
1

Exploiting User Interaction and Object Candidates
for Instance Retrieval and Object Segmentation

Amaia Salvador Aguilera, Universitat Politècnica de Catalunya

Supervised by: Xavier Giró i Nieto, Universitat Politècnica de Catalunya
Kevin McGuinness, Dublin City University

Abstract

This thesis addresses two of the main challenges nowadays for computer vision: object segmentation and visual instance
retrieval. The methodologies proposed to solve both problems are based on the use of object candidates and human computation
in the computer vision loop. In the object segmentation side, this work explores how human computation can be useful to achieve
better segmentation results, by combining users’ traces with a segmentation algorithm based on object candidates. On the other
hand, the instance retrieval problem is also addressed using object candidates to compute local features, and involving the user
in the retrieval loop by applying relevance feedback strategies.

Index Terms

Computer Vision, segmentation, instance search, object candidates, human computing

I. MOTIVATION

Computer vision is nowadays an active research area, which has became increasingly relevant due to the growing amount
of digital cameras that generate large amounts of visual data. One of the classic computer vision problems refers to object
detection, a task in which machines are expected to locate and recognize the objects present in a scene with an accuracy similar
or better than a human would achieve. This task is still a challenge for computer vision systems, and many approaches have
been implemented over multiple decades.

The most common approach for object localization is to evaluate a large number of windows at different scales at a pixel
level, and determine whether they contain an object or not. One classic example of this approach is the Viola Jones face
detector [1], which is still a state-of-the art technique for object detection but presents several major drawbacks:

1) Its output consists of bounding boxes centered in the location of the detected object, not their pixel-wise segmentation.
2) It relies on the pixel-wise analysis of the image. Even though the Viola-Jones detector is fast and accurate, it is somewhat

unnatural to analyze the image pixel by pixel to identify objects.
3) It is only applicable to detect trained categories. That is, these approaches cannot provide information about those object

classes which were not specifically considered during the training stage.
In the past decade, other image representations have been proposed to replace the structure of the pixel grid, such as

region-based representations.
In a region-based image representation, objects in the scene are described by one or multiple regions in an initial partition.

These regions are commonly referred as superpixels. Superpixel algorithms [2] [3] [4] [5] [6] group pixels into perceptually
meaningful atomic regions, which capture image redundancy and greatly reduce the complexity of subsequent image processing
tasks. A step forward into more efficient image representations are the hierarchical region-based representations [7] [8].
Hierarchies of regions provide partitions of the image at different resolution levels. This way, it is expected that the objects in
the image are described by a single region in at least one of the levels of the hierarchy.

Recently, different works have presented approaches that are able to provide a limited number of high-quality and category-
independent object candidates using segmentation. These techniques [9] [10] [11] generate a ranked list of object candidates for
the image, based on its visual features together with additional parameters learned from a collection of semantically meaningful
regions. These object candidates have been used in recent works [12] [13] [14] for object detection and segmentation tasks,
achieving state-of-the art performances.

Despite of all the achievements in the research field during the past decades, and due to the fact that the way the human
brain operates in order to analyze the content of a scene is still not quite understood, machines still have not matched
human performance when it comes to solving these type of problems in the computer vision field. This has been commonly
characterized as the semantic gap. This gap has not been completely bridged yet, but it is expected that, by bringing human
computation into the computer vision loop, the semantic gap will be significantly narrowed.

This thesis focuses on two of the most important problems in computer vision: object segmentation and instance search.
Object segmentation is the task of locating the objects in an image and giving an accurate segment by labelling each pixel of
the image as either foreground or background. The result of this process is a binary mask in which white pixels indicate the

2

foreground and black ones indicate the background. Instance Retrieval in computer vision is the problem of searching and
retrieving images from large databases. This thesis aims at studying the potential of both object candidates and user interaction
to address these two computer vision problems.

This document is organized as follows: First, Section II reviews several techniques for object candidate generation (section
II-A) and computer vision works involving the user in the loop (section II-B). Section III is dedicated to the problem of
Interactive Object Segmentation. This section introduces two different user interfaces to collect traces from users: Ask’nSeek
and Click’n’Cut (section III-A) and three different interactive segmentation algorithms (section III-B) that can be combined
to achieve a good segmentation quality (shown in section III-C). Section IV is dedicated to the Instance Retrieval problem in
the context of TRECVID Instance Search. This section presents the adopted pipeline for our submission to TRECVID, giving
insights into the potential of using object candidates to compute local features and studying the impact of the users’ feedback
in the results of a retrieval system.

II. STATE OF THE ART

For the purposes of this thesis, the state of the art is dedicated to review several object candidate algorithms and to describe
recent works involving humans in the loop to solve computer vision problems.

A. Object Candidates

Object proposal methods can be divided in two gropus: those whose output is a set of image windows around the objects
in the image, and those that provide accurate segmented object candidates.

In the first category, Cheng et al. introduced in [15] a method to quickly generate a small set of object location proposals
by using edges. They claim that the number of contours that are wholly contained in a bounding box is representative of its
likelihood to contain an object, and use this metric as a score to rank their candidate boxes. Lawrence and Dollár presented
in [16] a method that is able to give a high object detection rate within a small number of proposals at a speed of 300fps
by using binarized normed gradients to determine the objectness of an image window. While these methods only provide the
location of the objects and not their pixel segmentation, they can be extremely useful for object recognition tasks in which
speed is more critical than accuracy.

Fig. 1: Multiscale Combinatorial Grouping (MCG) [11].

In the second category, Van de Sade et al. [17] proposed a selective window search method based on computing multiple
hierarchical segmentations based on superpixels from [3] and placing bounding boxes around the groups of regions at different
levels of the hierarchies. In order to diversify the set of object location proposals, they use several grouping strategies to
identify clusters of similar object candidates. After the grouping, the object hypotheses are sorted according to their likelihood
of containing an object, which is estimated based on the order in which the hypotheses were generated in each individual
grouping strategy. Selective Search has been widely used for object detection methods [18] [19] [20] due to its relatively
fast speed and high recall. Carreira and Sminchiescu presented in [9] a framework to generate object proposals by seeding a
segmentation algorithm. They address this problem by solving a sequence of Constrained Parametric Min-Cuts (CPMC). To
do so, regions are grown around regularly placed foreground seeds which are combined with various background seeds for
all levels of foreground bias. The resulting set of segments is filtered and ranked according to their plausibility of being good

3

object hypotheses, based on mid-level properties. Arbeláez et al. introduced Multiscale Combinatorial Grouping (MCG) in [11],
yet another approach for object candidate generation by using a fast normalized cuts algorithm combined with a hierarchical
segmenter used at different scales and a grouping strategy that combines multiscale regions to produce highly accurate object
candidates. The biggest advantage of these approaches is that they are able to generate high quality segmentation masks, but
they generally have a high computational cost (up to several minutes per image). To overcome this limitation, the authors
of [11] presented Singlescale Combinatorial Grouping (SCG): a faster method of their algorithm, which only uses a single
scale hierarchy. Using this technique, they still show competitive results while reducing the computational time one order of
magnitude.

B. Human Computation

The combination of image processing and computer vision algorithms with human interaction has been extensively explored
in the literature. Many works related to object segmentation have shown that user inputs throughout a series of weak annotations
(scribbles, bounding boxes, clicks, ...) can be used to seed segmentation algorithms, resulting in a great increase of accuracy.
Rother et al. introduced Grabcut [21], a segmentation algorithm based on iterative graph-cuts. In [21], GrabCut is initialized
with a bounding box to produce a rough segmentation, which can later be refined by the user with scribbles. Arbelaez et al.
[22] showed a segmentation method based on hierarchical segmentation using Ultrametric Contour Maps [8], in which the user
is only asked to make two clicks: one in the foreground and one in the background. McGuinness et al. [23] presented a scribble
driven segmentation tool for users to be able to mark foreground and background areas of the image by simply clicking and
dragging using the mouse. The tool provides the user with feedback of the segment generated with his/her traces, allowing
him/her to refine it by generating more scribbles where they are needed. Jain and Grauman [24] introduced an interactive
segmentation algorithm that is able to predict which type of user input is better to initialize a graph-cuts segmentation for each
image, and directly ask for that type of annotation to the user. Giró et al. introduced in [25] a graphical environment that uses
scribbles and bounding boxes as user inputs to seed a hierarchical segmentation algorithm [26]. Other works [27] [28] have
also shown the potential of directly introducing the human in the loop by measuring brain responses to visual stimulus for the
tasks of object segmentation and detection.

