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14 Losses for the BBC Górriz baseline. . . . . . . . . . . . . . . . . . . . . . . 29
15 Results for the Image colourisation with segmentation maps without gen-

erative loss. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
16 Loss for the U-Net baseline plus the segmentation information. . . . . . . . 32
17 Losses for the segmentation + gan model. . . . . . . . . . . . . . . . . . . 32

List of Tables

1 Table with the milestones of the project. . . . . . . . . . . . . . . . . . . . 9
2 Quantitative metrics for the models . . . . . . . . . . . . . . . . . . . . . . 25
3 Quantitative metrics for the models . . . . . . . . . . . . . . . . . . . . . . 26
4 Qualitative metrics for the models . . . . . . . . . . . . . . . . . . . . . . . 29
5 Results with a segmentation loss in a shared decoder . . . . . . . . . . . . 30
6 Total personal costs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
7 Software licences and GPU costs . . . . . . . . . . . . . . . . . . . . . . . . 34

4



Abstract

Automatic image colourisation is a complex and ambiguous task due to having multiple
correct solutions. Previous approaches have resulted in desaturated results unless relying
on significant user interaction.

In this thesis we study the state of the art for colourisation and we propose an automatic
colourisation approaches based on generative adversarial networks that incorporates a
feature reconstruction loss during training. The generative network is framed in an adver-
sarial model that learns how to colourise by incorporating a perceptual understanding of
the colour. Qualitative and quantitative results show the capacity of the proposed method
to colourise images in a realistic way, boosting the colourfulness and perceptual realism
of previous GAN-based methodologies.

We also study and propose a second approach that incorporates segmentation information
in the GAN framework and obtain quantitative and qualitative results.
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1 Introduction

1.1 Motivation

The British Broadcasting Corporation (BBC) owns a historical archive of grayscale me-
dia. These contents can be nowadays reproduced in displays that allow much richer user
experiences: most screens nowadays support colour images and much higher spatial and
temporal definition than those available in the past.

This master thesis addresses the task of media adaptation to richer representations so that
contents captured with deprecated technology can exploit the latest advances in display
technology. In particular, we focus in the basic image enhancement of adding colour to
grayscale images.

The computer vision field has studied different ways to reproduce how the human brain
processes visual information. One of the many visual tasks that humans are capable of
is imagining realistic colours for a grayscale image. Although grayscale images do not
explicitly contain colour information, there are clues coded in them, like the type of
object, the texture or the lighting. A variety of techniques have been proposed to produce
perceptually salient and colorful images from their grayscale counterparts. Recently, deep
convolutional networks have shown potential in different image-to-image translation tasks,
and among them, automatic image colourisation.

This work focuses on image colourisation by training deep neural networks with differ-
ent loss terms: colourisation, adversarial, perceptual and segmentation. In our work, we
consider as a baseline solutions based on the adversarial loss, popularly known as gener-
ative adversarial networks (GANs). This training paradigm aims at producing novel and
realistic samples from a learned data distribution. However, GANs also present some limi-
tations in terms of being able to generate images with the conditions specified by the user.
This is particularly true for the task of colourisation since different colours are plausible
for the same grayscale image. Our main contributions focus in reviewing the limitations
and possible solutions to image colourisation with GANs.

1.2 Contributions

This master thesis builds on top of an existing solution from BBC [7] to colourize images.In
particular, our contributions are the following:

• Improvement of the BBC colourization solution by adding a loss term of feature
reconstruction.

• New implementation of the colourization technique in the PyTorch deep learning
framework, complementary to the existing Keras implementation.

• Introduction of the image segmentation maps as an additional cue to guide the
colourization process.

The improvement of the existing solution has been accepted after peer-reviewing as a
poster in the CVPR 2021 Women in Computer Vision Workshop, which will be hold
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online on June 19, 2021. The submitted accepted abstract is included as an annex to this
report.

1.3 Work Plan

This project was funded by the Research & Development department at the British Broad-
cast Company (BBC) through the the Image Processing Group (GPI) at the Universitat
Politècnica de Catalunya (UPC). Between February 2020 and May 2021, we had regular
video calls every week to develop the work plan. The work plan originally considered
an internship at the BBC premises in London starting Summer 2020 but, due to the
COVID-19 global pandemic and derived mobility restrictions, the whole work was devel-
oped remotely.

1.3.1 Tasks

The different work packages for the project are defined as follows:

• WP 1: Definition of project

• WP 2: Research about state of the art

• WP 3: Datasets

• WP 4: Adaption of software to the GPI computational service

• WP 5: Adaption of software to Pytorch

• WP 6: Research and experimentation on improvements

• WP 7: Participation in a WiCV

• WP 8: Research and experimentation on further improvements

• WP 9: Final Documentation

1.3.2 Milestones

The milestones of the project are defined in Table 1:
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WP Milestone Date
1 Definition of the project 15/03/2020
3 Dataset ready to be used 21/03/2020
4 Run the original code in Keras 28/03/2020
4 Generate a baseline for our task with the Original code 05/04/2020
6 Research state-of-the-art for improvements 15/04/2020
6 Define the strategy to improve the baseline model 31/05/2020
6 Run the code with our first improvement 01/07/2020
5 Run the original code + our first improvement in Pytorch 10/09/2020
8 Further research for state-of-the-art improvements 10/02/2021
8 Define the strategy to improve out latest model 10/03/2021
8 Run the code with our second improvement 10/05/2021
9 Submit to CVPR 2021 Women in Computer Vision Workshop 10/05/2021
9 Deliver report to BBC & UPC 23/05/2021
9 Oral defense at UPC 28/05/2021

Table 1: Table with the milestones of the project.
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1.3.3 Gantt diagram

