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Abstract

This thesis presents a new tree structure that codes the grey scale information of an

image. Based on a scale-space processor called thesieve, a scale tree represents

the image in a hierarchical manner in which nodes of the tree describe features of

the image at a specific scales.

This representation can be used to perform different image processing opera-

tions. Filtering, segmentation or motion detection can be accomplished by parsing

the tree using different attributes associated with the nodes.
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Chapter 1

Introduction

A long-standing goal for a computer vision system is to extract a simple descrip-

tion in terms of meaningful objects from an image. Ideas of this type are currently

being embodied in the proposed MPEG-4 and MPEG-7 standards where images

are represented and conveyed in the form of independent audio-video objects.

Coding an image according to its visual objects should be an extremely useful

step in the process of recognising objects in the image. An effective representation

of an image would be anobject tree in which nodes describe meaningful items of

the scene and where nodes are represented in a hierarchical structure. To achieve

this, systems capable of robust and fast segmentation must be created.

Of course, an optimal segmentation of an image cannot be achieved. The

different regions of interest and their locations may vary depending on the appli-

cation goals. The criteria to identify objects in the scene is also task dependent

and the definition of anobject of interest may differ from one user to another.

For instance, while coding an image, only the psycho visual quality of the seg-

mentation and the available bandwidth are significant. A segmentation based on

multi scale processors may be important as they segment the image into different

scales. The best segmentation for a specific purpose can then be extracted given a

quality threshold.

In this thesis, a new tree structure, based on a scale-space processor called the
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CHAPTER 1. INTRODUCTION 2

sieve, is presented. A series of segmentations going from large to small scale are

organised under a hierarchical tree structure, ascale tree.

The resulting scale tree, obtained from a grey scale image, forms a pyramid

of increasing size objects where the nodes correspond to features of a particu-

lar scale. The tree structure itself is fairly insensitive to geometrical transforma-

tions of the original image. Different operations such as filtering, segmentation

or motion detection can be performed by parsing the tree and using information

associated with the nodes.

It is shown that scale trees can approximateobject trees and that scale trees

may be modified using other attributes to more closely approximate object trees.

The organisation of this thesis is as follows. Firstly, chapter 2 gives a gen-

eral review of different image processing segmentation techniques. A brief back-

ground of scale-space processors and mathematical morphology operators is also

presented. The following chapter gives a description of the sieve algorithm used

to build the scale tree structure.

Chapter 4 presents some other hierarchical structures that have been described

in literature. Scales trees are defined in chapter 5. Chapter 6 gives an overview

of some applications using scale trees. Different methods are used to simplify

the trees and new algorithms are described to refine scale trees in order to obtain

closer representations to object trees. In the last chapter, conclusions are drawn.



Chapter 2

Review

This chapter introduces some general image processing algorithms from the lit-

erature that are related to the transformation is studied here. Thesieve algorithm

used to build the scale trees performs asegmentation of the original image by re-

moving maxima or minima of the input function at specific scale. This chapter

discusses other segmentation techniques that have appeared in literature.

2.1 Segmentation

One of the most common and difficult problems in image processing has been

image segmentation and many image processing algorithms require a previous

filtering of the original image or an initial segmentation to locate the interesting

features of the image.

Here we distinguish image segmentation and recognition. If an object is recog-

nised then it may be segmented. Segmentation, however, does not necessarily

imply recognition. Recognition implies some image understanding since it asso-

ciates semantic labels with part of the image but semantically meaningful labels

are not needed for segmentation. For instance, one can segment a white cloud

over a blue sky using colour information without knowing that the resulting seg-

mentation is a cloud.
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CHAPTER 2. REVIEW 4

In the following sections, different segmentation techniques are reviewed.

2.1.1 Previous segmentation techniques

For the segmentation of intensity images, there are four main approaches that ap-

pear in the literature [1, 44], namely, threshold techniques, boundary based meth-

ods, region based methods and hybrid techniques that combine some of the above.

Threshold techniques

Threshold techniques [62, 83] are based on the postulate that pixels with similar

values belong to the same region. The value used can be grey level information,

colour or any other pixel attribute. Athreshold is then applied to the image so

different regions are segmented.

Threshold methods do not use any spatial or position information of the pixels

within the image and therefore they do not perform very well in noise or blurred

images.

Boundary based methods

Boundary based methods [29,38] rely on a rapid change in theboundary between

two regions. These techniques use the assumption that pixel values exhibit a fast

transition between regions [81]. Examples of filters that use this property are the

well known Sobel or Roberts edge detection filter [4]. The outputs of these filters

provide good candidates for region boundaries.

Converting the filter output into closed region boundaries is, however, a diffi-

cult problem for these methods.

Region based methods

Region based techniques [77, 107] useregions of the image as their initial par-

tition. They use the postulate that regions of the original image are, in a sense,
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homogeneous. A homogeneity criterion [18, 19] is chosen taking into account

that pixels within regions are more similar than pixels in different regions.

Some region based techniques include thesplit-and-merge [51] procedure or

some standard region-growing techniques [3, 17, 106]. The general method is to

compare every pixel with its neighbours. If the homogeneity criterion is satisfied,

the pixels are assigned to the same class.

Using these techniques, the final result depends on the choice of the homo-

geneity criterion and such region based methods do not perform well with rich

textured images.

Hybrid techniques

Alternative segmentation methods are the hybrid techniques, which combine re-

gion and boundary information [1, 17] and include variable order surface fit-

ting [12], watershed segmentation [13, 103] or seeded region growing techniques

[1, 71]. For example, the watershed approach considers the gradient of the im-

age as a starting point for aflooding algorithm so edge and region techniques are

combined.

These techniques have problems with blurred edges in the image. Obtaining

markers for the regions of interest is also a difficult task to resolve.

2.1.2 Recent segmentation techniques

More recently, improved segmentation techniques have appeared in literature.

In [96], for instance, the whole image is treated as a weighted connected graph. In

this framework, the segmentation task is to find a partition in the graph such that

similarities within subgraphs are high and similarities between subgraphs are low.

In this case, for an image ofn � n pixels, the computational cost of the algo-

rithm is mainly finding the eigenvectors of ann�n matrix. However, this method

only uses a few eigenvectors to perform the segmentation so the computational

cost is significantly reduced [97].
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More recently operators, such as Active Shape Models [23] can also be inter-

preted as new high order segmentation methods. In this case, the final goal of the

method is to locate a deformable shape in the original image. Shape information

is used to train a probabilistic model that constrains the fitting to the target image.

Shape, content information and a probabilistic background (a set of training im-

ages are used to build the model) are applied together to perform the recognition.

In a recent extension, grey scale information inside the distributed model,

calledactive appearance model, has been added with promising results in seg-

mentation, tracking and recognition tasks [22]. However, we note that recognition

is implicit in the ASM approach and so, as with all recognition algorithms, seg-

mentation should follow automatically.

2.2 Scale-space

A sieve is a method for scale-space analysis of an input signal. Scale-space meth-

ods process the image with scale as a parameter [33, 34, 104]. In a conventional

scheme, scale may be associated with resolution desired in the output function.

Figure 2.1 shows the scale-space representation of an image.

Original signal

Coarser signal Increasing scale

Figure 2.1: Scale-space filtering of a signal [66].

Scale-space processors simplify the image as the scale parameter increases, in

a manner that demands that no features are allowed to be introduced by the scale-
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space processor itself. This is accomplished by thecausality property. If further

constrains, such ascausality andisotropy, are applied, the diffusion equation pre-

sented by Koenderink in [61] is satisfied.

r (crf) =
@f

@s
(2.1)

wheres is scale. If the diffusivity parameter,c, is constant the equation above

becomes the linear diffusion equation,

r
2
f = fs (2.2)

The resulting scale-space processor, however, may introduce new extrema on

the resulting signal (section 3.4) and edges of the original image will be blurred

on the simplified output.

2.3 Morphological methods

The sieve algorithm used in this thesis does not rely on any linear filtering. Math-

ematical morphology [45, 46, 68, 93, 99], as a group of nonlinear filters, provides

the theoretical framework and is the analysis of signals by shape, and has been

developed by Serra [92–94] from work by Matheron [69] and Blum [15].

One of the most important difference between the linear filters described be-

fore and nonlinear morphological filters is inedge preservation. Morphological

filters remove features of the original image while leaving the edges untouched.

2.3.1 Flat zones

The sieve algorithm studied in this thesis usesconnected sets or flat zones [25,28].

It works by removing (i.e. merging) connected sets of the original image. A

connected set or a flat zone is a group ofconnected pixels with the same intensity.
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There are two different types of neighbourhood connectivity [57], 4-connected

and 8-connected pixels. Figure 2.2 shows these.

Figure 2.2: The left image shows the 4 connected pixels (in white)
of the centre pixel (in black). The right image shows the 8-connected
case.

A flat zone set represents a group of connected pixels (4 or 8-connectivity)

with the same grey scale value. Figure 2.3 shows an example of different flat

zones or connected sets of an image. Notice that there are two connected sets

with value 3 as they form two separated regions.

3 3 3 3

3 3 4 4

2 2 4 4

2 2 3 3

Figure 2.3: A figure showing theflat zone idea.

2.3.2 Connected operators

A connected operator [26, 75, 91, 95] is an operator that works with connected

sets of the original image. In this sense, the sieve may be defined as a connected

operator. Connected operators have been introduced in literature asmorphological

filters by reconstruction [24,28,102].
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Salembier reported [91] that the first reference to connected operators, known

asopenings by reconstruction, appeared in literature in 1976 [56]. Initially, they

eroded a binary image by a connected structuring element andreconstructed all

connected components that were not removed completely by the erosion. These

‘by reconstruction’ operators involved not only openings but also closing, alter-

nating filters or alternating sequential filters.

Later, they were extended to grey scale images [101, 102] and different sim-

plification criteria were obtained from the use of these operators, such as size-

sensitive multiresolution decompositions [85, 90], area openings [101], geodesic

operators [64], size [94] and complexity [75].

To define a connected operator, the notion of anassociated partition must be

introduced [95]. A partition of the imageI is a set of disjoint connected com-

ponents ofI, fPig, the union of which is the entire image (eachPi is called a

partition class). A partitionfPig is finer than another partitionfQig if any pair of

points belonging to the same classPi also belong to an unique class inQi. The

associated partition of an binary imageX is made of all connected sets of the

image and their complement,XC .

DEFINITION 1 A binary operator  is connected if, and only if, for any binary

image X , the associated partition of X is finer than the associated partition of

 (X).

In the case of grey level connected operators, the associated partition is defined

using the flat zones of the image. Thepartition of flat zones of a grey functionf

is defined as the set of the largest connected components of the space wheref is

constant. Using this, the definition of a grey level connected operator is identical

to the binary operator.

DEFINITION 2 An operator 	 is connected if, and only if, for any grey level func-

tion f , the partition of flat zones of f is finer than the partition of flat zones of

	(f).
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The sieve operator onlyremoves connected components of the image (max-

ima or minima at specific scale). As any connected operator, it simplifies the

image while preserving the remaining contours. These connected operators have

relations with structured representations such as region adjacency graphs [79] or

trees [87]. In this thesis, a tree structure, calledscale tree, derived from the sieve

algorithm will be analysed.



Chapter 3

Sieves

A sieve is a nonlinear scale-space decomposition algorithm [5–9] that shares sim-

ilarities with some mathematical morphology operators (section 2.3). It is a filter

that removes extrema from an input signal at a specific scales. At every stage

in the filtering process, extrema of specific scale are removed from the original

function. So, for instance, the filter stageS1 removes extrema of scale1, S2 scale

2 and so on until the maximum scale of the original signalm is reached and the

resulting filtered image is flat.

The removed extrema formgranules that are stored in a new domain, (called

granularity). This domain has been shown to preserve scale-space causality (The-

orem 6.36 in [7]) and it is also invertible (Theorem 6.49 in [7]).

There are different types of filtering element,S. Section 3.2 defines the dif-

ferent kind of operators used in this thesis together with some properties of these

filters (section 3.4). The following section provides a more formal description of

the sieve algorithm.

3.1 Sieve algorithm

The basis of the sieve algorithm considers an input function as a graph [49, 100].

LetG = (V;E) be a graph, whereV represents the set of vertices andE the edges

11
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between those vertices. Figure 3.1 shows this concept for a one-dimensional case.

The verticesV are the samples of the function and the set of edgesE correspond

to the adjacencies between points. In this example, the samples of the function are

labelled with numbers soV = f1; 2; 3; : : : ; 11g and the edges represent the con-

nections between the pointsE = ff1; 2g; f2; 3g; f(3; 4g; : : : ; f10; 11gg where

f1; 2g, or f2; 1g, represents the edge or connection between vertices 1 and 2 in

the graph.

