifications to the original HCT
- Experimental results
- Implemented tools
- Conclusions and future work lines

Identifying the problem (I)

Identifying the problem (II)

- K nearest neighbor problem
- Solution: Sequential scan
 - Drawback: Computational time for large databases (10 s for a 200,000 elements)
- Approximate K nearest neighbor problem
 - Indexing techniques

- Dynamic approach
 - Multimedia databases are not static
 - Insertions and deletions
- High dimensional feature spaces
 - "curse of dimensionality" problem
 - MPEG-7 visual descriptors are high-dimensional feature vectors

- Identifying the problem
- State of art: indexing techniques
- State of art: Hierarchical Cellular Tree (HCT)
- Modifications to the original HCT
- Experimental results
- Implemented tools
- Conclusions and future work lines

- Hierarchical data structures
 - Spatial Access Methods (SAMs)
 - K-d tree, R-tree, R*-tree, TV-tree, etc.
 - Drawbacks:
 - Items have to be represented in an N-dimensional feature space
 - Dissimilarity measure based on a L_p metric
 - SAMs do not scale up well to high dimensional spaces

- Hierarchical data structures
 - Metric Access Methods (MAMs)
 - VP-tree, MVP-tree, GNAT, M-tree, etc.
 - More general approach than SAMs
 - Assuming only a similarity distance function
 - MAMs scale up well to high dimensional spaces
 - Drawbacks:
 - Static MAMs do not support dynamic changes
 - Dependence on pre-fixed parameters

- Locality Sensitive Hashing
 - It uses hash functions
 - Nearby data points are hashed into the same bucket with a high probability
 - Points faraway are hashed into the same bucket with a low probability

Drawback:

 It does not solves the K nearest neighbor problem, but the €-near neighbor problem.

- Identifying the problem
- State of art: indexing techniques
- State of art: Hierarchical Cellular Tree (HCT)
- Modifications to the original HCT
- Experimental results
- Implemented tools
- Conclusions and future work lines

Solution adopted

Hierarchical Cellular Tree (HCT)

- MAM-based indexing scheme
- Hierarchical structure
- Self-organized tree
- Incremental construction in a bottom-up fashion
- Unbalanced tree
- Not dependence on a maximum capacity
- Preemptive cell search algorithm for insertion
- Dynamic approach

[KG07] S. Kiranyaz and M.Gabbouj, *Hierarchical Cellular Tree: An efficient indexing scheme for content-based retrieval on multimedia databases.*

HCT: Cell Structure (I)

- Basic container structure
- Undirected graph

Minimum Spanning Tree (MST)
Cell nucleus
Covering radius
Minimum Spanning Tree (MST)
Sp

Cell compactness

$$CF_C = f(\mu_C, \sigma_C, r_C, max(w_C), N_C) \ge 0$$

- Maturity size
- Mitosis operation

- Representatives for each cell from the lower level
- Responsible for maximizing the compactness of its cells
- Compactness threshold

$$CThr_L = rac{1}{k_0} Median(CF_C | orall C\epsilon S_M)$$

HCT Operations (I)

- Item insertion
 - Find the most suitable cell

Most Similar Nucleus
 vs Preemptive Cell Search

HCT Operations (II)

- Item insertion
 - Find the most suitable cell

Most Similar Nucleus
 vs Preemptive Cell Search

$$C_2$$
: $d(O,O_N^2) - r(O_N^2) < d_{min}$

$$C_3$$
: $d(O,O_N^3) - r(O_N^3) > d_{min}$

- Item insertion
 - Find the most suitable cell
 - Append the element
 - Generic post-processing check
 - Mitosis operation
 - Nucleus change

HCT Operations (IV)

- Item removal
 - Cell search algorithm not required
 - Remove the element
 - Generic post-processing check
 - Mitosis operation
 - Nucleus change

- Progressive Query
 - Periodical subqueries over database subsets
 - Query Path formation
 - Based on Most Similar Nucleus
 - Ranking agreggation

- Identifying the problem
- State of art: indexing techniques
- State of art: Hierarchical Cellular Tree (HCT)
- Modifications to the original HCT
- Experimental results
- Implemented tools
- Conclusions and future work lines

