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Abstract

This thesis presents a new tree structure that codes the grey scale information of an
image. Based on a scale-space processor callesiedes a scale tree represents
the image in a hierarchical manner in which nodes of the tree describe features of
the image at a specific scales.

This representation can be used to perform different image processing opera-
tions. Filtering, segmentation or motion detection can be accomplished by parsing
the tree using different attributes associated with the nodes.
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Chapter 1
| ntroduction

A long-standing goal for a computer vision system is to extract a simple descrip-
tion in terms of meaningful objects from an image. Ideas of this type are currently
being embodied in the proposed MPEG-4 and MPEG-7 standards where images
are represented and conveyed in the form of independent audio-video objects.

Coding an image according to its visual objects should be an extremely useful
step in the process of recognising objects in the image. An effective representation
of an image would be aobject tree in which nodes describe meaningful items of
the scene and where nodes are represented in a hierarchical structure. To achieve
this, systems capable of robust and fast segmentation must be created.

Of course, an optimal segmentation of an image cannot be achieved. The
different regions of interest and their locations may vary depending on the appli-
cation goals. The criteria to identify objects in the scene is also task dependent
and the definition of anbject of interest may differ from one user to another.

For instance, while coding an image, only the psycho visual quality of the seg-
mentation and the available bandwidth are significant. A segmentation based on
multi scale processors may be important as they segment the image into different
scales. The best segmentation for a specific purpose can then be extracted given a
quality threshold.

In this thesis, a new tree structure, based on a scale-space processor called the
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Sieve, is presented. A series of segmentations going from large to small scale are
organised under a hierarchical tree structursate tree.

The resulting scale tree, obtained from a grey scale image, forms a pyramid
of increasing size objects where the nodes correspond to features of a particu-
lar scale. The tree structure itself is fairly insensitive to geometrical transforma-
tions of the original image. Different operations such as filtering, segmentation
or motion detection can be performed by parsing the tree and using information
associated with the nodes.

It is shown that scale trees can approximatbgect trees and that scale trees
may be modified using other attributes to more closely approximate object trees.

The organisation of this thesis is as follows. Firstly, chapter 2 gives a gen-
eral review of different image processing segmentation techniques. A brief back-
ground of scale-space processors and mathematical morphology operators is also
presented. The following chapter gives a description of the sieve algorithm used
to build the scale tree structure.

Chapter 4 presents some other hierarchical structures that have been described
in literature. Scales trees are defined in chapter 5. Chapter 6 gives an overview
of some applications using scale trees. Different methods are used to simplify
the trees and new algorithms are described to refine scale trees in order to obtain
closer representations to object trees. In the last chapter, conclusions are drawn.



Chapter 2
Review

This chapter introduces some general image processing algorithms from the lit-
erature that are related to the transformation is studied heresid=algorithm

used to build the scale trees performsegmentation of the original image by re-
moving maxima or minima of the input function at specific scale. This chapter
discusses other segmentation techniques that have appeared in literature.

2.1 Segmentation

One of the most common and difficult problems in image processing has been
image segmentation and many image processing algorithms require a previous
filtering of the original image or an initial segmentation to locate the interesting
features of the image.

Here we distinguish image segmentation and recognition. If an objectis recog-
nised then it may be segmented. Segmentation, however, does not necessarily
imply recognition. Recognition implies some image understanding since it asso-
ciates semantic labels with part of the image but semantically meaningful labels
are not needed for segmentation. For instance, one can segment a white cloud
over a blue sky using colour information without knowing that the resulting seg-
mentation is a cloud.
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In the following sections, different segmentation techniques are reviewed.

2.1.1 Previoussegmentation techniques

For the segmentation of intensity images, there are four main approaches that ap-
pear in the literature [1, 44], namely, threshold techniques, boundary based meth-
ods, region based methods and hybrid techniques that combine some of the above.

Threshold techniques

Threshold techniques [62, 83] are based on the postulate that pixels with similar
values belong to the same region. The value used can be grey level information,
colour or any other pixel attribute. #reshold is then applied to the image so
different regions are segmented.

Threshold methods do not use any spatial or position information of the pixels
within the image and therefore they do not perform very well in noise or blurred
images.

Boundary based methods

Boundary based methods [29, 38] rely on a rapid change indixedary between
two regions. These techniques use the assumption that pixel values exhibit a fast
transition between regions [81]. Examples of filters that use this property are the
well known Sobel or Roberts edge detection filter [4]. The outputs of these filters
provide good candidates for region boundaries.

Converting the filter output into closed region boundaries is, however, a diffi-
cult problem for these methods.

Region based methods

Region based techniques [77, 107] wsgions of the image as their initial par-
tition. They use the postulate that regions of the original image are, in a sense,
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homogeneous. A homogeneity criterion [18, 19] is chosen taking into account
that pixels within regions are more similar than pixels in different regions.

Some region based techniques includedgblé-and-merge [51] procedure or
some standard region-growing techniques [3,17,106]. The general method is to
compare every pixel with its neighbours. If the homogeneity criterion is satisfied,
the pixels are assigned to the same class.

Using these techniques, the final result depends on the choice of the homo-
geneity criterion and such region based methods do not perform well with rich
textured images.

Hybrid techniques

Alternative segmentation methods are the hybrid techniques, which combine re-
gion and boundary information [1, 17] and include variable order surface fit-
ting [12], watershed segmentation [13, 103] or seeded region growing techniques
[1, 71]. For example, the watershed approach considers the gradient of the im-
age as a starting point forfeoding algorithm so edge and region techniques are
combined.

These techniques have problems with blurred edges in the image. Obtaining
markers for the regions of interest is also a difficult task to resolve.

2.1.2 Recent segmentation techniques

More recently, improved segmentation techniques have appeared in literature.
In [96], for instance, the whole image is treated as a weighted connected graph. In
this framework, the segmentation task is to find a partition in the graph such that
similarities within subgraphs are high and similarities between subgraphs are low.
In this case, for an image af x n pixels, the computational cost of the algo-

rithm is mainly finding the eigenvectors of an< n matrix. However, this method

only uses a few eigenvectors to perform the segmentation so the computational
cost is significantly reduced [97].
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More recently operators, such as Active Shape Models [23] can also be inter-
preted as new high order segmentation methods. In this case, the final goal of the
method is to locate a deformable shape in the original image. Shape information
is used to train a probabilistic model that constrains the fitting to the target image.
Shape, content information and a probabilistic background (a set of training im-
ages are used to build the model) are applied together to perform the recognition.

In a recent extension, grey scale information inside the distributed model,
called active appearance model, has been added with promising results in seg-
mentation, tracking and recognition tasks [22]. However, we note that recognition
is implicit in the ASM approach and so, as with all recognition algorithms, seg-
mentation should follow automatically.

2.2 Scale-space

A sieve is a method for scale-space analysis of an input signal. Scale-space meth-
ods process the image with scale as a parameter [33, 34, 104]. In a conventional
scheme, scale may be associated with resolution desired in the output function.
Figure 2.1 shows the scale-space representation of an image.

Coarser signal Increasing scale

Original signal

Figure 2.1: Scale-space filtering of a signal [66].

Scale-space processors simplify the image as the scale parameter increases, in
a manner that demands that no features are allowed to be introduced by the scale-
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space processor itself. This is accomplished byctheality property. If further
constrains, such aswusality andisotropy, are applied, the diffusion equation pre-
sented by Koenderink in [61] is satisfied.

V(cVf) = % (2.1)

wheres is scale. If the diffusivity parameter, is constant the equation above
becomes the linear diffusion equation,

The resulting scale-space processor, however, may introduce new extrema on
the resulting signal (section 3.4) and edges of the original image will be blurred
on the simplified output.

2.3 Morphological methods

The sieve algorithm used in this thesis does not rely on any linear filtering. Math-
ematical morphology [45, 46, 68, 93, 99], as a group of nonlinear filters, provides
the theoretical framework and is the analysis of signals by shape, and has been
developed by Serra [92—-94] from work by Matheron [69] and Blum [15].

One of the most important difference between the linear filters described be-
fore and nonlinear morphological filters is @dge preservation. Morphological
filters remove features of the original image while leaving the edges untouched.

2.3.1 Flat zones

The sieve algorithm studied in this thesis usamected sets or flat zones[25, 28].
It works by removing (i.e. merging) connected sets of the original image. A
connected set or a flat zone is a grougainected pixels with the same intensity.
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There are two different types of neighbourhood connectivity [57], 4-connected
and 8-connected pixels. Figure 2.2 shows these.

Q O

O—@—0O O O

O O

Figure 2.2: The left image shows the 4 connected pixels (in white)
of the centre pixel (in black). The right image shows the 8-connected
case.

A flat zone set represents a group of connected pixels (4 or 8-connectivity)
with the same grey scale value. Figure 2.3 shows an example of different flat
zones or connected sets of an image. Notice that there are two connected sets
with value 3 as they form two separated regions.

Figure 2.3: A figure showing thdlat zone idea.

2.3.2 Connected operators

A connected operator [26, 75,91, 95] is an operator that works with connected
sets of the original image. In this sense, the sieve may be defined as a connected
operator. Connected operators have been introduced in literatonee gisol ogi cal

filters by reconstruction [24, 28, 102].
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Salembier reported [91] that the first reference to connected operators, known
asopenings by reconstruction, appeared in literature in 1976 [56]. Initially, they
eroded a binary image by a connected structuring elementegodstructed all
connected components that were not removed completely by the erosion. These
‘by reconstruction’ operators involved not only openings but also closing, alter-
nating filters or alternating sequential filters.

Later, they were extended to grey scale images [101, 102] and different sim-
plification criteria were obtained from the use of these operators, such as size-
sensitive multiresolution decompositions [85, 90], area openings [101], geodesic
operators [64], size [94] and complexity [75].

To define a connected operator, the notion oassociated partition must be
introduced [95]. A partition of the imagé is a set of disjoint connected com-
ponents ofl, {P;}, the union of which is the entire image (eathis called a
partition class). A partitiod P;} is finer than another partitiofi); } if any pair of
points belonging to the same claBsalso belong to an unique classdh. The
associated partition of an binary imagéis made of all connected sets of the
image and their complement;“.

DEFINITION 1 A binary operator ¢ is connected if, and only if, for any binary
image X, the associated partition of X is finer than the associated partition of

b(X).

In the case of grey level connected operators, the associated partition is defined
using the flat zones of the image. Tpartition of flat zones of a grey functionf
is defined as the set of the largest connected components of the spacefwhere
constant. Using this, the definition of a grey level connected operator is identical
to the binary operator.

DEFINITION 2 Anoperator W isconnected if, and only if, for any grey level func-
tion f, the partition of flat zones of f is finer than the partition of flat zones of

v(f).
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The sieve operator onlgemoves connected components of the image (max-
ima or minima at specific scale). As any connected operator, it simplifies the
image while preserving the remaining contours. These connected operators have
relations with structured representations such as region adjacency graphs [79] or
trees [87]. In this thesis, a tree structure, caleale tree, derived from the sieve

algorithm will be analysed.



Chapter 3
Sieves

A sieveis a nonlinear scale-space decomposition algorithm [5-9] that shares sim-
ilarities with some mathematical morphology operators (section 2.3). It is a filter
that removes extrema from an input signal at a specific scalst every stage

in the filtering process, extrema of specific scale are removed from the original
function. So, for instance, the filter stage removes extrema of scale S, scale

2 and so on until the maximum scale of the original sigmails reached and the
resulting filtered image is flat.

The removed extrema forgranules that are stored in a new domain, (called
granularity). This domain has been shown to preserve scale-space causality (The-
orem 6.36 in [7]) and it is also invertible (Theorem 6.49 in [7]).

There are different types of filtering elemest, Section 3.2 defines the dif-
ferent kind of operators used in this thesis together with some properties of these
filters (section 3.4). The following section provides a more formal description of
the sieve algorithm.

3.1 Sevealgorithm

The basis of the sieve algorithm considers an input function as a graph [49, 100].
LetG = (V, E) be a graph, wher¥ represents the set of vertices afidhe edges

11
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between those vertices. Figure 3.1 shows this concept for a one-dimensional case.
The verticed’ are the samples of the function and the set of edgesrrespond

to the adjacencies between points. In this example, the samples of the function are
labelled with numbers st = {1,2,3,...,11} and the edges represent the con-
nections between the points = {{1,2},{2,3},{(3,4},...,{10,11}} where

{1,2}, or {2,1}, represents the edge or connection between vertices 1 and 2 in
the graph.