2 4 6 8 10 12
-3

-2

-1

0

1

2

3

2 4 6 10
-3

-2

-1

0

1

2

3

1 2 3

4

5 6

7

9

10 11

8

8

12

Figure 3.1: A 1D signal represented as a graph (G1D).

Figure 3.2 shows the same concept for an image, in this case, the vertices of

the graph correspond to all the pixels of the image. The set of edgesE define

the neighbourhood or connectivity of those pixels. In this example, a set of 4-

connected edges are used (section 2.3). The graph of this image would beG2D =

(V;E) with,

V = f1; 2; 3; : : : ; 16g

and the edges,

E = ff1; 2g; f1; 5g; f2; 3g; f2; 6g; : : :g

The algorithm works by defining subsets, or connected regions, inside the

graph representation. IfCr(G) is defined as the set of connected subsets ofG

with r elements. Then, the regionCr(G; v) over the graphG which encloses the

pixel (vertex)v can be defined as:
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1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

Figure 3.2: Image represented as a four-connected graph (G2D).

Cr(G; v) = f� 2 Cr(G) j v 2 �g (3.1)

whereCr(G; v) is the set of connected subsets ofr elements that containv, or,

simply, the connected regions ofr vertices that contain the vertexv. For instance,

in the 1D example of figure 3.1, the set of regions with 2 elements containing

vertex 7 is (r = 2,v = 7),

C2(G1D; 7) = ff6; 7g; f7; 8gg

for the two-dimensional, four-connected, example (figure 3.2),

C2(G2D; 7) = ff7; 3g; f6; 7g; f7; 8g; f7; 11gg

Using the 2D example again, the regions of 3 elements containing pixel 1 are

(r = 3,v = 1),

C3(G2D; 1) = ff1; 2; 3g; f1; 5; 9g; f1; 2; 6g; f1; 5; 6gg

For each integerr � 1, the sieve filterS : ZV 7! Z
V can be defined to operate

over the connected regionsCr(G) of the graph. As mentioned earlier, the sieve

algorithm removesextrema of a specificscale from an input signalf , solength is
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used in the 1D case orarea in 2D and so on for higher dimensional signals.

The structure of a sieve decomposition is shown in figure 3.3. Each stage

Ss removes extrema of increasing scale and the output function of every stage

fs = Ss(f) is used as the input signal of the next stage at scales+1 (equation 3.2).

fs+1 = Ss+1(fs) (3.2)

where the initial function is,

f = f0 = S0(f) (3.3)

s1

s2

�

�

sm �

-

+

-

+

-

+

In
cr

ea
si

n
g

sc
al

e

g1

g2

gm

Input signal Difference Granularity

Figure 3.3: The complete sieve decomposition of a signalf .

Equation 3.4 shows the definition of a complete sieve algorithm over a signal

CS(f). A cascade of increasing scale sieve algorithms are applied until no new

maxima or minima are found. Ifm represents the scale of the largest granule in

the input signalf , the complete sieve sequence can be defined as,

CS(f) = SmSm�1 : : :S2S1(f) (3.4)
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The granule function is defined as the difference between two stages of the

sieve filter (equation 3.5). The granule functiongs contains all connected subsets

of the original function that have been removed from the original signal for scale

s. Thegranules gsi are the non-zero connected regions in the granule functiongs.

gs = Ss�1(f)� Ss(f) = fs�1 � fs (3.5)

The morphological operators defined in section 2.3 can be re-defined to oper-

ate on connected regions using the standard graph notation. The sieve operator,

Ss, can then be any of the morphological filters described before. Re-defining

these filters to use connected regions implies that the morphological operators no

longer use rigid structuring elements. Instead they use all sets of connected sub-

sets defined by the functionCr(G) asflat structuring elements.

For instance, in the 1D case, equation (3.1) becomes the set of intervals con-

tainingr elements,

Cr(G1D; x) = f[x; x + r � 1] j x 2 Zg r � 1 (3.6)

which is identical to filtering using a flat structuring element of lengthr with

output at the middle pixel.

The following section discusses the new notation of these morphological filters

together with some examples of their operation.

3.2 Types of sieves

The sieve algorithm can use any morphological operators (section 2.3). The

only restriction imposed to these filters is that they must be idempotent (see sec-

tion 3.4). As the sieve operator removes extrema of scales, no smaller features

are allowed to remain in the original signal soSs(Ss(f)) = Ss(f). This means

that morphological opening, closing,M-filters andN -filters can be used but not
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operations such as dilations or erosions as they are not idempotent.

Opening

The morphological opening is defined over a graph as,


rf(x) = max
�2Cr(G;x)

min
u2�

f(u) (3.7)

As
r operates on a set ofr elementsCr(G), it can only removemaxima of size

r�1 and, for instance,
2 will remove all maxima of scale 1.
1 has no effect on the

original signalf = 
1(f). To keep our notation, we will still describe a opening

sieve (o-sieve) of scale one asS1 so scale of size 1 is removed, remembering that

an operation of
2 needs to be applied.

Figure 3.4 shows a 1D example of a opening sieve of scale 1. Maxima of scale

1 (positions8� 9 and11� 12) are removed.

2 4 6 8 10 12 14 16 18
−1

0

1

2

3

4

5

6
Opening example (scale 1)

Original Signal

Opened signal

Figure 3.4: Example of a opening sieve (o-sieve) of scale 1.
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Closing

As the opening filter is defined to operate over subsets of a graphG, the morpho-

logical closing is defined as its dual operation,

'rf(x) = min
�2Cr(G;x)

max
u2�

f(u) (3.8)

and it removesminima in the subsets ofCr(G) so'r can only remove minima of

scaler � 1 (as the opening filter). The closing sieve, orc-sieve, removes minima

(and only minima) of scales from the input signal (positions7� 8 and12� 13 in

figure 3.5)

2 4 6 8 10 12 14 16 18
−1

0

1

2

3

4

5

6
Closing example (scale 1)

Original Signal

Closed signal

Figure 3.5: Example of a sieve closing (c-sieve) of scale 1.

M-filter

TheM-filter consists of an opening followed by a closing. Equation (3.9) shows

the definition of anM-filter operating on a graph.

Mrf(x) = 'r(
rf(x)) = min
�2

max
Cr(G;x)

(max
u2�

min f(u)) (3.9)

An M -sieve filter removes extrema of scales by removing maxima (opening)

and then minima (closing) at that scale. Figure 3.6 shows an example of the
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operator removing extrema of scale 1 (M -sieve1(f)).

2 4 6 8 10 12 14 16 18
−1

0

1

2

3

4

5

6
M−filter example (scale 1)

Original Signal

M−filtered signal

Figure 3.6: Example of aM-filter sieve (M -sieve) of scale 1.

N -filter

The morphologicalN filter is defined as a closing followed by an opening,

Nrf(x) = 
r('rf(x)) = max
�2

min
Cr(G;x)

(min
u2�

max f(u)) (3.10)

and removes minima and then maxima at a scales. The resulting sieved signal

may differ from theM -sieved output if extrema of different sign (maxima / min-

ima) are found in the same connected setCr(G). Figure 3.7 shows the same 1D

input signal filtered this time with anN -sieve. As minima are processed first,

positions7� 9 go to a higher level than when theM -sieve is used.

As opening and closing sieves,M andN -sieves remove extrema of scales = 1

when a filter of sizer = 2 is used.

Recursive median filter

The recursive median filter [70] is a one-pass approximation to the root median

filter [74], a median filter applied to the input signal until no further change occurs.

Equation 3.11 shows the definition of a 1D recursive median filter using a window

of r samples, wherer is odd.
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Figure 3.7: Example of aN -filter sieve (N -sieve) of scale 1.

�rf(x) =

8>>>>>>><
>>>>>>>:
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r�1
2
); �rf(x�

r�1
2

+ 1); : : : ;

: : : ; �rf(x� 1); f(x); f(x+ 1); : : : ; x � 0

: : : ; f(x+ r�1
2
� 1); f(x+ r�1

2
)g

0 x < 0

(3.11)

so, for example, whenr = 3,

�3f(x) = medianf�3f(x� 1); f(x); f(x+ 1)g (3.12)

the filter is the median off(x); f(x+ 1) and the previous output.

The recursive median filter retains all of the properties of the multiple pass

root median filter such as noise rejection and idempotency [9], and therefore, is a

valid operator to use with the sieve.

The recursive median filter ofr samples can only remove extrema ofs =

(r � 1)=2 (r must be odd). So, the filter,�r, removes only extrema of sizes = 1

when a window of sizer = 3 is applied (a window ofr = 3 samples is needed to

achieve the same results as a 2 pixel window ino-, c-,M - orN -sieve filters). The

recursive median sieve operatorr-sieve will remove scale of sizes, so it will use
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a window ofr = 2s+ 1 samples.

Figure 3.8 shows an example of a recursive median sieve removing extrema of

size 1. The median filter scans the image using the ‘implicit’ left to right order in

1D. For higher dimensional signals, an order has to be imposed. In the 2D case,

a left-to-right, top-to-bottom scan leads to a very similar results to theM - and

N -sieves.
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Recursive median example left−to−right (scale 1)

Original Signal

r−filtered signal

Figure 3.8: Example of a recursive median sieve (r-sieve) processing
extrema from left to right.

Note that the output of the recursive median filter depends on how the extrema

are positioned in the input signal and, if the original signalf is scanned in any

other order, different outputs may occur. Figure 3.9, for instance, shows a 1Dr-

sieve using a right-to-left scan, positions7� 9 and11� 13 differ from the results

using a left-to-right scan.

The different sieves defined are summarised in table 3.1.

Filter Symbol Sieve Extrema Processing
opening 
 o-sieve maxima
closing ' c-sieve minima
M-filter M M -sieve bipolar�
N -filter N N -sieve bipolar�

recursive median � r-sieve bipolar random

Table 3.1: Sieve types.
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Figure 3.9: Example of a recursive median sieve (r-sieve) processing
extrema from right to left.

3.3 Examples

In this section, more advanced examples of the sieve operator will be presented.

As defined in equation (3.4) and (3.5), a complete sieve decomposition transforms

the input signal into a new different domain calledgranularity, G, and it is com-

posed of all removed granule functionsgs at all scales.

G = fg1; g2; : : : ; gmg (3.13)

Figure 3.10 shows the granularity decomposition of the same signal used in

the previous examples. AnM -sieve operator is used to filter the input signal until

no more extrema are found, in this case, at scale 5. At everyy coordinate the

granule functiongy is represented, for scaley.

As the morphological filters have been defined in any number of dimensions

using the graph notation, sieves can be extended to operate withN -dimensional

signals. The left of figure 3.11 shows a very simple image. On the right is a 3D

visualisation of the same image where height is grey scale value so extrema values

form mountains or valleys in the surface.

A complete sieve decomposition of this image is shown in figure 3.12. An
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Figure 3.10: Granularity decomposition of a 1D signal using theM -
sieve.

Figure 3.11: Original 2D image for the 2D sieve decomposition. On
the left, the grey scale value of the pixels. On the right, a ‘mesh’ repre-
sentation of the original.

M -sieve filter is used to segment the image. For clarity, only scales where the

granule functions,gs, are different than zero are shown. The left column shows

the filtered image while right column shows the granule functions.

To conclude this section, a last example with a real image will be analysed.

In this thesis, the sieve algorithm is used to build a tree representation, called a

scale tree, of an image. This new structure keeps information about the scale of

the image by removing maxima and minima. As extrema of both signs (maxima

and minima) are removed, opening and closing sieves cannot be used.
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scale 12

scale 16

scale 42

scale 90

Figure 3.12: Example of a sieve decomposition in 2D. Left column
shows the filtered imagesM -sieve(I). Right column shows the gran-
ules removed at each stage.

Ther-sieves operators were not chosen to build the tree structure as they ex-

hibit some variations under rotations or other transformations of the original im-

age. Since there are few differences between usingM andN operators,M -sieves

were chosen arbitrarily. A 4-connected 2D sieve was used (the results are rather

similar to using 8-connected sets (see section 2.3)). Figure 3.13 shows an example
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of theM -sieve operator at different scales.

Original Image M−sieve up to scale 500 M−sieve up to scale 2500

Figure 3.13: M -sieve decomposition of the image on the left. Middle
and right images sieved up to scale 500 and 2500 pixels.

3.4 Properties

It has been shown that the sieve is a nonlinear scale-space selector that removes

extrema of increasing scale from the input signal. The sieve is therefore a good

candidate to perform an initial segmentation of the image based on scale. The

sieve filters also have properties that make them interesting for some image pro-

cessing tasks. This section will discuss some of the more important properties

together with relevant example images. For a formal description and a proof of

these properties see [7] and [9].

