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Abstract
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Convolutional neural networks (CNN) are powerful tools for learning representations from im-

ages. They are being used in a large range of applications, being the state-of-the art in many

computer vision tasks. In this work, we study the brain tumor segmentation problem using

CNNs and the publicly available BraTS dataset. One of the key factors for this task is which

training scheme is used since it should deal with memory constraints and should alleviate the

high-imbalance nature between healthy and lesion tissue in the brain.

Thus, the purpose of this project is to propose a comparison between several training schemes

and extensively analyze and evaluate them in terms of the dice score. We evaluate dense-

training against patch-sampling, and particularly, fixed-rule against adaptive sampling scheme.

Furthermore, variants and modifications of the existing training schemes have been proposed in

order to enhance their performance. Finally, several loss functions for each training scheme have

been analyzed.
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Chapter 1

Introduction

Glioma is the most common brain tumor family, which rises from glial cells and invades the

enclosing tissues [1]. Patients with the hardest and more aggressive variant of this tumor (high-

grade gliomas) have a life expectancy of two years or less under strict treatment. Neuroimaging

protocols are necessary throughout all the course of the disease in order to evaluate the illness’

progression and measure the success of a certain treatment [2].

1.1 Statement of Purpose

Manual tumor segmentation is a struggling task and needs to be done by an experienced special-

ist, while imaging processing algorithms can automatically analyze many brain tumor scans in

far less time. Automatic segmentation has as a huge potential to improve diagnosis, treatment

election and tracking [2]. However, computerized brain tumor segmentation is a challenging task

since tumor structures are different in each patient in terms of size, location and shape.

Multimodal magnetic resonance imaging (MRI) is the principal method of screening and diagno-

sis for brain tumor. The lesion is identified through the relative intensity changes in comparison

to the baseline tones of the healthy tissue. In this work, BraTS’17 dataset [3] has been used: it

includes data acquired for four different MRI modalities and the ground truth labels which have

been manually checked by certified neuroradiologists. The multimodal scans considered in the

project are: T1, T1c, T2 and FLAIR. In figure 1.5, it can be appreciated the four different brain

scans for the same subject.

The purpose of this work is to explore state-of-the-art deep learning techniques for image seg-

ments from 3D images and provide a system that achieves good results on automatic brain tumor

segmentation. The segmentation task consists on classifying at the smallest addressable scale

(voxel unit) the MRI image as background or one of the three tumor’s subregions: necrotic core

(class 1), edema (class 2) and enhancing tumor (class 3). See figure 1.6.

Convolutional neural networks (CNN) have been chosen because of their good performance

when working with images and with three-dimensional inputs. The CNN architecture makes the

1
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Figure 1.1:
MRI T1

Figure 1.2:
MRI T1c

Figure 1.3:
MRI T2

Figure 1.4:
MRI FLAIR

Figure 1.5: Multimodal MRI images from subject Brats17 − CBICA−ALX

Figure 1.6: Glioma sub-region. Shown are image patches with the tumor sub-regions that
are annotated in the different modalities (top left) and the final labels for the whole dataset
(right). The image patches show from left to right: the whole tumor (yellow) visible in T2-
FLAIR (Fig.A), the tumor core (red) visible in T2 (Fig.B), the enhancing tumor structures
(light blue) visible in T1Gd, surrounding the necrotic components of the core (green) (Fig. C).
The segmentations are combined to generate the final labels of the tumor sub-regions (Fig.D):
edema (yellow), non-enhancing solid core (red) and enhancing tumor formed by the necrotic

core (green) and enhancing core (light blue). Figure and annotation taken from [4]

forward function more efficient and vastly diminishes the number of parameters in comparison

to regular neural networks [5].

The use of convolutional neural networks in medical images, and particularly in brain tumor

segmentation, arises many problems. Firstly, the localization of gliomas and glioblastamas is

difficult as they do not have easy and clearly defined borders. Another issue is the high imbalance

between background voxels and different tumor regions, as tumor represents a far smaller area

of MRI volumes. Particularly, in our dataset, the healthy tissue comprises 98.2% of the total

voxels and the remaining 1.8% is distributed among the pathology subregions: 0.3 % belongs to

necrosis and non-enhancing tumor, 1.1% edema and 0.4 % to enhancing-tumor [6]. The natural

true distribution overwhelmes the network such that a naive training scheme would provide

a model predicting erroneously all tissue as healthy. Hence, the network must be tricked in

order to achieve good classification results. In this work, we provide several solutions to these

challenging problems. Two methods are proposed: (1) Modification of the loss function to

emphasize minoritary classes and (2) the smartly selection of input data to modify the training

voxel distribution. This last procedure can be done by dividing the original image in smaller

segments and it is called patch sampling.
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1.2 Outline of the work

An introduction on automatic brain tumor segmentation has been done in this section and a

brief analysis on the state-of-the-art will be presented in Chapter 2.

Chapter 3 accounts for the methodology and theoretical background necessary to correctly ap-

preciate the experimental section. The different procedures and experiments are developed and

discussed in Chapter 4. The budget of the project will be detailed in Chapter 5. The conclusions

drawn from the Chapter 4 will be discussed in Chapter 6, as well as possible ideas for future

work. And lastly, it will be found the Appendix where additional information on the reported

results will be attached.

1.3 Technical Remarks

The project was not started from scratch, the core code used was presented in [7]. The project

has been developed in Python using Keras [8] framework. Keras is a high-level neural network

API capable of running on top of Tensorflow.

Also it has to be mentioned that the software FSL-Eyes was used in order to visualize the MRI

original images and the predictions done. And finally, in addition to the software a GPU was

required due to the high demanding computational effort to train convolutional neural networks.



Chapter 2

State of the art

The rise of deep learning for computer vision and, particularly, for semantic segmentation tasks

makes attractive its use for medical image segmentation. Convolutional Neural Networks (CNNs)

have been applied with promising results on different medical imaging problems [2].

