
Final Project

Contextless Object Recognition
with Shape-enriched SIFT and

Bags of Features

Author:
Marcel Tella Amo

Supervisors:
Dr. Matthias Zeppelzauer

Dr. Xavier Giró-i-Nieto
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1 Abstract

Currently, there are highly competitive results in the field of object recognition
based on the aggregation of point-based features [4, 26, 5, 6]. The aggregation
process, typically with an average or max-pooling of the features generates a
single vector that represents the image or region that contains the object [7].

The aggregated point-based features typically describe the texture around the
points with descriptors such as SIFT. These descriptors present limitations for
wired and textureless objects. A possible solution is the addition of shape-based
information. [9, 6, 2, 12]. Shape descriptors have been previously used to encode
shape information and thus, recognise those types of objects. But generally an
alignment step is required in order to match every point from one shape to other
ones. The computational cost of the similarity assessment is high.

We purpose to enrich location and texture-based features with shape-based
ones. Two main architectures are explored: On the one side, to enrich the SIFT
descriptors with shape information before they are aggregated. On the other
side, to create the standard Bag of Words [7] histogram and concatenate a shape
histogram, classifying them as a single vector.

We evaluate the proposed techniques and the novel features on the Caltech-101
dataset.

Results show that shape features increase the final performance. Our extension
of the Bag of Words with a shape-based histogram(BoW+S) results in better
performance. However, for a high number of shape features, BoW+S and
enriched SIFT architectures tend to converge.
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3 Motivation

The main goal of the project is the study of the addition of shape information to
the popular Bag of Words[7] aggregation scheme. This pipeline consists in creat-
ing a visual vocabulary by quantizing local descriptors. Once the vocabulary is
created, a histogram is computed by assigning new points to the closest codeword
in the vocabulary. This histograms then are used as input for a classifier.

At the moment of the writing, there is not much work on shape coding by
combining segmentation techniques and interest points [2, 6, 9, 16, 17]. However,
there is a lot of work done on segmentation and object candidates [13] as well as
in interest points [4, 26, 5, 24, 26, 27, 25]. The information shared by both can
be used to codify the shape, by taking advantage of the two approaches.

Shape coding is already an explored field [3, 2], but it is generally used in
conjunction with some kind of alignment. The alignment allows the matching of
a shape with other shapes in order to obtain a measure of similarity. It increases
the computational cost of the similarity assessment when comparing two shapes.

On the other hand, some authors [6, 11] have explored the enrichment of SIFT
descriptors in aggregation architectures that do not require any alignment. En-
richments include, for example, color [6] and spatial coordinates [11], as well
as rough shape descriptions through the relative coordinates with respect to a
region’s bounding box [6]. Their results have shown an increase in performance
that motivated our work enriching SIFT features with accurate shape information
of regions that represent objects.

We investigate two principally different approaches (architectures): The enrich-
ment of descriptors with additional features before the creation of the vocabulary
and the enrichment of Bag of Words histograms with other shape-based histogram
representations.

Firstly, the enrichment of the SIFT descriptor with shape information is simply
to add extra features at the end of the 128-dimensional SIFT descriptor. For
the study, a wide variety of shape features have been considered to see if the
performance can be increased by using this aggregation scheme.

When the SIFT descriptor is extended, the size of the Bag of Words is a design
parameter. Experiments have been performed in order to see if by increasing
the size of the feature vector, there is the need to increase the size of the visual
vocabulary as well.
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Secondly, two different aggregation schemes have been considered. They are the
Bag of Words [7] approach as well as the Second Order Average Pooling [6]. The
main difference is that Second Order Average Pooling uses shape matching and
features do not need to be quantized.

For the second architecture we append a shape descriptor to the BoW histogram.
An important aspect in this context is the relation of the dimensionality of both
histograms of features. The question is what happens if we increase the size of
one of them, reducing then, the effect of the other histogram.

This thesis report is structured in the following sections. Section 3 presents the
requirements of the project. The state of the art is presented in Section 4. Then,
an overview of the working flow of the projects is shown in Section 5.
In Section 6, the design of all new features is presented, followed by the devel-
opment in Section 7 which shows practical issues that have been explored. To
conclude the work, evaluations, results and conclusions are presented in Sections
8 and 9. Additionally, a Section for the future work is also presented in the last
section.
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4 Requirements

The basic requirements of this project are:

1. Design a shape feature that can be used in an aggregated framework, with
no need of matching or alignment.

2. Study how to enhance object recognition using aggregated features.

3. Study the limitations of shape coding when using a state of the art seg-
mentation.

4. Analyse the implication of the vocabulary size when the length of the
feature vector grows.

5. Study the relative importance of shape features when combined with BoW
histograms.

6. The proposed features should be at least scale, rotation and translation
invariant. If it is possible, flip invariant as well.

An important point to consider is that this research will try to maximize the accu-
racy of the results, even at the expense of higher computational solutions.

Results will be obtained from a publicly available scientific dataset that will allow
the reproduction of the experiments. These experiments should be comparable
to as many state of the art publications as possible. The resulting source code
of the used software will be made available to the scientific community to allow
for its validation.
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5 State of the art

Many approaches of object recognition tasks have been explored and this chapter
is an overview of the most important ones in the scope of this project.

5.1 Shape

To take information from an object’s shape, two tasks are required: Firstly, the
ability of extracting regions that accurately represent an object. These type of
algorithms are called object candidate algorithms. Secondly, there is the need of
codifying the shape in well distinctive features.