Another common approach for human computation is crowdsourcing, in which the task that a single user would have to do
is splitted into several incremental steps that many users can do separately. A popular framework that uses crowdsourcing is
LabelMe, introduced by Russell in [29]. LabelMe is a collaborative web-based annotation tool that allows users to label object
categories within images, and to perform a rough segmentation of them. LabelMe has been used to annotate datasets for object
detection and recognition tasks. Another example is the project involving the Microsoft COCO dataset [30], in which users
from Amazon’s Mechanical Turk are used to segment the objects in their images.

Fig. 2: Peekaboom, a GWAP for object recognition [31].

Following the trend of crowdsourcing, recent works have also shown the potential of building user interfaces in the form of
games. These are called games with a purpose (GWAPs), and their goal is to make the annotation tasks less tedious for the
users. Luis von Ahn was the first to introduce a GWAP in [32], called the ESP game. This game pairs two random players and
shows the same picture to each one of them. The users type keyword descriptions to the image and, when both players agree
with a keyword, it becomes part of the tags describing the image. In order to make the game more challenging, keywords
that are added as tags appear as taboo words the next time the image is shown in a game play. Using the ESP game, the
resulting annotation refers to the whole image, without spatial precision regarding to location of the represented objects. Luis
von Ahn went a step further with Peekaboom [31], another GWAP in which users are paired randomly and, while one player

4

progressively reveals parts of the image, the other has to guess the correct keyword for it. Finally, Snoek et al. introduced the
Name-it-Game [33], an interactive multimedia game in which the two players switch roles after each turn. In every game play,
one player is the revealer and the other one is the guesser. The revealer outlines an object within the shown image and picks
the object name and definition from a given list of words. Then the object is revealed progressively to the guesser, who may
ask for hints during the guessing process. Examples of hints provided to the guesser are the number of letters of the word,
antonyms, hypernyms or the definition of the word.

Human computation has also played an important role in the task of object retrieval. Many research groups have presented
their user interfaces in that context in workshops such as VideOlympics [34], Video Browser Showdown [35] and TRECVID
[36]. Typically, instance retrieval systems provide an initial ranking list of results to be displayed to the user, who is asked to
annotate each one of them as relevant or not relevant to the queried topic. These annotations can then be taken into account
to generate a better ranking using relevance feedback approaches for query reformulation [37] [38] or re-ranking [39].

Fig. 3: Mediamill, a user interface for instance search presented in TRECVID 2009 [40].

An example of one of such systems is VisionGo [41], a video retrieval system that allows users to annotate the displayed
keyframes as ”positive”, when they are relevant to the query topic, ”negative”, when they are not, and also as ”near positive”,
which refers to those keyframes that are not entirely positive, but could provide valuable feedback. These three types of
annotations are used to assist a query expansion and relevance feedback process that generates a new ranking list of results to
the user. Snoek et al. presented Mediamill [40] in TRECVID 2009. This interface provides an ordered list of keyframes in four
different dimensions that were obtained based on time, position, concept classifier and perceptual similarity. Users can navigate
in any of the four dimensions to find those keyframes that best answer to the queries. Their system uses a relevance feedback
strategy which consists on training a support vector machine model based on explicit positive annotations from the user and
negative examples obtained by passive monitoring. Another case is the AXES project [42] [43] for multimedia retrieval, which,
in addition to the usual annotation of positive and negative keyframes, it allows the user to perform text-based, concept-based
or image-based searches to complement the query topics and to refine the results using data from Google Images. The system
uses all this data to train a linear SVM using VLAD features [44]. Finally, Ventura et al. presented in Video Browser Showdown
2012, a video browser [45] that allows users to navigate through a hierarchical index of video frames organized according to
their visual similarities.

As mentioned earlier in this section, another way of introducing human computation are brain-computer interfaces, which
can capture users’ brain responses to visual stimulus. Recent papers [46] [47] have shown the potential of this approach also
for the image retrieval case.

5

III. INTERACTIVE SEGMENTATION

This section addresses the problem of how to enroll the human power of the crowd into solving the task of pixel-wise
object segmentation. The goal of an object segmentation process is to label all pixels of an image depending on whether they
represent a certain object or not. Typically, the output of such process is a binary mask in which the white pixels represent the
object and the black pixels represent the background. This work explores how crowdsourcing can also be a valid strategy to
obtain a large amount of high quality object segmentation results (masks), as long as the appropriate tools and data collection
strategies are selected. Particularly, this work explores different interactive segmentation algorithms that use foreground and
background clicks as seeds.

A. Data Collection

This section introduces the different tools that were used to collect data from users: a collaborative game and an interactive
segmentation tool.

1) Ask’nSeek: The first one is the Ask’nSeek game, which was introduced by Carlier et al. [48] in 2012. Ask’nSeek is a
two-player web-based game that asks users to find the location of a hidden region in an image. In every game play, two users
are paired randomly and one is given the master’s role and the other one the seeker’s. The master hides a rectangular region
in the given image and the seeker tries to find this region by clicking on the image and asking for clues to the master by
typing the name of the different objects in the image. The clues that the master can give back to the seeker provide spatial
relations selected from the list: above, below, to the right of, to the left of, on, partially on, none of the above, and the seeker
takes them into account to locate the region as soon as possible. In the end, game logs contain clicks that refer to the different
objects in the image. Figure 4 is an example of the end of an Ask’nSeek game from the seeker’s point of view.

Fig. 4: Screenshot of the Ask’nSeek game, from the seeker’s point of view.

After several games of Ask’nSeek, it is assumed that the most prominent objects will have a sufficient amount of user
interactions in order to obtain foreground and background seeds. Foreground seeds would correspond to all those game traces
that refer to the object with the tag on, whereas background seeds would be composed by those that refer to it with the tags
above, below, to the right of, to the left of. The potential of this game’s logs for object segmentation has been shown in [49],
in which game traces are combined with the object proposals from [9] to produce accurate segments.

Despite of all the opportunities offered by the Ask’nSeek game, this gamification approach poses some problems associated
to the collection of textual labels which require a post-processing of the user traces. These limitations are the following:
• Grouping and filtering of object labels. The labels generated by the users who played the seeker’s role in Ask’nSeek

can have spelling mistakes, can be in many different languages and can contain synonyms or equivalent terms that need
to be identified and either be removed or grouped together when necessary.

• Mapping labels with ground truth descriptions. Similarly to the previous point, to be able to evaluate the segmentation
results obtained with Ask’nSeek, it is necessary to map the object labels of Ask’nSeek with the ground truth descriptions
of the objects in the images. At this stage, and because we are dealing with a small amount of images, this mapping is
done manually.

6

• Multiple instances. Most errors in the Ask’nSeek traces are due to misunderstandings between the master and the seeker.
The most common scenario for these type of mistakes are the images in which there appear multiple instances of the same
object. In these cases, what happens usually is that the seeker asks for a clue for one of the instances of this object, but
does not specify which one. Then, it is possible that the master gives an indication, but referring to a different instance
of the object specified by the seeker. Finally, the seeker would follow the master’s indications according to the object
instance that he/she asked for in the first place. If this situation is repeated in different gameplays for the same object,
the collected traces for a single label would be ambiguous.

For this project, these limitations were solved by a manual processing of the collected labels. This way, we could focus on
the challenges associated to the compuer vision part of the system.

2) Click’n’Cut: To be able to reduce the complexity at the data collection stage and focus only on the object segmentation,
we came up with Click’n’Cut, a user interface designed for interactive object segmentation. Figure 5 shows a screenshot of
the Click’n’Cut interface. The different parts of the system are the following:
• The name of the tool and the number of completed images out of the total (top-center part of the screen).
• A description of the object that needs to be segmented (top-left part of the screen).
• A panel in which the current image is displayed. This panel also shows the segmentation result overlayed with the image.
• A reminder of how the interface works (on the top-right part of the screen).
• The basic interactions available for the user (bottom-right of the screen).

Fig. 5: Screenshot of the Click’n’Cut interface.

In Click’n’Cut, users are asked to produce foreground and background clicks to perform a segmentation of the object that
is indicated in the provided description. The fundamental interactions available to the user are the left and right clicks, which
generate foreground and background points, respectively. Every time that a user generates a click, the segmentation result is
updated and displayed over the image with an alpha value of 0.5 (which can be changed by the user using the Transparency
toggle). Users can also correct a wrong click by just clicking on it again to make it disappear. The Clear points button removes
the entire set of clicks that have been made by the user. Finally, once satisfied with the result, the user can go on to the next
task by clicking the Done button.