Convolutional Neural Networks are very similar to ordinary Neural Networks: they are made up

of neurons that have learnable weights and biases. Each neuron receives some inputs, performs

a dot product and follows it with a non-linearity (sigmoid, ReLu...). The whole network still

expresses a single differentiable score function: from the raw image pixels on one end to class

scores at the other. And they still have a loss function on the last layer. However, CNN

architectures make the assumption that the inputs are images, which allows to encode certain

properties into the architecture (local connectivity, parameter sharing and invariance to local

changes through pooling operations) [9].

In the past years, medical image segmentation and specially brain tumor segmentation, has

moved towards deep learning solutions using CNNs. Initially, two-parallel-path architectures

were proposed (Pereira et al. [10], Havaei et al. [6]; Kamnitsas et al.[11]) providing good

performance. These approaches exploited both local features as well as more global contextual

features simultaneously. Other schemes, as the encoder-decoder have also been succesful [12].

U-net 3D [13] extends the previous u-net architecture from Ronneberger et al. [14] by replacing

all 2D operations with their 3D counterparts. Highway net ([15]) allows unimpeded information

flow across several layers on information highways and uses gating units which learn to regulate

the flow of information through a network.

Recently, other schemes without pooling have shown good performance, improving in some cases

the detection and tumor delineation. HighResNet [16] is a high-resolution and compact network

architecture for the segmentation of fine structures in volumetric images and introduces new

elements as dilated convolutions and residual connections. Finally, at the last BraTS challenge

[17] an ensemble of different architectures has been proposed in [18], searching to improve the

result of each one separately.

But not just the architecture election is the key element. Other problems, as the available

memory, gradient flux or normalitzation are active topics in this research field. This encourages

4
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the emergence of different sampling schemes (dense-training, patchwise training, etc..) and cost

functions.

Performance of CNN is significantly influenced by the strategy of extracting training samples. A

common approach is selecting image patches equally sampled from each class. Another approach

is to equally sample background and foreground segments. On the other hand, by employing

dense-training or by sampling patches uniformly, it might suffer from severe class imbalance.

Hence, multiple cost functions have been proposed to alleviate this issue.

The loss function proposed is cross-entropy. However, when the training data is severely unbal-

anced, this formulation can lead to a strongly biased estimation towards the majority class. A

weighted cross-entropy (Brosch et al. [19]) is proposed to tackle this problem, where the weights

are inversely propotional to the class frequencies. Also, a differentiable version of the Dice Score

Coefficient (DSC), proposed by Milletari et al. [20], is used as loss function as it measures the

overlap of the region of interest (ROI). Recently, two novel loss functions have been presented:

the Generalised DSC [21] and the Wasserstein Dice .

This work focuses on the segmentation of brain tumors following the guidelines indicated by

BraTS Challenge, which began in 2012. The methods submitted in these last years can be found

in [17], [22]. The MICCAI (The Medical Image Computing and Computer Assisted Intervention

Society) BraTS Challenge has an updated leaderboard1 of the models with the best performances

according to following metrics: Dice score, sensitivity, specificity and Hausdorff distance. UCL-

TIG is in the first position on the ranking with Ensembles of Multiple Models and Architectures

for Robust Brain Tumour Segmentation [18]. It achieves a dice whole tumor of 0.90499, a dice

core tumor of 0.83779 and and a dice enhancing tumor of 0.78585.

1https://www.cbica.upenn.edu/BraTS17/lboardValidation.html



Chapter 3

Methodology

3.1 System Architecture

3.1.1 Architecture

Two different architectures have been studied in order to discern which one combined with other

configurations has the best behavior: The Masked V-Net [12] and the Deep Medic [11].

3.1.1.1 Masked V-NET

The masked V-Net [12] is a modified version of the V-Net architecture [20], which consists of a

downsampling or encoder path in charge of compacting the signal and an upsampling or decoder

path that combines coarse features from the encoder output with fine features from hidden, in-

termediate levels of the encoder to provide a segmented image of the same resolution as the input

image. The modifications include the use of small kernels of size 33, batch normalization after the

convolution and then ReLU as non-linearity. It was also introduced a modified expression for the

residual connections that aim to preserve the input signal through all the network. Max-pooling,

repeated up-sampling for spatial correspondence and 1x1x1 convolution are variants introduced

to ensure dimensions matched in the addition layer. Note that the ROI mask introduced before

the final predictions was only used for the dense-training experiments. See figure 3.1.

3.1.1.2 Deep Medic Network

The Deep Medic architecture proposed in [11] consists in capturing contextual and spacial in-

formation through two parallel paths with different feature resolution that saves computational

costs and avoids pooling which could affect on the accuracy of our system. The 11-layer architec-

ture proposed by Deep Medic [11] is built as shown in figure 3.2. A high resolution path is able

to capture the most complex details within a small local neighbourhood, while a parallel low

resolution path captures image-level features such as localization or tumor size. The difference in

6
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Figure 3.1: V-Net
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resolution is achieved with different receptive fields: both paths are built upon a concatenation

of convolutional layers but the later has a pooling module at the very beginning.

The kernels on the convolutional layers of both high and low resolution paths are of size 33. The

resulting matrices of the convolutional layers are first combined into two full classification layers

and then finally classified.

3.1.2 Loss functions

Different loss functions have been considered in order to study which one fits better to our

segmentation problem. The three cost functions that will be studied are: cross-entropy, Dice

Similarity Coefficient (DSC) and Generalised DSC.

3.1.2.1 Cross-entropy

Cross-entropy loss [23] for a multi-class setting can be expressed as follows

L(ŷ, y) = −
N∑
n=1

ynlog(ŷn) (3.1)

Note that N stands for the number of classes and y and ŷ are N-dimensional vectors, where

yn are the true labels for the class n and ŷn are the softmax outputs of the network for those

true labels. The mean cross-entropy over the whole batch is used as the cost function at each

iteration and is computed as follows:

L̄(ŷ, y) = − 1

|Y |
∑
y

∑
n

ynlog(ŷn) (3.2)

where Y refers to training samples from the batch.

3.1.2.2 Dice Similarity Coefficient

Dice Score for multi-class segmentation [24] is a measure of similarity between two binary sets:

the ground truth G and the prediction P. Each set consists of a region of interest (ROI) and

background and the dice score, Dε[0, 1], is the ratio between the intersection of the ground-truth

and prediction ROIs and the sum of the areas of both ROIs. The following expression explains

the idea behind this loss function.