5.1.1 Object Candidates: CPMC and MCG

An object candidates algorithm is the first step in the state of the art for object
recognition [18, 19, 6] which has to detect and locate the object in the image.
In [13], Constrained Parametric Min-Cuts are applied in order to identify object
candidates and gives a higher score to the ones that are more likely to be real
candidates.

Figure 1: Constrained Parametric Min-Cut algorithm. Figure taken from [13].

Given a set of pixels in an image, a selection of them are hypothesised to belong
to the foreground or background. At the beginning, a 5x5 grid of seeds is spread
all over the image. Later, a prediction of the real value is made by turning the
problem into a Graph Cut problem [14] which is solved by minimising a cost
function defined with the goal that real foreground pixels have the minimum cost.

Multi-scale Combinatorial Grouping [20] is an approach for bottom-up hierar-
chical segmentation for object candidates generation. The main idea is to use
multi-scale information to group regions in different scales into high-accurate
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object candidates in a very efficient way in the scale space. The output of the
algorithm will be then used to perform very accurate segmentations as input for
our shape-based features.

Figure 2: Figure taken from [20]. MCG candidate selection

5.1.2 Shape Descriptors

This section reviews some techniques that transform the region into a set of
features that clearly capture the shape of the object. Given that human beings
can recognize an object when only the shape is given, these descriptors become
very important.

5.1.2.1 MPEG-7 Visual Shape descriptors

In shape coding, the MPEG-7 Visual Shape descriptors[3] are an effort to
standardize its data format to facilitate their exchange and inter-operability. The
section of 2D object or region descriptors is based in two different approaches:
The Region-Shape descriptor and the Contour-Shape descriptor. The Region-
Shape descriptor captures the distribution of all pixels inside the region.

The Contour-Shape Descriptor is based on the Curvature Scale Space technique
(CSS) to represent the contour. This technique is based on the equidistant
subsampling of the contour starting form an arbitrary point, obtaining then a
set of x and y coordinates.

A Gaussian function is convolved with the parametric representation of the
shape. CSS decomposes the resulting function into concave and convection parts
by getting the zero-crossing points. The set of parameters result in a descriptor
which has invariance to rotation, uniform scaling and translation. Figure 3 shows
an example of CSS representation.
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Figure 3: CSS technique. Figure taken from [22].

Eccentricity and circularity are also computed and added to the descriptor:

circularity = perimeter2

area

eccentricity =

√
i20+i02+

√
i22

0+i0
2
2i−2i20i02+4i12

1

i20+i02−
√
i22

0+i0
2
2i−2i20i02+4i12

1

i02 =
∑N
k=1(yk − yc)2, i20 =

∑N
k=1(xk − xc)2, i11 =

∑N
k=1(xk − xc)(yk − yc)))

Where N is the number of samples in the contour (xk, yk) and (xc, yc) are the
coordinates of the center of mass of the region.

Then, the curvature function is calculated as well:

K(u, σ) = Xu(u,σ)Yuu(u,σ)−Xuu(u,σ)Yu(u,σ)

(Xu(u,σ)2+Yu(u,σ)2)
3
2

where

X(u, σ) = x(u) ∗ g(u, σ)), Y (u, σ) = Y (u) ∗ g(u, σ))
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Xu(u, σ) = x(u) ∗ gu(u, σ)), Xuu(u, σ) = x(u) ∗ guu(u, σ))

Yu(u, σ) = y(u) ∗ gu(u, σ)), Yuu(u, σ) = y(u) ∗ guu(u, σ))

and gu(u, σ) is a 1-D Gaussian kernel with deviation σ. Then, for different σ
values, zero-crossing values are obtained and kept in the descriptor with the
corresponding σ value.

Auxiliary shape descriptors such as area descriptor, bounding box descriptor,
and additional descriptors can be found in [22, 21, 23].
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5.1.2.2 Shape Context

The shape context algorithm [2] takes advantage of the points from the con-
tour of a region and measures the log distance from each point to all other
points with the purpose of building a 2D-histogram per point. In the example
in Figure 4, 5 log distances and 12 angles have been used to create the histograms.

Figure 4: Shape Context algorithm.

As shown in Figure 4 in the center image, a point in the quantized shape is
chosen to calculate the distance with all other points. This is done for all points,
creating then the following histograms per point.

Figure 5: 2D histograms, log distance vs angle.

Then, a matching algorithm is used to be able to assess the similarity between
histograms. It is based in bipartite matching graphs [1] where every shape can
be compared to other shapes reporting then how similar they are. With the 2D
histograms, the χ2 test statistic is computed as:

Cij = C(pi, pj)) = 1
2

∑K
k=1

[hi(k)−hj(k)]
2

hi(k)+hj(k)

where hi(k), hj(k) denote the K-bin normalized histogram at pi, pj .

The similarity is estimated by minimizing a cost function between all pairs of
points (pairs of histograms).

H(π) =
∑
i C(pi, qπ(i))
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A very important point in this algorithm is that the distances from point to
point are directly tracing straight lines from point to point even when the lines
cross outside the borders of the region.

5.1.2.3 Inner Shape distance

The main difference between the Shape Context approach [2] is that here, the
Euclidean distance is replaced by the inner distance [12]. It is defined as the
shortest path between landmark points within the shape silhouette. In this way,
articulation invariance is achieved. An easy example could be a hand: The
distance from a point in a finger to a point in the consecutive finger. If both
fingers are joint or separate, this distance goes through the union, called junction,
and the inner distance results similar.

Figure 6: The inner distance (in red) between two points is very similar when the
movement involves articulations.