Now

Phases of the Project
2020 2021

Mar-AprMay-Jun Jul-Aug Sep-Oct Nov-Dec Jan-Feb Mar-AprMay-Jun
WP1: Definition

of the project

Definition of the goal

Planning

Validation from supervisors

WP2: State of the art

Read about GAN’s

Read about Colourisation

WP3: Datasets

Process imagenet as in Gorriz

WP4: Adaptation
of the software

Upload Gorriz to calcula

Prepare the environment

Run the code

WP5: Adapt the
code to Pytorch

Run the code

WP6: Research
& experiments

for improvements

Propose different methods

Approval from supervisors

Implementation

WP7: Documentation

Find faults in the system

Obtain qualitative results

Submit to a conference

WP8: Research &
experiments for fur-
ther improvements

Propose different methods

Approval from supervisors

Implementation of the code

WP9: Final
documentation

Writting final thesis

Oral Defense

Future work

Finish adding the segmentation loss

Submit to a conference

Figure 1: Gantt diagram of the project 10



1.3.4 Deviations from the original plan

Throughout the project there have been deviations from the original plan, mainly on tasks
that took longer than expected to develop.

The main issues were related to replicating the implementations that we had in Keras
with Pytorch. Both of this software development frameworks can be used to work with
deep learning. However, Keras is a higher level framework, so even if some simple imple-
mentations are much easier to code and run, when it comes to custom code, it is much
harder to debug. When we were trying to replicate the baseline results with Pytorch, it
was almost impossible to obtain the same results. However, after some time we were able
to duplicate them. Another time-consuming issue that occurred during the development
of the project was the development of the segmentation addition with Keras, we had some
issues with the implementation that we were not able to solve so we want back to Pytorch.
In the end there was a lot of effort put in the implementation of all the solutions proposed
for this paper even if some of them were not fruitful.

All of this different problems affected the final submission date, and it was extended from
February 2021 to May 2021.
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2 Theoretic Background

This section presents the main concepts and required background knowledge to under-
stand the models, methodology and details that will be approached. We expect the reader
to have minimum knowledge of the basic concepts in Deep Learning [1].

2.1 Image colourisation definition

Image colourisation is the task of adding plausible colour to grayscale images. This trans-
formation requires predicting a three dimensional colour-valued mapping from a real-
valued grayscale image, which leads to an undetermined problem. However, the semantics
and texture provide cues for many regions. The goal of image colourisation in not to
recover the ground truth colour but to potentially fool a human observer.

Adding chromatic information to gray-scale visual data is a widely used technique in
commercial applications and a researched topic in the academia world due to its various
applications. Recently, deep learning has enabled new algorithms for colourisation that
can generalise better the distribution of colours. However, existing methods still suffer
ambiguity when trying to predict realistic colours and often result in de-saturated results.

There are multiple works that implement a semi-supervised or supervised colourization,
such as adding scribbles to an image and propagating that colour though the same tex-
tures. Although this approach provide plausible results, we will focus on automatic image
colourisation, where the network learns plausible distribution for the colours.

2.2 Colour Representation

Colour representation is a fundamental problem in the computer vision field. For the
Colourisation task, we are using CIE Lab colour space to represent the colourised images.
For this specific colour representation we have three channels. The first one L is the
lightness channel and it is defined in the range 0-100, representing black at L=0 and
white at L=100. This channel is equivalent to a grayscale image of the given colour
picture, and it contains most of the visual information, such as object edges and lighting
effects. Colour information is stored in the two last channels: a - green to red and B- blue
o yellow. The range of the values goes from -110 to +110.

It is important to note that with the CIE Lab colour representation we already have the
colour channels represented independently from the luminance channel. In this thesis, we
will predict the two colour channels, a and b given a luminance channel L of an image.

The CIE Lab colour space is chosen similarly to others in the literature, because it is
designed to maintain perceptual uniformity and is more perceptually linear than other
colour spaces [57].
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2.3 Generative Adversarial Networks (GAN)

Since 2012, Deep Convolutional Neural Networks have revolutionized the computer vision
field, where they have surpassed previous baselines in most tasks. Specially when it comes
to generative models, GANs [3] have become one of the most use architectures due to
its realistic results and adaptability to many tasks. Some real-world applications include
image generation [5, 6, 8], image to image translation [4], [9], text to image [10], super-
resolution [11] and photo inpanting [12] between others.

2.3.1 GAN architecture

The principle behind GAN is that we have a joint model where two distinct networks are
trained together. The first network, which we call generator, is trained to generate similar
images than the input. The second network, the discriminator, is trained to distinguish
the original input images from the generated ones from the generator.

In the task of colourisation, the generator is used to produce plausible colour channels
while the discriminator learns to distinguish between real colourised images and the ones
generated by the discriminator.

Figure 2: Architecture of a vanilla GAN.

2.3.2 Objective function

The GAN scheme can be understood as a min-max game where the generator and dis-
criminator compete between them to achieve the Nash equilibrium. At the same time, the
discriminator is trying to minimize the loss while the generator tries the maximize the
loss.

The objective function for the vanilla GAN is defined in the Equation 1,

min
G

max
D

V (D,G) = ExPdata(x)[logD(x)] + ExPz(z)[log(1−D(G(z)))] (1)

,

where we have a vector of random noise, z that follows Pz distribution, and a real sample
x extracted from the dataset that follows Pdata. G and D are respectively the generator
and discriminator. Where the output of G is the generated sample and the output of D is
the probability of authenticity. Finally Ex and Ez represent the expected log likelihood.

During training the network must perform two steps:

13



1. The discriminator is frozen while we train the generator to get generated data that
”fools” the discriminator. During this step the generator is minimizing the likelihood
of D predicting that the generated G(z) is not genuine.

2. The generator is frozen while we train the discriminator to be able to distinguish the
generated data from the real input data. During this step, discriminator maximises
the expected log likelihood of D predicting that real world data is genuine.