2 /7\
1 5 6 8 w—g

\10—11

3 L L L L L 3

Figure3.1: A 1D signal represented as a grajoh ).

Figure 3.2 shows the same concept for an image, in this case, the vertices of
the graph correspond to all the pixels of the image. The set of edgdsfine
the neighbourhood or connectivity of those pixels. In this example, a set of 4-
connected edges are used (section 2.3). The graph of this image wallg be
(V, E) with,

V={1,2,3,...,16}

and the edges,

E=1{{1,2},{1,5},{2,3},{2,6},...}

The algorithm works by defining subsets, or connected regions, inside the
graph representation. {f,.(G) is defined as the set of connected subset§ of
with r elements. Then, the regid@n.(G, v) over the graphz which encloses the
pixel (vertex)v can be defined as:
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1 2 3 4 1 2 3 4
5) 6 7 8 5 6 7 8
9 10 11 12 9 10 11 12
13 14 15 16 13 14 15 16

Figure 3.2: Image represented as a four-connected gréph ).

Cr(G,v) ={§ € C,(G) |v et} (3.1)

whereC, (G, v) is the set of connected subsetsroélements that contain, or,
simply, the connected regions of/ertices that contain the vertex For instance,
in the 1D example of figure 3.1, the set of regions with 2 elements containing

vertex7is¢ =2, =1),
Co(Gip, 7) = {{6,7},{7,8}}
for the two-dimensional, four-connected, example (figure 3.2),
Co(Gap, 7) = {{7,3}, {6, 7}, {7, 8}, {7, 11}}

Using the 2D example again, the regions of 3 elements containing pixel 1 are
(r=3v=1),

C3(Gap, 1) = {{1,2,3},{1,5,9},{1,2,6},{1,5,6}}

For each integer > 1, the sievefiltetS : ZV — Z" can be defined to operate
over the connected regioii$ (G) of the graph. As mentioned earlier, the sieve
algorithm removesxtrema of a specificscale from an input signaf, solength is
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used in the 1D case areain 2D and so on for higher dimensional signals.

The structure of a sieve decomposition is shown in figure 3.3. Each stage
S, removes extrema of increasing scale and the output function of every stage
fs = Ss(f) is used as the input signal of the next stage at scalie(equation 3.2).

fs+1 - Ss+1(fs) (32)

where the initial function is,

f=1To=38(f) (3.3)

Input signal Difference Granularity

Increasing scale

Figure 3.3: The complete sieve decomposition of a sighal

Equation 3.4 shows the definition of a complete sieve algorithm over a signal
CS(f). A cascade of increasing scale sieve algorithms are applied until no new
maxima or minima are found. i represents the scale of the largest granule in
the input signalf, the complete sieve sequence can be defined as,
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The granule function is defined as the difference between two stages of the
sieve filter (equation 3.5). The granule functigncontains all connected subsets
of the original function that have been removed from the original signal for scale
s. Thegranules g, are the non-zero connected regions in the granule fungtion

gs = sfl(f)_Ss(f):fsfl_fs (35)

The morphological operators defined in section 2.3 can be re-defined to oper-
ate on connected regions using the standard graph notation. The sieve operator,
S,, can then be any of the morphological filters described before. Re-defining
these filters to use connected regions implies that the morphological operators no
longer use rigid structuring elements. Instead they use all sets of connected sub-
sets defined by the functiati,(G) asflat structuring elements.

For instance, in the 1D case, equation (3.1) becomes the set of intervals con-
tainingr elements,

Cr(Gip,x) ={[z, x+r—1] |z € Z} r>1 (3.6)

which is identical to filtering using a flat structuring element of lengtith
output at the middle pixel.

The following section discusses the new notation of these morphological filters
together with some examples of their operation.

3.2 Typesof sieves

The sieve algorithm can use any morphological operators (section 2.3). The
only restriction imposed to these filters is that they must be idempotent (see sec-
tion 3.4). As the sieve operator removes extrema of sgat® smaller features

are allowed to remain in the original signal 8¢(Ss(f)) = Ss(f). This means

that morphological opening, closing/-filters and\/ -filters can be used but not
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operations such as dilations or erosions as they are not idempotent.

Opening

The morphological opening is defined over a graph as,

Y f(x) = gegi?ém)ﬂ?é?f (u) (3.7)

As v, operates on a set efelements’, (G), it can only removenaxima of size
r—1 and, for instancey, will remove all maxima of scale 1;; has no effect on the
original signalf = ~,(f). To keep our notation, we will still describe a opening
sieve p-sieve) of scale one &5 so scale of size 1 is removed, remembering that
an operation ofy, needs to be applied.

Figure 3.4 shows a 1D example of a opening sieve of scale 1. Maxima of scale
1 (positionss — 9 and11 — 12) are removed.

Opening example (scale 1)
6 T T T

5 — Original Signal .
—— Opened signal

-1 I I I I I I I I
2 4 6 8 10 12 14 16 18

Figure 3.4: Example of a opening sieve-6ieve) of scale 1.
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Closing

As the opening filter is defined to operate over subsets of a grapie morpho-
logical closing is defined as its dual operation,

, = i 3.8
orf () ccNin maxf (u) (3.8)
and it removesninima in the subsets af’,.(G) sop, can only remove minima of
scaler — 1 (as the opening filter). The closing sieve cesieve, removes minima
(and only minima) of scale from the input signal (positions— 8 and12 — 13 in
figure 3.5)

Closing example (scale 1)
6 T T T

5 — Original Signal .

— Closed signal

-1 I I I I I I I I
2 4 6 8 10 12 14 16 18

Figure 3.5: Example of a sieve closing-sieve) of scale 1.

M-ilter

The M-filter consists of an opening followed by a closing. Equation (3.9) shows
the definition of anM-filter operating on a graph.

M. f(z) = ¢-(7-f(2)) = min max (maxmin f(u)) (3.9)

e Cr(Gyxr) ueg

An M-sieve filter removes extrema of scalby removing maxima (opening)
and then minima (closing) at that scale. Figure 3.6 shows an example of the
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operator removing extrema of scaleM/ {sieve ( f)).

M-filter example (scale 1)
6 T T T

5 — Original Signal
—— M-filtered signal

-1 I I I I I I I I
2 4 6 8 10 12 14 16 18

Figure 3.6: Example of aM-filter sieve (V/-sieve) of scale 1.

N -filter

The morphologicalV filter is defined as a closing followed by an opening,

N f(@) = % (porf(2)) = max cf?éfi )(Igeig max f(u)) (3.10)

and removes minima and then maxima at a seal@he resulting sieved signal
may differ from theh/-sieved output if extrema of different sign (maxima / min-
ima) are found in the same connectedGgtG). Figure 3.7 shows the same 1D
input signal filtered this time with aV-sieve. As minima are processed first,
positions? — 9 go to a higher level than when thé-sieve is used.

As opening and closing sievel, and/N-sieves remove extrema of scale- 1
when a filter of size- = 2 is used.

Recursive median filter

The recursive median filter [70] is a one-pass approximation to the root median
filter [74], a median filter applied to the input signal until no further change occurs.

Equation 3.11 shows the definition of a 1D recursive median filter using a window
of r samples, where is odd.
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N-filter example (scale 1)
6 T T T

5 — Original Signal
—— N-filtered signal

-1 I I I I I I I I
2 4 6 8 10 12 14 16 18

Figure 3.7: Example of a\/ -filter sieve (V-sieve) of scale 1.

median{ p,f(x —5%), prflx — 5+ +1),...,
orf(@=1), f(z), fl+1),..., 220
L 0 x <0
(3.11)
so, for example, when = 3,
psf(x) = median{psf(x — 1), f(x), f(x + 1)} (3.12)

the filter is the median of (z), f(x + 1) and the previous output.

The recursive median filter retains all of the properties of the multiple pass
root median filter such as noise rejection and idempotency [9], and therefore, is a
valid operator to use with the sieve.

The recursive median filter of samples can only remove extremasof=
(r —1)/2 (r must be odd). So, the filtep,., removes only extrema of size= 1
when a window of size = 3 is applied (a window of = 3 samples is needed to
achieve the same results a 2 pixel window ir-, ¢-, M- or N-sieve filters). The
recursive median sieve operatesieve will remove scale of size so it will use
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a window ofr = 2s + 1 samples.

Figure 3.8 shows an example of a recursive median sieve removing extrema of
size 1. The median filter scans the image using the ‘implicit’ left to right order in
1D. For higher dimensional signals, an order has to be imposed. In the 2D case,
a left-to-right, top-to-bottom scan leads to a very similar results toMheand
N-sieves.

Recursive median example left-to—right (scale 1)
6 T T T T T

5 — Original Signal

— rfiltered signal

-1 I I I I I I I I
2 4 6 8 10 12 14 16 18

Figure 3.8: Example of a recursive median sievedieve) processing
extrema from left to right.

Note that the output of the recursive median filter depends on how the extrema
are positioned in the input signal and, if the original sigfiaé scanned in any
other order, different outputs may occur. Figure 3.9, for instance, showsra 1D
sieve using a right-to-left scan, positiohs- 9 and11 — 13 differ from the results
using a left-to-right scan.

The different sieves defined are summarised in table 3.1.

Filter Symbol| Sieve | Extrema Processing
opening ¥ o-sieve maxima
closing © c-sieve minima
M-filter M M-sieve bipolar 4
N filter N N-sieve bipolarF

recursive median  p r-sieve bipolar random

Table 3.1: Sieve types.
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Recursive median example right-to—left (scale 1)
6 T T T T T

5 — Original Signal .
— r-filtered signal

-1 I I I I I I I I
2 4 6 8 10 12 14 16 18

Figure 3.9: Example of a recursive median sievedieve) processing
extrema from right to left.

3.3 Examples

In this section, more advanced examples of the sieve operator will be presented.
As defined in equation (3.4) and (3.5), a complete sieve decomposition transforms
the input signal into a new different domain callgdnularity, G, and it is com-
posed of all removed granule functionsat all scales.

g = {917927"' 7gm} (313)

Figure 3.10 shows the granularity decomposition of the same signal used in
the previous examples. AlY-sieve operator is used to filter the input signal until
no more extrema are found, in this case, at scale 5. At eyagordinate the
granule functiory, is represented, for scaile

As the morphological filters have been defined in any number of dimensions
using the graph notation, sieves can be extended to operatéVadiimensional
signals. The left of figure 3.11 shows a very simple image. On the right is a 3D
visualisation of the same image where height is grey scale value so extrema values
form mountains or valleys in the surface.

A complete sieve decomposition of this image is shown in figure 3.12. An
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. . . . . . . .
2 4 6 8 10 12 14 16 18
position

Figure 3.10: Granularity decomposition of a 1D signal using the
sieve.

Figure 3.11: Original 2D image for the 2D sieve decomposition. On
the left, the grey scale value of the pixels. On the right, a ‘mesh’ repre-
sentation of the original.

M-sieve filter is used to segment the image. For clarity, only scales where the

granule functionsg,, are different than zero are shown. The left column shows

the filtered image while right column shows the granule functions.

To conclude this section, a last example with a real image will be analysed.

In this thesis, the sieve algorithm is used to build a tree representation, called a

scale tree, of an image. This new structure keeps information about the scale of

the image by removing maxima and minima. As extrema of both signs (maxima

and minima) are removed, opening and closing sieves cannot be used.
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Figure 3.12: Example of a sieve decomposition in 2D. Left column
shows the filtered image¥® -sievg ). Right column shows the gran-
ules removed at each stage.

The r-sieves operators were not chosen to build the tree structure as they ex-
hibit some variations under rotations or other transformations of the original im-
age. Since there are few differences between usirend N operators)\/-sieves
were chosen arbitrarily. A 4-connected 2D sieve was used (the results are rather
similar to using 8-connected sets (see section 2.3)). Figure 3.13 shows an example
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of the M -sieve operator at different scales.

Figure 3.13: M-sieve decomposition of the image on the left. Middle
and right images sieved up to scale 500 and 2500 pixels.