Idempotency

The sieve algorithm removes extrema of sizes from an input signal. Since no

smaller features are allowed to exist after the current scale filter has been applied,

the sieve operator must be idempotent,

fs = Ss(f) = Ss(Ss(f)) (3.14)

or, in other words, applying the sieve filter at scales implies filtering the signal at

all lower scales until scale 1.
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fs = fs�1fs�2 : : : f2f1 = SsSs�1 : : :S2S1(f) (3.15)

Scale-space causality

N-dimensional opening and closing-sieve operators preserve scale-space causal-

ity [61] as they do not introduce any new extrema to the original signal. Using

the graph notation again, ifSs is a sieve filter operating over a signalf 2 ZV and

fx; yg 2 E is a particular edge. Ass increases, the differenceÆs = fs(y)� fs(x)

does not change sign and its absolute value decreases.

Æ1 � Æ2 � : : : � 0; or Æ1 � Æ2 � : : : � 0 (3.16)

Figure 3.14 shows a well known example due to Lifshitz and Pizer [65] that

illustrates scale-space causality. The original image is, on the left hand side, with

2 extrema, the circle on the top and the two squares connected by a thin isthmus.

The standard linear diffusion system [2, 66] does not enhancelocal extrema but

reduces the amplitude of the isthmus and hence creates three maxima where there

were two. TheM -sieve (on the right) treats the squares as one object and so,

preserves scale-space causality.

A) B) C)

Figure 3.14: A) shows the original image with two extrema.B) Lin-
ear diffusion systems introducing new extrema (now the two squares
form two different extrema) . InC), The sieve algorithm leaves the two
squares untouched so no new extrema are introduced.
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Invertibility

One of the most powerful properties of scale sieves is that they are invertible and

the original image can be reconstructed from the granularity domain. Using the

example of figure 3.12, the original image can be reconstructed by adding all

granules (right column) over all scales,

f =

mX
s=1

gs = g1 + g2 + : : :+ gm (3.17)

wherem is the maximum scale of the signal.

However, in the reconstruction of the original signal, the DC component of

the signal is not retained as the maximum intensity of the image is lost (only the

difference is stored). There may be an offset between the original image and the

reconstructed image. To solve the problem, the signal can be padded with zeros,

so no more extrema are introduced and the DC component is eliminated. 1D

padding with zeros implies adding zeros to the start and end of the signal. In 2D

padding a border of zeros is placed around the image with area greater than the

size of the image.

Figure 3.15 shows a 1D example of this problem. On the left, the original

signal with an offset of 4, on the right, the ‘zero-padded’ signal. The bottom

row shows the reconstructed signals using theM -sieve. Note that the recon-

structed ‘unpadded’ signal does not preserve the original offset. The reconstructed

‘padded’ signal, however, is identical to the original, zero-padded signal.
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Figure 3.15: Demonstration of the invertibility of sieves. On the left
the original image with an offset, on the right the zero-padded signal.
Middle row shows the granularity decomposition of the two signals.
Bottom row shows the reconstructed signals. Note that the ‘unpadded’
reconstruction does not preserve the DC component of the original.



Chapter 4

Trees in image processing

Following the description of the sieve algorithm on chapter 3, this chapter intro-

duces the idea of a tree structure representing an image. Descriptions of some

useful trees currently used in image processing will be added. These descriptions

will provide a background to the use of sieves in building the new scale tree struc-

ture described in this thesis.

Trees are a commonly used data structure in computer graphics where Binary

Space Partitioning trees [20], decision trees [43] and other relational structures

have been used to describe all the objects within a scene (such as VRML formats

or BIFS planes on MPEG-4). In the case of image processing, these structures

have not been applied as extensively but, in the last few years, these have become

more popular.

The following sections will present some trees currently being used in image

processing. As will be seen, some of them share similarities with the tree structure

developed in this thesis in the sense that they store the same information or that the

tree building algorithm is similar. In each case, the advantages and disadvantages

of using such structures will be analysed and some applications showing where

and how the trees are used will be presented.

28
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4.1 General image processing trees

Several trees have appeared in literature relating to different image processing

tasks. This section briefly discusses some of them by comparing the algorithm

used to build the trees as well as the properties that make them interesting for

some applications in image processing.

4.1.1 Directed trees

Directed trees first appeared in the image processing literature in 1976 in a paper

by Koontz and Narendra [63] and have since been applied to different segmen-

tation techniques [73]. Every node in a directed tree represents one pixel of the

original image. Figure 4.1 shows an example of two directed trees,T1 andT2,

completely segmenting an image.

T
1

T
2

Figure 4.1: An illustration of a directed tree with image points as
nodes. Two different directed trees,T1 andT2, segment the image (dot-
ted line) in two disjointed regions.

The algorithm used to build directed trees operates on an edge enhanced im-

age, computed from the original. This edge function establishes thedirected links

between pixels (arrows of the figure). If the corresponding edge image computed

from the original, ofN �M pixels, is,

E = fe(x; y); x = 1; : : : ; N ; y = 1; : : : ;Mg (4.1)

the algorithm computes an ‘edge gradient’ functionG(x; y) used to identify the
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‘closer’ adjacent pixel to establish a tree link.

G(x; y) = max[e(x0; y0)� e(x; y)] (x0; y0) 2 n(x; y) (4.2)

with n(x; y) being the neighbourhood pixels of a point(x; y) of the image.

The algorithm segments the original image by expanding the directed tree over

uniform regions in the edge image. Each resulting directed treeTi forms a differ-

ent region in the segmented image (figure 4.1).

4.1.2 Containment trees

Containment trees are a different approach to building a tree structure of an image.

They represent the image by storingcontainment information. They have been

used in some shape based recognition in pictorial databases [59]. Each node in

a containment tree stores information about a contour,Ci, of the original image.

The tree structure itself is built by creating child nodes for contourscontained or

enclosed in a bigger contour (it’s father).

Figure 4.2 shows three examples of these trees. As it can be seen, the con-

tainment tree is a very simple representation of a black and white image where

containment information is stored in a tree structure. Such a simple tree leads to

the same representation for a wide variety of different images, see for example

the two first columns in figure 4.2. At the same time, the use of this structure is

invariant to strong transformations of the original images such as zooms, rotations

or small occlusions.

It is obvious that this representation cannot be used for a complete picture

system retrieval. The containment tree gives good results if it is used to make a

preliminary discrimination of the search space [59] for other, higher order, and

usually computational more expensive systems.
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� 11

Figure 4.2: Three containment trees. Left and middle columns having
the same tree. Right column illustrating a different containment tree
with the same number of contours. The black node corresponds to a
‘dummy’ contour including all the curves and acting asroot of the tree.

4.1.3 Shock trees

Shock trees appeared in literature in [98] as a graph derived from a set ofshock

measures [55] in the curvatures of the image. The shock tree is built by analysing

the singularities of a curve evolution process acting on simple closed curves of a

binary image.

The singularities of a curve are measured by the variation of the radius func-

tion associated with each curve in the image. The variations are classified into

four types (figure 4.3). These shock variations are then transformed into a hier-

archical structure. A third order shock, for instance, has two children formed by

first order shocks.

First−Order

Third−Order Fourth−Order 

Second−Order

Figure 4.3: Four different types of variations of closed curves. A first
order shock appears on curve segments. Second order shocks arises at
necks, followed by first order shocks in each direction. A third order
appears on straight lines. Four order shocks appear in circles [98].

Shock trees have been applied to object classification systems based on sil-
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houettes images. The tree matching algorithm uses topology alone [78] but other

techniques using label information has been also studied [98].

4.2 Scale-space trees

Trees relating to scale-space processors (see section 2.2) have appeared in litera-

ture in structures, such asquad trees or oct trees. They share the use of a scale

decomposition as a main factor to build the trees. The following sections briefly

discuss these representations.

4.2.1 Quad and Oct trees

Quad trees are one of the earliest multi-scale representation of an image and were

introduced by Klinger in 1971 [58]. The algorithm to build a quad tree is similar to

thesplit-and-merge algorithm [18,19,51,77] and it works recursively by dividing

the original imageI into blocks (Bi) [53,54].

Firstly, the whole image is treated as a single block of size2n � 2n pixels, a

formal criterion is used to decide if the pixels within a block are similar enough.

If the block being analysed satisfies the homogeneity criterion, the block is kept

and the algorithm stops. If it is not, the block is divided intom similar regions

and the algorithm is applied again on every created subregion.

To satisfy the criterion, a measure of pixel value variation is taken and if it

is greater than a certain thresholdu then the block is subdivided. Usually, the

measure used is proportional to the grey scale variance of the pixelsg(x; y) in all

regions. Generally measures like the difference between maximum and minimum

pixel value in that block (maximum intensity),

jgmax(x; y)� gmin(x; y)j 8(x; y) 2 Bi (4.3)

or a measure of the standard variance of the regions pixels (equation 4.4) will be

used.
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�
2 =

P
(x;y)2Bi

(g(x; y)� �)2

Bi

(4.4)

For simplicity, the original image is divided in sub quarters (m = 4). Fig-

ure 4.4 shows an example of a quad tree encoding of regions over a simple binary

imageX. The variance measure (4.4) is used with a threshold equal to zero (di-

viding white from black pixels). The resulting segmentation can be seen on the

left. On the right is the quad tree encoding of the regions.

H

1 3

42
A

I

J

F

B D

C E
1 2 3 4

H I J B C ED

F A

Figure 4.4: Quad tree representation of regions.

If there is strong intensity variations in the original image and a small threshold

u is set, then the image will be over-segmented. Figure 4.51 shows an example of

a MATLAB implementation with a real image of128� 128 pixels and a dynamic

range of[0� 255] in pixel intensity. As it can be seen, regions with high contrast

are segmented into smaller regions. However, some regions of low contrast, like

the grass, can be over segmented into different blocks.

Oct trees are the 3-D generalisation of quad trees [52,80]. In this case, a cubic

block is divided into eight sub-cubes, or octants, of equal volume. The algorithm

to build oct trees is the same as quad trees. A homogeneity criterion is used to

further subdivide the cube or to stop the algorithm. The resulting segmentation

can be represented with a tree structure of degree 8 (referred to as an oct tree).

1Due to [16].
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Figure 4.5: Quad tree decomposition of an image. On the left the
original, middle figure the quad tree blocks resulting of applying the
maximum intensity measure with a thresholdu = 15. On the right, the
superimposed blocks onto the original.

4.3 Morphological trees

In this section, three different types ofmorphological trees will be presented. Mor-

phological trees treat the image as a group of connected regions, i.e. connected

pixels with the same intensity (see chapter 2). As they work with only connected

sets [95] they preserve all contour information of the image.

4.3.1 Critical lake trees

A critical lake tree is a simple tree introduced by Meyer et al. in [21]. The algo-

rithm used to build the tree structure is the watershed segmentation introduced by

Digabel et al. in 1977 [30].

Figure 4.6 shows an example of these trees. A watershed plus markers [13,

103] approach is used with minima as the seed. Starting from the minima markers,

a flooding algorithm [31, 72] is then applied to completely segment the image.

Every ‘lake’ or minima of the signal forms a node in the criticallake tree. After

the whole topographic surface is flooded all path points through which two lakes

merged are labelled by a given measure, such asdepth of the lake,area or volume

of the particle.

The resulting tree structure provides an useful representation of an image. Us-

ing the information stored in everycritical node a multi-scale segmentation of the
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Figure 4.6: Critical lake tree example. The original function in light
gray and the tree in black.

original image can be made [21].

4.3.2 Max and Min trees

Max trees are a relatively new representation of images. They appeared for the

first time in literature in 1996 by Salembier and Oliveras as an extension of con-

nected operators [87]. In a max tree structure, every node of the tree represents a

connected set, or flat zone (section 2.3) in the original image.

The use of connected operators can be significantly simplified by constructing

the max tree and computing the operator for each node in the tree [36]. Using

the binary image of Figure 4.7, each component can be represented by a node

inside a max tree structure. Firstly, all background pixels are assigned to the root

nodeNroot (in this case white pixels). Secondly, three new nodes are created

fN1kg1�k�3 representing the connected setsA, B andC of the binary image in

the top row.

The removal of a node is accomplished by moving this specific node to its

father in the max tree structure. The top row, right hand image of figure 4.7 shows

the result of using a binary opening on the left hand image. The bottom row

shows the same opening operator using the max tree. Note that the output max

tree matches perfectly with the output binary image (top right image in figure 4.7).