This min-max game requires many real samples, since the discriminator needs to learn
the distribution of the real data in order to distinguish it from the fake fake samples. But
not only that, the generator needs ”creativity” to generate samples that will fool the dis-
criminator. This creativity comes from the random noise vector that contains information
that affects the generated sample.

However, in the case of colourisation, the generator will not take a point from the latent
space as the input. The source of randomness comes with the addition of dropout layers
both during training and prediction. Similarily, batch normalization is also used in the
same way, meaning that statistics are calculated for each batch, and are not fixated in the
training process so they add randomness, that allows the generator to have this source of
”creativity”.

2.3.3 Conditional GAN

Conditional GANs (cGAN) [2] provide a control mechanism over the generated data by
adding extra input information that acts as a condition. This conditional data forces the
generator to produce a more specific output instead of a generic sample.

The min-max game is still similar to the one presented to train the GAN but adding
the condition and with a few peculiarities. It was found that using the traditional vanilla
GAN had a slow convergence rate for the generator [3], and a new objective function is
depicted in Equation 2,

min
G
L(D,G) = −ExPz(z)[logD(G(z))] (2)

,

which can be interpreted as the maximization of the probability of the discriminator
being mistaken and rewritten as a minimization problem. cGAN also proposes adding
an extra term in the objective function to generate images closer to the ground truth
L1 = λ||G(z) − y||, where G(z) is the prediction, y is the ground truth and λ is a
parameter set to 100.

The final objective function for the cGAN is defined as follows:

min
G

max
D

V (D,G) (3)

V (D,G) = L(D) + L(G) (4)

L(D) = ExPdata(x)[logD(x)] + ExPz(z)[log(1−D(G(z)))] (5)

14



L(G) = −ExPz(z)[logD(G(z))] + λ||G(z)− y|| (6)

For colourisation, the model only predicts the A and B channels, so we are keeping the
grayscale from the input and concatenating it with the output. This way, we are condi-
tioning the network to have the same grayscale information at the output, and predicting
the colour channels.

15



3 State of the art for colourisation

This sections reviews other works in the field of image colourisation, with particular focus
on the contributions that have inspired this thesis.

We can group these techniques in two main approaches: semi-supervised and supervised
ones.

3.1 Semi-Supervised Colourisation

In semi-supervised case colourisation, the user provides hints to the algorithm about how
the final result should look like. These hints can come in the form of scribbles - small
patches of colour in specific areas of the image- or a coloured reference image [53] - from
which the network will match the texture and statistical data. Colourisation methods
based on colour-scribbles generally use an optimization framework without explicit pa-
rameter learning to propagate the colour from the colour patches onto the whole image.
An example of methods based on colour-scribbles can be seen in fig. 3.

Figure 3: Example of a method based on colour-scribbles.

The first method was proposed by Levin et al. [41] and later improved by Huang et al. [42]
that exploited edge detection in order to remove colour bleeding over object boundaries.
Luan et al. [43] method automatically labels pixels that should share similar colours and
they extend the scribbles into those similar pixels.

Colourisation based on a coloured reference image, also known as style transfer, has also
been explored by a few researchers. Welsh et al. [44] and Gupta et al. [45] proposed feature
matching to transfer the colour information.

In Deep Colorization by Cheng et al. [46], they introduce the use of deep features and
deep feature matching to both extract and obtain the per-pixel colourisation.

Combining both methods, Liu et al. [47] automatically generates scribbles from the ref-
erence and propagates it through the target image using [41].

While both methods are able to obtain visually plausible results, it is important to note
that they need user interaction. And as in most fields within the machine-learning field,
we are always prioritizing having end-to-end automatic algorithms.
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3.2 Unupervised Colourisation

Unsupervised image colourisation is a fully automated solution, since the user does not
provide any hint to algorithm regarding the expected colour output.

Unsupervised image colourisation is in particular trained in a self-supervised set up [19]
where the colour images are converted to grayscale. This allows quick collection of training
data suitable for training deep neural networks. A first approach to image colourisation
with deep learning was proposed by Cheng et al. [16]. They approached the problem by
formulating a least square minimization equation solved with deep neural networks. In
their work, they grouped reference images by clusters, and trained a dense neural network
that was able to extract pixel-wise chrominance values for each similar clustered image.

The capabilities of Generative Adversarial Networks (GANs) [21] for producing realistic
samples was firstly applied for image colourisation in Pix2Pix by Isola et al. [4]. In partic-
ular, Pix2Pix applies the concept of Conditional GAN (cGAN) [35] in an image-to-image
translation framework implemented on top of a U-Net [34] convolutional architecture.
Some training improvements to his set up were proposed by Nazeri et al. [27] to allow the
colourisation of high definition images.

Gorriz et al. [7] increased the colour saturation obtained by an off-the-shelf pix2pix model
by adding batch and instance normalization, spectral normalization normalization as a
regularization step to the training, as well as multiple discriminators. This is the existing
approach at BBC we built upon.

ChromaGAN [30] obtained more lively and plausible colours by adding a module to the
generator for predicting the distribution of semantic classes. They use a generator that
contains two submodules, one predicts the chrominance values and the second one the
class distribution, obtaining extra segmentation information.

A similar idea, to improve the quality and diversity of the generated images was imple-
mented in the OASIS model [40]. OASIS introduced a novel discriminator with segmented
pixel-wise loss instead of the typical adversarial loss model. By providing stronger su-
pervision during training, they achieved synthetic images of higher fidelity with better
alignment to their input.

InstColorization [39] proposed a new deep learning approach to achieve instance-aware
colourisation. They obtained lively and plausible results without the use of generative
networks by a first step of object detection, which allowed a later figure-background
separation, a second step of colourising the foreground instances through a colourisation
network, and a final step of combining all instances within the image with a final fusion
module.