3.4 Properties

It has been shown that the sieve is a nonlinear scale-space selector that removes
extrema of increasing scale from the input signal. The sieve is therefore a good
candidate to perform an initial segmentation of the image based on scale. The
sieve filters also have properties that make them interesting for some image pro-
cessing tasks. This section will discuss some of the more important properties
together with relevant example images. For a formal description and a proof of
these properties see [7] and [9].

| dempotency

The sieve algorithm removes extrema of sizom an input signal. Since no
smaller features are allowed to exist after the current scale filter has been applied,
the sieve operator must be idempotent,

s :Ss(f) :Ss(ss(f)) (314)

or, in other words, applying the sieve filter at scalenplies filtering the signal at
all lower scales until scale 1.
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fs - fsflfsf2---f2f1 :Ssssfl---SZSl(f) (315)

Scale-space causality

N-dimensional opening and closing-sieve operators preserve scale-space causal-
ity [61] as they do not introduce any new extrema to the original signal. Using
the graph notation again, &, is a sieve filter operating over a signak Z" and

{z,y} € Fis a particular edge. Asincreases, the differende = f,(y) — fs(z)

does not change sign and its absolute value decreases.

(51§62§§0, or 61262220 (316)

Figure 3.14 shows a well known example due to Lifshitz and Pizer [65] that
illustrates scale-space causality. The original image is, on the left hand side, with
2 extrema, the circle on the top and the two squares connected by a thin isthmus.
The standard linear diffusion system [2, 66] does not enhéma extrema but
reduces the amplitude of the isthmus and hence creates three maxima where there
were two. Thel/-sieve (on the right) treats the squares as one object and so,

preserves scale-space causality.

B) C)

Figure 3.14: A) shows the original image with two extremB) Lin-

ear diffusion systems introducing new extrema (now the two squares
form two different extrema) . I€), The sieve algorithm leaves the two
squares untouched so no new extrema are introduced.
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I nvertibility

One of the most powerful properties of scale sieves is that they are invertible and
the original image can be reconstructed from the granularity domain. Using the
example of figure 3.12, the original image can be reconstructed by adding all
granules (right column) over all scales,

m

F=Y g=g+g+. .. +gn (3.17)
s=1
wherem is the maximum scale of the signal.

However, in the reconstruction of the original signal, the DC component of
the signal is not retained as the maximum intensity of the image is lost (only the
difference is stored). There may be an offset between the original image and the
reconstructed image. To solve the problem, the signal can be padded with zeros,
SO no more extrema are introduced and the DC component is eliminated. 1D
padding with zeros implies adding zeros to the start and end of the signal. In 2D
padding a border of zeros is placed around the image with area greater than the
size of the image.

Figure 3.15 shows a 1D example of this problem. On the left, the original
signal with an offset of 4, on the right, the ‘zero-padded’ signal. The bottom
row shows the reconstructed signals using diesieve. Note that the recon-
structed ‘unpadded’ signal does not preserve the original offset. The reconstructed
‘padded’ signal, however, is identical to the original, zero-padded signal.
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Figure 3.15: Demonstration of the invertibility of sieves. On the left
the original image with an offset, on the right the zero-padded signal.
Middle row shows the granularity decomposition of the two signals.
Bottom row shows the reconstructed signals. Note that the ‘unpadded’
reconstruction does not preserve the DC component of the original.



Chapter 4
Treesin image processing

Following the description of the sieve algorithm on chapter 3, this chapter intro-
duces the idea of a tree structure representing an image. Descriptions of some
useful trees currently used in image processing will be added. These descriptions
will provide a background to the use of sieves in building the new scale tree struc-
ture described in this thesis.

Trees are a commonly used data structure in computer graphics where Binary
Space Partitioning trees [20], decision trees [43] and other relational structures
have been used to describe all the objects within a scene (such as VRML formats
or BIFS planes on MPEG-4). In the case of image processing, these structures
have not been applied as extensively but, in the last few years, these have become
more popular.

The following sections will present some trees currently being used in image
processing. As will be seen, some of them share similarities with the tree structure
developed in this thesis in the sense that they store the same information or that the
tree building algorithm is similar. In each case, the advantages and disadvantages
of using such structures will be analysed and some applications showing where
and how the trees are used will be presented.

28
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4.1 General image processing trees

Several trees have appeared in literature relating to different image processing
tasks. This section briefly discusses some of them by comparing the algorithm
used to build the trees as well as the properties that make them interesting for
some applications in image processing.

4.1.1 Directed trees

Directed trees first appeared in the image processing literature in 1976 in a paper
by Koontz and Narendra [63] and have since been applied to different segmen-
tation techniques [73]. Every node in a directed tree represents one pixel of the
original image. Figure 4.1 shows an example of two directed tfEesnd 15,
completely segmenting an image.

Figure 4.1: An illustration of a directed tree with image points as
nodes. Two different directed treds,and7;, segment the image (dot-
ted line) in two disjointed regions.

The algorithm used to build directed trees operates on an edge enhanced im-
age, computed from the original. This edge function establishesitbeted links
between pixels (arrows of the figure). If the corresponding edge image computed
from the original, ofN x M pixels, is,

E={e(r,y), z=1,... ,N;jy=1,...,M} (4.1)

the algorithm computes an ‘edge gradient’ funct@fr, y) used to identify the
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‘closer’ adjacent pixel to establish a tree link.

G(x,y) = maxfe(x’,y) —e(x,y)] (2',y') € n(z,y) (4.2)

with n(z, y) being the neighbourhood pixels of a point y) of the image.

The algorithm segments the original image by expanding the directed tree over
uniform regions in the edge image. Each resulting directedyéerms a differ-
ent region in the segmented image (figure 4.1).

4.1.2 Containment trees

Containment trees are a different approach to building a tree structure of an image.
They represent the image by storiogntainment information. They have been
used in some shape based recognition in pictorial databases [59]. Each node in
a containment tree stores information about a contoyrpf the original image.

The tree structure itself is built by creating child nodes for contoantained or
enclosed in a bigger contour (it's father).

Figure 4.2 shows three examples of these trees. As it can be seen, the con-
tainment tree is a very simple representation of a black and white image where
containment information is stored in a tree structure. Such a simple tree leads to
the same representation for a wide variety of different images, see for example
the two first columns in figure 4.2. At the same time, the use of this structure is
invariant to strong transformations of the original images such as zooms, rotations
or small occlusions.

It is obvious that this representation cannot be used for a complete picture
system retrieval. The containment tree gives good results if it is used to make a
preliminary discrimination of the search space [59] for other, higher order, and
usually computational more expensive systems.
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Figure 4.2: Three containment trees. Left and middle columns having
the same tree. Right column illustrating a different containment tree
with the same number of contours. The black node corresponds to a
‘dummy’ contour including all the curves and actingrast of the tree.

4.1.3 Shock trees

Shock trees appeared in literature in [98] as a graph derived from a Sababf
measures [55] in the curvatures of the image. The shock tree is built by analysing
the singularities of a curve evolution process acting on simple closed curves of a
binary image.

The singularities of a curve are measured by the variation of the radius func-
tion associated with each curve in the image. The variations are classified into
four types (figure 4.3). These shock variations are then transformed into a hier-
archical structure. A third order shock, for instance, has two children formed by

B

first order shocks.

First-Order Second-Order
N
Third—Order Fourth—Order

Figure 4.3: Four different types of variations of closed curves. A first
order shock appears on curve segments. Second order shocks arises at
necks, followed by first order shocks in each direction. A third order
appears on straight lines. Four order shocks appear in circles [98].

Shock trees have been applied to object classification systems based on sil-



CHAPTER 4. TREES IN IMAGE PROCESSING 32

houettes images. The tree matching algorithm uses topology alone [78] but other
techniques using label information has been also studied [98].

4.2 Scale-spacetrees

Trees relating to scale-space processors (see section 2.2) have appeared in litera-
ture in structures, such @slad trees or oct trees. They share the use of a scale
decomposition as a main factor to build the trees. The following sections briefly
discuss these representations.

4.2.1 Quad and Oct trees

Quad trees are one of the earliest multi-scale representation of an image and were
introduced by Klingerin 1971 [58]. The algorithm to build a quad tree is similar to
the split-and-merge algorithm [18,19,51, 77] and it works recursively by dividing
the original imagd into blocks (B;) [53, 54].

Firstly, the whole image is treated as a single block of 8izex 2™ pixels, a
formal criterion is used to decide if the pixels within a block are similar enough.
If the block being analysed satisfies the homogeneity criterion, the block is kept
and the algorithm stops. If it is not, the block is divided imtosimilar regions
and the algorithm is applied again on every created subregion.

To satisfy the criterion, a measure of pixel value variation is taken and if it
is greater than a certain threshaldhen the block is subdivided. Usually, the
measure used is proportional to the grey scale variance of the pixelg) in all
regions. Generally measures like the difference between maximum and minimum
pixel value in that block (maximum intensity),

|gmax(1‘7 y) — Imin (IL’, y)| V(IL’, y) € Bz (43)

or a measure of the standard variance of the regions pixels (equation 4.4) will be
used.
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o? = (z,y)€B; (4.4)

For simplicity, the original image is divided in sub quarters & 4). Fig-
ure 4.4 shows an example of a quad tree encoding of regions over a simple binary
imageX. The variance measure (4.4) is used with a threshold equal to zero (di-
viding white from black pixels). The resulting segmentation can be seen on the
left. On the right is the quad tree encoding of the regions.

Figure 4.4: Quad tree representation of regions.

If there is strong intensity variations in the original image and a small threshold
u is set, then the image will be over-segmented. Figuré 4lows an example of
a MATLAB implementation with a real image @28 x 128 pixels and a dynamic
range ofl0 — 255] in pixel intensity. As it can be seen, regions with high contrast
are segmented into smaller regions. However, some regions of low contrast, like
the grass, can be over segmented into different blocks.

Oct trees are the 3-D generalisation of quad trees [52,80]. In this case, a cubic
block is divided into eight sub-cubes, or octants, of equal volume. The algorithm
to build oct trees is the same as quad trees. A homogeneity criterion is used to
further subdivide the cube or to stop the algorithm. The resulting segmentation
can be represented with a tree structure of degree 8 (referred to as an oct tree).

Due to [16].
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Figure 4.5. Quad tree decomposition of an image. On the left the
original, middle figure the quad tree blocks resulting of applying the
maximum intensity measure with a threshale- 15. On the right, the
superimposed blocks onto the original.

4.3 Morphological trees

In this section, three different typesmibr phological trees will be presented. Mor-
phological trees treat the image as a group of connected regions, i.e. connected
pixels with the same intensity (see chapter 2). As they work with only connected
sets [95] they preserve all contour information of the image.

4.3.1 Critical laketrees

A critical lake tree is a simple tree introduced by Meyer et al. in [21]. The algo-
rithm used to build the tree structure is the watershed segmentation introduced by
Digabel et al. in 1977 [30].

Figure 4.6 shows an example of these trees. A watershed plus markers [13,
103] approach is used with minima as the seed. Starting from the minima markers,
a flooding algorithm [31, 72] is then applied to completely segment the image.
Every ‘lake’ or minima of the signal forms a node in the crititalte tree. After
the whole topographic surface is flooded all path points through which two lakes
merged are labelled by a given measure, sualegth of the lake area or volume
of the particle.

The resulting tree structure provides an useful representation of an image. Us-
ing the information stored in everyitical node a multi-scale segmentation of the
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Figure 4.6: Critical lake tree example. The original function in light
gray and the tree in black.

original image can be made [21].

4.3.2 Maxand Min trees

Max trees are a relatively new representation of images. They appeared for the
first time in literature in 1996 by Salembier and Oliveras as an extension of con-
nected operators [87]. In a max tree structure, every node of the tree represents a
connected set, or flat zone (section 2.3) in the original image.

The use of connected operators can be significantly simplified by constructing
the max tree and computing the operator for each node in the tree [36]. Using
the binary image of Figure 4.7, each component can be represented by a node
inside a max tree structure. Firstly, all background pixels are assigned to the root
node N, (in this case white pixels). Secondly, three new nodes are created
{1, }1<k<3 representing the connected setsB andC' of the binary image in
the top row.

The removal of a node is accomplished by moving this specific node to its
father in the max tree structure. The top row, right hand image of figure 4.7 shows
the result of using a binary opening on the left hand image. The bottom row
shows the same opening operator using the max tree. Note that the output max
tree matches perfectly with the output binary image (top rightimage in figure 4.7).

The simple 1D signalf, of figure 4.8 is used to illustrate the algorithm for
building a max tree. A thresholkl is used to binarise the input functighand
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Figure 4.7. Example of a binary connected operator using a max tree.

to store the different connected sets found in the binary function as nodes of the
tree. At every step, the threshold is increased by one and all nodes created in the
previous step are re-analysed. Pixels with values lower than the threshold remain
in that node, pixels with values greater or equal than the threshéddm new
nodes (children of the node being processed).