The simple 1D signal,f , of figure 4.8 is used to illustrate the algorithm for

building a max tree. A thresholdh is used to binarise the input functionf and
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Figure 4.7: Example of a binary connected operator using a max tree.

to store the different connected sets found in the binary function as nodes of the

tree. At every step, the threshold is increased by one and all nodes created in the

previous step are re-analysed. Pixels with values lower than the threshold remain

in that node, pixels with values greater or equal than the thresholdh form new

nodes (children of the node being processed).

In the 1D example, the threshold is set to0 (the lowest value of the function)

and it is used to quantise the signal. In this case, all points are greater or equal to

the thresholdh so all the points are assigned to one node,N0, called the root. In

the second step, the threshold is increased,h = 1 and the root node is analysed.

Two connected sets are found,N 1
1 andN2

1 , and so these pixels are removed from

nodeN0 and assigned to two new nodes which are children of the root.

The second and last step, as the threshold reaches the greatest amplitude of the

signal, finds two new connected sets and so nodesN
1
2 andN2

2 , children of nodes

N
1
1 andN2

1 respectively, are formed. While the algorithm creates new nodes some

old nodes may become empty and, therefore, these nodes must be removed. For

example, the empty nodeN 2
1 has to be upgraded to nodeN 2

2 .

The extension of this algorithm to 2D is shown in Figure 4.9. The original

image has 6 connected flat zones (A, B, C,D, E andF ), the numbers represent

the gray scale level of the connected set.
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Figure 4.8: Example of max tree creation in1D.
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Figure 4.9: Max tree creation (2D).

The steps to build the2D version of the max tree are the same as those used

to make the1D tree representation. The complete max tree construction can be
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summarised as follows. Starting from the lowest value in the image, each node

N
k

g
(g stores the information about the gray scale level represented by that node)

is processed. Within that node, pixels equal to the thresholdh remain in the node

and the different connected components of the remaining pixels (gray level value

higher or equal thanh) create the different children of that specific node.

Three important properties of the resulting max tree are listed below:

1. No contour information has been lost, the original image may be accurately

reconstructed from the final tree. Even if one node is removed, the remain-

ing nodes retain their contour information (figure 4.7).

2. The final tree is oriented towards the maximum of the image (max tree) so,

the leaves of the tree are the maxima of the original function. To obtain the

same representation orientated to the minima of the image (min tree) the

original image has to be inverted.

3. The nodes in the final tree structure are not necessary formed by connected

pixels, as can be observed of nodefBEg in Figure 4.9. This node represents

the flat zonesB1 andE1 which are two different connected components in

the original image. Figure 4.10 shows a ‘real’ example where a node of the

max tree (white pixels) is not formed by local connected pixels.

Once the max tree structure is built, and the different connected sets or flat

zones of the image are assigned to all nodes, many criteria can be applied to each

node to perform a variety of different tasks. For example a disparity criterion can

be used for a stereo analysis [76], or a motion criterion for motion recognition [88,

89].

As max trees share many similarities with scale trees, section 6.2.2 will focus

on the motion recognition application discussing the advantages and problems of

both max and scale trees.
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Figure 4.10: Example of a node in the max tree with non local con-
nected pixels. White pixels represent one only node of the tree. Image
taken from [67].

4.3.3 Binary partition trees

Binary partition trees are an extension to the max trees described above [84]. A

binary partition tree is a shape oriented image representation in the sense that it is

a structure representation of regions that can be obtained from an initial partition

of an image.

There is no fixed algorithm to build binary partition trees, different solutions

can be adopted depending on the application. In general, the binary partition

tree retains information of the merging steps performed by the segmentation algo-

rithm [37], this is called themerging sequence.

The tree is built using an initial partition of flat zones in the image, the al-

gorithm merges neighbouring regions following the homogeneity criterion until a

single region is obtained which is assigned to the root node. For example, a colour

homogeneity criterion can be used to merge regions so every original flat zone is

merged with the next ‘closest colour’ neighbouring region.

Binary partition trees can be used in a large number of processing goals such

as detection or recognition, visual browsing, segmentation or information re-

trieval [86].



Chapter 5

Scale Trees

This chapter introduces the notion of ascale tree. First of all, a general graph-

theoretical framework will be introduced. Some properties of scale trees will be

presented. Finally, some examples will illustrate the building algorithm.

5.1 Building scale trees

A scale tree is a tree representation of the sieve algorithm. In chapter 3 was shown

that the sieve algorithm removes extrema of any scales from an input signal. If

a cascade of increasing scale sieve filters is used, extrema of increasing size are

removed. The complete sieving filterCS(f) (equation 3.4) can easily be trans-

formed into a tree representation. Granules of different sizes are represented as

nodes in the tree. Bigger granules are represented as parent nodes of small gran-

ules.

5.1.1 Graph notations

Before going into details of the proposed scale trees, some graph-theoretical no-

tations and definitions need to be introduced [47]. LetG = (V;E) be a graph as

in section 3.1, whereV is the set of nodes andE the set of edges. Theorder of

G is defined as the number of nodes inV and itssize as the number of edges in

40
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E. Two nodesn;m 2 G are said to beadjacent (n � m) if they are connected by

and edge.

A path in the graph can be defined as a sequence of nodesn0n1n2:::np where

8i = 1:::p; ni�1 ni. In other words, a path is a list of nodes that tells you how

to go from noden0 to np. In this case, the length of the path isp. A graphG is

connected when there is always a path to join any pair of nodes. Ifn0 = np then

the path is called acycle.

Given the notion of a path, thedistance between two nodes,d(n;m), is the

shortest path between those two nodes, withd(n;m) =1 if no path can be made

(non connected graph). A connected graph with no cycles is called atree, and a

rooted tree is a tree with a central node, called theroot. Two nodes in a tree, or

rooted tree, are always connected by a unique path. Thelevel of noden, lev(n)

in a tree is the length of the path connecting the root ton. So if n � m and

lev(m)� lev(n) = +1 thenn is thefather of nodem, F(m) = n (equation 5.1)

and, therefore, nodem is thechild of n.

F(m) = n iff

(
n � m

lev(m)� lev(n) = +1
(5.1)

5.1.2 Scale tree definitions

Scale trees are rooted trees, where every nodeNsi
represents a granule of sizes

which has been merged into the next larger scale granule in one step of the sieve.

After every sieve at scales, the granule functiongs (equation 5.2) describes the

removed granules, which form nodes in the scale tree. The granule function can

consist of more than one granule (non zero regions ings) so each every granule

function may generate more than one node in the scale tree (equation 5.3). The

nodeNsi
represents the granulei at the scales.
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gs = Ss�1(f)� Ss(f) (5.2)

Nsi
= gsi where

[
gsi = gs (5.3)

The algorithm used to build a scale tree is as follows. At every step of the

complete sieve operator, the granule functiongs is computed and every granule

gsi is labelled by its corresponding nodeNsi
. As a new node is created, a link

is established between previous nodes which have been already merged and that

specific nodeNsi
. This link is defined as a father relation (F ) in the scale tree

structure (equation 5.4).

F(Ns
0

i
) = Ns

00

j
iff

8>><
>>:

s
0
< s

00

gs0i
� gs00j

8s; minjgs0i
� gsij = jgs0i

� gs00j
j

(5.4)

Equation 5.4 shows the father relation between two different granules at scale

s
0 and at the larger scales00. NodeNs

00

j
is the father ofNs

0

i
if and only if the three

conditions stated above are fulfilled1.

As the sieve can be defined in 1D or 2D, scale trees representations can be

derived for 1D or 2D signals. In this thesis, the 2D sieve is been using extensively,

but, for clarity, section 5.1.3 explains the tree building algorithm with a 1D exam-

ple. Note that, in any case, the tree representation of a function is the same in 1D,

2D or in any dimension as it is using a scale decomposition (sieve) of the original

image. Therefore,scale is used generally for any dimension but specifically refers

to length in the 1D case,area in 2D case orvolume in 3D.

1The last condition in (5.4) is intended to eliminate grandfathers, great grandfathers and so on.
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5.1.3 1D scale trees

As a simple example, the function shown in figure 5.1, will be used to build, in

this case, a 1D scale tree.
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1D ScaleTree example

Input Signal

Figure 5.1: Input signalf for 1D scale tree example.

In the first step (figure 5.2), a scale 1 sieve operatorS1(f) is applied over

the input signalf . The granule functiongs is computed, in this caseg1 as we are

sieving at scale 1, and the nodeN11 is created labelling the corresponding granule.

Note that there is only one granule ing1, and so only one nodeN11 is created. The

graph on the left of figure 5.2 shows the granule function (with the granuleg11 in

red) and the resulting sieve function at scale 1S1(f) which will be used as input

function in the next scale sieve is shown in blue.

The right side of figure 5.2 shows the new node built (in red) namedN11 as

it represents the first, and only, granule at scale 1. The ellipse represents the

remaining points in the input signalf which have not yet been assigned to any

node of the scale tree.

Note that the link between nodeN11 and the ellipse is not a father relation. It

is just a temporary link between the new node and the granule it merges to.
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Figure 5.2: Sieve up to scale 1, granuleg11 labelled in nodeN11 (step
1).
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In step 2, the sieve is applied to the new input signal,S1(f). Now at scale 2.

This time, two different extrema are found,g21 andg22 , in the granule function

g2. Following the algorithm these two granules are removed and labelled via two

new nodes of the tree,N21 andN22 . The tree representation shows the two new

nodes in red. A temporary link is made to keep information about where the two

granules are going to be merged to.
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Figure 5.3: Sieve up to scale 2, granulesg21 and g22 removed and
stored in nodesN21 andN22 respectively (step 2).

Finally, a sieve to the next scale is applied. In this case, the next scale is 9

which removes the big stepg91 . Once the granule is removed, a node is created

in the treeN91 . At this point, the tree building algorithm links the two already

created nodes (N11 ,N21) to the currentN91 node, since granulesg11 andg21 were

attached to granuleg91 in a previous step of the complete sieve (step 3). The node

N91 is now linked to nodesN11 andN21 with a father child relation (equation 5.4).

In other words, nodesN11 andN21 become siblings and children of nodeN91 .
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Figure 5.4: Sieve up to scale 9, last extremumg91 removed and stored
in nodeN91 of the scale tree (step 3).

The output of the sieve operator at this stage,S9(f), is a constant signal and

so no new extrema can be found. Scale 9 was the maximum granule size (m) in

the input signalf and so the complete sieve operator stops. However, to finish



CHAPTER 5. SCALE TREES 45

building the tree, a final step needs to be completed. All remained points are

assigned to the root nodeNroot and all nodes without father at this stage, are

linked to this root node. The figure 5.5 shows the final tree. Five different nodes

result from the sieve process, each of which corresponds to a granule of the input

functionf .

N
root
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Figure 5.5: Final scale tree of signalf in figure 5.1.

5.1.4 2D scale trees

We now revise an example of building a 2D scale tree of an imageI. As sec-

tion 3.1 described, the sieve algorithm can be defined in any number of dimen-

sions. Now, the 2D sieve algorithm will be used to build the scale tree representa-

tion of an image.

The steps needed to build a scale tree representation of an imageI are the

same as those used to build the scale tree of a 1D function (section 5.1.3). As a

simple example, the image shown in figure 5.6 is used to create a 2D scale tree.

The image is of size 20x20 pixels with 5 different regions; the grey rectangle at the

bottom, partially occluded with the three white rectangles, and the black rectangle

at the top of the image.
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2D ScaleTree example − Original

Figure 5.6: Input imageI for the 2D scale tree example.

The only difference between the algorithm used to build a 2D scale tree and

that used for the 1D is the definition of scale. In 2D scale is a measure ofarea

instead of length. The first step involves sieving the input imageI to increasing

scales and halting the algorithm when the granule functiongs contains non zero

elements. For this example, that scale is area 12 pixels. Two extrema are found

with this sieve operator (the two white squares at the sides of the grey rectangle).

2D ScaleTree example − Sieve Scale 12
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2D ScaleTree example − Granules scale 12

Figure 5.7: Sieve up to scale 12 pixels, two granules removed and
stored in nodes of the scale tree (step 1).
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Figure 5.7 shows, on the left, the resulting sieved imageS12(I) where the two

white squares have been merged to the grey rectangle. The two new nodes created

can be seen on the right (red dots). At the base of that figure, the original image

is represented with the granules found in this step coloured in red.

2D ScaleTree example − Sieve Scale 16
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2D ScaleTree example − Granules Scale 16

Figure 5.8: Sieve up to 16 pixels, granuleg16 stored in the scale tree
(step 2).