D =
2 |P ∩G|
|G|+ |P |

(3.3)

Then, a continuous and differential approximation can be done by using softmax predictions in-

stead of the predictions themselves. The result of averaging and adapting the previous expression
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Figure 3.2: Two-path Deep Medic architecture
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to our multi-class problem is as follows

L̄(ŷ, y) =
1

|N |
∑
nεN

2
∑
i y
i
nŷ

i
n∑

i(y
i
n + ŷin)

(3.4)

3.1.2.3 Generalised Dice Score

The generalised Dice Score is proposed as loss function in [21]. Its a modified version of the DSC

and is given by:

L̄(ŷ, y) = 1− 2

∑N
n=1 αn

∑
i y
i
nŷ

i
n∑N

n=1 αn
∑
i(y

i
n + ŷin)

(3.5)

where αn is a weight to balance the impact in the loss function of class n. Weighting by the

inverse of the class’ volume corrects the contribution of each label and reduces the correlation

between the region size and the Dice score. It is calculated as the inverse of the squared sum of

all the voxels of class n:

αn =
1

(
∑
i y
i
n)2

3.1.2.4 Weighted loss

To further eliminate the negative impact of the class imbalance, a weighted loss Lw is proposed

as follows. Where Ln is the specific loss for a certain class nεN and ‖αn‖ is the the probability

of appearance of that certain class. Therefore, by inverting this probability, we manage to give

more weight to classes that appear much less frequently than others.

Lw =
∑
nεN

1

αn
Ln (3.6)

The class frequency αn is calculated as the sum of all the voxels of class n divided by the sum

of all the voxels of the N classes:

αn =

∑
i y
i
n∑N

n=1

∑
i y
i
n

(3.7)

3.1.3 Metrics

The metrics used to evaluate the performance of each of the experiments carried on are detailed

below.

3.1.3.1 Dice Score

The evaluation of the method using the dice score was calculated according to 3.4 for different

ROI definitions: tumor core (classes 1 and 3), whole tumor (classes 1,2,3) and enhancing tumor

(class 3). This evaluation framework is imposed by the Multimodal Brain Tumor Segmentation

Challenge [3].
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3.1.3.2 Confusion matrix

The confusion matrix is a table which allows to evaluate if our segmentation system is mislabelling

one class as another. Each row of the table represents the true class and each column the

predicted class. This table is useful to give an idea of which classes are well classified and which

are wrongly confused with the others. It gives us insights of how a model can be improved. The

confusion matrices in this document will present the following structure:

G \ P 0 1 2 3
0
1
2
3

Table 3.1: Confusion Matrix Example

3.2 Training scheme

3.2.1 Dense-training

Before analyzing how we explore the patch wise training scheme, which is the main contribution

of our work, we study dense-training. We denominate dense-training the strategy that uses the

whole MRI image and the four modalities as input into the our Convolutional Neural Network.

The performance of this training scheme will be analyzed for two different loss functions.

3.2.2 Patch sampling

Patch-sampling training scheme consists of feeding the network with small three-dimensional

patches of each subject. Each of these slices is associated with 4 different modalities: T1,

T2, T1C and FLAIR and its size is set to 643. The sampling scheme can be critique for any

medical application and an exhaustive analysis of different methods is performed throughout

the manuscript with further numerical comparison. In the case of brain tumor segmentation,

the high imbalance between background and tumor regions and subregions may require flexible

method that balances the input training distribution of the different classes.

3.2.2.1 Baseline: Foreground-background

The training scheme used in [11] tries to solve the imbalance problem by a sampling scheme that

samples the central-voxel of each patch with equiprobability between foreground (tumor regions)

and background. Hence, each batch is build by the same number of patches whose central voxel

is foreground and background. Note that no distinction is made between tumor subregions. This

is to maintain the relative distribution of the foreground classes and at the same time account

for the imbalance problem between healthy tissue and tumor tissue.
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Figure 3.3 from [11] shows how the relative distribution of the foreground classes is closely

preserved and the imbalance in comparison to the healthy tissue is automatically alleviated.

Figure 3.3: Example of real vs captured distribution in the training data of BRATS 2015

This foreground-background sampling scheme has been selected to be our baseline scheme on

patch sampling.

3.2.2.2 Per-Class sampling scheme

This training scheme proposes sampling patches according to a rule that ensures equiprobability

between all classes in the central-voxel at each epoch. The idea is to account for the imbalance

between background and each one of the tumor subregions. It alters the balance between each

class and hence, it captures a rather different distribution from the original.

3.2.2.3 Curriculum Adaptive Sampling

Curriculum Adaptive Sampling (CASED) [25] scheme first’s objective is to tackle the problem

of class imbalance. The basic ideas of this system are:

1. Learn features related to tumor: start introducing only patches with tumor into the net-

work.

2. As the network is training, start adding background patches to learn healthy tissue prop-

erties.

3. In the end, uniform sampling is reached to mimic real data distribution.

CASED scheme can be divided in two parts: Curriculum and Adaptive Sampling.

Curriculum is the part that tackles the class imbalance problem controlling the input patches to

the network by deciding between tumor-sampling and uniform-sampling generators. If training

was performed using only tumor pathces, it could result in overfitting because it would not learn

how to represent the main part of the MRI image, the background class. Then, the curriculum

part is responsible of decreasing (as function of the training examples seen) the number of patches

with tumor until it reaches the real distribution. The threshold px is given by Equation 3.8. For

values greater than px tumor patches are selected, otherwise it is picked any random patch.

px+1 = px ∗
1

M

(iter∗epochs∗K)−1

(3.8)
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with

p0 = 1

where M is the number of segments, iter the number of iterations, epochs the total number of

training epochs and K is a constant to speed up or slow down the threshold curve.

Adaptive Sampling is required to refine the previous part. Even using the curriculum, solutions

with false positives would still happen. Moreover, mostly all voxels on brain images could be

confidently classified as background. Therefore, the adaptive sampling encourages training inputs

whose predictions are false positives.