B. Segmentation algorithms

This section explains the different segmentation algorithms that have been tested. Different techniques have been explored
in order to use these user traces and obtain the best segmentation possible. Two main directions have been addressed: a first
one based on graph cuts and a second one based on object candidates.

7

1) GrabCut: The GrabCut segmentation algorithm [50] aims at achieving a high performance in the segmentation task at
the cost of little interaction on part of the user. This segmentation is achieved by solving an iterative graph cuts [51] using
foreground and background seeds as initialization. For these experiments, the OpenCV’s [52] GrabCut implementation was
used. This implementation allows for a level of uncertainty in the labels of the seeds. At the initialization stage, each pixel of
the image needs to be assigned a label within the list of: fixed foreground (F), fixed background (B), probable foreground (PF),
probable background (PB). GrabCut uses all the pixels in both probable and fixed seeds to initialize Gaussian Mixture Models
for the foreground and the background. The only difference between the probable and fixed labels is that pixels initialized as
probable can change labels during the segmentation process, whereas pixels with fixed labels will certainly have the same one
in the segmentation result.

The first intuitive solution to combine user traces with this algorithm would be to simply initialize GrabCut using only
foreground and background clicks obtained from users as seeds. However, as mentioned earlier in this section, GrabCut uses
the color information of the pixels in the foreground and background seeds to initialize a Gaussian Mixture Model for each
of the two labels, which require much more samples than just a few pixels. To overcome this issue, the superpixels in [2] are
computed for the image, so that the ones that contain the foreground and background clicks are also used to initialize their
corresponding Gaussian Mixture Model. Figure 7 gives an example of the described process of using GrabCut for interactive
object segmentation.

Bounding box generation from traces. Aside from using foreground and background clicks to initialize GrabCut, it is also
possible to do so with a bounding box. This is achieved by assigning all the pixels outside the box as fixed background and the
ones inside of it as probable foreground. User traces collected with the Ask’nSeek game (see section III-A1 for a description
of the game) can be used to produce a bounding box. This can easily be done by taking the mean positions of each set of
clicks with associated indications in: to the left of, to the right of, above, below as the extreme values of the bounding box.
Figure 6a illustrates a practical example of this process and its outcome.

Cleanup of traces. As introduced in section III-A1, the Ask’nSeek traces tend to be noisy due to user errors. In particular,
users tend to make more mistakes when it comes to follow spatial relations related to the background: to the left of, to the
right of, above and below. Having that in mind, it is easy to come up with a simple algorithm that relies on the foreground
clicks to filter out bad left, right, above and below clicks. Namely, a click is discarded if its label is not consistent with all
the foreground clicks (see figure 6b for an example).

(a) Bounding box from traces (b) Cleanup of traces

Fig. 6: Examples of post-processing algorithms. (a) Bounding box from traces gives an example of the bounding box
algorithm. In this figure, all the clicks refer to the girl in the image. Pink, yellow and blue clicks refer to the spatial

indications to the left of, above and to the right of, respectively. For each spatial indication, the mean of the positions of all
the clicks is taken as the extreme value of the bounding box. If there are no clicks for one of the indications, the bounding
box is limited by the size of the image in that direction. (b) Cleanup of traces is an example of the algorithm to clean up
the traces. The green clicks indicate foreground (in this case, the girl on the image) and the pink and red clicks represent
clicks at the left of the girl. The pink clicks are those that are consistent with all the green clicks, which are considered

correct by the algorithm. However, the red click is not consistent with all the foreground clicks (it is not at the left of all of
them, and thus it is discarded by the algorithm.).

2) Object Candidates: The segmentation algorithms explained in this section are based on the mapping of the collected
traces to a set of precomputed object proposals, introduced in Section II-A.

Algorithm 1: Finding the best mask. The basic idea of the first algorithm is to find the mask among all the object
candidates that best fits the set of foreground points and background points, and give this mask as the segmentation result. To

8

Fig. 7: Steps of the GrabCut segmentation algorithm. In (a), the image with the foreground and background clicks collected
with the Ask’nSeek game. (b) is the mask used to initialize GrabCut with superpixels [2]. The green superpixels are fixed
foreground, the blue ones are fixed background and the rest of the image is set as probable background. (c) is the result of
GrabCut after 5 iterations. Light blue pixels indicate the fixed foreground seeds and red pixels indicate the pixels that were

predicted as probable foreground by the algorithm (and the same for dark blue and yellow pixels). Finally, (d) is the
segmentation result obtained after grouping probable and fixed pixels for both foreground and background, which are

represented in (d) with red and blue, respectively.

Fig. 8: Examples of MCG candidates.

do so, the following algorithm is adopted: For each mask m ∈ O, where O is the set of object candidates, penalization scores
fgp and bgp are computed for foreground and background points, respectively. fgp (resp. bgp) corresponds to the number of
foreground (resp. background) clicks that are incorrect with respect to m. For example on figure 8 the foreground point (in
green) is incorrect with respect to the masks 2 and 3. The sum of fgp and bgp gives the overall penalization score pm for
mask m. Then, the mask m with the minimum pm associated is selected. If several masks have the minimum penalization
score, the one that appears first in the precomputed ranked list of object proposals is selected.

Algorithm 2: Union of masks. This algorithm is an extension of the previous one, and aims at combining different object
candidates when none of them fits all the foreground and background points. To compute the best mask with respect to a set
of f foreground points and b background points, the following algorithm is adopted: For each mask m ∈ O, where O is the
set of precomputed object candidates, we start by computing two scores fgm and bgm. fgm (resp. bgm) is the number of
foreground (resp. background) points that are correct with respect to m. Then, if there exist a mask m∗ for which fgm∗ = f
and bgm∗ = b then m∗ is the best possible mask and this is the selected mask. Else, it means that no mask is correct with
respect to all the clicks. In that case, we build a set of masks M∗ = {m ∈ O, bgm = b and fgm > 0}. This means that M∗

contains the masks that have not been defined as background and for which there is at least one foreground point. The union
of all masks that belong to M∗ form the best mask that is returned as the segmentation result.

9

C. Experiments and Results

This section explains the different experiments that have been carried out for the object segmentation task. The first
experiment compares the segmentation results using different initialization criterias of GrabCut and the segmentation algorithm
for object candidates. The second experiment uses the enhanced segmentation method for object candidates using Click’n’Cut to
perform interactive segmentation using different types of users. See section III-B for a detailed explanation of the segmentation
algorithms.

Comparison of GrabCut with Object Candidates. The dataset used for evaluation of the first pool of experiments consists
of a subset of images from the PASCAL VOC 2012 dataset for which a sufficient amount of traces (more than 15 clicks between
foreground and background) were collected using Ask’nSeek game (See Section III-A). With this criteria, 10 objects from 8
different images were selected to evaluate the results. This data was used along with the different segmentation algorithms,
in order to obtain a fair comparison between them. The metric used to assess the segmentation results is the Jaccard Index
J = P∩GT

P∪GT between the Predicted (P) and Ground Truth (GT) masks.

Method Algorithm description Jaccard Index us-
ing raw clicks

Jaccard index
using cleaned
clicks

Object Candidates (CPMC [9]) Algorithm 1 in III-B2 0.5430 0.5430
Object Candidates (MCG [11]) Algorithm 1 in III-B2 0.6290 0.6290

GrabCut Initialized with foreground/background su-
perpixels with fixed labels.

0.4969 0.5152

GrabCut Initialized with foreground/background su-
perpixels with fixed labels including the
bounding box information: Pixels outside
the bounding box are fixed background and
pixels inside the bounding box are assigned
probable foreground.

0.4001 0.5777

TABLE I: Jaccard index for different segmentation algorithms involving GrabCut and Object Candidates

Results in Table I show that it is useful to initialize GrabCut with a large amount of pixels marked as fixed background,
and using the bounding box along with the algorithm to clean the traces helps on that. This approach is specially helpful
for small (or less salient) objects, because GrabCut sometimes “grows” parts of the image (e.g. other objects) that are not
marked as foreground, just because they are somewhat similar to the foreground data (even though they are not connected
to the foreground superpixels). Marking these pixels as fixed background from the beginning prevents this from happening.
This approach does not work well when using raw traces, because the bounding box obtained with the previously introduced
algorithm is not correct due to the errors in the clicks.

It is also interesting to see how the cleanup of the traces does not affect the segmentation results of the approaches using
Object Candidates. This is due to the design of the segmentation algorithm, which does not aim at finding the segmentation
mask that perfectly fits all the points, but the one with fewer errors. This means that minor mistakes in the clicks do not
necessarily change the mask that is selected by the algorithm.