Our work explores the benefits and challenges of this approaches by reproducing the
results of Pix2Pix and Gorriz. In addition, we propose novel approaches to exploit the
semantic segmentation maps, inspired by OASIS and InstColorization.
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4 Methodology

This section presents the methods we tested ad proposed to achieve automatic image
colourisation.The first part of our project consisted on improving the baseline provided
by the BBC, by adding a feature reconstruction loss. The second part tried to exploit
the pixel-wise labels provided in the semantic segmentation maps to further improve the
results.

4.1 Baselines

While our main goal was improving the existing baseline by BBC [7], we also repro-
duced other more basic methods to fully understand the challenges before proposing new
solutions.

4.1.1 Colourisation loss only

The most basic baseline consists on a simple U-Net that is able to predict the a and b
channels given the luminance channel. We chose this network because it would later be
adapted in an adversarial framework, so we would be able to compare the results with
and without the adversarial loss.

The U-Net architecture [34] is a well-known symmetric encoder-decoder based architec-
ture. The encoder consists of n=7 downsampling layers with an increasing number of
filters. The decoder has the corresponding symmetric filters, but adding skip connections
to allow the flow of the low-level information in the network. This type of network is
usually used for image to image translation, as it allows to take a n×n dimensional input
and transform it into another n× n dimensional output.

Figure 4: Architecture the U-Net.

18



The encoder part of the model is comprised of convolutional layers that use a 2×2 stride
to downsample the input source image down to a bottleneck layer. The decoder part of the
model reads the bottleneck output and uses transpose convolutional layers to upsample
to the required output image size.

Skip connections are added between the layers with the same sized feature maps so that
the first downsampling layer is connected with the last upsampling layer, the second
downsampling layer is connected with the second last upsampling layer, and so on. The
connections concatenate the channels of the feature map in the downsampling layer with
the feature map in the upsampling layer. The concatenating operation ensures that the
features that are learned while contracting the image will be used to reconstruct it. For
the loss term, we use a type of regression loss, L1.

Although U-Net does not provide state-of-the-art results for segmentation, it is a robust,
fast and easy-to-implement baseline that has been the inspiration for many posterior
works.

4.1.2 Colourisation and adversarial losses

Pix2Pix [4] is popular solution for image-to-image translation that is based on a U-Net
architecture that adds an adversarial loss term to the loss term of the downstream task,
such as colourisation, converting maps to realistic satellite photographs, from sketches of
products to photographs, etc.

The image-to-image translation task with the adversarial loss actually corresponds to the
conditional GAN (cGAN) presented in Section 2.3.3. In the Pix2Pix model, we have a
generation of a target image that is conditional on a source image. The Discriminator
in this case is provided with the source image and the target image and must determine
weather the target is a plausible transformation of the source image.

The architecture of the discriminator is a PatchGAN, which is a patch-based fully con-
volutional Network [52]. The discriminator performs conditional-image classification, it
takes the source and the target and predicts the likelihood of whether the target image
is real or generated. It is based on the effective receptive field of the model, and it is de-
signed to do a classification of a patch of the input image, providing an activation map of
classification values. Since we have an output for each patch, the labels will have the same
shape accordingly. The authors reason that this enforces more constraints that encourage
sharp high-frequency detail. Additionally, the PatchGAN has fewer parameters and runs
faster than classifying the entire image.

4.1.3 BBC Górriz baseline

The baseline from BBC proposed by Górriz et al. [7] improved the Pix2Pix by introducing
batch [48] and instance [50] normalization in both the generator and discriminator layers.
These techniques improved the stability of the adversarial loss during training, leading to
better colourisation of a variety of images from large multi-class datasets.

Applying mini-batch normalisation such as Batch Normalization [48] has become a popu-
lar practice to accelerate the training of deep neural networks. For the cGAN architecture,
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it was proven that adding batch normalization in the generator and discriminator can sta-
bilise the GAN training and prevent the mode collapse due to poor initialisation [49]. The
authors noticed that batch normalization preserves content-related information by reduc-
ing the covariance shift within the mini-batch during training as it uses the internal mean
and variance of the batch to normalise each feature channel

Another concept that the introduce in this work is Instance Normalisation (IN) [50].
Which benefited the task of stylisation. This technique uses the statistics of an individual
sample instead of the whole mini-batch to normalise features. They noted that similar to
stylisation, image colourisation aims to capture information by learning features that are
invariant to appearance changes, with the goal to colourise within a mini-batch of variable
content.

Their proposal was inspired by IBN-Net [51], where batch normalisation and instance
normalisation were combined to exploit both normalisation capabilities in style transfer,
achieving a more stable training that resulted in an improved capacity of the GAN model.
Górriz et al [7] adapt the IBN-Net architecture to the pix2pix model.

Following the discussion presented in IBN-Net, where the shallow layers usually contain
the appearance variance while the deeper layers have higher feature discrimination con-
tent, they avoided IN in deep layers to preserve content discrimination, while keeping BN
in the whole architecture to preserve content-related features.

To improve generalisation of the network, they also introduced some changes in the use
of weight regularisation. Weight regularisation proportionally penalises the weights of the
network based on their size. To avoid small changes in the input leading to large changes
in the output. Also the activation functions as sigmoid in the discriminator can lead
to unbounded gradients. To prevent this particular anomalies, they introduced Spectral
Normalisation [56] to control the Lipsichtz constant of the discriminator.

Figure 5: Schema from the multi-resolution discriminator used in [7].

Their final contribution was adding multiple discriminators, as represented in Figure 5.
The idea comes from the analysis of the PatchGAN discriminator used in the pix2pix
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framework, which tries to increase the receptive field of the discriminator, but usually
leading to blurry effects and tilling artifacts for the colourisation task. They proposed
using multi-scale discrimination [54], by using N discriminators that share architecture but
have different scale inputs. This allows the discriminator to keep the original architecture
and to obtain variable receptive fields that are larger at the coarsest levels.