5.2 Interest points

An interest point can be defined as a point which has something distinctive
with respect to the surrounding ones. Interest point-based image represen-
tations consist in (i) the interest point detectors and (ii) the interest point
descriptors.

An interest point detector tries to find a set of the most salient points in an image.
One of the first detectors is the Hessian detector [25] which uses a multiple
scale iterative algorithm to spatially locate and select scale and affine invariant
points. Then, the Difference of Gaussians was proposed in [24] to approximate
the Hessian matrix for faster computations.

A very efficient implementation is the Speed Up Robust Features (SURFT)
interest point detector. Other examples of keypoint detectors are the Harris
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Figure 7: Sparse SIFT, the location of the points have been computed to select the most
important points in the image.

detector and the SUSAN detector.

Interest point descriptors are used to describe the neighbourhood interest points.
One of the most used descriptors is the Scale Invariant Feature Transform [24].
It works as follows: Firstly, it uses the image gradients and orientations around
the point location using its scale and weighted with a Gaussian function to give
less relevance to points far from the center. Later, 8-bin orientation histograms
are created over a sample grid of 4x4. Therefore, each keypoint is represented by
128 features (4 rows x 4 columns x 8 bins in the histogram). Finally, the feature
vector is normalized to reduce illumination changes.

Figure 8: figure taken from [24]. Gaussian window in blue, this image contains a 2x2
grid of histograms in the right from 4 sets of 4x4 grids in the left.

The SIFT descriptor reflects the textured information and we are using it in order
to get the textured part of the image and combine it with shape descriptors.

Other evolved versions from SIFT can be the Histogram of Gradients(HOG)
[27] whose basic idea is that intensity gradients can characterize the object
appearance and shape. There SURF descriptor [26] describes a distribution of
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Haar-wavelet responses within neighbourhood pixels.

Dense SIFT, however, is a technique where the location of all points is known
beforehand by using a regular grid. The SIFT descriptor is applied to those
locations. DAISY descriptors have the advantage they are rotation invariant
whereas dense SIFT generally is not for the sake of a fast computation.

Figure 9: A grid covers all the image and SIFT descriptors are extracted. SIFT detector
is not used.

5.2.1 Enrichment of the SIFT descriptor

The idea of extending the SIFT descriptor has been already tried in [6] by using
the color, position and aspect ratio of the bounding box containing the object.
The features proposed are:

• 4 dimensional aspect ratio features from the bounding box of the region.

(
fix+fjx
wj

,
fix+fjx
hj

,
fiy+fjy
wj

,
fiy+fjy
hj

)
Where h and w are the dimensions of the bounding box, and i and j are
referring to the bounding box space(b) or image coordinates space(f ).

• 2 scale features. where si, sj are the scales of the interest points.

β[ siwj
, sihj

]

• The average color in three different color spaces: RGB, HSV and LAB.

The classification method used in this work is the second order average pooling,
explained in the next subsection.

In [11] an enrichment based on the absolute position of the points has been tried
reporting better results. The main goal of this technique is to try to emulate a
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spatial pyramid without actually performing it, thus, saving a lot of computation
time. The spatial references added at the end of the SIFT descriptors are set in
Cartesian coordinates or as in Polar coordinates with respect to the center of
the image. Authors claim that the second one works better.

Figure 10: Figure taken from [11]. Scheme of spatial enriching of the SIFT descriptors
with the goal of emulating a spatial pyramid.

After adding the spatial information to the local SIFT features, the result is a set
of vectors representing descriptors of 128(from SIFT)+ N(spatial) dimensions. In
the next step, a quantization of the descriptor is used by performing a clustering
with the k-means algorithm and resulting into a vocabulary of visual words.
The goal of the vocabulary is to allow the representation of images by means
of histograms containing the quantized set of words. The last step to perform
would be the classification using a SVM.
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5.3 Aggregation of points

After showing some features and the way to codify them, the remaining question
is how to combine the individual features from a set of points to describe a
larger entity such as a region or an image. This will be reviewed in the next
sections.

5.3.1 Bag of Words

When it comes to aggregate new features, one of the most extended approaches
in object recognition is the Bag of Words [7]. This approach is named by the
fact that the point-based descriptors are considered as an unsorted collection of
items, in an analogy to how items are randomly placed in a bag. It consists on
quantizing local descriptors in K different visual vocabulary words, where K is
a design parameter. In order to apply the bag of words on local descriptors it is
necessary to quantize the feature space. This partition of the space is typically
performed with the K-means clustering algorithm. The centroid of the resulting
clusters is named a visual word and the collection of visual words is a visual
vocabulary.

Figure 11: Three examples of visual bag of word histograms.

The main idea of this pipeline is to discover how many of these visual words
appear in each region or image by creating histograms, so-called Bags of Words
or Bags of Features.

The resulting histograms are typically normalized by the total amount of visual
words in the region or image. As a result, this type of aggregation is considered
an averaging aggregation.
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5.3.2 Second order pooling

In contrast to the Bag of Words pipeline, second order pooling[6] does not need
to quantize the descriptors for its aggregation. From the descriptor, a second
order matrix is created through the outer product between two enriched SIFT
feature vectors. This generates a matrix to represent each point which captures
the correlation between the feature components, similarly to a single Gaussian
model.

Figure 12: Outer product

This matrices of second generated for each point are aggregated with an average
pooling to obtain a single matrix for the whole region or image.