Click’n’Cut and Object Candidates. For this experiment, Algorithm 2 from section III-B is used along with the clicks
obtained with the Click’n’Cut tool. The dataset used for evaluation has been proposed by [53] and it consists in 100 objects
to segment from 96 different images from the Berkeley Segmentation dataset (BSDS) [54]. In this dataset, each object is
described by a sentence and a binary mask is provided as ground truth. Additionally to these images, 5 more images from the
PASCAL VOC dataset were added in order to be able to discard users with poor performances. This technique is commonly
referred to as gold standard.

1) Protocol: The experiments in this section are split in three campaigns involving different tasks and different types of
users. The first two campaigns were submitted to www.microworkers.com in order to collect data from the crowd, whereas
the third campaign was organized in a smaller setup in which only researchers and colleagues from different institutions
participated.
• Campaign #1: drawing a bounding box

The algorithm for object proposal generation that was used for these experiments [11] gives around 5000 object candidates
for every image, which were difficult to handle in the server side of the Click’n’Cut interface. To overcome this issue, the
purpose of this campaign was to reduce the set of object candidates by asking users to draw a bounding box around an
object. Then, these bounding boxes are used to filter the object candidates by only keeping the ones that are surrounded
by them. The interface for this experiment was similar to Click’n’Cut, except that workers did not click on the image but
just draw a rectangle.
25 jobs were created in Microworkers that consisted in completing the described task for 105 images. The offered salary
for successfully completing this task was of 2.5 USD (2.38 cents for each bounding box). A total of 52 users participated
to this campaign but only 25 of them completed it until the end.

• Campaign #2: segmenting objects with a crowd

www.microworkers.com

10

Using the bounding boxes from the 25 users who completed the first campaign, a bounding box for each object was
generated by computing the median of all bounding boxes from all the users. These bounding boxes were used to reduce
the number of masks (i.e. objects candidates from the MCG algorithm). This procedure significantly reduced the amount
of data to be uploaded to the server, and it also caused a quicker convergence towards a good segmentation.
A second campaign was started on Microworkers, for which 20 jobs were created that consisted in segmenting 105 objects.
The offered salary for completing this task was of 4 USD for the job (every segmented object was worth 3.8 cents.).
A total of 99 users participated to the campaign but only 20 of them completed the 105 tasks.

• Campaign #3: segmenting objects with experts The third experiment consisted in conducting the exact same study
than on the second campaign except that this time the users who were asked to participate were experts from different
research labs. A total of 15 experts (11 Males, 4 Females) participated to this study, with ages ranging from 19 to 55.
These users did not get paid, they volunteered to participate in the experiment.

2) Quality of the traces: The first study focused on the quality of the collected traces. The first observation to make is that
crowdsourced traces are noisy due to several reasons, being the main one the misunderstanding of the provided instructions.
Figure 9 shows three examples in which workers did not follow the provided instructions and selected a larger region than the
requested one, most likely because they did not carefully read the description.

Fig. 9: Errors due to misunderstanding: (a) only the central object (a tree) should be segmented, (b) only the head of the
person should be segmented.

The quality of the users was estimated through 5 gold images from the Pascal VOC dataset [55]. The comparison between
the error percentage for the gold or test datasets indicates that quality estimation is actually a challenging task. Figure 10
shows the comparison of error percentage for the 20 users in both the 5 gold images and the 100 test images. Users with a
error percentage higher than 20% in the gold images were discarded. It can be observed in the figure that while users 3, 5,
8, 10, 11, 18 and 19 were correctly discarded, users 12 and 15 were over-penalized by their performance on the gold images
(their error rates for the test images were much lower).

Another observation from Figure 10 is that users 3 and 18 most likely confused the foreground and background alpha masks
and basically segmented the complementary shape. Their error percentages are higher than 90%, which would turn into a 10%
by switching the labels of their foreground and background clicks. Despite these users were just discarded for our further
experiments, their behavior could have easily been detected and corrected automatically.

3) Accuracy vs Time trade-off: In this section, Click’n’Cut is compared with the top two best configurations proposed
in [53]: GrabCut [21] and hierarchical partition with BPTs [26] [56]. The different solutions are assessed in terms of the
accuracy vs user time trade-off, where segmentation accuracy is measured with the Jaccard Index. The graph in Figure 11 plots
the average Jaccard obtained with the amount of time users spent creating their annotations. These experiments indicate that
Click’n’Cut with expert users converges more rapidly than the two graph-based approaches, but also that accuracy saturates
sooner in our proposal. However, a crowd of non-expert users perform poorly when using Click’n’Cut, because of the high
number of errors they make. Filtering out the worst out of the crowd according to their error rate in the gold images, the
resulting curve improves significantly. One of the reasons why the approaches proposed in [53] are able to reach a higher
Jaccard index with their experiments is because the spatial resolution of the regions or pixels used in GrabCut and BPTs is
higher than the one used when combining object candidates in Click’n’Cut. On the other hand, the Click’n’Cut approach with
object candidates converges much faster that the ones in [53], being able to produce a first accurate segmentation results within
the first 10 seconds.

4) Budget: Budget in this crowdsourced task can be approximated from two perspectives: based on user time or on money.
Table II compares the necessary user time on Click’n’Cut with the data collected from other related publications, previously

11

Fig. 10: Error rate for each worker for the test dataset (BSDS) and the gold dataset (5 Pascal VOC images).

Dataset User / image Users type Input Avg. Time (sec.) Best Jaccard
Lin [30] Microsoft COCO 1 Crowd Tight Polygon 79 (Used as GT)

5 Crowd Box 7 -
Jain [24] IIS+MSRC+CoSeg 5 Crowd Sloppy contour 20 -

5 Crowd Polygon 54 0.51-0.76
McGuinness [53] BSDS (DCU subset) 20 Experts Scribble 60-85 0.93

Click’n’Cut BSDS (DCU subset) 15 Experts Click 32 0.87
20 Crowd Click 23 0.75 → 0.83

TABLE II: Comparison of Click’n’Cut with similar approaches, including average user time and best Jaccard.

introduced in Section II-B. The first observation is the diversity of datasets used to solve interactive segmentation tasks prevents
a direct comparison of the resulting values, with the exception of Click’n’Cut and [53], as detailed in Section III-C3.

The experiments also show that, given the same interface, experts tend to spend almost 50% more time than the crowd
in generating the annotation, but that this higher dedication only produces small increase in the quality of the segmentation.
According to these data, the faster responsiveness of Click’n’Cut (already pointed in Section III-C3) seems to be confirmed
with the comparison with other solutions. This may be explained because the rest of crowdsourced systems are not exploiting
any image processing algorithm to assist the user in his task, which forces the user to manually draw the whole contour around
the objects.

The comparison of cost in terms of money is more complicated, especially because the cost of the experts is assumed as
zero in most works, since expert users tend to be volunteers. However, this cost should not be neglected, as experts normally
participate in this evaluation campaigns as part of their professional activity. For this reason, it is possible to estimate the cost of
the expert time to be able to assign a cost to this recruiting strategy. To do so, for this experiment experts are assumed to be either
undergraduate students, graduate students, research assistants or professors. The standard salary for a Phd grant in Ireland has
been adopted as a reference, for a fairer comparison with the reference work [53], whose experts where recruited in a research
lab at Dublin City University. Taken as a reference a wage of 1,808 USD a month, the annotation experiment involving 100
images and 20 experts, would require a budget estimated in 377 USD. Nevertheless, the crowdsourcing Click’n’Cut campaign
had a total cost of 130 USD, nearly three times cheaper than an experiment of the same nature using expert users.

5) Improving the results: The curve shown on figure 11 establishes that the method described in section III-C3 for computing
the best mask is not robust enough to noisy clicks to produce optimal quality results. In addition, the results on figure 11
are averaged on all users, to be comparable with the experts interactive segmentation. However, the real power of the crowd
resides in using the contributions of the workers altogether.

The adopted algorithm to test this idea was the following: Since a lot of clicks were collected from the crowd users, it is
possible to generate a probability mask by painting a superpixel segmentation with these clicks. To do so, each superpixel is
labeled with a number between 0 (background) and 1 (foreground). These labels are given according to the confidence score

12

Fig. 11: Average Jaccard vs User time.