In the 1D example, the threshold is sett@he lowest value of the function)
and it is used to quantise the signal. In this case, all points are greater or equal to
the threshold: so all the points are assigned to one nadlg, called the root. In
the second step, the threshold is increages, 1 and the root node is analysed.
Two connected sets are foundl] and N2, and so these pixels are removed from
nodeN, and assigned to two new nodes which are children of the root.

The second and last step, as the threshold reaches the greatest amplitude of the
signal, finds two new connected sets and so nddgand N2, children of nodes
N! andN? respectively, are formed. While the algorithm creates new nodes some
old nodes may become empty and, therefore, these nodes must be removed. For
example, the empty nod€? has to be upgraded to nod&.

The extension of this algorithm to 2D is shown in Figure 4.9. The original
image has 6 connected flat zones B, C,D, E and F'), the numbers represent
the gray scale level of the connected set.
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Input function

Thresholded function levels {0,1} Tree levels {0,1}

Thresholded function levels {0,2} Final tree

Figure 4.8: Example of max tree creation irD.

Original Image

tree levels {0,1} Final tree

Figure 4.9: Max tree creationZD).

The steps to build theD version of the max tree are the same as those used
to make thel D tree representation. The complete max tree construction can be
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summarised as follows. Starting from the lowest value in the image, each node
Nf’f (¢ stores the information about the gray scale level represented by that node)
is processed. Within that node, pixels equal to the threshodmain in the node
and the different connected components of the remaining pixels (gray level value
higher or equal thah) create the different children of that specific node.

Three important properties of the resulting max tree are listed below:

1. No contour information has been lost, the original image may be accurately
reconstructed from the final tree. Even if one node is removed, the remain-
ing nodes retain their contour information (figure 4.7).

2. The final tree is oriented towards the maximum of the imagg {ree) so,
the leaves of the tree are the maxima of the original function. To obtain the
same representation orientated to the minima of the imame tee) the
original image has to be inverted.

3. The nodes in the final tree structure are not necessary formed by connected
pixels, as can be observed of nddeE '} in Figure 4.9. This node represents
the flat zonesB1 and E'1 which are two different connected components in
the original image. Figure 4.10 shows a ‘real’ example where a node of the
max tree (white pixels) is not formed by local connected pixels.

Once the max tree structure is built, and the different connected sets or flat
zones of the image are assigned to all nodes, many criteria can be applied to each
node to perform a variety of different tasks. For example a disparity criterion can
be used for a stereo analysis [76], or a motion criterion for motion recognition [88,
89].

As max trees share many similarities with scale trees, section 6.2.2 will focus
on the motion recognition application discussing the advantages and problems of

both max and scale trees.
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Figure 4.10: Example of a node in the max tree with non local con-
nected pixels. White pixels represent one only node of the tree. Image
taken from [67].

4.3.3 Binary partition trees

Binary partition trees are an extension to the max trees described above [84]. A
binary partition tree is a shape oriented image representation in the sense that it is
a structure representation of regions that can be obtained from an initial partition
of an image.

There is no fixed algorithm to build binary partition trees, different solutions
can be adopted depending on the application. In general, the binary partition
tree retains information of the merging steps performed by the segmentation algo-
rithm [37], this is called thenerging sequence.

The tree is built using an initial partition of flat zones in the image, the al-
gorithm merges neighbouring regions following the homogeneity criterion until a
single region is obtained which is assigned to the root node. For example, a colour
homogeneity criterion can be used to merge regions so every original flat zone is
merged with the next ‘closest colour’ neighbouring region.

Binary partition trees can be used in a large number of processing goals such
as detection or recognition, visual browsing, segmentation or information re-
trieval [86].



Chapter 5
Scale Trees

This chapter introduces the notion okeale tree. First of all, a general graph-
theoretical framework will be introduced. Some properties of scale trees will be
presented. Finally, some examples will illustrate the building algorithm.

5.1 Building scaletrees

A scale tree is a tree representation of the sieve algorithm. In chapter 3 was shown
that the sieve algorithm removes extrema of any sedtem an input signal. If

a cascade of increasing scale sieve filters is used, extrema of increasing size are
removed. The complete sieving filt€S(f) (equation 3.4) can easily be trans-
formed into a tree representation. Granules of different sizes are represented as
nodes in the tree. Bigger granules are represented as parent nodes of small gran-
ules.

5.1.1 Graph notations

Before going into details of the proposed scale trees, some graph-theoretical no-
tations and definitions need to be introduced [47]. Get (V, E) be a graph as

in section 3.1, wher&” is the set of nodes ankl the set of edges. Tharder of

G is defined as the number of nodeslinand itssize as the number of edges in

40



CHAPTER 5. SCALE TREES 41

E. Two nodesi, m € GG are said to badjacent (n ~ m) if they are connected by
and edge.

A path in the graph can be defined as a sequence of neges:,...n, where
Vi = 1..p,n,_1 n;. In other words, a path is a list of nodes that tells you how
to go from noden, to n,,. In this case, the length of the pathyis A graphé is
connected when there is always a path to join any pair of nodeslf= n, then
the path is called aycle.

Given the notion of a path, thdistance between two nodesi(n, m), is the
shortest path between those two nodes, vfth m) = oo if no path can be made
(non connected graph). A connected graph with no cycles is calies,zand a
rooted tree is a tree with a central node, called thet. Two nodes in a tree, or
rooted tree, are always connected by a unique path.l&ekof noden, lev(n)
in a tree is the length of the path connecting the root.toSo if n ~ m and
lev(m) — lev(n) = +1 thenn is thefather of nodem, F(m) = n (equation 5.1)
and, therefore, node: is thechild of n.

n~m
m)=n Iff )
Fm) ! { lev(m) — lev(n) = +1 G

5.1.2 Scaletreedefinitions

Scale trees are rooted trees, where every nédeepresents a granule of size
which has been merged into the next larger scale granule in one step of the sieve.
After every sieve at scalg the granule functio, (equation 5.2) describes the
removed granules, which form nodes in the scale tree. The granule function can
consist of more than one granule (non zero regiong jrso each every granule
function may generate more than one node in the scale tree (equation 5.3). The
nodeNN;, represents the granulet the scale.
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9s = Ss1(f) = Ss(f) (5.2)

Nsi = Gs; where Ugsi = Gs (53)

The algorithm used to build a scale tree is as follows. At every step of the
complete sieve operator, the granule functigns computed and every granule
gs, 1S labelled by its corresponding nodé,.. As a new node is created, a link
is established between previous nodes which have been already merged and that
specific nodeV,,. This link is defined as a father relatioff) in the scale tree
structure (equation 5.4).

s < s"

f(Ns() = Ns;-’ iff gs; C gs;/ (54)

(2

VS, m2n|gs; —9s;| = |gs’l - gs;-’|

Equation 5.4 shows the father relation between two different granules at scale
s" and at the larger scal¥. NodeNsy is the father ofV,, if and only if the three
conditions stated above are fulfilfed

As the sieve can be defined in 1D or 2D, scale trees representations can be
derived for 1D or 2D signals. In this thesis, the 2D sieve is been using extensively,
but, for clarity, section 5.1.3 explains the tree building algorithm with a 1D exam-
ple. Note that, in any case, the tree representation of a function is the same in 1D,
2D or in any dimension as it is using a scale decomposition (sieve) of the original
image. Thereforescaleis used generally for any dimension but specifically refers
to length in the 1D caseareain 2D case owvolumein 3D.

1The last condition in (5.4) is intended to eliminate grandfathers, great grandfathers and so on.
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5.1.3 1D scaletrees

As a simple example, the function shown in figure 5.1, will be used to build, in
this case, a 1D scale tree.

1D ScaleTree example
T

| — Input Signal ] I_l |_| .

I L ]

-1 | 1 1 1 1 1
5 10 15 20 25 30

o B N W b

Figure5.1: Input signalf for 1D scale tree example.

In the first step (figure 5.2), a scale 1 sieve oper&dif) is applied over
the input signalf. The granule functiom, is computed, in this casg as we are
sieving at scale 1, and the nodg, is created labelling the corresponding granule.
Note that there is only one granulegn and so only one nod¥®,, is created. The
graph on the left of figure 5.2 shows the granule function (with the granulm
red) and the resulting sieve function at scal8;1f) which will be used as input
function in the next scale sieve is shown in blue.

The right side of figure 5.2 shows the new node built (in red) naiedas
it represents the first, and only, granule at scale 1. The ellipse represents the
remaining points in the input signgl which have not yet been assigned to any
node of the scale tree.

Note that the link between nod€,, and the ellipse is not a father relation. It
is just a temporary link between the new node and the granule it merges to.

ieve

|
B O kN oW
T

Figure5.2: Sieve up to scale 1, granule, labelled in nodeV,, (step
1).
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In step 2, the sieve is applied to the new input sig§al,f). Now at scale 2.
This time, two different extrema are foung,, andgs,,, in the granule function
g2. Following the algorithm these two granules are removed and labelled via two
new nodes of the tregy,, andN,,. The tree representation shows the two new
nodes in red. A temporary link is made to keep information about where the two
granules are going to be merged to.

B O kN oW
T
0os
k=l
So
=4
n
®
I

Figure 5.3: Sieve up to scale 2, granulgs, andg,, removed and
stored in node®V,, and N, respectively (step 2).

Finally, a sieve to the next scale is applied. In this case, the next scale is 9
which removes the big step,. Once the granule is removed, a node is created
in the treeNy,. At this point, the tree building algorithm links the two already
created nodes\;,,/V,) to the currentVy, node, since granuleg, andg,, were
attached to granulg, in a previous step of the complete sieve (step 3). The node
Ny, is now linked to nodedV;, andN,, with a father child relation (equation 5.4).

In other words, noded’;, andN,, become siblings and children of nodg, .

PO kN oW &
T
©0es
b=l
=03
=}
b
«
®
I

Figure 5.4: Sieve up to scale 9, last extremuy removed and stored
in nodeN,, of the scale tree (step 3).

The output of the sieve operator at this sta§g,f), is a constant signal and
S0 no new extrema can be found. Scale 9 was the maximum granulergize (
the input signalf and so the complete sieve operator stops. However, to finish
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building the tree, a final step needs to be completed. All remained points are
assigned to the root nod¥,,,; and all nodes without father at this stage, are
linked to this root node. The figure 5.5 shows the final tree. Five different nodes
result from the sieve process, each of which corresponds to a granule of the input

function f.

Figure5.5: Final scale tree of signglin figure 5.1.

5.1.4 2D scaletrees

We now revise an example of building a 2D scale tree of an inTagAs sec-

tion 3.1 described, the sieve algorithm can be defined in any number of dimen-
sions. Now, the 2D sieve algorithm will be used to build the scale tree representa-
tion of an image.

The steps needed to build a scale tree representation of an imagethe
same as those used to build the scale tree of a 1D function (section 5.1.3). As a
simple example, the image shown in figure 5.6 is used to create a 2D scale tree.
The image is of size 20x20 pixels with 5 different regions; the grey rectangle at the
bottom, partially occluded with the three white rectangles, and the black rectangle
at the top of the image.
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2D ScaleTree example - Original

Figure5.6: Input imagel for the 2D scale tree example.

The only difference between the algorithm used to build a 2D scale tree and
that used for the 1D is the definition of scale. In 2D scale is a measuaesf
instead of length. The first step involves sieving the input imageincreasing
scales and halting the algorithm when the granule fungfiooontains non zero
elements. For this example, that scale is area 12 pixels. Two extrema are found
with this sieve operator (the two white squares at the sides of the grey rectangle).

. 2D ScaleTree example — Granules scale 12
2D ScaleTree example - Sieve Scale 12

Figure 5.7: Sieve up to scale 12 pixels, two granules removed and
stored in nodes of the scale tree (step 1).
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Figure 5.7 shows, on the left, the resulting sieved im8gé¢l) where the two
white squares have been merged to the grey rectangle. The two new nodes created
can be seen on the right (red dots). At the base of that figure, the original image
is represented with the granules found in this step coloured in red.

. 2D ScaleTree example - Granules Scale 16
2D ScaleTree example - Sieve Scale 16

Figure 5.8: Sieve up to 16 pixels, granulgs stored in the scale tree
(step 2).