Gavg(Rj) = 1
|FRj |

∑
i:fiinRj

xixT
i

Additionally, the logarithm of each component in the matrix, so that a linear
SVM classifier can be used in a later stage of the process.
Finally the algorithm then just considers the upper right diagonal of the matrix
as it is symmetric, and scans it to generate a feature vector of dimension
10,000.
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6 Working Plan

The organization and working plan is an important part of the success of the
project. As we did not know how the flow of the project would be completely
from the beginning, the project working plan was being created while the project
has been progressing, always looking some weeks ahead.

The project has been followed closely with weekly meetings as well as email
discussions about the day to day topics that have been appearing.

6.1 Tasks

The tasks to accomplish in the project have been:

1. Project proposal: At the starting point, we had some topic to work on,
we decided textureless object recognition.

2. State of the art: A lot of literature has been revised in order to define a
direction for the project.

3. Textureless object recognition: There was a slight change of direction,
we started to work in enrichment of SIFT features and bags of words of
SIFT features. This techniques, as they enrich with shape information,
should also work good with textureless objects.

4. Analysis of available tools: An overview of all possible libraries and
frameworks was made to see which one was fulfilling better our require-
ments.

5. Familiarization with the VL FEAT framework: Due to the variety
of functions that it has, it fits perfect in this study.

6. Development of the enhanced SIFT descriptor methods: The first
stage of the project.

7. Development of the enhanced Bag of Words methods: The second
stage of the project.

8. Experiments and results on Caltech-101: We use Caltech-101 to do
our experiments. With a specific set of training and testing images, later
commented, as well as other design parameters that will give us a huge
variety of experiments.

9. Evaluation and conclusions: The results of the later experiments are
analysed here in order to see the strength and weakness of our algorithms.

10. Writing of the thesis report: Write the final thesis report in order to
be reviewed by Technical University of Catalonia professors for the final
presentation.

11. Presentation of the work: Presentation of the work to the Technical
University of Catalonia.
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6.2 Gannt Diagram
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7 Design

This section presents the design of the collection of techniques proposed in this
work, by combining segmentation and interest point techniques.
All techniques follow the same basic architecture. At first, obtaining a collection
of regions based on the MCG object candidates algorithm and, secondly, obtain
a set of uniformly sampled SIFT points inside these regions. Each of these points
is considered in order to extract the features.

To introduce the following section, an interest point descriptor is needed in order
to gather the textured information. However, in some types of objects, interest
point detectors and descriptors can have the problem addressed in the next
section.

7.1 Uniform sampling vs Sparse Point detectors

In textureless regions, sparse SIFT does not place points. To get information of
these regions it is necessary to use the dense version despite a these points will
have not much information. In the present work, a dense SIFT will be computed
for different scales. The main drawback of this strategy, however, is that a lot of
descriptors are being computed, while in sparse SIFT, only the salient points in
the image are fetched.

Figure 13: Textureless regions are not covered by the sparse SIFT.
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7.2 Shape Descriptors for aggregation

Dense points in conjunction with object candidate segmentations allow the
analysis of the points which are inside the region whereas the points outside the
region are neglected. We aim to analyse the shape of the region by using this
mixed approach. For the sake of brevity and quick references, each technique is
denoted with the corresponding acronyms in its title.

7.2.1 Distance to the nearest border (DNB)

This technique measures the distance between the point and the closest point
at the contour. The result is a vector of two dimensions for each point in the
grid.

Figure 14: Vectors from a point in the regular grid going to the nearest point at the
contour.
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By drawing the vectors corresponding to all SIFT points inside the region and
computing the distance to the nearest border, an interesting plot appears (Figure
15).

In Figure 15, there are two examples of the graph resulting of plotting a vector
from each SIFT point to the closest point in the contour. Red points correspond
to the dense SIFT points falling inside the object whereas green points are the
closest points in the contour of the image.

In this figure, we can clearly visually distinguish the skeleton of the region as
the line inferred by the less dense area, which is telling that somehow, the shape
is being codified.

Figure 15: In the left, the original images are shown. In the right, the graphs resulting
to to the distance to the nearest borders.

The distance to the closest point in the border defines for each point, the radius
of an inscribed circle. Thus, it is a way to describe the size of the immediate
surroundings of each point.
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A normalization stage is required in order to guarantee that the descriptors
is invariant to spatial scale. This means that the same shape with a different
area in terms of pixel count will be represented by the same descriptor. This
normalization is performed by diving all descriptors by the longest distance
found in the region, so that the range of the descriptor becomes [0,1].

x′ = x
max(O)

Where O is the subset containing all vectors for the current region.

7.2.2 Logarithmic distance to the nearest border (LDNB)

In [2], a logarithmic distance has been proposed for shape description. The effect
of taking the logarithmic distance is that elongated objects become shorter after
the transformation.

l = log(d)
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7.2.3 Distance and Angle to the Nearest Border(DANB)

The above defined DNB descriptor can be extended by considering the angle
defined between the line to the nearest point in the border and a reference
axis(e.g. the 3 o’clock direction).

If the angle is codified in degrees or radiants, however, there is a point where the
difference between similar vectors is big. The case where the vector is pointing at
359o is visually very similar to the one that points to 0o. So, despite graphically,
the difference is minimal, and could be said that these vectors are quite similar,
the difference in range is huge.

Figure 16: Despite the vector is almost the same, the resulting angle is completely
different.

A more convenient solution is to store the angle in two features.

[sin(α), cos(α)]

SIFT points falling exactly on the border, have the modulus equal to zero and the
vector distance becomes a single point, and thus, the angle cannot be computed.
For this reason, all SIFT points on the contour are discarded.