Fig. 12: Probability map of object’s presence, based on user’s clicks.

that is given to each user, which is stablished based on the user’s performance on the gold standard images. For instance,
if a user u has a 5% error rate on the gold standard images (see figure 10), the measure of confidence cu for this user
will be 0.95. A foreground (resp. background) click brings a contribution to the superpixel of cu (resp. 1 − cu). To limit
the influence of the superpixels segmentation, we perform the computation on several different superpixel segmentations and
average the respective results. Namely, Felzenszwalb’s algorithm [3] was used with different parameters. Figure 12 illustrates
the performance of this simple algorithm. The object to be segmented is the brightest region, and the bright areas that can be
observed in the background regions indicate noisy clicks produced by user’s mistakes. Thresholding these maps with a value
of 0.7 and performing a simple hole filling algorithm allows to improve the results for the crowd users, increasing the Jaccard
Index from 0.75 to 0.83 (see Table II).

D. Conclusions and Future Work

The presented work has explored different interactive segmentation algorithms using GrabCut and object candidates using
traces collected with a game. Additionally, the opportunities and risks of launching a crowdsourced campaign to collect object
segmentations have been assessed.

The first lesson to be learned is that the quality of the users traces is far worse than the common quality obtained from
in-lab experiments. Any campaign must include gold standard images to assess the quality of each user. Depending on the

13

severity of the errors and redundancy of collected traces on the same image, different image processing techniques may help
into cleaning the segmentations or just discarding those traces that will not meet a minimum quality.

Despite the noisy traces, the presented online interface (Click’n’Cut) has been proved effective in providing users a quick
and informative feedback. Showing the current segmentation result overlaid on the image helped guiding users into generating
clicks in the most informative locations, a scheme that can be understood as an active learning. Click’n’Cut has been proven an
effective tool to collect object segmentations for crowdsourcing tasks, especially in terms of fast convergence to high quality
results. However, the tool can still be improved in terms of the maximum achievable accuracy, maybe relaxing the strict
dependency from the object candidates.

Our campaign has taken special care into comparing the performance of experts and crowd users. The experiments indicate
that the cost of experts can triplicate a crowdsourced solution and increase the average duration around 50%, which just
provided little gain in accuracy.

IV. INSTANCE SEARCH

This section of the thesis addresses the problem of Instance Search (or instance retrieval), which consists of searching for
occurrences of a certain visual instance on a large collection of visual content, and generate a ranked list of results sorted
according to their relevance to a user query. More specifically, this thesis adresses the retrieval problem in the case where
the queries correspond to visual objects, which are represented using low level visual descriptors extracted directly from the
image pixels to be compared with the contents in a target database. This section addresses this problem using pre-trained
convolutional neural networks as features, combined with the object candidates from [11] and involving the user in the image
retrieval loop throughout a novel user interface.

The system was designed using the dataset, ground truth and evaluation software from the well-known TRECVID Instance
Search 2013 [36], a scientific benchmark with dozens of participants from around the world. The goal of TRECVID Instance
Search task is to find particular semantic instance (object, person or location) in a large video collection, and return a rank list
of video shots in which the instance appears. In addition, the system was also used to participate in TRECVID Instance Search
2014, for which we submitted the results of the four configurations that we considered most scientifically relevant in terms of
human computation. Figure 13 shows the typical framework for TRECVID Instance Search task, which will be described in
detail in the following sections.

Fig. 13: Instance Search framework for TRECVID

A. Dataset

Participants to TRECVID Instance Search are provided with 244 video files (totally 300 GB, 464 h) with associated metadata,
each containing a week’s worth of BBC EastEnders programs in MPEG-4/H.264 format. Additionally, each video is divided
in different shots of short duration (between 5 seconds and 2 minutes).

Query Set. The query set consists of 30 different topics, each one including: (1) a category among the list of: object, person,
location. (2) A description of the topic. (3) 4 image examples of the topic. These images are taken out of the first video out

14

of the 244 videos provided by TRECVID. (4) For each one of the 4 image examples, a binary mask of the object is also
provided. Figure 14 is an example of a query from TRECVID Instance Search 2013.

Fig. 14: Information provided for a query topic in TRECVID Instance Search.

Target Database. To handle this large amount of video information, a target image dataset was built by uniformly extracting
keyframes for every shot with a sample rate of 1/4 fps. The resulting dataset contained 647,628 keyframes and had a size
of 66GB. In further sections of this thesis, this dataset will be refered to as Full Dataset. Additionally to this one, a subset
was also used during the development stage of the retrieval system. This subset consists of only the relevant shots for each
query topic of TRECVID Instance Search 2013. This subset consisted of 23,614 keyframes, which was useful to quickly test
the different approaches during the development of the pipeline. This dataset will be refered to as Ground Truth Subset in the
following sections.

B. Feature Extraction

State-of-the art image retrieval pipelines usually use image representations such as VLAD [44], Bag of Words or Fisher
Vectors [57]. More recently, many works [58] [59] have shown the potential of deep learning features, using convolutional
neural networks (CNN) as image descriptors for image classification and retrieval tasks. The adopted system for this project
uses Caffe [60], a publicly available code to extract the CNN features of the images. Caffe also provides pre-trained ImageNet
[61] models that can be used off-the-shelf to directly obtain feature vectors. Convolutional neural networks are composed of
different layers, each one encoding different parts and features of the image. While lower levels focus on details and local
parts, upper levels contain a more global description of the image. For this reason, it has been suggested in several works
[62] [63] that the features from the upper layers of the CNN are the best ones to be used as descriptors for image retrieval.
Following those insights, our system uses Layer 7 of the network as global feature vectors (see Figure 15).

Fig. 15: Example of a convolutional neural network architecture (from [63]).

Global CNN features are useful to describe the general appearance of the image, but the goal of TRECVID Instance Search
is not just to retrieve similar images, but images that contain a specific object. Because TRECVID provides the binary masks of

15

the objects in the topic images, our first intuition was to compute the CNN features using as input a crop of the image, keeping
only the pixel values inside of the binary mask. This way, we would obtain a representation of the object itself, not the whole
image where it is included. However, these new local features on the query images should be matched with local features on
the target database, for which no binary masks are provided. To make this possible, object candidates were computed using
the SCG algorithm from [11] (see section II-A) for all the keyframes in the target database. This way, local features can be
computed in both the query and target sets. Section IV-F1 explores the different configurations that were tested for this local
approach.

C. Feature matching

The feature matching of the query and keyframe feature vectors for the experiments with the Ground Truth Subset was
performed exhaustively, by computing their cosine similarities to the query vector and sorting them in descending order (more
details on this in section IV-D).

However, this approach was not feasible to perform the experiments with the Full Dataset, for which the number of keyframes
in the target database is much higher. To quickly retrieve the most similar keyframes for a query topic in that case, feature
vectors are embedded in a Hamming space building up a forest of 50 binary trees by using random projections. Similar features
are then retrieved using Approximate Nearest Neighbor indexes. To do this, we use Annoy: a Spotify’s implementation for
Approximate Nearest Neighbors.

D. Ranking the results

The keyframes (either all of them for the Ground Truth Subset or the ones retrieved using ANN for the Full Dataset) are
scored according to the cosine similarity between their feature vectors and the query feature vector, and sorted in descending
order to produce a ranked list. However, this procedure is not enough to generate the final ranking. As mentioned in section
IV-A, TRECVID provides 4 images for each query topic. Using global CNN features, each query topic would consist of
4 feature vectors that are used separately to retrieve similar images out of the target database, consequently producing 4
independent rankings, which need to be merged in a single one. This is done by fusing them and sorting them again by their
score. Then, if a keyframe appears several times, the score associated to it would be the maximum among all (max-pooling).
The final step to produce the final ranking is to group the keyframes that belong to the same shot, in order for them to
represent a single entry of the ranking. Again, the keyframe with maximum score is kept as the one representative of the shot
(max-pooling).

E. User Interface

This section introduces the interface used to collect annotations for our submission to TRECVID Instance Search 2014.
Figure 16 shows a screenshot of the interface. Its different parts and possible user interactions are:
• A dropdown list containing the IDs of the query topics (top-left). Users can select the one that they want to use to retrieve

similar results.
• A textual description of the query topic along with its category (object, location or person).
• An expandable tag Examples, displaying 4 images containing the query topic (left-column).
• An expandable tag Saved, displaying the positive images annotated by the user (left-column).
• A textbox to introduce the user name (top-center bar).
• The results panel. It displays the retrieved keyframes by the system to the user. The users’ task is to annotate them as

either positive or negative.
• The Search button. Users can press it at the beginning and after they have annotated all the keyframes they see in the

results panel to obtain different ones.
• A counter displaying the amount of time remaining for a query topic. It is possible to pause and unpause it by the user.
This interface was built using HTML5 and AngularJS on the client side and Python on the server side, using MongoDB as

connected database.