4.2 Colourisation, adversarial and feature reconstruction losses

In our first proposal we add a new feature (or perceptual) reconstruction loss and include
it in the objective function used in Pix2Pix [4]. This loss was proposed by Johnson et
al. [28] for image translation tasks, defined as the squared and normalized Euclidean
distance between activations produced in the early layers of the network for the output
image and the target image.

Mahendran et al. [29] showed that using a feature reconstruction loss for training image
transformation networks encourages the output image to be perceptually similar to the
target image, but does not force them to match exactly. In our implementation, rather
than using only per-pixel loss functions depending only on low-level pixel information, we
train our networks using an additional perceptual loss function that depend on high-level
features from a pretrained loss network. During training, perceptual losses measure image
similarities more robustly than per-pixel losses.

The main idea is that when we feed an image to a pretrained network for image classi-
fication, the network has already learned the perceptual and semantic information that
we would like to measure. So comparing the network’s activations from the ground truth
and the generated image provides perceptual information.

For our experiments, we tested different pretrained neural networks to extract the features
to be compared. The first group of experiments consisted on image classification networks
pretrained with ImageNet: a VGG16 network [32], and ResNet50 network [33].

The second group of experiments are based on segmentation networks: U-net [34] and
FPN [36], that had been pretrained with the COCO dataset for semantic segmentation,
in addition to an even earlier pretraining for classification with ImageNet.

4.3 Colourisation and segmentation losses

Training GANs is a challenging task in terms of optimization given the delicate balance
needed between the generator and the discriminator. Inspired by InstColorization [39],
a framework that avoids using an adversarial loss for instance colourisation, we explored
this venue when colourising the whole image.

In our case, we added segmentation cues when training our model, so that it could learn
to discern between objects at the same time as colourising them. Our hypothesis was that
new loss term would prevent the colour bleedding at the object contours that we had
observed in some results from the baselines.

We adopt a U-Net [34] similar to the one used as a generator in the previous approach,
but now the model would predict the segmentation maps in addition to the colour ab
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channels. We considered two possible architectures: with a shared decoder for both tasks,
or with separate decoders for the segmentation and colourization tasks.

4.3.1 Shared decoder

The solution with a shared decoder reused the Generator model from the previous imple-
mentations but changes the last convolutional layer to output a dimension of nclasses∗2.
Therefore, in the input we have a grayscale image of shape [1,height, width], and at the
output we have an image of shape [2 ∗ nclasses, height, width], that will represent the a
and b channels for each class contained in the original data.

This architecture is depicted in Figure 6.

Figure 6: Colourization and segmentation with a shared decoder.

To train the network, we match the original a and b channels for each class with the gen-
erated a and b channels. It is in this novel training process that we infer the segmentation
cues into the model. As in the baseline models, we have used the regression L1 loss to
compare the different channels for each class.

4.3.2 Separate decoders

As an alternative, we also considered the adding a new branch to the U-Net decoder, so
that the weights for the colourization and segmentation tasks would not be shared.

This solution is shown in Figure 7.

The model was firstly trained to segment the images, and once it achieved acceptable
results, the encoder + colourising branch was trained using both the segmentation losses
and colourisation losses.
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Figure 7: Colourization and segmentation with separate decoders.
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5 Experiments

During this project we developed a few experiments to achieve the best plausible coloured
images. However, evaluating the quality of a colourised image in a quantitative way is a
challenging task given the high subjectivity it implies.

Therefore, quantitative measures reflecting how close the outputs are to the ground truth
data may not characterise the human perception of the problem. Nevertheless, we have
used quantitative measures used in the literature in order to compare the results of the
proposed methods.

The most used metrics for this task are PSNR (Peak Signal-to-Noise Ratio) and SSIM
(Structural Similarity Index Measure). The Kullback Liebler Divergence and Jenson Shan-
non Divergence have also been used for this task, which are divergences computed between
the logarithmic colour histograms generated by the test images for the real dataset and
the test images generated by the model.

For the qualitative results, ChromaGAN [30] proposed a perceptual test, where partic-
ipants are shown a picture and later asked to choose between if the colours are real or
generated. The perceptual test must be done in a very concise way, and it is subject to
many mishaps that can happen if it is not adequately planned.

5.1 Colourisation, adversarial and feature reconstruction losses

5.1.1 Implementation details

We defined as baselines a U-net [34] architecture as generator, and PatchGAN as the
discriminator, the same approach as in pix2pix [4].

Training examples were sampled from the ImageNet dataset [31], particularly from the
1,000 synsets selected for the ImageNet Large Scale Visual Recognition Challenge (ILSVRC)
2012. Samples were selected from the reduced validation set, containing 50.000 RGB
images uniformly distributed as 50 images per class. The test dataset wsa created by
randomly selecting 10 images per class from the training set, generating up to 10,000 ex-
amples. All images were resized to 256 x 256 pixels and converted to the CIE Lab colour
space.

The best results were obtained with the VGG16 model. For our final model, we trained
computed the feature reconstruction loss on block3 conv3 layer from the VGG16 network.
This configuration was trained for 23 epochs, during 36 hours. The weight of the feature
reconstruction loss in the generator loss was 0.00001.

5.1.2 Quantitative results with Keras

The first set of experiments were developed with the Keras software framework for deep
learning. In them, we implemented the baselines presented in Section 4.1 and added the
perceptual loss proposed in Section 4.2.

The plots Figure 8 show the colour histogram of the real coloured images, pix2pix base-
line [4], Górriz et al. [7], and our model with different backbones. Quantitative metrics are
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Figure 8: Comparison of logarithmic colour histograms for both ab channels for CIE lab
colourspace

represented in Table 2. The results are coherent with the qualitative results in Figure 9.
The model that includes the feature reconstruction loss with the VGG backbone has the
most similar histogram to the real histogram, denoting more vivid colours in the image.
PSNR is a measure that does not penalize desaturated results, so pix2pix performs better
for this metric.