7.2.3.1 Rotation Invariant Angle To The Nearest Border

To codify the angle an absolute direction is not the best solution. Let’s say that
the angle is codified with respect to the 3 o’clock direction. Once the image
is rotated, the angle for the same object is going to change, and the resulting
feature will be different.

A relative coordinate system is created then by taking advantage of the major
axis of the region. From that direction, by having a direction and a vector, there
are two possibilities as there are two possible(diametrically oriented) unit vectors
which may be taken as major axis. The minimum angle between the vector and
the direction is chosen so that, if the region is rotated, the angle is going to be
exactly the same.
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Figure 17: The computation of the minimum angle between major axis and vector
direction results in rotation invariance.

In Shape Context [2], the direction is chosen arbitrarily and thus, it is not
rotation invariant. The proposed representation in contrast achieves rotation
invariance by using the proposed local reference axis.

7.2.4 Distance to the center(DC)

The main idea behind the following approach is to try to relate the location of
the points with an intrinsic feature of the region.

It consists on calculating the distance between the centroid of the region and all
SIFT keypoints in the grid. Distance and angle could be codified in the same
way as in the distance to the nearest border approach.

Figure 18: Computation of all distances to the center of mass of the region.

7.2.5 η - Angluar Scan (ηAS)

In order to get a more complete and powerful representation of the shape, we
present the following approach: From each SIFT point, and starting by the
vector corresponding to the distance to the nearest border, an angular scan is
performed so that every β degrees, the distance to the contour is computed and
added as a new dimension in the feature vector. The scan has been performed
in clockwise direction.

First, the vector to the nearest contour point is estimated. Then, an angular
scan is performed clockwise by computing the distance every β degrees. Figure
19, shows the first vector in the left, the central image shows an angular scan
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Figure 19: First vector, 8-Anguar Scan and 16-Angular Scan.

with 8 distances, and in the illustration at the right hand side shows an angular
scan with 16 distances.

This design requires a parameter that will define the amount of angles that
are considered. The precision of the partial quantization of the shape will be
determined through this parameter.

η = 360/β

Rotation invariance is achieved for the angles in the same way as in the previous
section( distance and angle to the nearest border). Rotation invariance for the
sequence of estimated distances is achieved just by circular shifting the values of
the distances until the biggest is located in the first position.
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An important point in this approach in contrast to Shape Context [2] is that it
does not go through holes in the shape. Once it finds a point in the contour, the
distance is kept. This situation remembers to the human perception where a
person can be looking around and somehow memorizing details in the shape of
the surroundings and being finally able to recall the shape of the path.

Figure 20: In the left image you can see the person going through a street, and not
crossing over the holes, while in the right image the same street is plotted as a 2D
representation.

7.2.6 Shape Context from a dense SIFT grid.(DSC)

The Shape Context [2]solution has been adapted to our framework of a dense
grid of SIFT points inside the region to code the distance from each point to
a subset of sampled points at the region’s contour. All points in the grid are
referred to the same set of contour points, as opposed to our η-Angular Scan
descriptor, where each point is connected to the border points resulting from
an angular scan around it. Points in the border are computed only once and
common for all points, leading to a faster computation.

Figure 21: From each dense SIFT point of the grid (b), all quantized contour points (a)
are reached and distances are kept (c).

In this case, note that the approach is also measuring the distances going through
holes, as in the original Shape Context technique. An easy example can be the
leg of a person. If a SIFT point falls into a leg, at some point there will be the
computation of the distance from this point to one of the points of the other leg.
In Figure 22 is a clear example where the distance is computed from one leg to
the other one, crossing then, the limits of the region.
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Figure 22: From a point inside one leg, the distance is computed by going outside the
contours of the region.

7.2.7 Rotation Invariant Region Quantization (RIRQ)

One of the limitations of the Bag of Words approach is the loss of all information
about the relative position of the points. Inspired by the Spatial Pyramid
Matching technique[8], we have explored the possibility of adding a spatial
partition of the region. The technique consists of a partition of the region in
four quadrants, by choosing the major and minor axis direction as a cutting
lines. Thus, it becomes rotation invariant. In each subregion, a region identifier
will be set and added to all the points in that region.

Different encoding schemes are possible:

• [1,2,3,4]: It clearly identifies items, but the euclidean distance between 1
and 4 and between 3 and 4 is different. Thus, for the same distance in the
2D plane, the euclidean distance in the feature space is giving a different
result, and this is going to affect to the k-means clustering and thus to the
creation of the visual vocabulary.

• [0001, 0010, 0100, 1000]: In this case, both problems mentioned are
solved. The euclidean distance between the values is always the same no
matter the quadrant being analyzed.

Figure 23: Different identifiers are set in the rotation invariant quantization

There is still a remaining question: How to decide which identifier corresponds
to each quadrant.

To solve this issue, two solutions have been considered.

1. Sorting the regions by area.

2. Sorting the regions clockwise, starting by the partition with the biggest
area.
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Figure 24: In the left image, the sorting of the subregions is done by area whereas in
the centred image, the biggest area subregion is taken and from that, the other regions
are identified clockwise. In the right image, the same approach as before is done, but
not only with clockwise identification, also counterclockwise.

Flip invariance is also considered here. If nothing else is done, sorting by area is
flip invariant, however, clockwise sorting is not. One way to get it would be to
set the identifier to the subregions clockwise and counter-clockwise. Then, for a
given point, compute the correct quadrants, so that there are two features. If a
sorting over the features is performed, flip invariance is achieved.

Figure 25: Example of flip invariance. First of all, from each point the right subregion
identifiers are extracted both in clockwise and counterclockwise directions. Then, sorting
is done achieving then, flip invariance.