F. Experiments and Results

This section describes the experiments that were carried out in order to choose the best configuration four our submission
to TRECVID. First, a study on the CNN features is presented, exploring different approaches using both global and local
features. Then, different relevance feedback techniques are evaluated. The metric used to assess the results is the Average
Precision (equation 1), which is computed as the average precision at the positions of the relevant documents in a ranked
list. To evaluate the performance of the system for the whole set of query topics provided by TRECVID, the Mean Average
Precision (equation 2) will be the metric used.

https://github.com/spotify/annoy

16

Fig. 16: Screenshot of the interface for TRECVID Instance Search 2014.

AP =
1

|R|

N∑
k=1

P (k) · rel(k), rel(k) =
{
rel(k) = 1⇔ k ∈ R
rel(k) = 0⇔ k /∈ R

}
(1)

MAP =
1

|Q|
AP (q) (2)

1) Global and Local features: This section describes the experiments performed with both global and local CNN features.
First, a study of different local approaches involving object candidates is done using the a toy dataset. After that, the best local
approach from the first experiment is tested with the Ground Truth Subset using several configurations combining local and
global descriptors.

Fig. 17: Examples of binary mask usage. (a) is a cropped bounding box around the mask. (b) is a squared crop around the
mask, (c) is a zeroing of the background and (d) is a blurring of the background using a Gaussian filter.

Local approaches with object candidates. As introduced in section IV-B, CNN features can be extracted from either
full images or local patches defined by binary masks. The local information can be used in many different ways to discard
the background or reduce its importance. Figure 17 provides examples of four different ways to use a binary mask. The

17

Fig. 18: Adding context with padding of different sizes with respect to the square crop size. 0 padding (left), 1/2 padding
(middle), 1/4 padding (right).

Fig. 19: mAP VS Padding size.

experiment to decide which one is the best configuration was carried out using a toy subset, composed by the 120 query
images of TRECVID 2013. Every image was considered as a different topic, and the goal was to retrieve the 3 other images
of the same topic at the beginning of the ranking list. This toy subset was helpful to quickly find which was the best local
technique to use with the binary masks in an ideal scenario, for which we have binary masks for both the query and target
images. Table 21 compares the performance of the different masking techniques shown in figure 21, from which we can
conclude that the best local approach is to use a cropped square around the object. Then, using squared crops as masking
method to compute local CNN features, a more realistic approach was tested. Instead of using the binary masks provided with
the Query subset, these were replaced by the first N object candidates from SCG [11].

The last experiment that was carried out had the motivation of improving the local features by adding context to the masking
method (see figure 18). Figure 19 shows the results that were obtained with different padding sizes, which indicate that adding
context with a padding of 1/4 of the size of the square crop outperforms the results using global features. Figure 20 shows
the results for several masking techniques using 20, 100 and 250 candidates. Despite these results show that the higher the
number of candidates the better the system’s performance is, the number of candidates had to be restricted to 20 due to time
constraints and lack of computational power when dealing with the Full dataset. Namely, the chosen masking method for
further experiments was the squared crop with 1/4 of padding.

Combining global and local descriptors. Once a decision was made to compute the local CNN features, the performance
was evaluated using the Ground Truth Subset. The first local approach consisted in replacing the global features by the local
ones using squared crops with 1/4 padding. Then, we tried two approaches combining global and local features:
• Concatenation: CNN features for both global and local approaches are concatenated in a single feature vector.
• Aggregation: CNN features for both global and local approaches are merged but treated independently (global and local

feature vectors for the query images are compared to both global and local feature vectors of the target dataset.).
Table 22 compares the performance of the system using global CNN features with the different local approaches mentioned

above. The results indicate an increase of performance only when using the concatenation of global and local CNN features.
2) Re-ranking strategies: This section explores different re-ranking techniques that were tested for the design of the pipeline

for our submission to TRECVID Instance Search 2014. The goal of this section is to estimate the results that could be achieved
with the help of humans using the interface introduced in IV-E. First, the impact of using local features to automatically re-rank
the results obtained with global features is assessed. Then, a study on the impact of the user interaction is performed using
two different relevance feedback approaches.

Local features. In section IV-F1, we saw how the concatenation of global and local features increased the performance of

18

Fig. 20: mAP vs Number of object object candidates for different types of masking techniques.

Fig. 21: Results of different local approaches on the toy subset.

the system. However, due to the computational challenges and memory issues that we were facing with the Full Dataset, we
could only use the local approach as a re-ranking technique after obtaining a ranking using global features. By doing so, mAP
increases from 0.1467 to 0.1663. This new ranked lists were the ones displayed in the user interface at the beginning (i.e. the
first time that a user performs a search for a topic).

Relevance feedback. With the interface introduced in IV-E, users are asked to annotate the results of the ranked list as either
relevant (positive) or non-relevant (negative). This information can be used in several ways in order to improve the ranking.
• Query expansion. One thing that can be done is to use the positively annotated keyframes as query images. This means

that the ranking produced by each one of those keyframes will be merged with the ones produced by the topic images
using the methodology explained in Section IV-D. Conversely, negative annotations are removed from the ranking.

• SVM Scoring. Another relevance feedback strategy is to train a classifier using positive and negative annotations collected
with the user interface. Then, this classifier can return confidence scores for each one of the keyframes in the database.
Then, the new ranking would contain the keyframes sorted by the score returned by the classifier. In this case, both a
Linear SVM and a SVM with RBF were tested.

For both configurations, the new ranking would be built by (1) pushing the positive annotations to the top of the ranking,
(2) adding the results of the relevance feedback strategy and (3) removing the negative annotations. To be able to estimate the
impact of these relevance feedback techniques, the Ground Truth Subset was used. The adopted strategy consisted in simulating
the users’ annotations and use them to evaluate the different relevance feedback techniques. To do so, the results using global
features with local features for re-ranking were taken as baseline ranking lists. The positive and negative annotations are
simulated by taking all the relevant and non relevant keyframes of the ranking, respectively. This experiment can be repeated
several times changing the percentage of the ranking that is being observed, which would simulate the relation between the
amount of effort done by the user and the mAP.

Figure 24 shows the results of this experiment by simulating different levels of user effort by truncating the ranking at
different positions. As expected, the higher the number of annotations, the higher the mAP. It can also be observed that the
Linear SVM strategy greatly outperforms the one using query expansion. Finally, an experiment was carried out in order to

19

Fig. 22: Results using local features

evaluate the difference in performance for the different query topics. Figure 25 shows the results for each topic using different
strategies. This figure clearly shows the difference in performance of our retrieval system for the different queries. Taking
these results into account, figure 23 shows a few examples of query topics for which we achieve good and bad results. These
examples indicate that our system performs well for those topics in which the context is more useful (outdoors objects), but
does not work well for small textured objects (such as logos) or people.

Fig. 23: Examples of query topics for which the retrieval system performs differently. In a), three examples for which the
system does not work well. In b) examples of queries with good results (see figure 25 for correspondence).

G. Conclusions and Future Work

This section of the thesis has presented a pipeline for visual instance retrieval, which was used for a submission to TRECVID
Instance Search 2014.

First, this work has shown how CNN features can be powerful for the instance retrieval task. The first lesson learned is
that our system does not work well for all the query topics. Poor performance has been observed for small textured objects
and people, while good results have been achieved for topics for which context is important. This could be solved by treating
each query topic differently, according to its category (object, person, location) and its description. For instance, face detectors
could be used for queries including people.

Additionally, a study has been performed exploring different possibilities for using local information to have better CNN
feature vectors. It has been shown that such approaches can be performed with the help of object candidates to increase the
quality of the ranking results.

20

Fig. 24: Simulation of mAP VS Percentage of ranking observed by the user using different relevance feedback strategies.
Baseline is the mAP of the original ranking. Positive Annotations displays the result of a new ranking built only with the

positive annotations contained in the observed ranking. Finally, Requery shows the results for the query expansion technique
and Linear-SVM gives the results for the SVM scoring technique (both explained earlier in this section.).

Fig. 25: Results of the simulation of different relevance feedback strategies (by query topic). The baseline mAP and the
mean mAP for the different percentages of observed ranking is displayed for each query.

On the relevance feedback side, this section has shown two strategies to use users’ annotations to improve the ranking results,
and has simulated their impact to the overall performance of the system. Taking these results into account, the presented interface
was used to collect annotations from users, which were used along with the introduced relevance feedback techniques for our
submission to TRECVID.