Thex andy coordinates of the two new nodag,, andV,,, are positioned at
the centroid [14] of the respective granule. Theoordinate is the level or height
of the tree (root node is levél its childrenl, its grandchildrer? ... etc ). The
blue link to the middle of the figure represents the same undetermined nodes that
were given by the ellipse in the 1D example. The link keeps information about
the grey region the white squares have been merged to, so when that granule is
removed by the complete sieve a father link can be established between them.

The next important scale is 16 pixels, the area of the remaining white. In this
step, 2, another node is creat®e;, to label the new granule. The sieved result
and the temporary scale tree is shown in figure 5.8.

In step 3, at scale 42, The black rectangle at the top of the image is found.
The sieve output (left of figure 5.9) shows how the granule is removed. Again, the
right side shows the new node in the scale trEg/).

In the last step, 4, the output &k,(I) is zero, so no more extrema can be



CHAPTER 5. SCALE TREES 48

. 2D ScaleTree example - Granules Scale 42
2D ScaleTree example — Sieve Scale 42

Figure 5.9: (Step 3) Sieve up to scale 42.Left shows the sieve output,
Si2(I). On the right, the temporary scale tree.

. 2D ScaleTree example - Granules Scale 90
2D ScaleTree example — Sieve Scale 90

Figure 5.10: Step 4 of the 2D scale tree building algorithm.

found and the complete sieve finishes. The granule fungigrontains the last
remaining granule. The right-hand of figure 5.9 shows the corresponding node
createdNy,,. Note that this implies father links between nolg,, and nodes
Nis,, N1o, and Ny, as these regions were merged to gramgylen steps 1 and 2.

In the final step, all remaining pixels are associated with the root node of the
scale tree. Noded/,,, and Ny, are linked toN,,,; following the equation 5.4.
Figure 5.11 shows the final tree with the original image at the bottom. Six nodes
are created to completely represent the image in figure 5.6.
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2D ScaleTree example - Final Tree

Figure5.11: Final scale tree of input image in figure 5.6.

Again, thex andy coordinates of every node are the centroid of the granule.
The 2 coordinate represents the level or height in the scale tree. Note that node
Ny, has three children. Generally, scale tree nodes can have any number of chil-
dren. However, the internal representation chosen to store the scale tree data was
a binary tree [60, 105], for details about the internal representation of scale trees
see appendix A.

Until now, scale trees have been built out of images or functions. However,
given that a scale tree is a complete representation of the original image, it is
possible to recreate the original image from the scale tree without losing any in-
formation.

The algorithm to reconstruct the original image from the scale tree can be ex-
plained in two slightly different ways. The first implies visiting all nodes, adding
the value of the granule function at that point, or simply, adding all granule
functiong, for every scale (equation 5.5).

I=> g,=> 8.(f)=S(f) (5.5)

The second method is a simple variation of the first. In the scale tree, instead of
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Figure 5.12: Traversing the tree in preorder and image obtained at the
left.

storing the difference between two sieve functiansthe actual grey scale pixel
value in the image is stored. Reconstructing the original infaigeplies visiting
the tree from the root to the leavesplacing the grey scale values of every node

visited.
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This method solves the ‘padding’ problem as replacing the values preserve the
DC component of the original image. As going from the root to the leaves (greater
to less scale) is the same as visiting the tree in preorder [60], we can easily get
back to the original image doing a preorder traversal of the scale tree and replacing
all grey scale values of all node§,, into the original image.

The preorder traversal algorithm is defined as follows:

ALGORITHM 1 Preorder traversal algorithm:
1. Visit the root

2. Traverse the next-sibling sub-tree
3. Traverse the next-child sub-tree

The scale tree of the last example, figure 5.11, can be now used to reconstruct
the original imagel. As figure 5.12 shows, visiting the scale tree in preorder
involves visiting the root node firsY .., (which produces the image on the right).
The next step of the algorithm visits the next brother of the root node, which
doesn’t exist so the following child is traversed. In this case, n¥ge and its
granule is replaced in the image. Following the algorithm, all nodes are visited
and the final image is obtained (bottom right panel of figure 5.12).

Until now, very simple examples have been presented to allow us to follow the
scale tree algorithm. Real images lead to very complicated trees with an order of
thousands of nodes, depending on the size and contents of the image. Appendix B
shows some experimental results of the performance of building scale trees using
different sets of images.

Figure 5.13 shows an example with a computer generated table. On the top
row, two different views of a table are shown. On the bottom row, the correspond-
ing scale trees of the originals are shown. With simple images like these, the trees
are also simple, with 110 and 75 nodes respectively.

This example also shows one useful feature of scale trees. As we have seen,
scale trees are an abstraction of the original image, so the tree structure itself
may be fairly insensitive to geometrical changes in the image, such as rotation,
translation, or some changes in the view point.
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Table example - Original view 1 Table example - Original view 2

Figure5.13: Two different views of a computer generated table and its
respective scale trees.

The two scale trees of figure 5.13 look very similar, both having three main
branches corresponding to the two sheets of paper and the table. Of course, some
differences are present in the trees, like the nodes corresponding to the table legs.
This property can be beneficial for pattern or object recognition tasks as the tree
is relatively insensitive to geometric transformations of the original signal.

To conclude this section, the scale tree algorithm is tested on real images. Fig-
ure 5.14 shows the image of a popular doll. On the right, the scale tree with 1509
nodes. The nodes at the bottom of the tree correspond to noise in the background
and can be removed easily applying a normal sieve at scale of 4 or 5 pixels (de-
pending of the actual size of the image) before creating the scale tree. Columns
of the tree with many nodes correspond to shading effects on flat objects in the
original image.

As a final example, figure 5.15 will be used to illustrate some of the problems
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Doll example - Original
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Figure5.14:

Tennis example - Original
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Figure 5.15: A scale tree of a tennis match.

of complicated images. As images increase in size or complexity, the number of
nodes in the scale trees become too large. Different techniques that reduce the
complexity of scale trees are used and studied in this thesis as it is obvious from
figure 5.15 that ‘real’ trees may be too complicated for some computationally
intensive operations. Operations for pruning, trimming, and collapsing branches
will be introduced later in this thesis (section 6.1.1).

The algorithm to build a scale tree is straight forward. As a brief description,
the complete siev€S( f), is applied to the original function until no new extrema
are found. All granules are stored as nodes of the scale tree and father links are
established between them as defined in equation 5.4.
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5.2 Scaletreeproperties

This section will discuss some interesting properties of the scale trees. Following
subsections will list some of the most important properties.

5.2.1 Scaletree advantages

First of all, notice that scale trees share all the properties and features of ‘normal’
trees [60]. Trees are a standard data structure, well known and studied in litera-
ture [32,50, 105]. As well as having these characteristics, scale trees have some
properties of their own that make them very attractive to some image processing
operations. Some of these properties are listed below:

1. Any imagel has aunique corresponding scale traé

2. Scale trees are invertible. We can go from the original image to the final
tree and vice-versa without losing any content information.

3. The complete sieve operators, and thus scale trees, are based on connected
operators derived from mathematical morphology (section 2.3). As con-
nected operators interact with flat zones of the image (regions where the
image has constant intensity) and only merge these flat zones into other
ones, they can not introduce any extrema or any new contour on the image.
Even if nodes are removed from the scale tree, the remaining nodes retain
all their contour information.

4. Scale trees perform an initial segmentation of the image into flat zones [25,
27,91]. Together with this segmentation, the relation between these flat
zones is found using the complete sieve algorithm.

5. Thefinal tree is oriented towards the minimum scale of the image. Leaves of
the tree represent smaller granules than nodes closer to the root. So, in that
sense, the tree represents a set of regions at different scales of resolution.
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6. Scale trees are a scale structure with information about containment (stored
in father links). The tree establishes a relation of inclusion (or adjacency in
some cases) between all regions (flat zones) of the original image.

7. Scale trees are invariant to some geometric transformations of the input sig-
nal, such as rotations, translations or any distortions which preserve the
topology of the original image.

In the following sections, some examples of these properties will be analysed.

5.2.2 Seeding with extrema

As we have seen, scale trees are a tree representation of the complete sieve algo-
rithm, CS. Thus, they are oriented towards scale. They also imply a relation of
inclusion between nodes and so, as the tree is traversed from lower nodes to the
leaves, all visited nodes are included in their parents nodes.

It is important to note that the sieve algorithm (section 3.1) is seeded with
extrema. There may be flat zones in the original image that are smaller than some
of the scale tree’s leaves nodes but, because they are not extrema, they do not
appear as leaves of the tree. The next example will show this property.

Figure 5.16: Complete sieve operator applied to the image of $ize

4 pixels on the leftCS(I). First sieve (up to 3 pixels) removes the
white region and merges it to the grey pixel (middle image). Last sieve,
S4(I), merges that grey granule with the black one (on the right).

Figure 5.16 shows the complete sieve sequence applied to the original image
on the left. There are three different connected sets in the image, corresponding to
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the black, grey and white regions. As a first approach, one should build the scale
tree starting with the grey pixel as one leaf of the tree, because it is the smallest
granule of the image. However, because the grey pixel is not a extremum, it is not
used to start the algorithm.

Figure5.17: Final scale tree of figure 5.16.

Using the complete sieve to build the scale trees implies seeding with extrema.
In this example, two extrema are found. The white pixels and the black around
them. The sieve algorithm merges them to the next closest (in amplitude value)
flat zone. Obviously, in this example, the smaller region is the white one, and it
merges to the grey granule. In the next step, the grey granule becomes extrema
and it can be merged then with the black region. The final scale tree looks like
figure 5.17. It has three different nodes, the leaf node corresponding to the three
white pixels.

Is it beneficial then to seed in extrema? As we have seen in the last example,
seeding in extrema can sometimes lead to strange partitions of the original image.
In fact, seeding with extrema can have two main advantages. First of all, it gives
a preliminary clue about where to start merging granules. Looking at figure 5.16
again, if no seed is given, one can not be sure if the grey region (smallest) should
be merged with the white pixels or the blacks. Seeding with extrema gives a good
starting point to merge granules.
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Another advantage of this kind of seeding is that the final scale tree is oriented
towards extrema as well as scale and extrema may be associated with objects. To
test this, it is appropriate to obtain evidence that clusters seeded from extrema are
associated with objects in a different variety of images. Some studies show that
real objects in real images tend to be extrema in respect with the background [11].

o
S1 08 06 04 02 o 02 04 08 08

Figure 5.18: A) a photograph with a region that has been segmented
manually (highlighted for the illustration)B) a histogram that repre-
sents the proportion of the manually selected object that is represented
by scale-tree branches. The abscissa, centred on zero, is a difference
of two ratios where positive values reflect objects that form branches.
The ordinate is the number of observations.

\olunteers were asked to draw around, what they chose to identify as, objects.
Figure 5.18) shows an example. As extrema are localised as leaves of the tree,
if this selected region includes regional extrema it will be associated with whole
branches of the scale tree. One way to quantify this is to find the fraction of area
(scale) that is locally more extreme than the region outsige = nslix;—z where
say IS the scale (area) of the selected region identified as an object manually and
s;n 1S the area included in a branch of the scale tree.

This relation shows the ratio of the maximum area which is represented as a
whole branch in the scale tree. If the region is entirely represented by complete
branches, then the fraction,; would bel. The fraction is then compared with
a control segment obtained by randomly translating the region shape to another
position in the image and again finding the ratiQ, .

Figure 5.18) shows the distribution of = 7,,; — 74,4 Obtained from 60 ob-
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jects selected by 5 people from 6 images. The majority of differences are positive,
showing that the manually segmented objects are more often associated with ex-
trema than random segments. This supports the view that scale-trees, obtained
from sieves (section 3.1), are likely to be useful for representing objects in a wide
variety of images.

5.2.3 Invariant representation

It was shown in section 5.2.1, that scale trees are invariant to some geometrical
transformations of the original image. As the scale tree is built using extrema
and scale information, some simple rotations, translations or distortions which
preserve the topology are unlikely to produce any substantial change to the scale
tree.

drawd3. it

drawa. it draf3.if

Figure 5.19: A stylised grey scale image (left) and, to the right, two
distorted versions. Each image has size 383 by 165 pixels.

Such a scale tree represents a considerable abstraction of the original image.
This is illustrated in the figures 5.19 and 5.20. In each case distortion of the
original image causes theandy co-ordinates of the image to change but the tree
topology is invariant.