7.3 Fusion before/after descriptors quantization

The proposed techniques are either point-based or region-based. Thus, the
combination/integration in the BoW pipeline is different.

The different solutions for shape enrichment presented in [2, 6] can be combined
with the SIFT-based descriptors at different moments. Here, two possibilities
have been explored: Fusing them before the quantization of the descriptors in
the vocabulary or after. Later on, they could be combined as well.
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7.3.1 Fusion before descriptors quantization(eSIFT)

Once the SIFT descriptor is computed, with its 128-dimension descriptor, extra
features are added to it in this step [11, 6], so that the final descriptors become
128+shape features dimensions long.

Figure 26: Adding extra features to the SIFT descriptor, an enriched SIFT descriptor.

In the literature, it is also referred as enriched SIFT [6]. There has been an
improvement of performance by using this technique. In [11], a spatial pyramid
is emulated by just adding a spatial reference(x and y, or θ and distance) to the
end of the SIFT descriptor. [11]
Note that as descriptors are then quantized, the size of the histograms is not
modified, and thus, the vocabulary size of the standard Bag of Words remains the
same. It is expected that the correlation between the different features will be
better captured by increasing the vocabulary size together with the enrichment
of the descriptor.

By fusing all these new features, what is not yet defined is their dynamic range
which will be different. Thus, a normalization step is required.

7.3.1.1 Normalization

At the descriptor level, some normalizations are possible:

• L2 norm p′ = p
|p|

• Power normalization[6]: sign(p) | p |2

• Weighting spatial features

• Offset in spatial features to give them more relevance.

Improvements have been achieved in [10] by adding the x and y coordinates and
normalizing SIFT features so that the sum of them is equal to 1.
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7.3.2 Fusion after descriptors quantization(BoW+S)

This section illustrates the idea of increasing the dimensionality of the standard
Bag of Words approach.

By using some of the shape features mentioned in the Design section, it is
possible to create different shape histograms. The main idea of this is to explore
the concatenation of the standard Bag of Words with other histograms that
provide exclusively shape information.

Figure 27: SIFT histograms(Texture information) + Spatial Histograms(Shape infor-
mation)

7.3.2.1 Number of bins of the spatial histogram

An easy way to think about this point is to imagine the distance to the nearest
border(DNB) approach which is based on the computation of a distance. In
the BoW+S architecture, there is an array which accumulates all these distances.
With this distances, a histogram is created. An important design parameter
in the spatial histogram is the number of bins which will divide the size of the
histogram and thus the shape vocabulary as size = binsxshapefeatures.

7.3.2.2 Adding more than one spatial histogram

In some of the approaches before explained, more than one feature is obtained.
By taking this into account, is difficult to create a histogram for them as their
meaning is different. In the case of a single feature, a histogram could be easily
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created by accumulating all values of the specific feature. Extended to more
than one feature, the treatment is the same, the only difference is that more
than one spatial histogram is created, and then all of them concatenated.

This makes special sense in approaches like η-Angular Scan where each one
of the angles is the relative angle to the vector that defines the starting point.
The number of spatial histograms would be the same as angles, η. In this
case, the final histogram is bigger than the proposed by the standard Bag Of
Words.

7.3.2.3 Increase of relevance

Due to the fact that the size of the spatial vocabulary can be easily expanded,
the relevance of the shape information becomes stronger than in the standard
Bag of Words. An analysis of the relative size of the spatial histogram has been
made and it is shown in the Evaluation chapter.

7.3.2.4 Normalization

If at histogram level, some bin is increased, then the importance of that part of
the histogram is going to be more relevant than others. Therefore, normalization
of the histogram plays an important role here.The following normalizations have
been considered.

• Conversion to a probability density function.

• L2 norm. p′ = p
|p|

• log(Bag of Words): This normalization removes peaks produced by repeti-
tive textures like the sky or tiles for example.

• Weighting spatial histograms.

• Offset in spatial features to give them more relevance.
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8 Development

8.1 The VL Feat framework

The application has been developed by using the Matlab VL Feat Framework1.
This framework includes a lot of useful functions such as SIFT, Dense SIFT,
Multiscale PHOW SIFT, K-means, etc.

As a starting point, the Basic Object Recognition Application 2 has been used.
It contains:

• PHOW features (dense multi-scale SIFT descriptors)

• Elkan k-means for fast visual word dictionary construction

• Spatial histograms as image descriptors

• A homogeneous kernel map to transform a χ2 support vector machine
(SVM) into a linear one. SVM classifiers

8.1.1 Structure of the application

The application is divided in several parts following the Bag of Words [7] pipeline
with a χ2 kernel map and a linear SVM classifier. It runs by default over
Caltech-101 database, providing the possibility of computing the whole problem,
or a reduced problem of 5 categories instead of 101. However, it can be easily
customized.

1. Separate the training and test images.

2. Get SIFT descriptors.

3. Quantize the descriptors with the K-means clustering algorithm. Save the
vocabulary

4. Compute Bags of Words by getting descriptors and quantize them into the
closest descriptor in the vocabulary.

5. Run the χ2 kernel map over Bags of Words

6. Train a linear SVM.

7. Test the data.

8. The algorithm reports a confusion matrix which is a NxN categories matrix,
showing at which category the test images have been classified. It also
reports the score matrix from the SVM, and the final performance value,
the accuracy(%).

1http://www.vlfeat.org/
2http://www.vlfeat.org/applications/apps.html
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8.1.2 Getting new descriptors and histograms

There are two major functions that encapsulate the novel features that we
have proposed: The extraction of new descriptors and the creation of spatial
histograms.