All the decisions that were taken during the design of the retrieval system for TRECVID were significantly influenced by the
amount of data to process. While some experiments that were performed clearly indicated huge improvements in performance

21

(e.g. higher number of object candidates), some enhancements needed to be discarded to make the problem more treatable
with the available resources.

V. WORK PLAN

The purpose of this section is to give a detailed overview of the main tasks that were carried out for the two projects of
this thesis. The charts in figure 26 show the work plan that was followed in these projects, reflecting my contribution in each
one of the tasks using a color legend. The following list contains the correspondence between the numbers in the charts and
the task description:

Fig. 26: Work plan of the collaborative projects of this thesis.

(a) Instance Search
1) Keyframe extraction from TRECVID videos.
2) Object Candidates computation for target database.
3) Implementation of baseline code for retrieval.
4) Feature extraction.
5) Implementation of relevance feedback strategies.
6) User interface template design.
7) Integration of the retrieval system to the user interface.
8) Data collection.
9) Experiments on local approaches.

10) Relevance feedback simulation.
(b) Interactive Object segmentation
1) Ask’nSeek implementation and design.
2) Click’n’Cut implementation and design.
3) Data collection with Ask’nSeek.
4) Data collection with Click’n’Cut.
5) Cleanup of users traces.
6) Bounding box generation from users traces.
7) Design of GrabCut Segmentation algorithm.
8) Design of Algorithm 1 for Object Candidates.
9) Design of Algorithm 2 for Object Candidates.

10) Experiment on the comparison of segmentation algorithms.
11) Experiments with Click’n’Cut.

22

Both projects introduced in this thesis have been developed collaboratively with researchers from Dublin, Toulouse, Barcelona
and Florida. Tools such as SVN, GIT, Google Hangouts and Google Drive have been used extensively to organize the work
plan and to communicate with the members of the team. The programming languages and packages used for these projects
are MATLAB, Python, HTML/AngularJS and MongoDB.

The research line on object segmentation was sponsored by a Research grant from the Spanish Ministry (COLAB). The
work introduced in this part of the thesis has been accepted to the CrowdMM Workshop on ACM Multimedia 2014. The
instance search part of this thesis was developed during a research internship in Dublin City University, funded by a grant
from La Generalitat de Catalunya (MOBINT). This work will be published in the Work Notes for TRECVID 2014.

ACKNOWLEDGMENTS

I would like to thank my supervisors Xavier Giró-i-Nieto and Kevin McGuinness for their support and assistance in this
project. I also wish to acknowledge the help and contributions provided by Carles Ventura and Eva Mohedano to the TRECVID
Instance Search submission on 2014. I would also like to express my appreciation to the advice given by Professor Noel
O’Connor, which has been a great help during this project. Finally, I want to thank Axel Carlier, Oge Marques and Vincent
Charvillat for their guidance, steadiness and persistance that led to our recent joint contribution to the Crowdsourcing for
Multimedia Workshop 2014.

REFERENCES

[1] Paul Viola and Michael Jones, “Rapid object detection using a boosted cascade of simple features,” in Computer Vision and Pattern Recognition, 2001.
CVPR 2001. Proceedings of the 2001 IEEE Computer Society Conference on. IEEE, 2001, vol. 1, pp. I–511.

[2] Radhakrishna Achanta, Appu Shaji, Kevin Smith, Aurelien Lucchi, Pascal Fua, and Sabine Susstrunk, “Slic superpixels compared to state-of-the-art
superpixel methods,” Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol. 34, no. 11, pp. 2274–2282, 2012.

[3] Pedro F Felzenszwalb and Daniel P Huttenlocher, “Efficient graph-based image segmentation,” International Journal of Computer Vision, vol. 59, no.
2, pp. 167–181, 2004.

[4] Jianbo Shi and Jitendra Malik, “Normalized cuts and image segmentation,” Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol. 22,
no. 8, pp. 888–905, 2000.

[5] Dorin Comaniciu and Peter Meer, “Mean shift: A robust approach toward feature space analysis,” Pattern Analysis and Machine Intelligence, IEEE
Transactions on, vol. 24, no. 5, pp. 603–619, 2002.

[6] Luc Vincent and Pierre Soille, “Watersheds in digital spaces: an efficient algorithm based on immersion simulations,” IEEE transactions on pattern
analysis and machine intelligence, vol. 13, no. 6, pp. 583–598, 1991.

[7] Philippe Salembier and Luis Garrido, “Binary partition tree as an efficient representation for image processing, segmentation, and information retrieval,”
Image Processing, IEEE Transactions on, vol. 9, no. 4, pp. 561–576, 2000.

[8] Pablo Arbelaez, “Boundary extraction in natural images using ultrametric contour maps,” in Computer Vision and Pattern Recognition Workshop, 2006.
CVPRW’06. Conference on. IEEE, 2006, pp. 182–182.

[9] J. Carreira and C. Sminchisescu, “Constrained parametric min-cuts for automatic object segmentation,” in CVPR, 2010.
[10] Tie Liu, Zejian Yuan, Jian Sun, Jingdong Wang, Nanning Zheng, Xiaoou Tang, and Heung-Yeung Shum, “Learning to detect a salient object,” PAMI,

vol. 33, no. 2, 2011.
[11] Pablo Arbeláez, Jordi Pont-Tuset, Jonathan T Barron, Ferran Marques, and Jitendra Malik, “Multiscale combinatorial grouping,” in CVPR, 2014.
[12] João Carreira, Rui Caseiro, Jorge Batista, and Cristian Sminchisescu, “Semantic segmentation with second-order pooling,” in Computer Vision–ECCV

2012, pp. 430–443. Springer, 2012.
[13] Bharath Hariharan, Pablo Arbeláez, Ross Girshick, and Jitendra Malik, “Simultaneous detection and segmentation,” in Computer Vision–ECCV 2014,

pp. 297–312. Springer, 2014.
[14] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik, “Rich feature hierarchies for accurate object detection and semantic segmentation,”

arXiv preprint arXiv:1311.2524, 2013.
[15] Ming-Ming Cheng, Ziming Zhang, Wen-Yan Lin, and Philip Torr, “Bing: Binarized normed gradients for objectness estimation at 300fps,” in IEEE

CVPR, 2014.
[16] C Lawrence Zitnick and Piotr Dollár, “Edge boxes: Locating object proposals from edges,” in Computer Vision–ECCV 2014, pp. 391–405. Springer,

2014.
[17] JRR Uijlings, KEA van de Sande, T Gevers, and AWM Smeulders, “Selective search for object recognition,” International journal of computer vision,

vol. 104, no. 2, pp. 154–171, 2013.
[18] Ramazan Gokberk Cinbis, Jakob Verbeek, and Cordelia Schmid, “Segmentation driven object detection with fisher vectors,” in Computer Vision (ICCV),

2013 IEEE International Conference on. IEEE, 2013, pp. 2968–2975.
[19] Xiaoyu Wang, Ming Yang, Shenghuo Zhu, and Yuanqing Lin, “Regionlets for generic object detection,” in Computer Vision (ICCV), 2013 IEEE

International Conference on. IEEE, 2013, pp. 17–24.
[20] Vicente Ordonez, Jia Deng, Yejin Choi, Alexander C Berg, and Tamara L Berg, “From large scale image categorization to entry-level categories,” in

Computer Vision (ICCV), 2013 IEEE International Conference on. IEEE, 2013, pp. 2768–2775.
[21] Carsten Rother, Vladimir Kolmogorov, and Andrew Blake, “”grabcut”: interactive foreground extraction using iterated graph cuts,” ACM Trans. Graph.,

vol. 23, no. 3, Aug. 2004.
[22] Pablo Arbeláez and Laurent Cohen, “Constrained image segmentation from hierarchical boundaries,” in Computer Vision and Pattern Recognition, 2008.

CVPR 2008. IEEE Conference on. IEEE, 2008, pp. 1–8.
[23] Kevin McGuinness and Noel E O’connor, “A comparative evaluation of interactive segmentation algorithms,” Pattern Recognition, vol. 43, no. 2, pp.

434–444, 2010.
[24] Suyog Dutt Jain and Kristen Grauman, “Predicting sufficient annotation strength for interactive foreground segmentation,” in ICCV, 2013.
[25] Xavier Giró-i Nieto, Manuel Martos, Eva Mohedano, and Jordi Pont-Tuset, “From global image annotation to interactive object segmentation,” MTAP,

vol. 70, no. 1, 2014.
[26] P. Salembier and L. Garrido, “Binary partition tree as an efficient representation for image processing, segmentation, and information retrieval,” IEEE

T. on Image Processing, vol. 9, no. 4, 2000.
[27] Eva Mohedano, Graham Healy, Kevin McGuinness, Xavier Giro-i Nieto, Noel E O’Connor, and Alan F Smeaton, “Object segmentation in images using

eeg signals,” arXiv preprint arXiv:1408.4363, 2014.