Figure 3.4: Schematic diagram of CASED framework

3.2.2.4 Baseline Adaptive Sampling Scheme

Adaptive Sampling Scheme to Efficiently Train Fully Convolutional Networks [26], from now

on BaseASS (baseline adaptive sampling scheme), suggests a patchwise training scheme that

pretends to adaptively build traning samples at each epoch by looking at the network training

error. For each subject, error maps Ei are build concurrently at the end of each epoch as:

Ei = 1− CNN(w, In(x))Ln(x) (3.9)

where CNN(w, In(x))Ln(x) represents the softmax predictions calculated using the training

weights w over an image In. Thus, a patch is accepted into the batch according to its rela-

tion to the threshold defined by:

Ei(c) > U(0, 1)− ε (3.10)

where c is the central voxel of the patch, U(0, 1) is a random uniform variable and ε a parameter

to calibrate the algorithm: ε = 0 means a completely adaptive scheme and ε = 1 the uniform

sampling scheme.



Chapter 4

Experiments and Results

This chapter presents and compares the results obtained from applying the methodologies men-

tioned in Chapter 3.

4.1 Dataset

In this thesis, the data used to train the network has been obtained from the MICCAI BraTS

2017 Challenge [3]. This dataset is composed by 210 HGG (high grade glioma) and 75 LGG (low

grade glioma) subjects of which 171 are used for training (60%) and 116 are used for validation

purposes (40%). No data augmentation was used in any experiment. The four modalities of each

MRI image (native T1, post-contrast T1-weighted, T2-weighted and T2 FLAIR) are co-registered

to the same anatomical template and interpolated to the same resolution (1 mm3).

Training the network relies on the proper selection of hyperparameters, a wrong choice can lead

to overfitting, underfitting or simply not training. Each experiment should have been optimized

individually until obtaining the best results. Besides the fact that this is too computationally

demanding, we have not done this in order to be able to compare all the models under the same

conditions. First, the learning rate, which tells the optimizer how far has to move the weights in

the direction of the gradient, was set to 0.0005. The momentum was set to 0.99. Regularization

prevents the coefficients to overfit and it depends on two variables: L2 is a factor multiplying

the sum of the square of the weights, while L1 is the factor multiplying the absolute sum of

the weights. The values chosen were L1=0.00001, L2=0.005. The number of training epochs is

variable for each experiment. Masked V-Net was used as the base architecture for all experiments

except one, where Deep Medic Network was used. The initialization of the weights was done

according to [27].

For patch sampling, we used 600 segments/epoch for training and 400 segments/epoch for vali-

dation with a batch size of 10.

14
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4.2 Dense-training

We begin exploring the dense-training scheme vastly used in natural 2-D images, in which

CNN are trained using the whole-subject. The network processes 171 training images of size

[192, 192, 160] each epoch using the Adam optimization method [28]. In each iteration CNN’s

parameters (weights and biases) are updated in order minimize the cost function. In the con-

text of this work, we are going to analyze the impact on the segmentation performance of two

different loss functions as a way to balance the distribution of the training samples.

The different loss functions used in the experiment are compared in Table 4.1. We observe that

training this network with cross entropy loss function (Eq. 3.2) leads to poor segmentation

results. Instead, training with Dice loss function (Eq. 3.4) appears to be more robust to class

imbalance problem. This result makes sense as cross-entropy is more sensitive to the balance

of classes because it tries to minimize, in mean, the agreement between classes, whether they

are tumour or background, and therefore does not distinguish between true-positives and true-

negatives. Concerning the DSC, it takes more into account the positive class as it gives more

weight to true-positives than true-negatives.

Loss Function Dice Whole Dice Core Dice Enhance

Cross-entropy 0,67032 0,41302 0,50329

Dice similarity coefficient 0,80534 0,70092 0,65296

Table 4.1: Comparison of mean validation DSC metrics for dense-training

Figure 4.1 compares the convergence of the loss functions studied. The blue curve indicates the

training loss and the red curve the validation loss. As seen in figure 4.1 (a), the cross-entropy

is minimized in a vecinity close to its optimal value zero. The dice coefficient loss function

converges to a non-optimal value (far from -1) and it is slower than cross-entropy function, as

shown in Figure 4.1 (b). This is an interesting result because although cross-entropy reaches the

optimum value and DSC does not, the latter achieves much better inference results (Table 4.1).

This fact indicates that the second loss is much better tailored (for this particular configuration)

to our segmentation task.

G \ P % 0 1 2 3
0 0,99890 0,00005 0,00085 0,00020
1 0,23088 0,46246 0,25662 0,05004
2 0,21386 0,02957 0,73939 0,01718
3 0,05634 0,06851 0,04991 0,82523

Table 4.2: Confusion matrix for whole subjet using DSC cost function (validation)

Finally, we obtained the confusion matrix for dense-training using DSC as cost function (Table

4.2) where the number of false positives for class 0 is considerable high, damaging class 1 and

2. This can also been demonstrated by qualitative results, shown in Figure 4.2 (training with

DSC). It can be seen that this method correctly separates background (class 0) from tumor

(class 1,2,3). However, the segmentation of the different tumor subregions gives poor results.

This results motivates us to explore other solutions.
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(a) Cross-entropy (b) Dice similarity coefficient

Figure 4.1: Loss function convergence for dense-training

(a) Ground Truth (b) Prediction

Figure 4.2: Ground Truth vs Prediction for subject Brats17−TCIA−444−1. In (a) Ground
Truth: dark orange (class 1), light orange (class 2) and yellow (Class 3). In (b) Prediction:

dark blue (class 1), light blue (class 2) and cyan (class 3)

4.3 Patch sampling

After analyzing how our network performs when using the whole subject as training input, we

want to see how well patch sampling helps in the segmentation of brain tumors. In this section

we will observe the segmentation performance of different experiments. First, we try to deal

with class imbalance choosing small patches of size 643 and sampling with two different fixed-

rule sampling strategies: Foreground-background [11] sampling scheme and Per-class sampling

scheme. Second, we implement two different adaptive sampling strategies: BaseASS [26] and

CASED [25].

4.3.1 Fixed-rule sampling schemes

In this experiment, we primarily want to to compare both fixed-rule sampling strategies. We want

to see which variant performs better in detecting the tumor borders and the different subregions.