Thex andy coordinates of the two new nodesN121 andN122 are positioned at

the centroid [14] of the respective granule. Thez coordinate is the level or height

of the tree (root node is level0, its children1, its grandchildren2 ... etc ). The

blue link to the middle of the figure represents the same undetermined nodes that

were given by the ellipse in the 1D example. The link keeps information about

the grey region the white squares have been merged to, so when that granule is

removed by the complete sieve a father link can be established between them.

The next important scale is 16 pixels, the area of the remaining white. In this

step, 2, another node is createdN161 to label the new granule. The sieved result

and the temporary scale tree is shown in figure 5.8.

In step 3, at scale 42, The black rectangle at the top of the image is found.

The sieve output (left of figure 5.9) shows how the granule is removed. Again, the

right side shows the new node in the scale tree (N421).

In the last step, 4, the output ofS90(I) is zero, so no more extrema can be
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2D ScaleTree example − Sieve Scale 42
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2D ScaleTree example − Granules Scale 42

Figure 5.9: (Step 3) Sieve up to scale 42.Left shows the sieve output,
S42(I). On the right, the temporary scale tree.

2D ScaleTree example − Sieve Scale 90
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2D ScaleTree example − Granules Scale 90

Figure 5.10: Step 4 of the 2D scale tree building algorithm.

found and the complete sieve finishes. The granule functiong90 contains the last

remaining granule. The right-hand of figure 5.9 shows the corresponding node

createdN901 . Note that this implies father links between nodeN901 and nodes

N121 ,N122 andN161 as these regions were merged to granuleg90 in steps 1 and 2.

In the final step, all remaining pixels are associated with the root node of the

scale tree. NodesN421 andN901 are linked toNroot following the equation 5.4.

Figure 5.11 shows the final tree with the original image at the bottom. Six nodes

are created to completely represent the image in figure 5.6.
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2D ScaleTree example − Final Tree

Figure 5.11: Final scale tree of input image in figure 5.6.

Again, thex andy coordinates of every node are the centroid of the granule.

The z coordinate represents the level or height in the scale tree. Note that node

N901 has three children. Generally, scale tree nodes can have any number of chil-

dren. However, the internal representation chosen to store the scale tree data was

a binary tree [60, 105], for details about the internal representation of scale trees

see appendix A.

Until now, scale trees have been built out of images or functions. However,

given that a scale tree is a complete representation of the original image, it is

possible to recreate the original image from the scale tree without losing any in-

formation.

The algorithm to reconstruct the original image from the scale tree can be ex-

plained in two slightly different ways. The first implies visiting all nodes, adding

the value of the granule function at that pointgsi, or simply, adding all granule

functiongs for every scale (equation 5.5).

I =
X
s

gs =
X
s

Ss�1(f)� Ss(f) (5.5)

The second method is a simple variation of the first. In the scale tree, instead of
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Figure 5.12: Traversing the tree in preorder and image obtained at the
left.

storing the difference between two sieve functions,gs, the actual grey scale pixel

value in the image is stored. Reconstructing the original imageI implies visiting

the tree from the root to the leavesreplacing the grey scale values of every node

visited.
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This method solves the ‘padding’ problem as replacing the values preserve the

DC component of the original image. As going from the root to the leaves (greater

to less scale) is the same as visiting the tree in preorder [60], we can easily get

back to the original image doing a preorder traversal of the scale tree and replacing

all grey scale values of all nodesNgi
into the original image.

The preorder traversal algorithm is defined as follows:

ALGORITHM 1 Preorder traversal algorithm:

1. Visit the root

2. Traverse the next-sibling sub-tree

3. Traverse the next-child sub-tree

The scale tree of the last example, figure 5.11, can be now used to reconstruct

the original imageI. As figure 5.12 shows, visiting the scale tree in preorder

involves visiting the root node firstNroot (which produces the image on the right).

The next step of the algorithm visits the next brother of the root node, which

doesn’t exist so the following child is traversed. In this case, nodeN421 and its

granule is replaced in the image. Following the algorithm, all nodes are visited

and the final image is obtained (bottom right panel of figure 5.12).

Until now, very simple examples have been presented to allow us to follow the

scale tree algorithm. Real images lead to very complicated trees with an order of

thousands of nodes, depending on the size and contents of the image. Appendix B

shows some experimental results of the performance of building scale trees using

different sets of images.

Figure 5.13 shows an example with a computer generated table. On the top

row, two different views of a table are shown. On the bottom row, the correspond-

ing scale trees of the originals are shown. With simple images like these, the trees

are also simple, with 110 and 75 nodes respectively.

This example also shows one useful feature of scale trees. As we have seen,

scale trees are an abstraction of the original image, so the tree structure itself

may be fairly insensitive to geometrical changes in the image, such as rotation,

translation, or some changes in the view point.
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Table example − Original view 1 Table example − Original view 2

Figure 5.13: Two different views of a computer generated table and its
respective scale trees.

The two scale trees of figure 5.13 look very similar, both having three main

branches corresponding to the two sheets of paper and the table. Of course, some

differences are present in the trees, like the nodes corresponding to the table legs.

This property can be beneficial for pattern or object recognition tasks as the tree

is relatively insensitive to geometric transformations of the original signal.

To conclude this section, the scale tree algorithm is tested on real images. Fig-

ure 5.14 shows the image of a popular doll. On the right, the scale tree with 1509

nodes. The nodes at the bottom of the tree correspond to noise in the background

and can be removed easily applying a normal sieve at scale of 4 or 5 pixels (de-

pending of the actual size of the image) before creating the scale tree. Columns

of the tree with many nodes correspond to shading effects on flat objects in the

original image.

As a final example, figure 5.15 will be used to illustrate some of the problems
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Doll example − Original 

Figure 5.14: The scale tree of a real image.

Tennis example − Original 

Figure 5.15: A scale tree of a tennis match.

of complicated images. As images increase in size or complexity, the number of

nodes in the scale trees become too large. Different techniques that reduce the

complexity of scale trees are used and studied in this thesis as it is obvious from

figure 5.15 that ‘real’ trees may be too complicated for some computationally

intensive operations. Operations for pruning, trimming, and collapsing branches

will be introduced later in this thesis (section 6.1.1).

The algorithm to build a scale tree is straight forward. As a brief description,

the complete sieve,CS(f), is applied to the original function until no new extrema

are found. All granules are stored as nodes of the scale tree and father links are

established between them as defined in equation 5.4.
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5.2 Scale tree properties

This section will discuss some interesting properties of the scale trees. Following

subsections will list some of the most important properties.

5.2.1 Scale tree advantages

First of all, notice that scale trees share all the properties and features of ‘normal’

trees [60]. Trees are a standard data structure, well known and studied in litera-

ture [32, 50, 105]. As well as having these characteristics, scale trees have some

properties of their own that make them very attractive to some image processing

operations. Some of these properties are listed below:

1. Any imageI has aunique corresponding scale treeT .

2. Scale trees are invertible. We can go from the original image to the final

tree and vice-versa without losing any content information.

3. The complete sieve operators, and thus scale trees, are based on connected

operators derived from mathematical morphology (section 2.3). As con-

nected operators interact with flat zones of the image (regions where the

image has constant intensity) and only merge these flat zones into other

ones, they can not introduce any extrema or any new contour on the image.

Even if nodes are removed from the scale tree, the remaining nodes retain

all their contour information.

4. Scale trees perform an initial segmentation of the image into flat zones [25,

27, 91]. Together with this segmentation, the relation between these flat

zones is found using the complete sieve algorithm.

5. The final tree is oriented towards the minimum scale of the image. Leaves of

the tree represent smaller granules than nodes closer to the root. So, in that

sense, the tree represents a set of regions at different scales of resolution.
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6. Scale trees are a scale structure with information about containment (stored

in father links). The tree establishes a relation of inclusion (or adjacency in

some cases) between all regions (flat zones) of the original image.

7. Scale trees are invariant to some geometric transformations of the input sig-

nal, such as rotations, translations or any distortions which preserve the

topology of the original image.

In the following sections, some examples of these properties will be analysed.

5.2.2 Seeding with extrema

As we have seen, scale trees are a tree representation of the complete sieve algo-

rithm, CS. Thus, they are oriented towards scale. They also imply a relation of

inclusion between nodes and so, as the tree is traversed from lower nodes to the

leaves, all visited nodes are included in their parents nodes.

It is important to note that the sieve algorithm (section 3.1) is seeded with

extrema. There may be flat zones in the original image that are smaller than some

of the scale tree’s leaves nodes but, because they are not extrema, they do not

appear as leaves of the tree. The next example will show this property.

Original image Sieve scale 3 Sieve scale 4

Figure 5.16: Complete sieve operator applied to the image of size4�
4 pixels on the left,CS(I). First sieve (up to 3 pixels) removes the
white region and merges it to the grey pixel (middle image). Last sieve,
S4(I), merges that grey granule with the black one (on the right).

Figure 5.16 shows the complete sieve sequence applied to the original image

on the left. There are three different connected sets in the image, corresponding to
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the black, grey and white regions. As a first approach, one should build the scale

tree starting with the grey pixel as one leaf of the tree, because it is the smallest

granule of the image. However, because the grey pixel is not a extremum, it is not

used to start the algorithm.
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Figure 5.17: Final scale tree of figure 5.16.

Using the complete sieve to build the scale trees implies seeding with extrema.

In this example, two extrema are found. The white pixels and the black around

them. The sieve algorithm merges them to the next closest (in amplitude value)

flat zone. Obviously, in this example, the smaller region is the white one, and it

merges to the grey granule. In the next step, the grey granule becomes extrema

and it can be merged then with the black region. The final scale tree looks like

figure 5.17. It has three different nodes, the leaf node corresponding to the three

white pixels.

Is it beneficial then to seed in extrema? As we have seen in the last example,

seeding in extrema can sometimes lead to strange partitions of the original image.

In fact, seeding with extrema can have two main advantages. First of all, it gives

a preliminary clue about where to start merging granules. Looking at figure 5.16

again, if no seed is given, one can not be sure if the grey region (smallest) should

be merged with the white pixels or the blacks. Seeding with extrema gives a good

starting point to merge granules.
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Another advantage of this kind of seeding is that the final scale tree is oriented

towards extrema as well as scale and extrema may be associated with objects. To

test this, it is appropriate to obtain evidence that clusters seeded from extrema are

associated with objects in a different variety of images. Some studies show that

real objects in real images tend to be extrema in respect with the background [11].
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Figure 5.18: A) a photograph with a region that has been segmented
manually (highlighted for the illustration).B) a histogram that repre-
sents the proportion of the manually selected object that is represented
by scale-tree branches. The abscissa, centred on zero, is a difference
of two ratios where positive values reflect objects that form branches.
The ordinate is the number of observations.

Volunteers were asked to draw around, what they chose to identify as, objects.

Figure 5.18A) shows an example. As extrema are localised as leaves of the tree,

if this selected region includes regional extrema it will be associated with whole

branches of the scale tree. One way to quantify this is to find the fraction of area

(scale) that is locally more extreme than the region outside,robj = max
sin

sin

sall
, where

sall is the scale (area) of the selected region identified as an object manually and

sin is the area included in a branch of the scale tree.

This relation shows the ratio of the maximum area which is represented as a

whole branch in the scale tree. If the region is entirely represented by complete

branches, then the fractionrobj would be1. The fraction is then compared with

a control segment obtained by randomly translating the region shape to another

position in the image and again finding the ratio,rrand.

Figure 5.18B) shows the distribution ofr = robj � rrand obtained from 60 ob-
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jects selected by 5 people from 6 images. The majority of differences are positive,

showing that the manually segmented objects are more often associated with ex-

trema than random segments. This supports the view that scale-trees, obtained

from sieves (section 3.1), are likely to be useful for representing objects in a wide

variety of images.

5.2.3 Invariant representation

It was shown in section 5.2.1, that scale trees are invariant to some geometrical

transformations of the original image. As the scale tree is built using extrema

and scale information, some simple rotations, translations or distortions which

preserve the topology are unlikely to produce any substantial change to the scale

tree.

drawa3.tif drawd3.tif drawf3.tif

Figure 5.19: A stylised grey scale image (left) and, to the right, two
distorted versions. Each image has size 383 by 165 pixels.

Such a scale tree represents a considerable abstraction of the original image.

This is illustrated in the figures 5.19 and 5.20. In each case distortion of the

original image causes thex andy co-ordinates of the image to change but the tree

topology is invariant.