Table 2: Quantitative metrics for the models

Models Backbone
JS divergence ↓ KL divergence ↓

PSNR ↑
a b a b

pix2pix [4] - 0.13 0.13 79.52 82.94 26.70
Górriz et al. [7] - 0.06 0.06 59.51 22.28 25.14

Our model

VGG 0.09 0.05 50.33 20.15 25.13
ResNet 0.12 0.13 94.82 109.70 25.23
U-Net 0.23 0.19 282.60 205.80 25.19
FPN 0.15 0.19 139 197.90 25.24

5.1.3 Quantitative Results with Pytorch

We replicated the results using the Pytorch software framework instead of Keras. For this
part, we only have the quantitative results as we did not have enough time to study the
qualitative results. Note that even if we have different results, our goal was to extract the
same conclusions as we did with the Keras framework implementation.

The plots in Figure 10 represent the colour histogram of the real coloured images, the
U-net baseline, pix2pix, Górriz et al and the best performing model from our Keras Exper-
iments, which was adding feature reconstruction loss using the VGG architecture. As we
have seen in the Keras implementation, the feature reconstruction loss aids the colourisa-
tion by making it more colourful, represented in the width of the logarithmic histograms.
We were also able to compare the Unet baseline and corroborate our expectations for this
baseline: it provides desaturated results, shown in figure 12.
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Figure 9: Example of coloured images using our model compared to the state-of-the-art
approaches in [4] and [7]

Table 3 contains the evaluation metrics obtained with the PyTorch implementation.
Although the values are different than in the Keras implementation, we can extract similar
conclusions than in Pytorch:

Table 3: Quantitative metrics for the models

Models Backbone
JS divergence ↓ KL divergence ↓

PSNR ↑ SSIM ↑
a b a b

U-Net - 0.33 0.51 372.75 123.49 24.32 1.13
pix2pix - 0.15 0.28 48.18 250.41 24.38 1.31

Górriz et al. - 0.16 0.16 11.36 83.12 23.05 1.06
Our model with

feat. rec. loss
VGG 0.19 0.13 10.24 22.28 23.04 1.08

We plotted the loss curves for the different implementations to be able to compare the
training behaviour.

In the basic U-Net implementation (Figure 12), we can see the clear tendency of the model
to optimize the loss, decreasing it during training time. We can see from the results that
even at the minimum point of the loss, the results in Figure ?? look desaturated, due to
the nature of the regression (or colourisation) loss.
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Figure 10: Logarithmic colour histograms for both a and b channels of CIE Lab
colourspace

Figure 11: A few examples of coloured images using the basic U-Net baseline.

In the pix2pix implementation (Figure 13), we can see that a stabilization where the
discriminator and generator losses are fighting each other, but at around iteration 120k
we achieve what is known as mode collapse. The discriminator is able to distinguish every
time the difference between the real and fake image, and the generator is not able to learn
through the GAN loss. This mode collapse produces the famous desaturated results noted
in [54] and [55] due to the reduction of the contribution of the adversarial loss.

In the Górriz baseline (Figure 14), we can see a clear avoidance of the previously mentioned
mode collapse.

5.1.4 Qualitative Results

A perceptual realism study was performed, similarly to the one presented in Chroma-
GAN [30]. Images were shown to non-expert participants, where some are coloured using
ground-truth and others the results of a colourisation method. The colourisation methods
included were: pix2pix [4] and BBC Górriz [7] implementation and ours. For each image
shown, the participant indicates if the image has real or generated colours.

The qualitative study was run for 150 ground truth images and 150 images for each
model. Each participant had 50 images to label, and the study was performed 35 times.
Perceptual realism corresponds to the % of pictures noted as real from each model.
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Figure 12: Loss for the U-Net baseline.

Figure 13: Losses for the Pix2pix baseline.

The results presented in Table 4 show how pix2pix obtained better perceptual realism.
After a study of the reason behind it, we found that participants tend to classify desat-
urated images as real. However, even if out method produces more colourful results that
are perceptually coherent, the participants were able to pick up on artifacts appearing in
the images and were able to distinguish them as generated images.
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Figure 14: Losses for the BBC Górriz baseline.

Table 4: Qualitative metrics for the models

Model Naturalness
Ground Truth 0.87

pix2pix [4] 0.53
Górriz et al. [7] 0.26
Ours with VGG 0.38
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5.2 Image colourisation with segmentation maps

5.2.1 Implementation details

We designed two solutions to exploit semantic segmentation maps for colourisation: one
with a shared decoder an another one with separate decoder (see Section 4.2 for more
details). However, we could only implement the solution with the shared decoder during
the timeframe of this master thesis.

This solution adds channels to the baseline U-net [34], a pair of a and b channels for each
considered semantic class.

Our training data came from the Pascal dataset [58], which contains 21 classes, including
background. We use the standard partitions of 1,464 samples for training and 1,449 for
test. All images were resized to 256 x 256 pixels and converted to the CIE Lab colour
space. This configuration was trained for 48 epochs, during 10 hours.

We trained the network from scratch, as the pretrained networks for Imagenet are pre-
trained with RGB images and normalised between [0,1] and we are using a network that
has as an input a luminance image that is normalised between [-1,1] we were afraid that
the initialisation would not work. However, it would be another improvement that we
could add to use a pretrained network and study the compatibility with our colourspace.

5.2.2 Quantitative Results

Table 5 shows the different quantitative metrics for the different experiments we did with
feature reconstruction loss. Since we are using the segmentation Pascal Dataset, we are
unable to compare the results with the previously defined models.

We provide a set of test images 15 to visualise the results and hypothesise about the lack
of colour in the results.

Table 5: Results with a segmentation loss in a shared decoder

Models PSNR ↑ SSIM ↑
U-Net with segmentation loss 24.20 1.11

Figures 16 and 17 show the loss curves of these two configurations.