The foreground-background sampling strategy modifies the tumor/non-tumor distribution while
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preserves the relation among the tumor’s subregions. This is done by sampling 50% background

(Class 0) and 50% foreground (tumor classes 1,2,3). Per-class sampling scheme consists in

sampling equiprobably from all four classes (% 25 for class n with n = 0, 1, 2, 3) so that the

networks receives equally the four segments types. Moreover, we also want to explore different

loss functions: both sampling strategies have been evaluated using cross entropy and then a

weighted cross entropy (Eq. 3.6). The four experiments were done using the Masked V-Net

network [12].

In Table 4.3 we show the numerical results from the aforementioned experiments. Foreground-

background sampling achieves the best performance among all in all tumor regions. Note that

weighting the loss functions results in worse results than not using it.

Scheme Dice Whole Dice Core Dice Enhance

Foreground-background sampling 0,80156 0,59277 0,59949

Per-Class sampling scheme 0,74112 0,53220 0,567712

Foreground-background sampling +
weighted loss

0,72799 0,49146 0,58795

Per-Class sampling scheme+ weighted loss 0,30150 0,19794 0,47847

Table 4.3: Comparison of mean validation DSC metrics for fixed-rule sampling schemes

The results of the mentioned above experiments were different than we thought. We were

expecting better results for the weighted cross-entropy. We will proceed to analyze these 4 cases

in depth.

4.3.1.1 Loss function: cross-entropy

Figures 4.6 and 4.10 show in blue the training dice score curves and in red the validation dice

score curves. Meanwhile, Tables 4.4 and 4.5 show the confusion matrices for both experiments.

Per-class sampling achieves similar or even better results in training than foreground-background

sampling. However, it has low generalization power, since there might be a large mismatch be-

tween the distributions of the training and the testing sets (where patches are obtained sampling

uniformly from the MRI image) due to the alterations in the sampling training scheme. Ide-

ally, we would do a sweep for different optimization and regularization hyper-parameters as it is

known they affect deeply the model’s performance, though is highly computationally and time

demanding.

G \ P % 0 1 2 3
0 0,99866 0,00060 0,00065 0,00009
1 0,15597 0,58136 0,21434 0,04833
2 0,20463 0,13616 0,64296 0,01626
3 0,13979 0,05340 0,09242 0,71439

Table 4.4: Confusion matrix for baseline foreground-background (validation)
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Figure 4.3: Dice
Whole foreground-

background

Figure 4.4: Dice Core
foreground-background

Figure 4.5: Dice
Enhance foreground-

background

Figure 4.6: Training / Validation Dice Score Evolution for baseline foreground-background

G \ P % 0 1 2 3
0 0,99756 0,00118 0,00113 0,00013
1 0,15377 0,49406 0,30911 0,04306
2 0,22491 0,08771 0,67783 0,00955
3 0,13086 0,04143 0,11687 0,71083

Table 4.5: Confusion matrix Per-Class sampling scheme (validation)

Figure 4.7: Dice
Whole Per-Class

sampling scheme

Figure 4.8: Dice Core
Per-Class sampling

scheme

Figure 4.9: Dice En-
hance Per-Class sam-

pling scheme

Figure 4.10: Training / Validation Dice Score Evolution for Per-Class sampling scheme

4.3.1.2 Loss function: weighted cross-entropy

The choice of the weighted cross-entropy function double checks that jointly with the class-

weighted sampling it influences the dice score of each class, defining the model’s behavior, which

leads to inefficient training.

Tables 4.6 and 4.7 and Figures 4.14 and 4.18 show the results obtained with this experiment. As

it could be expected, in Table 4.6 we can see that the number of True-Positives for class 1 has

increased but in return the number of True-Positives for class 2 has decreased and for almost all

classes False-Positves have grown (in comparison to Table 4.4). In figure 4.10 it can be observed

a bad performance for the combination of equiprobale-weighted class sampling and cross entropy

weighted function. The corresponding confusion matrix (Table 4.7) only confirms this results.
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G \ P % 0 1 2 3
0 0,99723 0,00213 0,00051 0,00013
1 0,13037 0,62513 0,18865 0,05585
2 0,22122 0,19958 0,56491 0,01429
3 0,12850 0,04857 0,08909 0,73385

Table 4.6: Confusion matrix for foreground-background sampling using weighted loss (vali-
dation)

Figure 4.11: Dice
Whole per foreground-

background

Figure 4.12: Dice
Core per foreground-

background

Figure 4.13: Dice En-
hance per foreground-

background

Figure 4.14: Training / Validation Dice Score Evolution for foreground-background sampling
scheme and weighted loss

G \ P % 0 1 2 3
0 0,84183 0,15361 0,00364 0,00091
1 0,12418 0,47787 0,33199 0,06596
2 0,17954 0,09942 0,70468 0,01635
3 0,07395 0,02016 0,12268 0,78322

Table 4.7: Confusion matrix Per-Class sampling scheme using weighted loss (validation)

Figure 4.15: Dice
Whole Per-Class sam-

pling scheme

Figure 4.16: Dice
Core Per-Class sam-

pling scheme

Figure 4.17: Dice En-
hance Per-Class sam-

pling scheme

Figure 4.18: Training / Validation Dice Score Evolution for Per-Class sampling scheme and
weighted loss

4.3.2 Adaptive sampling schemes

Training with the fixed distribution is a simple approach in patch-based segmentation. Instead,

it is possible to implement an adaptive sampling scheme according the result of the segmenta-

tion. Another way to achieve adaptive sampling consists in first, using the hardest patches to
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discriminate, and then adding gradually the easiest ones. Consequently, the distribution on each

iteration is different from the previous one.

4.3.2.1 CASED

The CASED method has been analyzed and studied to improve its performance in the tumor

segmentation task. To make a fair comparison we employed Adam optimization [28] and masked

V-Net network for all methods with the same fixed hyper-parameters. The learning rate was set

to 0.0005. The loss chosen was cross entropy. Baseline CASED was implemented as explained in

Chapter 3. Two generators were used according a curriculum (a rule to decide which generator

use): one uniform generator and one only generating tumor patches. However, lesion patches

were selected according the real relative tumor subregion distribution.