−300 −200 −100 0 100 200 300 400
0

0.5

1

1.5

2

2.5

3 2

8

1

5

12

43

6

10

11

tree level

13

97

−300 −200 −100 0 100 200 300 400
0

0.5

1

1.5

2

2.5

3 3

8

1

6

12

54

2

9

11

tree level

13

107

−300 −200 −100 0 100 200 300 400
0

0.5

1

1.5

2

2.5

3 2

8

1

5

12

43

6

10

11

tree level

13

97

Figure 5.20: Scale trees for the images in Figure 5.19. They-axis
represents tree depth.
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In this case, the scale tree has been printed in 2D where now they coordinate is

the height or tree level andx is the distance along the previous axis�x+�y where

� and� have been chosen to avoid tree branches occluding. Figure 5.20 shows the

scale tree representation of the three images in figure 5.19. As the image topology

is preserved in all transformations, the scale trees remain the same in all three

cases and even “strong” transformations in the original image do not change the

tree structure. This property is the key for some simple recognition tasks invariant

to rotations, zooms or small movements in the camera angle.



Chapter 6

Applications

Previous chapters have introduced the notion of ascale tree, a new representation

of an image based on the sieve algorithm (chapter 3). In a first approximation,

a scale tree can be seen as an attempt to define anobject tree, a structure where

every node of the tree represents a meaningful object of the scene. This chapter

will discuss some applications of the scale trees together with some ideas and

algorithms to refine the scale tree of an image in order to ‘transform’ it into a real

object tree.

To do so, this chapter is divided into two different parts. The first section will

overview some ‘lossy’ algorithms to reduce the information of scale trees. The

next sections will introduce some different techniques to convert scale trees into

object trees.

6.1 Parsing scale trees

One of the most difficult goals in image processing and computer vision is to

define a scene by terms of meaningful objects. For humans, all the information of

an image can be decomposed in, maybe, four or five objects of interest. When we

recall a photograph, a simple descriptor such as ‘a photograph of my son on the

beach’ is often sufficient. Just two descriptors are used to identify the image,son

60
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andbeach. Reducing the quantity of information is the key.

These ideas of simplifying an image in terms of meaningful objects are cur-

rently being adopted by ‘new’ standards in image processing and computer vision,

such as MPEG-4 with its visual object planes or VOP’s. Furthermore, the upcom-

ing standard MPEG-7 tries to adopt the ‘photograph’ concept described before by

using two or three significant descriptors of the image for a later indexing [40–42].

The following section describes some algorithms used in this thesis to reduce

the complexity of scale trees.

6.1.1 Simpler trees

As described in section 5.1.4, scale trees of real images may be highly complicated

(see figure 5.15). The tree structure itself needs to be simplified. In order to be

able to reduce the complexity of scale trees, two ways of decreasing the number

of nodes have be considered: collapsing long unbranched chains and pruning low

contrast children [10].

Collapsing scale trees

The conventional approach [7] to simplify an image using the sieve algorithm has

been to describe the image viachannels which divide the granularity functions

into different bins. A channel is a sum of the granules within a fixed range of

scales. Figure 6.1 shows an example of a channel decomposition of an image.

Since particular features exhibit some area variation, due to shading of objects or

blur caused by imperfections in the imaging system, different objects may exist

in more than one channel. In the example, the windmill is decomposed into 2

different channels (16 and 17).

A solution to this problem is to track the object through scale and look for a

peak in the scale selection surface [66]. In terms of the scale tree representation,

this tracking means visiting every node going from the leaves to the root. The
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Figure 6.1: An example of a channel decomposition. The windmill on
the figure is represented in 2 different channels.

sequence of nodes from leafN to the root can be defined as,

S(N) = [N;F(N);F(F(N); : : : ;F(: : :F(N) : : : ); Nroot] (6.1)

Using, for instance, the nodeN21 of figure 6.2 the sequence associated with it

would be,

S(N21) = [N21 ; N91 ; N311 ] (6.2)

For every nodeN of the scale tree, a possible measure of the scale selection

surface can be defined as the relation between nodeN and its fatherF(N) of their

difference in amplitude value over their difference in scale.

�(N) =
jg(F(N))� g(N)j

s(F(N))� s(N)
(6.3)
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Figure 6.2: Scale selection sequence.

whereg(N) is the grey scale value of the connected set represented by nodeN

ands(N) is the scale, or area, of the node.

This scale selection measure can be applied to every sequence of the tree de-

fined earlier, so, for every branch of the scale tree, ascale selection sequence can

be computed as,

SSS(N) = [�(N);�(F(N));�(F(F(N))); : : : ;�(F(: : :F(N) : : : ))] (6.4)

note that, in this case, the scale selection function cannot be applied to the root as

its father node its not defined.

The peak in the functionSSS(N) is, for an object, the node at which its rate

of change of intensity with respect to scale is maximised. For example, a perfect

disc of areas would yield a sequence ofSSS(N) that is all zero except for one

value at its true scale.

Thecollapsing algorithm,�(T ), works by computing the maximum value of

the scale selection sequence of every branch of the scale tree and by removing all

nodes of that branch to the node holding the peak in the sequence. In terms of the

image, removing nodes in the scale tree structure implies merging connected sets.

The effect on the scale tree representation is that long, unbranched chains of nodes
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arecollapsed into a single node. As has been seen, long chains usually correspond

to shading or blurring effects, therefore, the collapsing algorithm simplifies the

image bysharpening the original.

Figure 6.3 shows the collapsing algorithm on the scale tree of the computer

generated table,To, shown in figure 5.13. The original image is slightly blurred

due to dithering during the rendering process and so, some chains of unbranched

nodes can be observed in the scale tree (like the sheet of paper on the very left).

The resulting collapsed tree,�(To), on the left hand side of figure 6.3, is a simpler

version of the original, where unbranched chains with more than one node have

been collapsed into only one (the maximum in the scale sequence). The right hand

side of figure 6.3 shows the image associated with the collapsed scale tree.

Collapsed image

Figure 6.3: An example of the collapsing algorithm�. On the left,
thecollapsed scale tree of figure 5.13 (note the simpler branches in the
tree). On the right hand side, the resulting image from the collapsed
tree.

In order to have a better understanding on how the algorithm works, figures 6.4

and 6.5 show another example. Figure 6.4 shows a Gaussian filtered version of

the original computer generated table. The filter smooths the image leaving the

overall structure of the original image intact. As a result, the scale tree of the

Gaussian filtered version,Tg, looks similar to the original except for the long

chains of nodes due to the smoothing effect of the filter.

Figure 6.5 shows the result of applying the same collapsing algorithm in the

previous filtered image. The resulting tree,�(Tg), is simplified again. The image
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Gaussian filtered

Figure 6.4: On the left, the original image after a gaussian smoothing.
On the right, the corresponding scale treeTg.

associated with the tree is sharpened and is similar to the collapsed version of the

original.

Gaussian collapsed

Figure 6.5: Collapsed tree of the gaussian version,�(Tg). On the right,
the corresponding image. The original image is restored, and the effect
of the smoothing filter is almost removed.

As a last example, a real image will be used. Figure 6.6 shows a small, simple

image of a pair of snooker balls extracted from the sequence in figure 6.16. Even a

simple image like this is associated with a complicated scale tree. The right hand

side of figure 6.6 shows the associated tree,Tb, of the balls. The three long chains

of the tree correspond to the two balls and the shadow of the white one.

Again, the collapsing operator,�, can be applied to the scale tree of the balls.

Figure 6.7 shows the scale selection sequence for all leaves of the scale tree of
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Figure 6.6: A 4-bit grey scale image extract from the snooker sequence
and its scale tree.

the snooker balls. Figure 6.8 shows the result of collapsing all unbranched chains,

�(Tb), into the maximum of the selection sequence,SSS, of all the leaves.

1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 6.7: Scale selection sequence,SSS, of all leaves of the treeTg.
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Figure 6.8: Scale tree after collapsing the unbranched chains. On the
right, the associated image.

As it has been seen, the collapsing operator,�, searches for a maximum in the

scale space of the image. As a result, all unbranched chains of the tree (note that
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nodes with children cannot be removed) arecollapsed into one node. In terms

of the image, all connected sets corresponding to those branches are merged into

the maximum of the scale selection sequence. Therefore, the resulting image is

simplified by sharpening the edges and flattening the original image.

Pruning scale trees

The second operator considered in this thesis is thepruning operator,�(T ). The

pruning operator simplifies the original scale tree by removing irrelevant children

of the tree. In any case,irrelevant nodes in the tree can be found by applying

different criteria. In this thesis, two different criteria have been studied, using

either grey scale value or scale information of the nodes.

The first criterion used is a slight variation of an standard quantisation. The

difference in grey scale value between every node,N , of the scale tree and its

father,F(N), is computed. If the absolute value of the difference is greater than

a certain threshold,", the child is removed (the connected set is merged with

the connected set associated with the father node). If less or equal, the node is

retained.

;(N) denotes the action of removing nodeN in the scale tree.g(N) represents

the grey scale value of the granule associated with nodeN . The pruning algorithm

with the grey scale amplitude criterion can be defined as follows,

�q(T; ") =

(
N; jg(F(N))� g(N)j > "

;(N); jg(F(N))� g(N)j � "

8 N 2 T (6.5)

An example of this algorithm is shown in figure 6.9. However, as the contrast

of the image is already high, the pruned scale tree looks very similar to its original.

Even so, 24 nodes out of 75 were removed applying a prune with" = 1 (note, for

example, the removed branch associated with the bottom right paper on the table).

A better example of the ‘pruning by amplitude’ algorithm is shown using the

image in figure 6.10. A ‘wood-grain’ texture is added to the table in order to

increase the low contrast nodes in the scale tree. A prune operator is applied to
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Pruned image

Figure 6.9: Pruned scale tree of the original table,�(To). On the right,
the corresponding image.

the new textured image. This time, as the nodes of the tree corresponding with the

texture map have a low contrast between them, they are removed by the operator

(see figure 6.11). The associated image, on the right, looks similar to the original.

The simplified pruned tree can be seen on the left hand side.

Textured image

Figure 6.10: A textured version of the computer generated table (left).
The corresponding scale tree on the right.

The prune operator with the grey amplitude difference criterion,�q(T ), makes

a ‘local’ quantisation of the original image. Note that the operator is different to

a standard quantisation, as every node is analysed using only its ‘local’ father of

the tree. So, for instance, low contrast edges may be preserved if they are not

associated with a father link in the scale tree.

The second version of the pruning algorithm is defined using scale information
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Textured pruned

Figure 6.11: Tree and image after pruning using a grey scale amplitude
criterion.

instead of grey value. In this case, the criterion is based in the relation between

the scale of a node,s(N), and the scale, or area, of its father,s(F(N)). Again, a

threshold is used to decide if the irrelevant node is ‘small’ enough to be removed.

Note that, in this case, the threshold� must be between[0; 1], as by definition in

a scale tree, the scale of a father node is always greater than any of its children.

Note that, an� = 0 will leave the scale tree intact.

The new criterion can be written as,

�s(T; �) =

(
N;

s(N)

s(F(N))
> �

;(N); s(N)

s(F(N))
� �

8 N 2 T (6.6)

Returning to the snooker balls example, a further simplification of the result-

ing collapsed tree can be made by using now a prune algorithm. As the tree of

figure 6.8 shows, the collapsing operator is not able to remove the nodes at the

bottom of the tree. These nodes are children of the root (theirlevel of the tree is

1) and therefore, their corresponding scale sequence is not long enough (length 1)

for the collapsing operator to be able to simplify them. The pruning algorithm,

however, removes them as the scale difference between their father (the root) is

large enough.

Figure 6.12 shows the resulting tree and associated image after the pruning

operator is applied to the collapse tree in figure 6.8. At the end of this second
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step, the simplification obtained has preserved the two objects of interest. In this

case, the snooker balls.
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Figure 6.12: Pruning version of the collapsed tree obtained in fig-
ure 6.8. Both criterion, grey scale difference and scale relation are
used in the example (" = 2, � = 0:01).

To end this section, a final example of combining collapsing and pruning is

given. A sequence of a moving hand is analysed by constructing the scale tree

of every frame and applying a collapsing following by a pruning. The middle

row in figure 6.13 shows the collapsed and pruned versions of the scale trees of

the hand images in the first row,�s(�q(Tt)). This example illustrates again that

the scale tree is, in practice, somewhat invariant to scale, rotation or minor shape

changes. Moreover, the two algorithms developed so far can successfully simplify

the images (bottom row of figure 6.13). In this case, for instance, the sequence

size is reduced from 120Kb to 12Kb when stored as raw binary data.

In this section, two different algorithms to reduce the complexity of scale trees

have been introduced, collapsing and pruning, (�,�). In the case of the pruning

operator, the use of thresholds require previous knowledge of the original image

and it would be desirable to replace them with a more principled step. Based on,

for instance, a probabilistic decision. As future work, other criteria for pruning

scale trees can be investigated.
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Figure 6.13: Top row, some frames from a 8 bit grey scale movie
sequence. The second row shows collapsed and pruned scale trees side
on. The third row shows the images corresponding to the reduced trees.