For our architecture without an adversarial loss, we can clearly see that the model quickly
learns a distribution but does not converge to a minimum. This could be because the
network is trying to predict the a and b channels for every class, augmenting the output
data complexity. It is possible then, that the best possible outcome for the network is
to simply output the grayscale images with almost none activation for the chromatic
channels. For future results we suggest only computing the loss over the present classes
in the ground truth and ignore the rest.

For the experiment where we implement our segmentation network and add it to the
adversarial framework, the model collapses because the losses from the discriminator are
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Figure 15: Results for the Image colourisation with segmentation maps without
generative loss.
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small, meaning that it is able to identify almost always whether the image is real or
generated, and the GAN for the generator is high, meaning that it is not able to trick
the discriminator. This may be due to the previously mentioned problem, where the loss
is pushing the model to learn the average value, which might be easy to identify by the
discriminator. Similarly to the previous experiment, we can observe that the L1 is not
decreasing.

Figure 16: Loss for the U-Net baseline plus the segmentation information.

Figure 17: Losses for the segmentation + gan model.
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5.3 Summary

This section sums up all the findings from our implementations and the results achieved.

Colourisation loss only: The histogram from both chroma channels is very narrow
compared to the real channel histograms. This is due that the loss does not encourage
the results to be colourful and it predicts either the mean values or the values that
are most prevalent in the training data (mostly blues and greens), since there are a
lot of pixel values from the sky and greenery in the Imagenet dataset.

Colourisation and adversarial losses: The pix2pix baseline improves the results by
adding the generative adversarial loss. We can see that the histograms are wider
than before and from the results we can perceptually notice the difference in the
appearance of some vibrant colours.

BBC Gorriz baseline: We observed another boost in the width of the histograms, plus
the added benefit of stabilization of the networks during training.

Colourisation, adversarial and feature reconstruction losses: The addition of the
feature reconstruction loss further boosts the colourisation while keeping the images
perceptually salient.

Colourisation and segmentation losses: We did not succeed in training a neural model
capable of exploiting the segmentation maps. We plan to keep working on this re-
search direction after the completion of this master thesis.
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6 Budget

This section estimates the necessary budget to develop the work presented in this report.
It is important to remark that this project is software-based, so there is not a final physical
product created. Moreover, there is no aim in selling the final outcome of this thesis, so
we do not include any analysis in this matters.

One important part of the budget comes from the personnel costs. The author of the thesis
is counted as a junior engineer working as a full-time worker for the first part of the master
thesis, and half-time for the second part of the thesis, which corresponds to an extension
agreed between BBC and UPC beyond the original contract. Weekly meetings were held
with both BBC and UPC supervisors, that will be counted as managers. In addition, an
engineer at BBC also supported the work and participated in the weekly meetings. In
Table 6 we can see the total personal costs. It is relevant to note that the personal costs
regarding of the junior engineer were funded by BBC following the scholarship regulations
defined at UPC.

Number Wage Hours/Week Total Weeks Total
Junior Engineer 1 5€/hours 40/20 35/20 9000€
Engineer 1 20€/hour 1 55 1100 €
Manager 2 40€/hour 2 55 8800 €

18900€

Table 6: Total personal costs

The software has been developed in Python which is open-source. However, we have used
Pycharm as an integrated development environment which requires a license. In order
to develop this project we used the GPU cluster from the Image Processing Group at
UPC. To quantify how much it costs to use this service by comparing with how much it
would cost the usage of such service from Google Cloud services. We have been running
jobs in the cluster for approximately 10 months, on average we have been running a job
a day for 12h, each of them with a GPU with 16G of RAM. The most similar resource
that Google provides is the Nvidia T4, which costs $178.85 a month. The total cost,
estimating that we had one job continuously running during this 10 months would be of
$1788.5. The equivalent is 1487.18€ (with the conversion 1 USD = 0,83 EUR, at the date
of 04/05/2021). In Table 7 we can see the total software costs.

Software Number Price Total Usage Total
IDE License 1 199€/year 1 year 199 €
GPU Cluster 1 178.85$/month 10 months 1478.18 €

1677.18 €

Table 7: Software licences and GPU costs

Adding the different costs, the total budget for the project results in 20,577.18 €.
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7 Conclusions and future work

In this master thesis we have proposed an algorithm for automatic colourisation of grayscale
images with multiple approaches. Based on the presented state of the art, we proposed
different improving methodologies to increment the liveliness of the results.

We validated that the feature reconstruction loss improves the results of the existing
baseline at BBC, as it promotes a colour distribution more similar to the ground truth
than any of the previous baselines. We experimented both on qualitative and quantitative
results, but it was proven that there is still room for improvement to do the analysis for
the colourisation task.

We lacked time to study in detail the potential of segmentation maps to improve colouri-
sation. The model we implemented was not properly train despite a sounding theoretical
approach. Next steps beyond this master thesis will focus in visualizing the activation
maps and gradients during training to understand which part of the pipeline is not work-
ing as expected.

As we have seen in the results, quantitative metrics are not able to correctly determine
the performance of the network that is doing colourisation. We believe this is a very
interesting field that needs further development and should be studied.

Beyond colourisation, the task of adapting old audiovisual content to modern displays
presents several challenging tasks, such as increasing the spatial definition of the images
or exploiting the temporal redundancies when enhancing videos. We predict that this field
will continue growing, as there is still much to be explored, and the task of colourisation
still offers opportunities for innovation.
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Figure 1: Example of coloured images using our GAN
model compared to the state-of-the-art approaches in
Pix2Pix [5] and Górriz et al[3]

.

1. Introduction

Image colourisation is the task of adding plausible colour
to grayscale images. This transformation requires obtain-
ing a three dimensional colour-valued mapping from a real-
valued grayscale image, which leads to an undetermined
problem because the gray-scale semantics and texture pro-
vide cues for multiple possible colour mappings. The goal
of image colourisation in not to recover the ground truth
colour in a manner that it is perceived as natural by a hu-
man observer.