Firstly, the new descriptors are generated by using a single function that encap-
sulates all of them. This function returns several things:

• frames: In positions 1 and 2 are the x and y coordinates, while in 3 and
4 there are the scale and the orientation of the points.

• descriptors: They describe the neighbourhood of the points given by the
frames. Additional features will be added to them.

• Accumulation array: This array is optional and gives an accumulation
of the spatial features for the further creation of a shape-based histogram.

The convention of the vl feat framework of returning frames and descriptors
in all point-based descriptor functions has been followed as well in our own
approaches.
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9 Evaluation and Results

The main goal of this section is to answer to the following questions:

1. What is the best configuration in terms of accuracy?

2. What is the impact of the codebook size in the performance?

3. What is the impact of using object candidates with respect to ground truth
masks?

4. What is the impact of the context in the Caltech-101 dataset?

An inherent problem in coding the shape is that the segmentation must be
perfect. For the sake of the study in most of the cases we are going to suppose
perfect segmentation and we will work directly with the ground truth of the
data. However, real segmentation results are going to be provided as well.

9.1 Dataset Caltech-101

Caltech-101 [28] is a collection of pictures of objects belonging to 101 categories
and the background category, making a total of 102 categories. There are about
40 to 800 images per category, being the average around 50 images per category.
The dataset was collected in September 2003 by Fei-Fei Li, Marco Andreetto, and
Marc ’Aurelio Ranzato. The size of each image is roughly 300 x 200 pixels.

Generally, only one single object appears in every image usually covering a big
part of the area of the image. Another feature to take into account is that
objects are sometimes not completely included in the image. This means that
sometimes only a part of the shape will appear in the image. Rotation and flip
problems are generally not appearing.

This dataset is a reference dataset used by the scientific community to test their
algorithms.

9.2 Data partitions

For all categories, 30 of the images per category are chosen to belong to the
training set and from 30 to 50 (depending on the number of images in that
category) images per category are used as test images.

9.3 Metrics

In this section, the basic metrics used in order to evaluate the performance of
all algorithms are explained:

• Confusion matrix: The confusion matrix is a NxN matrix where N is
the number of categories. It counts the prediction results in a way that
correct classifications are located in the diagonal of the matrix.

38



Figure 28: An example of confusion matrix in a reduced subset of 5 categories.

• Accuracy: This parameter measures the degree of closeness (in %) of the
classification to the true value. Accuracy is calculated as follows:

Accuracy(%) = 100 TP+TN
TP+FN+FP+TN

Where TP(True positive) refers to positive samples that have been pre-
dicted good, FP(False positive) refers to positive samples that have been
misclassified, TN (True negative) are negative samples which have been
well predicted and FN(False negative) are negative samples which have
been misclassified as well.

Accuracy(%) will be used to determine which approach is better.
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9.4 Evaluation

This section shows the evaluation of all algorithms from the design section.
Different vocabulary sizes have been tested (256, 512, 1024, 2048, 4096 and 8192)
in order to see the variations when the size of the vocabulary increases.

9.4.1 Enrichment before quantization(enriched SIFT)

In this section, we show the results of the whole sets of experiments by trying to
enrich the SIFT descriptor. All algorithms are referred by its acronym like in
the design chapter.

Vocabulary SIFT eSIFT DNB LDNB DANB 8AS 32AS 128AS DSC RIRQ DC SC
256 15,9477 18,7908 16,2418 16,6667 13,5948 19,8693 23,5948 41,3399 22,1242 16,7647 16,3072 15,6209
512 16,2745 20,9150 17,8758 18,5948 13,7255 21,6667 26,3072 41,8301 22,7124 17,4183 17,6144 17,1569
1024 17,8105 21,2745 18,1046 17,3856 15,5229 24,2157 29,0196 42,1569 25,13 17,6144 19,1176 17,9412
2048 17,8105 22,4510 18,4967 17,8105 15,5229 23,4967 30,0327 41,3399 27,15 18,2026 19,7386 18,5948
4096 18,5621 22,4510 17,7778 18,3007 15,2614 24,8693 31,2745 41,3399 27,9085 18,4641 19,5752 18,4314
8192 18,2026 22,5490 18,9542 18,3987 14,0196 25,7190 31,6993 40,915 26,7647 18,0300 18,5948 18,5294

Figure 29: Result of the different enriched SIFT approaches.

The approach 128-Angular Scan (128AS) has obtanied the best performance
of 42,1569% of accuracy. The improvement with respect to the standard dense
SIFT is of about a 26%. The second place is for the 32-Angular Scan (32AS)
with around 31% of accuracy.

Small vocabulary sizes seem to show a tendency of increasing the performance
but after reaching the point around 1024, the vocabulary size does not change
much.

40



9.4.2 Enrichment after quantization(BoW-S)

This section includes all results from the enrichment of the standard Bag of
Words by a shape-based histogram.

Vocabulary SIFT SIFT(Context) DNB LDNB DANB 8AS 32AS 128AS DSC DC
256 15,98 29,8693 18,4641 16,5033 18,9542 29,1503 37,1242 41,2092 20,4248 20,4248
512 16,5359 32,0588 20,098 17,0261 19,7712 29,0196 37,549 41,83 20,8824 20,8824
1024 17,7778 31,9608 20,368 18,3333 21,5686 28,8562 38,2036 42,1569 21,1765 215686
2048 17,7451 33,6601 19,902 18,3007 20,5882 30,7516 38,366 41,3399 21,6667 20,5882
4096 18,4641 34,3791 20 19,183 20,1961 30,3595 39,1503 413399 23,1699 21,1961
8192 18,0392 34,7712 20,6209 18,4314 21,2418 30,1634 38,3007 40,915 22,4837 21,2418

Figure 30: Result of the different BoW+S approaches.