We compare the proposed CASED with two merging strategies: 1) We know that the distribu-

tion between the tumor sub-regions is not equiprobable. So, we decided to alter the generator

that selects patches with tumor so that we chose patches of class 1,2,3 with the following prob-

abilities: 40 %, 30 % and 30 % respectively. Instead of making it equiprobable (33,3 %), we

decided to give a slightly higher weight to class 1 since it is the class that is more difficult to

discriminate correctly; 2) Slowing down the curriculum curve with the K factor in order to delay

the introduction of all type of patches (uniform sampling) and extend the number of epochs in

which the network is trained with difficult patches. Variant 1 is also included in this method.

More details are available in the Annex.

Table 4.8 presents the validation mean dice score for the three experiments carried with CASED

scheme, while Table 4.9 and Table 4.10 show the corresponding confusion matrices illustrating

the quality of the prediction and the the quantity of True-Positives vs False-Positives encountered

in baseline CASED and in the slowed down version which include both models. The results from

4.10 are clearly better than 4.9. The main difference observed is the prediction of class 1 where

it can be seen that thanks to adjusting the tumor subregion distribution and slowing down the

curriculum curve the number of False-Positves has fallen down.

Scheme Dice Whole Dice Core Dice Enhance

Baseline CASED 0,79089 0,62054 0,59778

Altered distribution CASED 0,83558 0,69727 0,63157

Slowed down CASED 0,84130 0,73418 0,65403

Table 4.8: Comparison of mean validation DSC metrics for CASED

G \ P % 0 1 2 3
0 0,99937 0,00005 0,00051 0,00006
1 0,19721 0,35371 0,35201 0,09707
2 0,24116 0,03398 0,70236 0,02250
3 0,11997 0,02711 0,08073 0,77218

Table 4.9: Confusion matrix baseline CASED scheme (validation)

Figure 4.19 and figure 4.20 show the evolution of the number of patches of any type and the

number of patches with tumor according to each training epoch. For clarification, we are only
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G \ P % 0 1 2 3
0 0,99877 0,00016 0,00095 0,00012
1 0,10293 0,57165 0,24711 0,07831
2 0,15830 0,04181 0,78414 0,01576
3 0,05627 0,04030 0,06982 0,83361

Table 4.10: Confusion matrix slowed down CASED scheme (validation)

taking into account the central voxel to decide which patch type is it. If we considered all the

patch, calculating the class with maximum presence we would always obtain class 0. The third

plot is the curriculum curve from equation 3.8. Overall, the slowed down version was found to

have the best performance.

Figure 4.19: Patch distribution evolution during training in baseline CASED model

Figure 4.20: Patch distribution evolution during training in slowed down model
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Finally, the model was used to infer the test data segmentation. Boxplots from figure 4.24

show the comparison in DSC across the three models. The outliers had been checked and were

mainly due to MRI input images from the dataset with poor conditions. In conclusion, variant

2 demonstrates to be better than baseline CASED or only including variant 1 according to

the mean DSC metrics, the confusion matrix and the validation boxplots. Until this point, this

result outperforms all the other schemes used previously. This is because in the last iterations the

training distribution approaches the true distribution and therefore gets a better generalization.

Figure 4.21: Val-
idation Dice Whole

CASED

Figure 4.22: Valida-
tion Dice Core CASED

Figure 4.23: Vali-
dation Dice Enhance

CASED

Figure 4.24: Test DSC for all three CASED variants. From left to right: Baseline CASED,
modified subregion distribution and slowed down CASED. Validation is done using the whole

subject as input.

4.3.2.2 BaseASS

The baseline adaptive sampling scheme was implemented as mentioned in Chapter 3. The base-

line method uses cross-entropy and the central voxel error as the criteria of selection. Moreover,

we explore this model and propose three alternatives: 1) patch selection according the median

error value of the whole patch (Eq. 4.1) instead of only the error value of the central voxel (Eq.

3.10); 2) use the Generalised DSC loss function instead of cross-entropy; 3) use another architec-

ture: Deep Medic network instead of masked V-Net. For this last experiment, the cost function

chosen was cross-entropy as it had shown to perform better in this configuration. This classical

architecture was chosen because, unlike Masked V-Net [12], it does not have any max-pooling

layer. We want to avoid max-pooling beacuse it reduces the spatial size of the representation and

thereby it reduces the number of training parameters, which might contain relevant information

for our segmentation task.

median(Eipatch
) > U(0, 1)− ε (4.1)

To be as fair as possible when comparing, the rest of parameters remained fixed. We trained

baseline and the first two models with Adam Optimization method [28] with a learning rate of

0.0005. The third model (Deep Medic Network) was trained using RMSprop optimizer and a

learning rate of 0.0001. For more details consult the annex.

The results reported on Table 4.11 show that BaseASS with classical cross-entropy loss outper-

forms Generalised DSC. However, BaseASS using the central voxel’s error or the median error
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Scheme Dice Whole Dice Core Dice Enhance

BaseASS 0,86286 0,74418 0,67466

BaseASS + Generalised DSC 0,81759 0,69727 0,65100

BaseASS + Median error as selection
criteria

0,85087 0,75052 0,657198

BaseASS + Deep Medic network 0,65379 0,55027 0,48243

Table 4.11: Comparison of mean validation DSC metrics for BaseASS

of the patch show similar performance. This suggests that using only the central voxel is enough

to get a general representation of the patch error. This results can be clearly confirmed when

looking at the boxplot comparison in Figure 4.28. Finally, the masked V-Net network obtains

better results than the Deep Medic Network. Nevertheless, the latter hyper-parameters had not

been optimized and we can’t conclude that it is behaving worse yet. The last experiment was

not worth to be included in the boxplot comparison 4.28, but can be found in the Appendix in

Figure C.25.

Figure 4.25: Val-
idation Dice Whole

BaseASS

Figure 4.26: Val-
idation Dice Core

BaseASS

Figure 4.27: Vali-
dation Dice Enhance

BaseASS

Figure 4.28: Test DSC for all three BaseASS variants. From left to right: BaseASS using
cross entropy loss, BaseASS using median error and BaseASS using generalised DSC loss.