Figure 5.20: Scale trees for the images in Figure 5.19. Thaxis
represents tree depth.
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In this case, the scale tree has been printed in 2D where naycth@rdinate is
the height or tree level andis the distance along the previous axis+ Sy where
« andg have been chosen to avoid tree branches occluding. Figure 5.20 shows the
scale tree representation of the three images in figure 5.19. As the image topology
is preserved in all transformations, the scale trees remain the same in all three
cases and even “strong” transformations in the original image do not change the
tree structure. This property is the key for some simple recognition tasks invariant
to rotations, zooms or small movements in the camera angle.



Chapter 6
Applications

Previous chapters have introduced the notion sifade tree, a new representation

of an image based on the sieve algorithm (chapter 3). In a first approximation,
a scale tree can be seen as an attempt to defirobjact tree, a structure where
every node of the tree represents a meaningful object of the scene. This chapter
will discuss some applications of the scale trees together with some ideas and
algorithms to refine the scale tree of an image in order to ‘transform’ it into a real
object tree.

To do so, this chapter is divided into two different parts. The first section will
overview some ‘lossy’ algorithms to reduce the information of scale trees. The
next sections will introduce some different techniques to convert scale trees into
object trees.

6.1 Parsingscaletrees

One of the most difficult goals in image processing and computer vision is to
define a scene by terms of meaningful objects. For humans, all the information of
an image can be decomposed in, maybe, four or five objects of interest. When we
recall a photograph, a simple descriptor such as ‘a photograph of my son on the
beach’ is often sufficient. Just two descriptors are used to identify the irsage,

60
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andbeach. Reducing the quantity of information is the key.

These ideas of simplifying an image in terms of meaningful objects are cur-
rently being adopted by ‘new’ standards in image processing and computer vision,
such as MPEG-4 with its visual object planes or VOP’s. Furthermore, the upcom-
ing standard MPEG-7 tries to adopt the ‘photograph’ concept described before by
using two or three significant descriptors of the image for a later indexing [40—42].

The following section describes some algorithms used in this thesis to reduce
the complexity of scale trees.

6.1.1 Simpler trees

As described in section 5.1.4, scale trees of real images may be highly complicated
(see figure 5.15). The tree structure itself needs to be simplified. In order to be

able to reduce the complexity of scale trees, two ways of decreasing the number
of nodes have be considered: collapsing long unbranched chains and pruning low
contrast children [10].

Collapsing scale trees

The conventional approach [7] to simplify an image using the sieve algorithm has
been to describe the image whannels which divide the granularity functions
into different bins. A channel is a sum of the granules within a fixed range of
scales. Figure 6.1 shows an example of a channel decomposition of an image.
Since particular features exhibit some area variation, due to shading of objects or
blur caused by imperfections in the imaging system, different objects may exist
in more than one channel. In the example, the windmill is decomposed into 2
different channels (16 and 17).

A solution to this problem is to track the object through scale and look for a
peak in the scale selection surface [66]. In terms of the scale tree representation,
this tracking means visiting every node going from the leaves to the root. The
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Figure 6.1: An example of a channel decomposition. The windmill on
the figure is represented in 2 different channels.

sequence of nodes from leafV to the root can be defined as,
S(N)=[N,F(N),F(F(N), ... ,F(..F(N)...), Neoot] (6.1)

Using, for instance, the nod¥,, of figure 6.2 the sequence associated with it
would be,

S(Na,) = [Ny, No,, N3y, ] (6.2)

For every nodeV of the scale tree, a possible measure of the scale selection
surface can be defined as the relation between noded its fathetF (V) of their
difference in amplitude value over their difference in scale.

Ay = [9FEO) — o) 63)

s(F(N)) = s(N)
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Figure 6.2: Scale selection sequence.

whereg(N) is the grey scale value of the connected set represented byMode
ands(N) is the scale, or area, of the node.

This scale selection measure can be applied to every sequence of the tree de-
fined earlier, so, for every branch of the scale tressate selection sequence can
be computed as,

SSS(N) = [A(N), A(F(N)), A(F(F(N)), ... , AF(...F(N)...))] (6.4)

note that, in this case, the scale selection function cannot be applied to the root as
its father node its not defined.

The peak in the functio§'SS (V) is, for an object, the node at which its rate
of change of intensity with respect to scale is maximised. For example, a perfect
disc of areas would yield a sequence ¢fSS(N) that is all zero except for one
value at its true scale.

The collapsing algorithm,«(7"), works by computing the maximum value of
the scale selection sequence of every branch of the scale tree and by removing all
nodes of that branch to the node holding the peak in the sequence. In terms of the
image, removing nodes in the scale tree structure implies merging connected sets.
The effect on the scale tree representation is that long, unbranched chains of nodes
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arecollapsed into a single node. As has been seen, long chains usually correspond
to shading or blurring effects, therefore, the collapsing algorithm simplifies the
image bysharpening the original.

Figure 6.3 shows the collapsing algorithm on the scale tree of the computer
generated tabl€l,, shown in figure 5.13. The original image is slightly blurred
due to dithering during the rendering process and so, some chains of unbranched
nodes can be observed in the scale tree (like the sheet of paper on the very left).
The resulting collapsed treg(T,), on the left hand side of figure 6.3, is a simpler
version of the original, where unbranched chains with more than one node have
been collapsed into only one (the maximum in the scale sequence). The right hand
side of figure 6.3 shows the image associated with the collapsed scale tree.

e ] Collapsed image

Figure 6.3: An example of the collapsing algorithm On the left,
thecollapsed scale tree of figure 5.13 (note the simpler branches in the
tree). On the right hand side, the resulting image from the collapsed
tree.

In order to have a better understanding on how the algorithm works, figures 6.4
and 6.5 show another example. Figure 6.4 shows a Gaussian filtered version of
the original computer generated table. The filter smooths the image leaving the
overall structure of the original image intact. As a result, the scale tree of the
Gaussian filtered versior,, looks similar to the original except for the long
chains of nodes due to the smoothing effect of the filter.

Figure 6.5 shows the result of applying the same collapsing algorithm in the
previous filtered image. The resulting treg7,), is simplified again. The image
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Gaussian filtered

Figure 6.4: On the left, the original image after a gaussian smoothing.
On the right, the corresponding scale tige

associated with the tree is sharpened and is similar to the collapsed version of the
original.

- —— — Gaussian collapsed

Figure6.5: Collapsed tree of the gaussian versiofi,). On the right,
the corresponding image. The original image is restored, and the effect
of the smoothing filter is almost removed.

As a last example, a real image will be used. Figure 6.6 shows a small, simple
image of a pair of snooker balls extracted from the sequence in figure 6.16. Even a
simple image like this is associated with a complicated scale tree. The right hand
side of figure 6.6 shows the associated tiigepf the balls. The three long chains
of the tree correspond to the two balls and the shadow of the white one.

Again, the collapsing operatat, can be applied to the scale tree of the balls.
Figure 6.7 shows the scale selection sequence for all leaves of the scale tree of
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Figure6.6: A 4-bit grey scale image extract from the snooker sequence
and its scale tree.

the snooker balls. Figure 6.8 shows the result of collapsing all unbranched chains,
x(Ty), into the maximum of the selection sequeng#8,S, of all the leaves.

3 4 B 6 7 8

Figure6.7: Scale selection sequencgs'S, of all leaves of the tre&,.

Figure 6.8: Scale tree after collapsing the unbranched chains. On the
right, the associated image.

As it has been seen, the collapsing operatpsearches for a maximum in the
scale space of the image. As a result, all unbranched chains of the tree (note that
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nodes with children cannot be removed) aodapsed into one node. In terms

of the image, all connected sets corresponding to those branches are merged into
the maximum of the scale selection sequence. Therefore, the resulting image is
simplified by sharpening the edges and flattening the original image.

Pruning scaletrees

The second operator considered in this thesis igtheing operator,r (7). The
pruning operator simplifies the original scale tree by removing irrelevant children
of the tree. In any caserrelevant nodes in the tree can be found by applying
different criteria. In this thesis, two different criteria have been studied, using
either grey scale value or scale information of the nodes.

The first criterion used is a slight variation of an standard quantisation. The
difference in grey scale value between every natleof the scale tree and its
father, F(NV), is computed. If the absolute value of the difference is greater than
a certain thresholds, the child is removed (the connected set is merged with
the connected set associated with the father node). If less or equal, the node is
retained.

((N) denotes the action of removing noden the scale treey(V) represents
the grey scale value of the granule associated with ddd€he pruning algorithm
with the grey scale amplitude criterion can be defined as follows,

N, g(F(N)) = g(N)| > ¢

ﬂq(T,g):{ YVNeT  (6.5)
O(N), |g(F(N))—g(N)| <«

An example of this algorithm is shown in figure 6.9. However, as the contrast
of the image is already high, the pruned scale tree looks very similar to its original.
Even so, 24 nodes out of 75 were removed applying a pruneswith (note, for
example, the removed branch associated with the bottom right paper on the table).

A better example of the ‘pruning by amplitude’ algorithm is shown using the
image in figure 6.10. A ‘wood-grain’ texture is added to the table in order to
increase the low contrast nodes in the scale tree. A prune operator is applied to



CHAPTER 6. APPLICATIONS 68

Pruned image

Figure 6.9: Pruned scale tree of the original tabt¢7’,). On the right,
the corresponding image.

the new textured image. This time, as the nodes of the tree corresponding with the
texture map have a low contrast between them, they are removed by the operator
(see figure 6.11). The associated image, on the right, looks similar to the original.
The simplified pruned tree can be seen on the left hand side.

Textured image

Figure 6.10: A textured version of the computer generated table (left).
The corresponding scale tree on the right.

The prune operator with the grey amplitude difference criterig(i’), makes
a ‘local’ quantisation of the original image. Note that the operator is different to
a standard quantisation, as every node is analysed using only its ‘local’ father of
the tree. So, for instance, low contrast edges may be preserved if they are not
associated with a father link in the scale tree.

The second version of the pruning algorithm is defined using scale information
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e Textured pruned

Figure6.11: Tree and image after pruning using a grey scale amplitude
criterion.

instead of grey value. In this case, the criterion is based in the relation between
the scale of a node V), and the scale, or area, of its fathefF (V)). Again, a
threshold is used to decide if the irrelevant node is ‘small’ enough to be removed.
Note that, in this case, the thresheldhust be betweefd, 1], as by definition in
a scale tree, the scale of a father node is always greater than any of its children.
Note that, are = 0 will leave the scale tree intact.

The new criterion can be written as,

N, M
7o(T,€) = { ) ¢ VYNerT (6.6)
DN, szmy <€

Returning to the snooker balls example, a further simplification of the result-
ing collapsed tree can be made by using now a prune algorithm. As the tree of
figure 6.8 shows, the collapsing operator is not able to remove the nodes at the
bottom of the tree. These nodes are children of the root (teest of the tree is
1) and therefore, their corresponding scale sequence is not long enough (length 1)
for the collapsing operator to be able to simplify them. The pruning algorithm,
however, removes them as the scale difference between their father (the root) is
large enough.

Figure 6.12 shows the resulting tree and associated image after the pruning
operator is applied to the collapse tree in figure 6.8. At the end of this second
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step, the simplification obtained has preserved the two objects of interest. In this
case, the snooker balls.

Figure 6.12: Pruning version of the collapsed tree obtained in fig-
ure 6.8. Both criterion, grey scale difference and scale relation are
used in the example & 2, € = 0.01).

To end this section, a final example of combining collapsing and pruning is
given. A sequence of a moving hand is analysed by constructing the scale tree
of every frame and applying a collapsing following by a pruning. The middle
row in figure 6.13 shows the collapsed and pruned versions of the scale trees of
the hand images in the first row,(w,(7;)). This example illustrates again that
the scale tree is, in practice, somewhat invariant to scale, rotation or minor shape
changes. Moreover, the two algorithms developed so far can successfully simplify
the images (bottom row of figure 6.13). In this case, for instance, the sequence
size is reduced from 120Kb to 12Kb when stored as raw binary data.

In this section, two different algorithms to reduce the complexity of scale trees
have been introduced, collapsing and pruningg). In the case of the pruning
operator, the use of thresholds require previous knowledge of the original image
and it would be desirable to replace them with a more principled step. Based on,
for instance, a probabilistic decision. As future work, other criteria for pruning
scale trees can be investigated.
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Figure 6.13: Top row, some frames from a 8 bit grey scale movie
sequence. The second row shows collapsed and pruned scale trees side
on. The third row shows the images corresponding to the reduced trees.