In this approach, the best performance is also for the 128-Angular Scan with
a value of 42,1569% of accuracy. However, the 32-Angular Scan (32AS) is
very close by achieving a 39,1503% of accuracy. In this case, the difference
between both is not as big as in the case of the enriched SIFT.
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9.4.3 Comparison between enrichment before and after quantiza-
tion

To clarify all the obtained results, a comparison between the enrichment be-
fore and after the quantization has been made. The Figure 31 illustrates the
comparison between the best algorithms in both architectures.

Figure 31: Comparison between the two different architectures studied. Note that the
128AS after and before are completely overlapped.
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9.4.4 Influence of the number of bins

A study of the influence of the bins in the spatial histogram has been done in
order to see the optimal number of bins. The analysis has been provided for one
of the best approaches shown in the study (32AS) as there is not much difference
between the best one (128AS) and the computation time is affordable. All results
given in the study are computed with 8 bins per spatial histogram.

bins/histogram 32AS
1 17
2 28
4 35.817
8 38
16 34
32 29
64 24
128 19.902

Figure 32: Effect of increasing the number of bits in the spatial histogram.

The number of bits shows a maximum around 8 bins per histogram while shows
a decrease of performance when decreasing or increasing the number of bins for
each histogram.
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9.4.5 Comparison between ground truth masks and real object can-
didates

Working with ground truth segmentation provides results which do not corre-
spond with most real applications, where no ground truth mask is available for
the object. However, experimenting with them is convenient to see how much
gain is possible to obtain by coding the shape. A comparison between ground
truth and object candidates segmentation has been done to examine the decrease
of performance by using real object candidates MCG segmentation.

Figure 33: Comparison between ground truth and object candidates segmentation.

In Figure 33, we can see how the object candidates segmentation (MCG) is
quite optimal when using SIFT features alone. However, when including shape
features, for small vocabulary sizes, the difference of accuracy between both the
ground truth and object segmentations increases. For big vocabulary sizes, both
curves remain approximately constant.
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9.4.6 Influence of the context

Due that in our algorithms, points outside the current region (known as context)
have been neglected, we have decided to include an analysis of the context as
well.

Vocabulary Object (BoW + S, 128AS) Object + Context (Baseline SIFT SPM) Object (baseline SIFT BoW) Object (BoW+S, 128AS-MCG)
256 41,3399 29,8693 15,9477 29,4444
512 41,8301 32,0588 16,2745 32,6471
1024 42,1569 31,9608 17,8105 34,9020
2048 41,3399 33,6601 17,8105 36,7320
4096 41,3399 34,3791 18,5621 35,8824
8192 40,915 34,7712 18,2026 37,0915

Figure 34: Analysis of the relevance of the context.

Figure 34 shows that by using the context information in the dataset Caltech-101
there is an increase of performance. However, intuition says if that the dataset
were different, this increase of performance could result in even a decrease of
performance.
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10 Conclusions

This chapter aims to summarize the main conclusions of the whole study. We
can conclude that:

Over all performed experiments with shape-based techniques in addition to
standard SIFT descriptors, results have always shown an improvement in accuracy.
Thus, the combination of dense point sampling and object candidates algorithm
in order to codify the shape can work effectively in conjunction.

When the size of the standard BoW is low, the BoW+S pipeline gives much
better results (around a 10% of accuracy improvement). However, when this size
starts to grow, the enriched SIFT architecture as well as the BoW+S architecture
tend to remain approximately constant. Nevertheless, BoW+S has shown better
results in most of the proposed configurations.

The algorithm η-Angular Scan has outperformed over all the other experiments
with its version 128-AS in an increase of around 31% of difference with respect
to the SIFT baseline. The results of the two different architectures(enriched
SIFT and BoW+S) proposed converge to the same results when the number of
shape features added tend to high values.

Context has been proved to help in the Caltech-101 database. However, better
performance has been achieved by codifying the shape rather than by looking at
the context outside the region.

Shape-based features are sensitive to segmentation errors. Our experiments
indicate that in a real object candidates segmentation (MCG) there is a decrease
of performance around 5%.

However, in low sizes of the Bag of Words result in lower performances than
higher sizes. Thus, the approaches are more robust to segmentation errors as
the size of the visual vocabulary grows.
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11 Future work

Distance to the nearest border(DNB)

In the figure 15, the distance to the nearest border from all points has been
computed. Despite this is out of the scope of this project, it is possible to identify
that each point in the border has a different density of vectors coming to it. It
could be telling us the amount of bending that the location has.
In the same figure, it is possible to see a more accurate version of the skeleton of
the region as lines inferred by the less dense area, and it would be interesting to
study how to codify this version.

Rotation invariance

Most of the features added in this project are thought to be rotation invariant.
However, the SIFT version used, dense SIFT is not rotation invariant, and this
is why it is so fast.

An interesting study would be to try to make the dense SIFT rotation invariant
to be able to let all the entirety of the approach be rotation invariant. By using
DAISY descriptors instead of SIFT descriptors the approach would already have
invariance.

Textureless object recognition

Due to the improvement in object recognition by using shape, it can improve
results in textureless object recognition as well. It would be interesting to know
how new features behave in front of a cartoon dataset or a textureless dataset
like in [9].
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