Validation is done using the whole subject as input

Figure 4.29 shows the number of segments of each class per training epoch for the BaseASS

model. For clarification, it is considered that the patch class is defined as the class of the central

voxel (the one whose error value is taken as selection criteria). In comparison to CASED scheme,

section 4.3.2.1 (Figure 4.19), here the number of lesion patches is not reduced in each epoch but

remains constant for all the training. In contrast, the number of background patches decreases

in each iteration. It can be seen that the portion of class 1 patches is slightly higher than that

of class 2 and 3. This leads us to believe that it is a wise decision to give a little more weight to

class 1 than 2 or 3.

While Figure 4.30 shows the training distribution of the batch in each iteration. It can be

observed that despite of choosing different number of segments of each class, the training dis-

tribution remains almost constant for all the epochs. Moreover, this distribution is close to the

real one.

Qualitative results of the error maps calculated in each iteration (Figure 4.31) demonstrate the

importance of selecting the right lesion patches (those with high error values) against selecting

any tumor patch without any criteria. It can be seen how the performance of the networks
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Figure 4.29: Patch distribution evolution for the BaseASS model

Figure 4.30: Percentage of class voxels per batch per epoch for BaseASS

improves from epoch 1 (Fig. 4.31(b)) to epoch 30 (Fig. 4.31(d)). We can see that from the 15th

to the 30th epoch, the network works to refine the segmentation. Mainly, the error lies in the

boundaries between two different classes.

Table 4.12, Table 4.13 and Table 4.14 show the confusion matrices for the BaseASS with the two

different loss functions and different architecture.
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(a) Ground Truth
above MRI T1

(b) Error map in
epoch 1

(c) Error map in
epoch 15

(d) Error map in
epoch 30

(e)
Color
scale

Figure 4.31: Error maps from subject Brats17−CBICA−AAL with BaseASS. Light blue
is equivalent to zero error, yellow means maximum error value.

G \ P % 0 1 2 3
0 0,99914 0,00013 0,00066 0,00007
1 0,09024 0,61238 0,22317 0,07421
2 0,15804 0,06343 0,76245 0,01608
3 0,05271 0,04601 0,06876 0,83252

Table 4.12: Confusion matrix BaseASS with cross-entropy loss (validation)

G \ P % 0 1 2 3
0 0,99825 0,00020 0,00140 0,00015
1 0,11032 0,62370 0,18580 0,08018
2 0,13554 0,062621 0,78282 0,01903
3 0,05122 0,04287 0,06184 0,84407

Table 4.13: Confusion matrix BaseASS with Generalised DSC loss (validation)

G \ P % 0 1 2 3
0 0,99361 0,00074 0,00469 0,00096
1 0,12832 0,52653 0,29216 0,05300
2 0,11627 0,09170 0,76764 0,02439
3 0,04074 0,13621 0,07489 0,74816

Table 4.14: Confusion matrix for BaseASS and Deep Medic network (validation)

4.4 Discussion

In this work, we have analyzed and evaluated 13 sampling schemes. An overall comparison is

done in Table 4.15. First, we concluded that for whole subject (dense-training) DSC performed

better than cross-entropy since the second treats all training voxels equally and this is not helpful

when the network has difficulties in learning representations of the minority classes. DSC does

an implicit re-weighting of the voxels alleviating this issue.

In the context of patch sampling, fixed-rule sampling schemes have appeared to be risky models

as they over-modifiy the training distribution from the original one, in such manner that they

change the model behavior making it difficult to adjust to the validation distribution (uniform).
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The best result was for foreground-background sampling without weighted loss function, the

scheme among the four which less modifies the distribution. This results have been checked for

cross-entropy, but we cannot ensure what would happen using other loss functions.

Regarding adaptive sampling, both CASED [25] and BaseASS [26] achieve very good results.

It’s risky to claim which one is better than the other because, although the BaseASS presents

the higher dice score and even a little more better results on the confusion matrix, the behavior

is very similar and we do not know if we could achieve better results adjusting the models with

new modifications. The key to the success of both is that the final distribution at the training

end is very close to the real one. Hence, this gives them strength to alleviate class imbalance

and generalize correctly.

Scheme Dice Whole Dice Core Dice Enhance

Dense-training + Cross-entroy 0,67032 0,41302 0,50329

Dense-training + DSC 0,80534 0,70092 0,65296

Foreground-background sampling scheme 0,80156 0,59277 0,59949

Per-Class sampling scheme 0,74112 0,53220 0,567712

Foreground-background sampling scheme
+ WL

0,72799 0,49146 0,58795

Per-Class sampling scheme+ WL 0,30150 0,19794 0,47847

CASED 0,84130 0,73418 0,65403

BaseASS 0,86286 0,74418 0,67466

Table 4.15: Mean Dice score metrics from the main experiments carried on

Boxplots 4.32, 4.33 and 4.34 show quartile ranges of the DSC scores (Whole Tumor, Core Tumor

and Enhancing Tumor respectively) on the test datasets, dots indicate outliers and the red

line indicates the median value. They give us an overview of the behaviour of each of the

experiments. It could be argued that whole subject with DSC has a comparable outcome to

BaseASS or CASED, however, if we look at quartile 25 of the first scheme, it is much lower than

the quartile 25 of the last two.

Figure 4.32: Overall Dice Whole Tumor Comparison. Validation is done using the whole
subject as input.
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Figure 4.33: Overall Dice Core Tumor Comparison. Validation is done using the whole
subject as input.

Figure 4.34: Overall Dice Enhance Tumor Comparison. Validation is done using the whole
subject as input.



Chapter 5

Budget

This project has been carried in the Image Processing Group, ETSETB, UPC. Deep Learning is

highly computationally demanding, consequently a GPU was needed: The GPU GeForce GTX

Titan Black has an approximate cost of 920 e, however UPC provided it to us without any cost.