6.2 Towardsobject trees

Scale trees on their own can be a good approximatiabjtect trees. An object
tree is a structure where every node represents a meaningful object of the image.
This section will discuss the use of scale trees as an useful representation of an
image. Different applications will use the nodes of the scale tree as handles to
‘real’ objects of the scene. Obviously, there is still a long way to go before we are
able to ‘compare’ scale trees with object trees. The following sections will show
some examples of where scale trees fail to represent the topology of the image.
As a consequence of this, new algorithms to refine the scale tree in order to get
closer to an object tree will be analysed.

In any case, scale trees perforreegmentation of the original image. In order
to segment an image, all the pixels that define the image must be grouped together
forming differentregions of interest omeaningful objects.
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6.2.1 Thesegmentation problem

In general, different segmentation algorithms (see chapter 2) have been applied to
solve this problem. To group two different pixe(s, j), of an image in the same
cluster or region, a functiory,, of some measure taken of the pixef$)/;, M),

must be computed. This measurfg, can be composed from a set of different
features of the pixel. For every pixel, of the image, a vector of measures;,M

can be defined with information about hue, saturation, grey scale valuag y
position in the image, motion vector, stereo disparity, texture, etc.

M = [h,s,v,x,y,m,st,t...] (6.7)

An optimal solution to the problem would be to compute the funcfidor all
the pixels of the image and all the possible grouping of those pixels in different
regions. If the size of the original image is relatively big, the computation cost
required to solve the problem makes the solution impractical.

Section 2.1 presented a general review of different suboptimal solutions ap-
pearing in literature. As defined in chapter 5, scale trees suigoptimal approach
to successfully segment images and, as a suboptimal solution, some assumptions
have been made. As a first step, scale trees use flat zones or connected sets of the
original image to perform the segmentation. The use of connected sets implies
that regions of the same pixel intensity cannot be split into two different regions
of interest.

As shown in chapter 3, the sieve algorithm that is used to build the tree sim-
plifies the image by merging neighbouring extrema granules, or flat zones, of in-
creasing scale. Therefore, the sieve uses three features, intensity information and
the (x, y) coordinates of the pixels. As some examples have shown, the resulting
scale tree from the complete sieving process can successfully segment objects in
real images.

In the first instance, there can be some nodes in a scale tree that approximate
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the ‘idea’ of a node in an object tree. A node in the scale tree that completely
corresponds to a meaningful object in the scene can be cajiethdmother node.

It will be desirable for an scale tree to have a number of grandmother nodes that
represent the different objects in the image. Obviously, that will not always be the
case as the scale selection of the sieve algorithm can fail detecting an object and
it can be represented in different branches or subtrees of the scale tree.
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Figure 6.14: Image editing using a grandmother nodg The original
image. B) A screenshot of our tree based image editor showing a col-
lapsed and pruned version of the original scale tree of the left figure.
A node that approximates the grandmother nallg, and its associ-
ated segment of the right hand face object are highligh@@dhows

the effect of changing the spatial position elements/pf

Figure 6.14 shows an example where a grandmother node can be found in the
scale tree. Figure 6.34shows an image of two faces. Figure @&lghows the
graphical user interface of a tree based image editor used to find the grandmother
node representing one of the faces. First of all, the original scale tree is collapsed
and pruned to simplify the searching for a grandmother node. A node that approx-
imates theobject face is then manually foundy,. The segment associated with
the nodeN, is highlighted in green on figure 6.44The located nodey,, can
be used as a ‘handle’ pointing to the pixels representing the face. Figurg 6.14
shows, for instance, the result of moving the spatial coordinates of all the handles
and so, the original face is moved.

This approach uses a heuristic decision to find the mggdeAutomatic meth-
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ods to identify grandmother nodes in scale trees, and therefore objects in the orig-
inal image, would be more desirable.

6.2.2 Scaletreeapplications

As introduced in the previous example, scale trees can already be used in different
applications. This section will introduce two different applications where the scale
tree was applied. First of all, the tree structure will be used to interpret motion in
image sequences. The second application will use the scale tree to interpret the
depth position of different granules in the scene.

Motion estimation

One of the applications where scale trees were applied was motion estimation. A
similar technique applied by Salembier et al. in matching motion with max trees
was used [82,87,88]. The motion estimation is based on a new operator defined
over the scale tree. In this casemation operator is defined to recognise nodes
that are moving in an image sequence.

The motion operator is based on a chos®tion model. There are many pos-
sibilities to choose for the motion model. For instance, in a 2D case, translations,
rotations, scale or affine models can be used [35, 39]. Here, it is assumed that
the translation followed by any pixék, y) going from imagef;_; to imagef; is
(ds, dy). In that case, a measure of threan frame displaced difference can be
computed for every nodéy, of the scale tre€r;.

ZN |ft71($ —dy, Yy — dy) - ft(%y)|

(V) = (6.8)

ft
b )

fe—1

This measure computes the normalised difference between the pixels of node
N in the imagef; and the same pixels (taking into account the motion model)
in the previous image sequen¢e ;. The mean displaced differencB(N), of
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nodes following the chosen translati¢h,, d,) will be lower than the stationary
nodes.

In practice, however, obtaining movement from image sequences using only
two frames is not very robust. To solve this problem, a recursive term is added
into the equation. The mean displaced differente,is measured between the
current image,f;, and the previous imag¢, ; and between the current image
and the previous processed image, denoted(ly ;).

The motion criterion used to calculate the motion of all nodes of the tree can
be defined as follows,

C =aDf (N)+(1-a)D%

wtreny(N) (6.9)

where the parameter(0 < a < 1) defines thenemory of the motion criterion. If
a is nearl the criterion is memoryless but it is able to detect faster new changes
in the image sequence. On the other hand,ig set neaf, the estimations are
based in the observation of a large number of frames and new changes are going
to be detected slowly.

The final motion operatoy (7}, ), will work on the scale tree by removing
the nodes that do not undergo the specified displacetdent,). A threshold ),
can be used to determine if the node is following the given motion.

(T, \) = N, CiN) <A VN eT, (6.10)
PN o), ov) s A t '

Figure 6.15 shows a diagram of this motion defined in equation (6.10). In
summary, the motion connected operator follows these steps:

e The scale tre€l;, associated with the input imagg, is created.
e The motion criterion'(N), is computed for every node in the scale tree.

e A threshold\ is used to remove nodes that do not undergo the specific
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Figure 6.15: Diagram of the motion operator.

motion defined by the translation model,, d,). If the motion measured
in the previous step is greater than the threshpldy) > )\ the node is
removed.

e The associated image of the processed tree is computéd,

The figures 6.16 and 6.17 show the use of the motion operator on ‘real’ se-
quences. In this case, a translatior(®f, d,) = (0,0) is chosen, so, the operator
will remove moving nodes of the scale tree and will preserve static ones. The left
column of figure 6.16 shows the original sequence taken from the Snooker World
Championship of 1997. The white ball is moving to the top of the pool and it is
about to hit the red ball on the right.

The second column shows the resulting output images after applying the mo-
tion operator,u(f;). The right column shows the difference between the input
sequence and the outpyft,— x(f;). The motion criterion operating in the scale
trees of the originals completely removes the moving balls and the moving cue.
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Figure 6.16: Motion operator over a real snooker sequence.

Figure 6.17 shows the same operator, this time working on a tennis sequence.
At the right hand side column, the players are successfully segmented. However,
parts of the background are removed as well due to changes in the illumination.
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Figure 6.17: The motion operator using scale trees in a tennis se-
qguence. Left column shows the original sequence, middle and right
columns show the output of the motion operator and the its difference

with the original.

The motion operator chosen in this section was based on the same operator
used with max trees [87,87]. It would be good idea, then, to compare the results
of the operator working on the same sequences but using a max tree representation
instead of the scale tree. Figures 6.18 and 6.19 show the results. The scale tree
operator successfully segments the snooker balls and the tennis players out of the
original images.

This time, however, two different operators may be applied. As the max trees
are oriented towards the maxima of the images, only bright nodes can be detected
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A) Original sequencg. B) Motion Operaton( f

C) Dual operatoy.*( D) Residueu*(f) — f + u(f

Figure 6.18: The same motion operator working with max trees.

as moving nodes (dark nodes are ‘hidden’ in the bottom of the max tree struc-
ture) [87]. The dual operator,*(f), operating on the min tree must be defined in
order to detect the motion of dark objects.

In the case of scale trees, as extrema of both signs (maxima and minima) are
used to seed the algorithm, the definition of a dual operator is not necessary. How-
ever, using scale trees, moving nodes still have to create extrema in the original so
they will form leaves in the tree.

Stereo

The same operator applied to estimate motion can be used for analysing stereo
pairs. The left and right images of the stereo pair can be considered as the images
f+—1 and f, of a sequence. This time, the initial motion will only consists of
translations in the: coordinate(d,, 0).

The stereo operator will compute the motion criterion for every node of the
tree for a given range of displacements,;, < d, < d,.... The most likely
displacement followed by the nod¥, (d, that minimises the frame displaced



CHAPTER 6. APPLICATIONS 80

A) Original sequencg. B) Motion Operatoi( f

C) Dual operatoy.*( D) Residueu*(f) — f + p(f

Figure 6.19: Motion operatory, using max trees.

difference,D(N)), will be used as the depth value of the associated region. This
technique has already been applied to max trees with success [48, 76, 82].

To finish this section, adding additional information to the scale tree will be
studied. Figure 6.20 shows a sequence where added depth information has been
used to resolve an occlusion problem. Until now, every node of the scale tree
stored information of théx, i) coordinates of the pixels of the associated granule
and its grey scale value. Information about depth can be added to every node,
saying how far from the camera it is located.

The examples on figures 6.20 and 6.21 use this information to solve the oc-
clusion problem that occurs when one region overlaps another. For example, the
added disparity information indicates that nodes associated with the finger are in
front of the nodes associated with the doll. In this case, if the doll is moved over
the finger, the new depth information will make the doll appear behind the finger.

Figure 6.21 shows a similar example. This time, information of colour (hue
and saturation) is used as well to represent the image associated with the tree.
In both examples, the added information is just used as a later clue. A better
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Figure 6.20: Three screenshots of a graphical user interface showing
the use of additional information, in this case, disparity information to
resolve occlusions of objects in the scene.
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Figure 6.21: Similar example of using depth information to resolve
occlusions of objects. Left side of the images show the doll being oc-
cluded behind the cup. Right side show the scale tree of the picture with
the selected granule highlighted in green. Adding colour information
(hue and saturation) to every node improves the results.

approach would be to use the additional ‘knowledge’ to readjust the actual scale

tree structure.

6.2.3 REefining scaletrees

The last example shows that scale trdgészan be an useful representation of the
object tree;l,. However, it will often be necessary to bring in other evidence and
modify theT; to make it a better candidate for tig. Figure 6.21 successfully
overlapped the cup and the moving doll. However, it is impossible to find a better
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grandmother node that represents the doll and, for instance, the hat is left behind.

It is obvious then that further evidence is still needed in order to transform
the scale trees into meaningful object trees. It would be desirablefite the
scale tree structure, by moving, merging or deleting nodes to simulate a better
approximation off, or, at least, to get a greater number of grandmother nodes in
the tree.

In a first approximation, one could say that regions of the image with the same
motion vector are part of the same object. Using the same assumption, nodes of
the tree with the same stereo depth, or the same colour will represent the same
object. In that case, those nodes should be repositioned on the tree using the new
motion, colour or stereo information.

Using the graph notation again, if different information is added to the scale
tree, the ‘new’ tree can be represented &aballed graph,G = (V, E, L), where:

e VerticesornodesV =1,2,3...,n.
e Edgesorlinks(i,j) e ECV x V.
e LabelsL : V — [, withl € {h,s,v,xz,y,m,st,...}.

Now, each node in the scale tree is represented with a salteb$ or informa-
tion attached to it. These labels should be used to rearrange the original topology
of the scale tree in order to get the representation closer to that of an object tree.
Consider the following example.

Figure 6.22 shows the image of a red teapot against a beige background. As
the scale tree is, again, too complicated, a collapsed and pruned version of the
original will be used (figure 6.23). As figure 6.24 shows, the hole in the handle
is assigned as part of the teapot tree. The problem is to reassign that node to the
background so a grandmother node representing only the teapot can be found.