- Covering radius
 - Original definition gives an approximation by defect
 - Consider all the elements belonging to the subtree
 - High computational cost
 - Approximation by excess

$$r_C = max(r_C(S_N), d(O_1, O_N) + r_C(S_1), ..., d(O_M, O_N) + r_C(S_M))$$

Covering radius

Covering radius

- HCT construction
 - Preemptive Cell Search over all the levels
 - A method for updating the covering radius
 - To reduce the searching time
 - It can be performed after the HCT construction or periodically

- Searching techniques
 - PQ fails in solving the KNN problem efficiently
 - New searching techniques
 - Most Similar Nucleus
 - Preemptive Cell Search
 - Hybrid
 - Number of cells to be considered
 - Minimum number of cells
 - Cells hosting 2·K elements
 - Cellular structure is not kept

- Identifying the problem
- State of art: indexing techniques
- State of art: Hierarchical Cellular Tree (HCT)
- Modifications to the original HCT
- Experimental results
- Implemented tools
- Conclusions and future work lines

- CCMA image database of 216,317 elements
- HCT building evaluation
 - Construction time
- Retrieval system evaluation
 - Retrieval time
 - Elements retrieved

HCT building evaluation

- Evaluation with respect to exhaustive search
 - Mean Competitive Recall
 - Elements in common
 - Mean Normalized Aggregate Goodness

$$NAG(k, q, A) = \frac{W(k, q, E) - \sum_{p \in A(k, q, E)} d(p, q)}{W(k, q, E) - \sum_{p \in GT(k, q, E)} d(p, q)}$$

- Kendall distance
 - Number of exchanges needed in a bubble sort
- Query set of 1,082 images

Retrieval system evaluation (III)

Preemptive Cell Search

	proposed cove	ring radius	original covering radius		
	non updated	updated	non updated	updated	
Mean retrieval time (s)	1.2386	0.8319	0.1058	1.0095	
Variance retrieval time (s)	0.1886	0.1466	0.0057	0.1994	
Retrieved queries (%)	99.26	99.26	49.26	97.04	
\overline{CR}	28.09	27.51	12.35	26.42	
NAG	0.9970	0.9967	0.9814	0.9965	
Kendall	295.24	313.87	934.14	356.92	

Searching techniques comparative

	MS-Nucleus	Hybrid (7 levels)	Hybrid (8 levels)	Hybrid (9 levels)	Preemptive	MS-Nucleus (20,000 el)
Mean retrieval time (s)	0.0072	0.2172	0.4144	0.6835	0.8319	1.3695
Variance retrieval time (s)	2.1e-05	0.0009	0.0093	0.0569	0.1466	0.0054
Retrieved queries (%)	5.00	37.99	57.95	84.20	99.26	31.61
\overline{CR}	1.35	9.83	14.22	20.81	27.51	12.33
NAG	0.9087	0.9727	0.9824	0.9917	0.9967	0.9776
Kendall	1530.93	1106.08	883.51	580.43	313.87	1025.71

- Identifying the problem
- State of art: indexing techniques
- State of art: Hierarchical Cellular Tree (HCT)
- Modifications to the original HCT
- Experimental results
- Implemented tools
- Conclusions and future work lines

- database_indexing tool
 - Tool for indexing an image database
 - HCT is stored at disk
- hct_query tool
 - Tool for carrying out a search over an indexed database
 - HCT is read from disk and load at main memory

- A server/client architecture
 - Based on a messaging system: KSC

- Identifying the problem
- State of art: indexing techniques
- State of art: Hierarchical Cellular Tree (HCT)
- Modifications to the original HCT
- Experimental results
- Implemented tools
- Conclusions and future work lines

Conclusions

- Hierarchical Cellular Tree implementation
 - To improve the retrieval times
 - Generic implementation for any kind of data
 - Modifications proposed
- HCT evaluation
 - Measures extracted from literature
- Preemptive Cell Search technique gives the best performance
 - It is essential not to use an underestimated value for the covering radius

- Very large databases
 - Not using only main memory
- Region-based CBIR system
 - Each image can be represented by a set of regions
- Browser application based on HCT
 - Take advantage of the hierarchical structure
 - Alternative way to retrieve elements

Thanks for your attention