Thus, the main cost of this project comes from the salary of the researchers and the time spent

in it. The team for the development of this thesis is formed by two professors who were advising

me as senior engineers and myself as junior engineer. The total duration of the project was of

33 weeks. The budget of the project can be calculated:

Amount
Wage/hour

Dedica-
tion

Total

Junior
Engineer

1 8,00e/h 25h/week 6,600 e

Senior
Engineer

2 20,00e/h 4h/week 5,280 e

Table 5.1: Project Budget
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Chapter 6

Conclusions and future

development

The main goal of this project was to apply different state-of-the art methodologies to brain

tumor segmentation to make a comparative study of all them. We studied how dense-training

and patch sampling performed in the brain tumor segmentation. For this reason, we proposed

variants to fixed-rule and adaptive sampling schemes.

In section 4.2 we proved that the DSC outperforms cross-entropy ability to classify tumor/non-

tumor voxels in dense-training. However, in patch sampling, cross-entropy demonstrated to be

better than weighted loss functions as weighted cross-entropy and generalised DSC.

Then, in section 4.3, we show that properly designed patch sampling outperforms dense-training

schemes. Moreover, we conclude that if we alter significantly the training distribution from

the real, such that using per-class sampling scheme, we increase generalization error even if

training improves due to the mismatch between training and testing distributions. Moreover,

novel adaptive training schemes are shown to further improve the performance compared to

the fixed-rule schemes for the brain tumor segmentation task. We observed how only adaptive

sampling obtaines good results altering the training distribution in such a way that achieves

learning the features of those segments that are more difficult to classify. Our best results are:

dice score for whole tumor of 0,862 , dice score for core tumor of 0,744 and a dice score for

enhancing tumor of 0,67.

We compare our results with the leaders of the MICCAI challenge ranking and the results

presented by the UPC this last edition (Table 6.1). For dice score of whole tumor, our method

is very close to the results obtained by the top performing methods while, our method achieves

low dice score for enhancing tumor and core tumor. BaseASS has similar performance to the

approach presented by the UPC, in which they tackle the problem with a pipeline of two masked

V-Nets and dense-training. However, our results are still well below the ensemble model proposed

by UCL-TIG.
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Scheme Dice Whole Dice Core Dice Enhance

UCL-TIG 0,9 0,83 0,78

UPC 0,87 0,63 0,71

BaseASS 0,86286 0,74418 0,67466

Table 6.1: Comparison between our approach and some of 2017 MICCAI BraTS Challenge

Finally, the choice of different hyper-parameters for the optimization and regularization can

heavily affect the performance of a model. It is often observed that the choice of optimizer and

its configuration, for instance regularitzation or the learning rate, to a large extent, determine

whether a good or a bad segmentation is obtained. The sensitivity to all these hyper-parameters

is magnified by the fact that re-using the same setting does not guarantee to behave well among

different network architectures, or even on different tasks and data. Hence, it is often difficult to

draw generic and confident conclusions without spending a huge amount of time in optimizing

the experimental settings.

In the future, we are interested in trying training with a different architectures as we belief that

this one might be a bottleneck. We are interested in trying dilated convolutions as they are

able to introduce systematically multi-scale contextual information without loosing resolution.

HighResNet [16] is a network which uses dilated convolution and residual connections. The

architecture is based on the fact that dilated convolutions support exponential expansion of the

receptive field without loss of resolution and avoid max-pooling.

Now that we already know that BaseASS provides sucessful results it would be interesting to do

more reserach on it. The BaseASS and also the CASED still have other learning parameters that

could be explored, for instance give priority to patches of the modality with the greatest impact.

It would also be relevant for consideration make adaptive other parameters as the learning rate

or the patch-size. It also has been left trying to do an ensemble of the best methods in this thesis.

Finally, adapative sampling schemes from this work might be powerful in other segmentation

tasks where imbalance is also a problem, like white matter hyperintensities (WMH) segmentation.
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Code of the project

The code of the project can be found in GitHub repository [29]. It has been fully developed in

python using Keras with Tensorflow backend.
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Appendix B

Dense-training

B.1 Set up

The set up used for the mentioned experiment:

• Network: Masked V-Net

• Optimization: Adam

• No Data augmentation

• Regularization: l1=0.00001, l2=0.005

• Momentum: 0.99

• Learning Rate: 0.0005

B.2 Training Curves

Figure B.1: Dice
Whole

Figure B.2: Dice
Core

Figure B.3: Dice En-
hance

Figure B.4: Dice Score Evolution for cross-entropy loss function
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Figure B.5: Dice
Whole

Figure B.6: Dice
Core

Figure B.7: Dice En-
hance

Figure B.8: Dice Score Evolution for DSC loss function



Appendix C

Patch sampling

C.1 Set up

To perform a correct analysis, the same set up was used for all patch sampling experiments:

• Loss: cross-entropy / weighted cross-entropy/ Generalised DSC

• Network: Masked V-Net / Deep Medic Network

• Optimization: Adam / RMSprop

• Epochs: 50

• Segments Train / epoch: 600

• Segments Validation / epoch: 400

• Data augmentation: False

• Regularization: l1=0.00001, l2=0.005

• Momentum: 0.99

• Learning Rate: 0.0005 / 0.0001

C.2 Training Curves
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Figure C.1: Dice
Whole

Figure C.2: Dice
Core

Figure C.3: Dice En-
hance

Figure C.4: Dice Score Evolution for the baseline CASED model

Figure C.5: Dice
Whole

Figure C.6: Dice
Core

Figure C.7: Dice En-
hance

Figure C.8: Dice Score Evolution for the altered distribution CASED model

Figure C.9: Dice
Whole

Figure C.10: Dice
Core

Figure C.11: Dice
Enhance

Figure C.12: Dice Score Evolution for the slowed down distribution CASED model

Figure C.13: Dice
Whole

Figure C.14: Dice
Core

Figure C.15: Dice
Enhance

Figure C.16: Dice Score Evolution for BaseASS model
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Figure C.17: Dice
Whole

Figure C.18: Dice
Core

Figure C.19: Dice
Enhance

Figure C.20: Dice Score Evolution for BaseASS model and median error

Figure C.21: Dice
Whole

Figure C.22: Dice
Core

Figure C.23: Dice
Enhance

Figure C.24: Dice Score Evolution for BaseASS and generalised DSC

Figure C.25: Test DSC for BaseASS and Deep Medic network
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