In this case, only one static image is used so information about motion or
stereo depth cannot be obtained. However, colour information is available so
saturation, for instance, can be used to distinguish the teapot from the background
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Original teapot

Figure 6.22: Original teapot used to ‘refine’ the scale tree.
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Figure 6.23: Simplified teapot and its associated scale tree.
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Figure 6.24: In green, the associated granule of the ‘closer’ grand-
mother node representing the teapot. The hole in the handle is included
in the same subtree.

(beige contains enough red to make hue an unsatisfactory feature). Figuse 6.25
shows the nodes of the tree with saturation betweeh s < 0.2. These nodes
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can be moved in the tree so there is always a father link relation connecting them.
This is done in two steps. Firstly, new linkangle links) are added to the
tree connecting the selected nodes. The algorithm that creates the new links is
simple, starting from a selected node, it visits the tree going down to the root until
another selected node is found and an uncle link is established. The second step
involves removing the old scale tree link and preserving the new colour based
relation. Figures 6.2 and 6.2%5) show these two steps. Note that in the final
tree, the node corresponding to the hole is assigned to the background. The final
tree structure now contains a grandmother node that represents only the teapot
(figure 6.26).

A) I-B) ..C)

Figure 6.25: A) shows the nodes of the tree (in black) with saturation
between) < s < 0.2.B) new uncle links connecting last nodes added
(in black)C) The ‘old’ scale links are replaced with the links in the last
step.

In the future, this approach can be expanded. Instead of using just a new link,
many ‘uncle’ links can be obtained from the labels of every node. From all links
connecting one node, an improved algorithm should statistidatijde which is
the best candidate to obtain an object representation.

6.2.4 ODbject trees

Once the scale-tree is as close to an object tree as possible, the tree structure can
be used in many different tasks. The object representation cannot only be used for
filtering, but as a set of handles that allocate the different visual object planes in
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Figure 6.26: The new grandmother node now only represents the
teapot.

the MPEG-4 standard.

It can also be used for object or shape recognition. This application can be
done at two levels; (1) The tree structure itself codes the object topology that is,
to a large extent, independent of geometrical scaling, rotations and distortions and
(2) a more detailed matching can be performed by also using attributes of the
nodes, such as shape or topology of the associated granule.

This chapter has introduced two different applications where scale trees were
used with varying amount of success. It has introduced some algorithms to reduce
the complexity of scale trees and new techniques have been introduced to modify
the topology of scale trees in order to get a closer representation of an ideal object
tree.

These new algorithms are in the first stage of development. There is a clearly
opportunity to enhance this work using new and improved algorithms and tech-
nigues.



Chapter 7

Conclusion

In this thesis, a new scale tree representation of an image has been presented.
Scale trees are derived from a scale-space, mathematical morphology based al-
gorithm called a sieve. The scale tree structure represents the amplitude of the
original image in a hierarchical structure in which every node of the tree is asso-
ciated with features of specific scale.

As a brief summary of the contents of this thesis, chapter 2 gave a general
view of different algorithms used in image processing and, more specifically, some
techniques used in literature to solve different segmentation problems.

A relatively new scale-space segmentation algorithm sieee, was used to
build scale trees in chapter 3. Chapter 4 presented some other image processing
hierarchical structures from the literature. The scale tree structures are described
in chapter 5.

Finally, chapter 6 described some applications where scale trees are already
being used. Methods to reduce the complexity of the trees, such as pruning or
collapsing were also shown.

86
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7.1 Discussion

It has been demonstrated that scale trees are a useful representation of images.
They are insensitive to geometrical transformations of the original image such as
rotations, zooms, or any transformation that preserves the image topology. As
scale trees also simplify the image by preserving all contour information, they are
an interesting structure to be applied in different image processing tasks.

Scale trees have already been used in some applications such as segmentation
or motion estimation. There is also a relatively fast algorithm to construct scale
trees (see appendix B).

Scale trees are a reasonable approximation to objects trees. It has been shown
thatgrandmother nodes (nodes that represents a meaningful object of the scene)
can be found inside the scale tree structure. These nodes can be used, for instance,
in object recognition. In this framework, the recognition could be done using the
tree topology itself or the attributes associated with the grandmother node.

Grandmother nodes are also extremely close to what MPEG-4 defines Visual
Object Planes. Segmentation techniques, such as this one, could be used to di-
vide the original image sequence into significant ‘planes’ that will be coded and
compressed separately.

7.2 Futurework

Obviously, the scale tree is not the ideal representation for an image. There are
still problems to resolve in order to get a true object representation of the im-
age. Some examples have been already shown where the scale tree structure does
not represent meaningful objects of the scene (such as the teapot example in sec-
tion 6.2.3).

In any case, methods to modify and restructure the original tree topology using
extra information of the nodes have been studied. Colour information has been
used to adapt the tree structure to a closer object representation. However, using
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different attributes associated with the nodes such as motion or stereo information
together with robust methods to decide between them would be more desirable.

Finding the grandmother node associated with the object is not a trivial prob-
lem. Even when an exact representation of an object in the image can be associ-
ated with one node of the scale tree (a grandmother node), the search algorithm is
a complicated problem.

Heuristic methods have been used in this thesis, however, automatic search
methods to find grandmother nodes will be required in the future. Probabilistic
descriptions could be used to analyse the most likely position of such nodes in the
tree.

In summary, scale trees are a fast and a suitable starting point for a more
refined, object based, segmentation of an image. Scale trees then are, a first ap-
proximation to real object trees. However, different methods to refine scale trees
in order to get a closer object representation are still required.



Appendix A
M atlab scaletrees

The algorithm to build scale trees was coded using MATLLA®rsion5.2. The

lack of pointers in MATLAB® makes the use of a standard tree representation
where a set of pointers reference other nodes in the tree (children nodes) im-
possible. A binary tree was chosen as the data structure to store the scale tree
information.

Scale trees are not necessarily binary trees. The example of figure 5.6 in
page 46 shows, for instance, a nalle of the scale tree representation having
more than two children nodes. Any tree can be represented as a binary tree if the
father links of the tree are transformed inthild andfollowing brother links as
figure A.1 illustrates.

A standard MATLAB® structure class was used. A set of vector arrays stored
the hierarchical information of the tree (stored as fields of the structure class).
First of all, every node in the tree is numbered.(. V). This label is then used to
store the child, the following brother, and the father information of every node in
the tree.

The hierarchical information of the tree can be stored then in three vector
arrays;father[i] denotes the father node of nodlechild[i] its first children and
nextbrother[i] the following sibling in the structure.

1© COPYRIGHT by The MathWorks, Inc.
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Figure A.1: A ‘normal’ tree represented as a binary tree. Right hand
figure shows the binary representation of the left tree. Every node can
only have two links, representing a child or a sibling in the tree.

Using, for example, the tree in figure A.1, the three arrays coding the scale
tree can be seen in table A.1. If a link of the tree does not éxsstised.
father[1]=0 child[1]=2 nextbrother[1]=0
father[2]=1 child[2]=( nextbrother[2]=3

father[3]=1 child[3]=0 nextbrother[3]=4
father[4]=1 child[4]=0 nextbrother[4]=0

Table A.1: father, child andnextbrother arrays storing the tree in fig-
ure A.1.

In order to improve the speed when parsing the tree,paémters (in this case,
arrays) can be added. ot field with information of the root node in the tree.
Thefirstbrother andNchildren arrays contain information of the first sibling of a
group of brothers and the number of children of the node.

The same technique (using array fields) is applied to store the information of
each node. Fields such galue, number, level store the grey scale value of the
granule, the number of pixels or the level in the tree.

The pixels of the associated granule are also stored. In the scale tree represen-
tation, each granule is stored as a node of the tree. As a scale processor is used,
the granule associated withfather node includes the smaller granules of all its
children nodes. Storing all granule pixels for every node of the tree would be very
inefficient. To solve this, each node stores only the pixels that make it different
from its children.
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Using the examples in figure 5.16 and 5.17. If every granule is stored, itis then
necessary to keep the three white pixels associated with the leaf node. The four
grey pixels granule formed when the white connected set is merged to the grey
pixel and finally, the whole image (16 pixels) is stored as the associated granule
for the root node.

In that case, we need to stode+ 4 + 16 = 23 pixels for a4 x 4 pixels
image. However, only the different pixels that form the new granule need to be
stored. In this example, only the black pixels are associated with the root node,
the grey with the middle one and the three white pixels with the leaf node. The
granule associated with a node as then represented in the whole branch, or subtree,
formed from that node.

To store the pixel positions, two arrays are usemtjelist keeps a sequential
list with the (z,y) coordinates of every pixel of all granules. The figldst[i]
points to the start position imodelist of the pixel list corresponding to nodeThe
arraypixels keeps the actual number of pixels stored in that node (the difference
between its associated granule and all its children). The algorithm to obtain all the
pixels of the granule associated with nddean be done as follows:

ALGORITHM 2 Granule extraction

clear granule-list

for each node ¢ in the subtree with £ as root do:
list = nodelist{fromplist[i] to plist[i]+pixels[i]}
Add list to granule-list

end for

Sometimes, however, it is desirable to know which node of the scale tree a
certain pixel is represented, to do so, another field was added. A matrix of equal
size to the original image is enough to store the node any pixel belongs to. In this
case, using thisode field, pixel (z, y) will be associated with nodeode| x,y].

All these arrays were contained in a MATLABstructure class variable. As
a brief summary, table A.2 shows a list wit all the fields in the structure that
represents the scale tree. The type size, together with a description of each field is
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given.
Field Size Description
father 1 x N Father node
child 1x N First children
nextbrother 1x N Next sibling
firstbrother 1x N First brother of all siblings
Nchildren 1x N Number of children
Nnodes 1x N Order of the tree
root 1x1 Root node of the tree
nodelist 1 x (P x Q) | Pixels list
plist 1x N Pointer to the start of the granulemodelist
node PxQ Node label for every pixel in the image
value 1x N Grey scale value of the corresponding granule
number 1x N Number of pixels of the granule
pixels 1x N Number of stored pixels in that node
level 1x N Level in the scale tree

Table A.2: Summary of the different fields in the MATLABee struc-
ture using an image dP x (@ pixels with NV nodes.



Appendix B
Sieve Reaults

This appendix will introduce some experimental results using the tree algorithm
presented in this thesis. The order of scale trees and the complexity of the algo-
rithm will be analysed for a different set of real images.

Figure B.1 shows the results of studying the scale tree complexitg dff-
ferent real images. The images were sub-sampled from their original size of
768 x 512 pixels to P x Q = 700 x 500, 600 x 500, 500 x 500, 450 x 450,
390 x 390, 315 x 315, 225 x 225 and100 x 100 pixels. The sub-sampling was
achieved by taking a block of the desired size at a random position of the original
image. The algorithm was executed as a MATLABmex file on a Pl 300Mhz.

Order of scale trees 10" Complexity of scale trees
T T T T T T

Number of nodes

. . . . . . . . . . . . . .
0 05 1 15 2 25 3 35 4 [ 05 1 15 2 25 3 35
Image size (PxQ pixels) x10° Image size (PxQ pixels) x10°

Figure B.1: Complexity of the scale tree algorithm.
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The left hand side of figure B.1 shows the CPU time spent computing the scale
tree of the images. Thg coordinate shows the CPU time in seconds andithe
coordinate shows the total number of pixadls= P x (Q of the image. The right
hand side shows the order (humber of nodes) of the resulting scale trees. All 9
measures (9 image sizes) corresponding to the same image are joined together in
the same line. Clearly, the CPU time increases with the number of piXelsf
the image as the number of nodes of the resulting scale tree.

Figure B.2 shows the results (CPU time and number of functions calls) for
each function in the scale tree implementation. The different functions of the
implementation can be grouped together in three different processes. General ini-
tialisation and memory allocation, computing the sieve algorithm and the building
of the scale tree structure.

Figure B.2: CPU time and number of calls for some functions of the
scale tree implementation. A8 x 512 pixels image was used. In this
case, the algorithm was executed on a O2 SGI workstation.

Figure B.3 shows the CPU time spent for each of the previous processes of
the scale tree algorithm. It can be observed that for small images (small number
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of nodes in the scale tree) the order complexity of building the tree is almost the
same as the computing the sieve algorithm. As the image size increases the time
spent building the scale tree structure is greater than the time spent searching and
merging the extrema of the image (sieve).

Order complexity (functions)

—— Building scale tree
——  Sieve algorithm
——  Memory allocation

CPU time (seconds)
®

n ! . . .
0 05 1 15 2 25 3 35 4
Image size (PxQ pixels) X 10°

Figure B.3: CPU time of each process of the scale tree algorithm.
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