Our work takes as a baseline a scheme based on an
end-to-end trainable convolutional neural network (CNN)
trained with a smooth L1 loss to predict the ab channels
of a colour image given the L channel. We introduce an ex-
tra perceptual reconstruction loss during training to improve
the capabilities of a adversarial adversarial model, that we
adopt as a baseline. Figure 1 presents some examples of the
results achieved by our method.

2. Related Work
Image colourization networks are typically trained in a

self-supervised set up in which colour images are converted
to grayscale [14]. This allows quickly gathering data suit-
able for training deep neural networks. A first approach
of image colourization with deep learning was proposed by
Cheng et al. [13] by formulating a least square minimiza-
tion problem solved with deep neural networks.

The capabilities of Generative Adversarial Networks
(GANs) [2] for producing realistic samples was firstly ap-
plied for image colourization in Pix2Pix Isola et al. [5].
Some training improvements to his set up were proposed
by multiple authors [9, 12, 3]. In particular, Gorriz et al. [3]
increased the colour saturation obtained by an off-the-shelf
pix2pix model by adding batch and instance normalization
to the training, as well as multiple discriminators.

3. Methodology
In our work we add the feature (or perceptual) recon-

struction loss and include it in the objective function used
in Pix2Pix [5]. This loss was proposed by Johnson et al. [6]
for image translation tasks, defined as the squared and nor-
malized Euclidean distance between activations produced
in the early layers of the network for the output image and
the target image. Mahendran et al. [8] showed that using
a feature reconstruction loss for training image transforma-
tion networks encourages the output image to be perceptu-
ally similar to the target image, but does not force them to
match exactly.

In our implementation, rather than using only per-pixel
loss functions depending only on low-level pixel informa-
tion, we train our networks using added perceptual loss
functions that depend on high-level features from a pre-
trained loss network. During training, perceptual losses
measure image similarities more robustly than per-pixel
losses. This way, when we feed an image to a pretrained
network for image classification, the model has already
learned the perceptual and semantic information that we
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would like to measure. So comparing the network’s acti-
vations from the ground truth and the generated image pro-
vides perceptual information.

The computation of the feature reconstruction loss cor-
responds to the squared and normalized Euclidean distance
between the activations of a selected layer produced by the
real image and generated image, when forwarded through
the perceptual loss network.

For our experiments, we have tried different types of pre-
trained neural networks to extract the features to be com-
pared. The first group of experiments used either a VGG16
network [11] or ResNet50 network [4] classification net-
works, were both were pretrained for image classification
on the ImageNet dataset [1]. The second group of exper-
iments is based on either U-Net [10] or FPN [7] segmen-
tation networks, both composed by classification networks
pretrained on ImageNet and COCO dataset, respectively.

4. Experimental Results
4.1. Implementation Details

We define as baselines a U-Net [10] architecture as gen-
erator, and PatchGAN as the discriminator, the same ap-
proach as is pix2pix [5]. Training data are extracted from
the ImageNet dataset. We select 50,000 RGB images that
represent 50 images per class for training, and 10,000 test
images selected as 10 images per each class. All classes
are converted to CIE Lab colour space. The best results
were obtained with the feature reconstruction loss on block3
conv3 layer from the VGG16 network, with a loss weight of
0.00001. This configuration was trained for 23 epochs, dur-
ing 36 hours.

4.2. Quantitative results

Evaluating the quality of a colourised image in a quan-
titative way is a challenging task, and still remains to be
solved. Therefore, quantitative measures reflecting how
close the outputs are to the ground truth data may not char-
acterise the human perception of the problem. Neverthe-
less, we have used quantitative measures in order to quan-
titatively compare the results of the proposed methods to
others in the literature.

The plots in Figure 2 represent the colour histogram of
the real coloured images, pix2pix baseline [5], Górriz et al.
[3] and our model with different backbones. As quantitative
metrics, we have chosen the Kullback Liebler Divergence.
Furthermore, as state-of-the-art methods on colourisation,
we have also included peak signal to noise ratio (PSNR).
They are represented in Table 1.

Our model with the VGG16 backbone has the most sim-
ilar histogram to the real histogram, denoting more vivid
colours in the image. PSNR is a measure that does not pe-
nalize desaturated results, so pix2pix performs better.

(a) A channel (b) B channel

Figure 2: Comparison of logarithmic colour histograms for
both AB channels for CIE lab colourspace. The wider the
histograms, the more colours they are representing, and
more vivid the resulting images are.

Table 1: Quantitative metrics for the models

Models Backbone JS divergence PSNRa b
pix2pix - 0.13 0.13 26.70

Górriz et al. - 0.06 0.06 25.14

Our model

VGG16 0.009 0.05 25.13
ResNet 0.12 0.13 25.23
Unet 0.23 0.19 25.19
FPN 0.15 0.19 25.24

Table 2: Qualitative metrics for the models

Model Naturalness
Ground Truth 0.87

pix2pix [5] 0.53
Górriz et al. [3] 0.26

Ours with VGG16 0.38

4.3. Qualitative results

A perceptual realism study was performed, similarly
to the one presented in ChromaGAN [12]. Images were
shown to non-expert participants, where some are ground-
truth colourisation and others the results of a colourisation
method. The colourisation methods included were: our
method with VGG16 backbone, pix2pix [5] and Górriz [3]
implementation. For each image shown, the participant in-
dicates if the image has real or generated colours.

The qualitative study was run for 150 ground truth im-
ages and 150 images for each model. Each participant had
50 images to label, and the study was performed 35 times.
Perceptual realism corresponds to the % of pictures noted
as real from each model.

The results presented in Table 2 show how pix2pix
achieves better perceptual realism, as participants tend to
classify desaturated images as real. Our model produces
more colourful results that are perceptually coherent, so it
is suitable when aiming at equally vibrant results.
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