6.2 Towards object trees

Scale trees on their own can be a good approximation toobject trees. An object

tree is a structure where every node represents a meaningful object of the image.

This section will discuss the use of scale trees as an useful representation of an

image. Different applications will use the nodes of the scale tree as handles to

‘real’ objects of the scene. Obviously, there is still a long way to go before we are

able to ‘compare’ scale trees with object trees. The following sections will show

some examples of where scale trees fail to represent the topology of the image.

As a consequence of this, new algorithms to refine the scale tree in order to get

closer to an object tree will be analysed.

In any case, scale trees perform asegmentation of the original image. In order

to segment an image, all the pixels that define the image must be grouped together

forming differentregions of interest ormeaningful objects.
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6.2.1 The segmentation problem

In general, different segmentation algorithms (see chapter 2) have been applied to

solve this problem. To group two different pixels,(i; j), of an image in the same

cluster or region, a function,f , of some measure taken of the pixels,f(Mi;Mj),

must be computed. This measure,M , can be composed from a set of different

features of the pixel. For every pixel,i, of the image, a vector of measures, M
i
,

can be defined with information about hue, saturation, grey scale value,x andy

position in the image, motion vector, stereo disparity, texture, etc.

M = [h; s; v; x; y;m; st; t : : : ] (6.7)

An optimal solution to the problem would be to compute the functionf for all

the pixels of the image and all the possible grouping of those pixels in different

regions. If the size of the original image is relatively big, the computation cost

required to solve the problem makes the solution impractical.

Section 2.1 presented a general review of different suboptimal solutions ap-

pearing in literature. As defined in chapter 5, scale trees are asuboptimal approach

to successfully segment images and, as a suboptimal solution, some assumptions

have been made. As a first step, scale trees use flat zones or connected sets of the

original image to perform the segmentation. The use of connected sets implies

that regions of the same pixel intensity cannot be split into two different regions

of interest.

As shown in chapter 3, the sieve algorithm that is used to build the tree sim-

plifies the image by merging neighbouring extrema granules, or flat zones, of in-

creasing scale. Therefore, the sieve uses three features, intensity information and

the(x; y) coordinates of the pixels. As some examples have shown, the resulting

scale tree from the complete sieving process can successfully segment objects in

real images.

In the first instance, there can be some nodes in a scale tree that approximate
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the ‘idea’ of a node in an object tree. A node in the scale tree that completely

corresponds to a meaningful object in the scene can be called agrandmother node.

It will be desirable for an scale tree to have a number of grandmother nodes that

represent the different objects in the image. Obviously, that will not always be the

case as the scale selection of the sieve algorithm can fail detecting an object and

it can be represented in different branches or subtrees of the scale tree.

A) B) C)

Figure 6.14: Image editing using a grandmother node.A) The original
image.B) A screenshot of our tree based image editor showing a col-
lapsed and pruned version of the original scale tree of the left figure.
A node that approximates the grandmother node,Ng, and its associ-
ated segment of the right hand face object are highlighted.C) shows
the effect of changing the spatial position elements ofNg.

Figure 6.14 shows an example where a grandmother node can be found in the

scale tree. Figure 6.14A) shows an image of two faces. Figure 6.14B) shows the

graphical user interface of a tree based image editor used to find the grandmother

node representing one of the faces. First of all, the original scale tree is collapsed

and pruned to simplify the searching for a grandmother node. A node that approx-

imates theobject face is then manually found,Ng. The segment associated with

the nodeNg is highlighted in green on figure 6.14B). The located node,Ng, can

be used as a ‘handle’ pointing to the pixels representing the face. Figure 6.14C)

shows, for instance, the result of moving the spatial coordinates of all the handles

and so, the original face is moved.

This approach uses a heuristic decision to find the nodeNg. Automatic meth-
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ods to identify grandmother nodes in scale trees, and therefore objects in the orig-

inal image, would be more desirable.

6.2.2 Scale tree applications

As introduced in the previous example, scale trees can already be used in different

applications. This section will introduce two different applications where the scale

tree was applied. First of all, the tree structure will be used to interpret motion in

image sequences. The second application will use the scale tree to interpret the

depth position of different granules in the scene.

Motion estimation

One of the applications where scale trees were applied was motion estimation. A

similar technique applied by Salembier et al. in matching motion with max trees

was used [82, 87, 88]. The motion estimation is based on a new operator defined

over the scale tree. In this case, amotion operator is defined to recognise nodes

that are moving in an image sequence.

The motion operator is based on a chosenmotion model. There are many pos-

sibilities to choose for the motion model. For instance, in a 2D case, translations,

rotations, scale or affine models can be used [35, 39]. Here, it is assumed that

the translation followed by any pixel(x; y) going from imageft�1 to imageft is

(dx; dy). In that case, a measure of themean frame displaced difference can be

computed for every node,N , of the scale tree,Tt.

D
ft

ft�1
(N) =

P
(x;y)2N

jft�1(x� dx; y � dy)� ft(x; y)j

s(N)
(6.8)

This measure computes the normalised difference between the pixels of node

N in the imageft and the same pixels (taking into account the motion model)

in the previous image sequenceft�1. The mean displaced difference,D(N), of
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nodes following the chosen translation(dx; dy) will be lower than the stationary

nodes.

In practice, however, obtaining movement from image sequences using only

two frames is not very robust. To solve this problem, a recursive term is added

into the equation. The mean displaced difference,D, is measured between the

current image,ft, and the previous image,ft�1 and between the current image

and the previous processed image, denoted by�(ft�1).

Themotion criterion used to calculate the motion of all nodes of the tree can

be defined as follows,

C = aD
ft

ft�1
(N) + (1� a)Dft

�(ft�1)
(N) (6.9)

where the parametera (0 � a � 1) defines thememory of the motion criterion. If

a is near1 the criterion is memoryless but it is able to detect faster new changes

in the image sequence. On the other hand, ifa is set near0, the estimations are

based in the observation of a large number of frames and new changes are going

to be detected slowly.

The final motion operator,�(Tt; �), will work on the scale tree by removing

the nodes that do not undergo the specified displacement(dx; dy). A threshold,�,

can be used to determine if the node is following the given motion.

�(Tt; �) =

(
N; C(N) � �

;(N); C(N) > �

8 N 2 Tt (6.10)

Figure 6.15 shows a diagram of this motion defined in equation (6.10). In

summary, the motion connected operator follows these steps:

� The scale tree,Tt, associated with the input image,ft, is created.

� The motion criterion,C(N), is computed for every node in the scale tree.

� A threshold� is used to remove nodes that do not undergo the specific
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Figure 6.15: Diagram of the motion operator.

motion defined by the translation model(dx; dy). If the motion measured

in the previous step is greater than the threshold,�(N) > � the node is

removed.

� The associated image of the processed tree is computed,�(ft).

The figures 6.16 and 6.17 show the use of the motion operator on ‘real’ se-

quences. In this case, a translation of(dx; dy) = (0; 0) is chosen, so, the operator

will remove moving nodes of the scale tree and will preserve static ones. The left

column of figure 6.16 shows the original sequence taken from the Snooker World

Championship of 1997. The white ball is moving to the top of the pool and it is

about to hit the red ball on the right.

The second column shows the resulting output images after applying the mo-

tion operator,�(ft). The right column shows the difference between the input

sequence and the output,ft � �(ft). The motion criterion operating in the scale

trees of the originals completely removes the moving balls and the moving cue.
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Figure 6.16: Motion operator over a real snooker sequence.

Figure 6.17 shows the same operator, this time working on a tennis sequence.

At the right hand side column, the players are successfully segmented. However,

parts of the background are removed as well due to changes in the illumination.
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Figure 6.17: The motion operator using scale trees in a tennis se-
quence. Left column shows the original sequence, middle and right
columns show the output of the motion operator and the its difference
with the original.

The motion operator chosen in this section was based on the same operator

used with max trees [87, 87]. It would be good idea, then, to compare the results

of the operator working on the same sequences but using a max tree representation

instead of the scale tree. Figures 6.18 and 6.19 show the results. The scale tree

operator successfully segments the snooker balls and the tennis players out of the

original images.

This time, however, two different operators may be applied. As the max trees

are oriented towards the maxima of the images, only bright nodes can be detected
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A) Original sequencef . B) Motion Operator�(f).

C) Dual operator��(f). D) Residue��(f)� f + �(f).

Figure 6.18: The same motion operator working with max trees.

as moving nodes (dark nodes are ‘hidden’ in the bottom of the max tree struc-

ture) [87]. The dual operator,��(f), operating on the min tree must be defined in

order to detect the motion of dark objects.

In the case of scale trees, as extrema of both signs (maxima and minima) are

used to seed the algorithm, the definition of a dual operator is not necessary. How-

ever, using scale trees, moving nodes still have to create extrema in the original so

they will form leaves in the tree.

Stereo

The same operator applied to estimate motion can be used for analysing stereo

pairs. The left and right images of the stereo pair can be considered as the images

ft�1 and ft of a sequence. This time, the initial motion will only consists of

translations in thex coordinate,(dx; 0).

The stereo operator will compute the motion criterion for every node of the

tree for a given range of displacements,dmin � dx � dmax. The most likely

displacement followed by the nodeN , (dx that minimises the frame displaced
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A) Original sequencef . B) Motion Operator�(f).

C) Dual operator��(f). D) Residue��(f)� f + �(f).

Figure 6.19: Motion operator,�, using max trees.

difference,D(N)), will be used as the depth value of the associated region. This

technique has already been applied to max trees with success [48,76,82].

To finish this section, adding additional information to the scale tree will be

studied. Figure 6.20 shows a sequence where added depth information has been

used to resolve an occlusion problem. Until now, every node of the scale tree

stored information of the(x; y) coordinates of the pixels of the associated granule

and its grey scale value. Information about depth can be added to every node,

saying how far from the camera it is located.

The examples on figures 6.20 and 6.21 use this information to solve the oc-

clusion problem that occurs when one region overlaps another. For example, the

added disparity information indicates that nodes associated with the finger are in

front of the nodes associated with the doll. In this case, if the doll is moved over

the finger, the new depth information will make the doll appear behind the finger.

Figure 6.21 shows a similar example. This time, information of colour (hue

and saturation) is used as well to represent the image associated with the tree.

In both examples, the added information is just used as a later clue. A better
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Figure 6.20: Three screenshots of a graphical user interface showing
the use of additional information, in this case, disparity information to
resolve occlusions of objects in the scene.

Figure 6.21: Similar example of using depth information to resolve
occlusions of objects. Left side of the images show the doll being oc-
cluded behind the cup. Right side show the scale tree of the picture with
the selected granule highlighted in green. Adding colour information
(hue and saturation) to every node improves the results.

approach would be to use the additional ‘knowledge’ to readjust the actual scale

tree structure.

6.2.3 Refining scale trees

The last example shows that scale trees,Ts can be an useful representation of the

object tree,To. However, it will often be necessary to bring in other evidence and

modify theTs to make it a better candidate for theTo. Figure 6.21 successfully

overlapped the cup and the moving doll. However, it is impossible to find a better
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grandmother node that represents the doll and, for instance, the hat is left behind.

It is obvious then that further evidence is still needed in order to transform

the scale trees into meaningful object trees. It would be desirable, torefine the

scale tree structure, by moving, merging or deleting nodes to simulate a better

approximation ofTo or, at least, to get a greater number of grandmother nodes in

the tree.

In a first approximation, one could say that regions of the image with the same

motion vector are part of the same object. Using the same assumption, nodes of

the tree with the same stereo depth, or the same colour will represent the same

object. In that case, those nodes should be repositioned on the tree using the new

motion, colour or stereo information.

Using the graph notation again, if different information is added to the scale

tree, the ‘new’ tree can be represented as alabelled graph,G = (V;E; L), where:

� Vertices or nodes V = 1; 2; 3:::; n.

� Edges or links (i; j) 2 E � V � V .

� Labels L : V ! l, with l 2 fh; s; v; x; y;m; st; : : :g.

Now, each node in the scale tree is represented with a set oflabels or informa-

tion attached to it. These labels should be used to rearrange the original topology

of the scale tree in order to get the representation closer to that of an object tree.

Consider the following example.

Figure 6.22 shows the image of a red teapot against a beige background. As

the scale tree is, again, too complicated, a collapsed and pruned version of the

original will be used (figure 6.23). As figure 6.24 shows, the hole in the handle

is assigned as part of the teapot tree. The problem is to reassign that node to the

background so a grandmother node representing only the teapot can be found.