23

[28] Nima Bigdely-Shamlo, Andrey Vankov, Rey R Ramirez, and Scott Makeig, “Brain activity-based image classification from rapid serial visual presentation,”
Neural Systems and Rehabilitation Engineering, IEEE Transactions on, vol. 16, no. 5, pp. 432–441, 2008.

[29] Bryan C Russell, Antonio Torralba, Kevin P Murphy, and William T Freeman, “Labelme: a database and web-based tool for image annotation,”
International journal of computer vision, vol. 77, no. 1-3, pp. 157–173, 2008.

[30] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, and C. Lawrence Zitnick, “Microsoft coco:
Common objects in context,” CoRR, 2014.

[31] Luis Von Ahn, Ruoran Liu, and Manuel Blum, “Peekaboom: a game for locating objects in images,” in Proceedings of the SIGCHI conference on
Human Factors in computing systems. ACM, 2006, pp. 55–64.

[32] Luis Von Ahn and Laura Dabbish, “Labeling images with a computer game,” in Proceedings of the SIGCHI conference on Human factors in computing
systems. ACM, 2004, pp. 319–326.

[33] Jeroen Steggink and Cees Snoek, “Adding semantics to image-region annotations with the name-it-game,” Multimedia Systems, vol. 17, 2011.
[34] Cees GM Snoek, Marcel Worring, Ork de Rooij, Koen EA van de Sande, Rong Yan, and Alexander G Hauptmann, “Videolympics: Real-time evaluation

of multimedia retrieval systems,” MultiMedia, IEEE, vol. 15, no. 1, pp. 86–91, 2008.
[35] Klaus Schöffmann and Werner Bailer, “Video browser showdown,” ACM SIGMultimedia Records, vol. 4, no. 2, pp. 1–2, 2012.
[36] Paul Over, George Awad, Martial Michel, Jonathan Fiscus, Greg Sanders, Wessel Kraaij, Alan F. Smeaton, and Georges Quéenot, “Trecvid 2013 – an

overview of the goals, tasks, data, evaluation mechanisms and metrics,” in Proceedings of TRECVID 2013. NIST, USA, 2013.
[37] Joseph John Rocchio, “Relevance feedback in information retrieval,” 1971.
[38] Eleanor Ide, “New experiments in relevance feedback,” The SMART retrieval system, pp. 337–354, 1971.
[39] Giorgio Gia, Fabio Roli, et al., “Instance-based relevance feedback for image retrieval,” in Advances in neural information processing systems, 2004,

pp. 489–496.
[40] Cees Snoek, Kvd Sande, OD Rooij, Bouke Huurnink, J Uijlings, M Liempt, M Bugalhoy, I Trancosoy, F Yan, M Tahir, et al., “The mediamill trecvid

2009 semantic video search engine,” in TRECVID workshop, 2009.
[41] Yan-Tao Zheng, Shi-Yong Neo, Xiangyu Chen, and Tat-Seng Chua, “Visiongo: towards true interactivity,” in Proceedings of the ACM International

Conference on Image and Video Retrieval. ACM, 2009, p. 51.
[42] Robin Aly, Relja Arandjelovic, Ken Chatfield, Matthijs Douze, Basura Fernando, Zaid Harchaoui, Kevin McGuinness, Noel E O’Connor, Dan Oneata,

Omkar M Parkhi, et al., “The axes submissions at trecvid 2013,” 2013.
[43] Kevin McGuinness, Noel E O’Connor, Robin Aly, Franciska De Jong, Ken Chatfield, Omkar M Parkhi, Relja Arandjelovic, Andrew Zisserman, Matthijs

Douze, and Cordelia Schmid, “The axes pro video search system,” in Proceedings of the 3rd ACM conference on International conference on multimedia
retrieval. ACM, 2013, pp. 307–308.

[44] Hervé Jégou, Matthijs Douze, Cordelia Schmid, and Patrick Pérez, “Aggregating local descriptors into a compact image representation,” in Computer
Vision and Pattern Recognition (CVPR), 2010 IEEE Conference on. IEEE, 2010, pp. 3304–3311.

[45] Carles Ventura, Manel Martos, Xavier Giró-i Nieto, Verónica Vilaplana, and Ferran Marqués, Hierarchical navigation and visual search for video
keyframe retrieval, Springer, 2012.

[46] Graham Healy and Alan F Smeaton, “Optimising the number of channels in eeg-augmented image search,” in Proceedings of the 25th BCS Conference
on Human-Computer Interaction. British Computer Society, 2011, pp. 157–162.

[47] Ashkan Yazdani, Jean-Marc Vesin, Dario Izzo, Christos Ampatzis, and Touradj Ebrahimi, “Implicit retrieval of salient images using brain computer
interface,” in Image Processing (ICIP), 2010 17th IEEE International Conference on. IEEE, 2010, pp. 3169–3172.

[48] Axel Carlier, Oge Marques, and Vincent Charvillat, “Ask’nseek: A new game for object detection and labeling,” in ECCV Workshops, 2012.
[49] Amaia Salvador, Axel Carlier, Xavier Giro-i Nieto, Oge Marques, and Vincent Charvillat, “Crowdsourced object segmentation with a game,” in ACM

CrowdMM, 2013.
[50] Carsten Rother, Vladimir Kolmogorov, and Andrew Blake, “Grabcut: Interactive foreground extraction using iterated graph cuts,” in ACM Transactions

on Graphics (TOG). ACM, 2004, vol. 23, pp. 309–314.
[51] Yuri Boykov, Olga Veksler, and Ramin Zabih, “Fast approximate energy minimization via graph cuts,” Pattern Analysis and Machine Intelligence, IEEE

Transactions on, vol. 23, no. 11, pp. 1222–1239, 2001.
[52] G. Bradski, ,” Dr. Dobb’s Journal of Software Tools.
[53] Kevin McGuinness and Noel E. O’Connor, “A comparative evaluation of interactive segmentation algorithms,” Pattern Recognition, vol. 43, no. 2, 2010.
[54] D. Martin, C. Fowlkes, D. Tal, and J. Malik, “A database of human segmented natural images and its application to evaluating segmentation algorithms

and measuring ecological statistics,” in ICCV, 2001.
[55] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman, “The pascal visual object classes (voc) challenge,” IJCV, vol. 88, no. 2,

2010.
[56] Tomasz Adamek, Using contour information and segmentation for object registration, modeling and retrieval, Ph.D. thesis, Dublin City University,

2006.
[57] Florent Perronnin, Yan Liu, Jorge Sánchez, and Hervé Poirier, “Large-scale image retrieval with compressed fisher vectors,” in Computer Vision and

Pattern Recognition (CVPR), 2010 IEEE Conference on. IEEE, 2010, pp. 3384–3391.
[58] Ali Sharif Razavian, Hossein Azizpour, Josephine Sullivan, and Stefan Carlsson, “Cnn features off-the-shelf: an astounding baseline for recognition,”

arXiv preprint arXiv:1403.6382, 2014.
[59] Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman, “Deep fisher networks for large-scale image classification,” in Advances in neural information

processing systems, 2013, pp. 163–171.
[60] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long, Ross Girshick, Sergio Guadarrama, and Trevor Darrell, “Caffe:

Convolutional architecture for fast feature embedding,” 2014.
[61] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein,

Alexander C. Berg, and Li Fei-Fei, “Imagenet large scale visual recognition challenge,” 2014.
[62] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton, “Imagenet classification with deep convolutional neural networks,” in Advances in neural

information processing systems, 2012, pp. 1097–1105.
[63] Artem Babenko, Anton Slesarev, Alexandr Chigorin, and Victor Lempitsky, “Neural codes for image retrieval,” arXiv preprint arXiv:1404.1777, 2014.

	Motivation
	State of the art
	Object Candidates
	Human Computation

	Interactive Segmentation
	Data Collection
	Ask'nSeek
	Click'n'Cut

	Segmentation algorithms
	GrabCut
	Object Candidates

	Experiments and Results
	Protocol
	Quality of the traces
	Accuracy vs Time trade-off
	Budget
	Improving the results

	Conclusions and Future Work

	Instance Search
	Dataset
	Feature Extraction
	Feature matching
	Ranking the results
	User Interface
	Experiments and Results
	Global and Local features
	Re-ranking strategies

	Conclusions and Future Work

	Work plan
	References