In this case, only one static image is used so information about motion or

stereo depth cannot be obtained. However, colour information is available so

saturation, for instance, can be used to distinguish the teapot from the background
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Original teapot

Figure 6.22: Original teapot used to ‘refine’ the scale tree.

Simplified teapot

Figure 6.23: Simplified teapot and its associated scale tree.

Figure 6.24: In green, the associated granule of the ‘closer’ grand-
mother node representing the teapot. The hole in the handle is included
in the same subtree.

(beige contains enough red to make hue an unsatisfactory feature). Figure 6.25A)

shows the nodes of the tree with saturation between0 � s � 0:2. These nodes
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can be moved in the tree so there is always a father link relation connecting them.

This is done in two steps. Firstly, new links (uncle links) are added to the

tree connecting the selected nodes. The algorithm that creates the new links is

simple, starting from a selected node, it visits the tree going down to the root until

another selected node is found and an uncle link is established. The second step

involves removing the old scale tree link and preserving the new colour based

relation. Figures 6.25B) and 6.25C) show these two steps. Note that in the final

tree, the node corresponding to the hole is assigned to the background. The final

tree structure now contains a grandmother node that represents only the teapot

(figure 6.26).

A) B) C)

Figure 6.25: A) shows the nodes of the tree (in black) with saturation
between0 � s � 0:2.B) new uncle links connecting last nodes added
(in black).C) The ‘old’ scale links are replaced with the links in the last
step.

In the future, this approach can be expanded. Instead of using just a new link,

many ‘uncle’ links can be obtained from the labels of every node. From all links

connecting one node, an improved algorithm should statisticallydecide which is

the best candidate to obtain an object representation.

6.2.4 Object trees

Once the scale-tree is as close to an object tree as possible, the tree structure can

be used in many different tasks. The object representation cannot only be used for

filtering, but as a set of handles that allocate the different visual object planes in
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Figure 6.26: The new grandmother node now only represents the
teapot.

the MPEG-4 standard.

It can also be used for object or shape recognition. This application can be

done at two levels; (1) The tree structure itself codes the object topology that is,

to a large extent, independent of geometrical scaling, rotations and distortions and

(2) a more detailed matching can be performed by also using attributes of the

nodes, such as shape or topology of the associated granule.

This chapter has introduced two different applications where scale trees were

used with varying amount of success. It has introduced some algorithms to reduce

the complexity of scale trees and new techniques have been introduced to modify

the topology of scale trees in order to get a closer representation of an ideal object

tree.

These new algorithms are in the first stage of development. There is a clearly

opportunity to enhance this work using new and improved algorithms and tech-

niques.



Chapter 7

Conclusion

In this thesis, a new scale tree representation of an image has been presented.

Scale trees are derived from a scale-space, mathematical morphology based al-

gorithm called a sieve. The scale tree structure represents the amplitude of the

original image in a hierarchical structure in which every node of the tree is asso-

ciated with features of specific scale.

As a brief summary of the contents of this thesis, chapter 2 gave a general

view of different algorithms used in image processing and, more specifically, some

techniques used in literature to solve different segmentation problems.

A relatively new scale-space segmentation algorithm, thesieve, was used to

build scale trees in chapter 3. Chapter 4 presented some other image processing

hierarchical structures from the literature. The scale tree structures are described

in chapter 5.

Finally, chapter 6 described some applications where scale trees are already

being used. Methods to reduce the complexity of the trees, such as pruning or

collapsing were also shown.

86
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7.1 Discussion

It has been demonstrated that scale trees are a useful representation of images.

They are insensitive to geometrical transformations of the original image such as

rotations, zooms, or any transformation that preserves the image topology. As

scale trees also simplify the image by preserving all contour information, they are

an interesting structure to be applied in different image processing tasks.

Scale trees have already been used in some applications such as segmentation

or motion estimation. There is also a relatively fast algorithm to construct scale

trees (see appendix B).

Scale trees are a reasonable approximation to objects trees. It has been shown

thatgrandmother nodes (nodes that represents a meaningful object of the scene)

can be found inside the scale tree structure. These nodes can be used, for instance,

in object recognition. In this framework, the recognition could be done using the

tree topology itself or the attributes associated with the grandmother node.

Grandmother nodes are also extremely close to what MPEG-4 defines Visual

Object Planes. Segmentation techniques, such as this one, could be used to di-

vide the original image sequence into significant ‘planes’ that will be coded and

compressed separately.

7.2 Future work

Obviously, the scale tree is not the ideal representation for an image. There are

still problems to resolve in order to get a true object representation of the im-

age. Some examples have been already shown where the scale tree structure does

not represent meaningful objects of the scene (such as the teapot example in sec-

tion 6.2.3).

In any case, methods to modify and restructure the original tree topology using

extra information of the nodes have been studied. Colour information has been

used to adapt the tree structure to a closer object representation. However, using
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different attributes associated with the nodes such as motion or stereo information

together with robust methods to decide between them would be more desirable.

Finding the grandmother node associated with the object is not a trivial prob-

lem. Even when an exact representation of an object in the image can be associ-

ated with one node of the scale tree (a grandmother node), the search algorithm is

a complicated problem.

Heuristic methods have been used in this thesis, however, automatic search

methods to find grandmother nodes will be required in the future. Probabilistic

descriptions could be used to analyse the most likely position of such nodes in the

tree.

In summary, scale trees are a fast and a suitable starting point for a more

refined, object based, segmentation of an image. Scale trees then are, a first ap-

proximation to real object trees. However, different methods to refine scale trees

in order to get a closer object representation are still required.



Appendix A

Matlab scale trees

The algorithm to build scale trees was coded using MATLAB1 version5:2. The

lack of pointers in MATLABR
 makes the use of a standard tree representation

where a set of pointers reference other nodes in the tree (children nodes) im-

possible. A binary tree was chosen as the data structure to store the scale tree

information.

Scale trees are not necessarily binary trees. The example of figure 5.6 in

page 46 shows, for instance, a nodeNi of the scale tree representation having

more than two children nodes. Any tree can be represented as a binary tree if the

father links of the tree are transformed intochild andfollowing brother links as

figure A.1 illustrates.

A standard MATLABR
 structure class was used. A set of vector arrays stored

the hierarchical information of the tree (stored as fields of the structure class).

First of all, every node in the tree is numbered (1 : : :N ). This label is then used to

store the child, the following brother, and the father information of every node in

the tree.

The hierarchical information of the tree can be stored then in three vector

arrays;father[i] denotes the father node of nodei, child[i] its first children and

nextbrother[i] the following sibling in the structure.

1 c
 COPYRIGHT by The MathWorks, Inc.
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N2 N3 N4

N1

child link

nextbrother
link

nextbrother
link

N2 N3 N4

N1

Figure A.1: A ‘normal’ tree represented as a binary tree. Right hand
figure shows the binary representation of the left tree. Every node can
only have two links, representing a child or a sibling in the tree.

Using, for example, the tree in figure A.1, the three arrays coding the scale

tree can be seen in table A.1. If a link of the tree does not exist; is used.

father[1]=; child[1]=2 nextbrother[1]=;
father[2]=1 child[2]=; nextbrother[2]=3
father[3]=1 child[3]=; nextbrother[3]=4
father[4]=1 child[4]=; nextbrother[4]=;

Table A.1: father, child andnextbrother arrays storing the tree in fig-
ure A.1.

In order to improve the speed when parsing the tree, newpointers (in this case,

arrays) can be added. Aroot field with information of the root node in the tree.

Thefirstbrother andNchildren arrays contain information of the first sibling of a

group of brothers and the number of children of the node.

The same technique (using array fields) is applied to store the information of

each node. Fields such asvalue, number, level store the grey scale value of the

granule, the number of pixels or the level in the tree.

The pixels of the associated granule are also stored. In the scale tree represen-

tation, each granule is stored as a node of the tree. As a scale processor is used,

the granule associated with afather node includes the smaller granules of all its

children nodes. Storing all granule pixels for every node of the tree would be very

inefficient. To solve this, each node stores only the pixels that make it different

from its children.
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Using the examples in figure 5.16 and 5.17. If every granule is stored, it is then

necessary to keep the three white pixels associated with the leaf node. The four

grey pixels granule formed when the white connected set is merged to the grey

pixel and finally, the whole image (16 pixels) is stored as the associated granule

for the root node.

In that case, we need to store3 + 4 + 16 = 23 pixels for a4 � 4 pixels

image. However, only the different pixels that form the new granule need to be

stored. In this example, only the black pixels are associated with the root node,

the grey with the middle one and the three white pixels with the leaf node. The

granule associated with a node as then represented in the whole branch, or subtree,

formed from that node.

To store the pixel positions, two arrays are used,nodelist keeps a sequential

list with the (x; y) coordinates of every pixel of all granules. The fieldplist[i]

points to the start position innodelist of the pixel list corresponding to nodei. The

arraypixels keeps the actual number of pixels stored in that node (the difference

between its associated granule and all its children). The algorithm to obtain all the

pixels of the granule associated with nodek can be done as follows:

ALGORITHM 2 Granule extraction

clear granule-list

for each node i in the subtree with k as root do:

list = nodelistffrom plist[i] to plist[i]+pixels[i]g

Add list to granule-list

end for

Sometimes, however, it is desirable to know which node of the scale tree a

certain pixel is represented, to do so, another field was added. A matrix of equal

size to the original image is enough to store the node any pixel belongs to. In this

case, using thisnode field, pixel(x; y) will be associated with nodenode[x,y].

All these arrays were contained in a MATLABR
 structure class variable. As

a brief summary, table A.2 shows a list wit all the fields in the structure that

represents the scale tree. The type size, together with a description of each field is
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given.

Field Size Description
father 1�N Father node
child 1�N First children
nextbrother 1�N Next sibling
firstbrother 1�N First brother of all siblings
Nchildren 1�N Number of children
Nnodes 1�N Order of the tree
root 1� 1 Root node of the tree
nodelist 1� (P �Q) Pixels list
plist 1�N Pointer to the start of the granule innodelist
node P �Q Node label for every pixel in the image
value 1�N Grey scale value of the corresponding granule
number 1�N Number of pixels of the granule
pixels 1�N Number of stored pixels in that node
level 1�N Level in the scale tree

Table A.2: Summary of the different fields in the MATLABtree struc-
ture using an image ofP � Q pixels withN nodes.



Appendix B

Sieve Results

This appendix will introduce some experimental results using the tree algorithm

presented in this thesis. The order of scale trees and the complexity of the algo-

rithm will be analysed for a different set of real images.

Figure B.1 shows the results of studying the scale tree complexity of20 dif-

ferent real images. The images were sub-sampled from their original size of

768 � 512 pixels toP � Q = 700 � 500, 600 � 500, 500 � 500, 450 � 450,

390 � 390, 315 � 315, 225 � 225 and100 � 100 pixels. The sub-sampling was

achieved by taking a block of the desired size at a random position of the original

image. The algorithm was executed as a MATLABR
 .mex file on a PII 300Mhz.

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
5

0

1

2

3

4

5

6

7

8

9

10

Image size (PxQ pixels)

C
P

U
 ti

m
e 

(s
ec

on
ds

)

Order of scale trees

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
5

0

5

10

15
x 10

4

Image size (PxQ pixels)

N
um

be
r 

of
 n

od
es

Complexity of scale trees

Figure B.1: Complexity of the scale tree algorithm.
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The left hand side of figure B.1 shows the CPU time spent computing the scale

tree of the images. They coordinate shows the CPU time in seconds and thex

coordinate shows the total number of pixelsN = P � Q of the image. The right

hand side shows the order (number of nodes) of the resulting scale trees. All 9

measures (9 image sizes) corresponding to the same image are joined together in

the same line. Clearly, the CPU time increases with the number of pixels,N , of

the image as the number of nodes of the resulting scale tree.

Figure B.2 shows the results (CPU time and number of functions calls) for

each function in the scale tree implementation. The different functions of the

implementation can be grouped together in three different processes. General ini-

tialisation and memory allocation, computing the sieve algorithm and the building

of the scale tree structure.

Figure B.2: CPU time and number of calls for some functions of the
scale tree implementation. A768� 512 pixels image was used. In this
case, the algorithm was executed on a O2 SGI workstation.

Figure B.3 shows the CPU time spent for each of the previous processes of

the scale tree algorithm. It can be observed that for small images (small number
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of nodes in the scale tree) the order complexity of building the tree is almost the

same as the computing the sieve algorithm. As the image size increases the time

spent building the scale tree structure is greater than the time spent searching and

merging the extrema of the image (sieve).
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Figure B.3: CPU time of each process of the scale tree algorithm.
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