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Abstract

This bachelor’s thesis explores different deep learning techniques to solve the Visual Question-
Answering (VQA) task, whose aim is to answer questions about images. We study different Con-
volutional Neural Networks (CNN) to extract the visual representation from images: Kernelized-
CNN (KCNN), VGG-16 and Residual Networks (ResNet). We also analyze the impact of using
pre-computed word embeddings trained in large datasets (GloVe embeddings). Moreover, we
examine different techniques of joining representations from different modalities. This work has
been submitted to the second edition Visual Question Answering Challenge, and obtained a
43.48% of accuracy.
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Resum

Aquest treball de fi de grau explora diferents tècniques d’aprenentatge profund (deep learn-
ing) per a solucionar la tasca de Respostes a Preguntes Visual (Visual Question-Answering),
que té com a finalitat respondre preguntes sobre imatges. Estudiem differents xarxes convolu-
cionals (CNN - Convolutional Neural Networks) per extreure la representació visual de les images:
Kernelized-CNN (KCNN), VGG-16 i Residual Networks (ResNet). També analitzem l’impacte
d’utilitzar embeddings pre-calculats que han estat entrenats amb bases de dades més grans
(GloVe embeddings). També examinem diferents tècniques per a combinar vectors de dades de
diferents modalitats. Aquesta feina ha estat presentada a la segona edició del Visual Question
Answering Challenge i ha obtingut un 43.48% d’exactitud.
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Resumen

Esta tesis explora diferentes técnicas de aprendizaje profundo (deep learning) para solucionar
la tarea de Respuestas a Preguntas Visuales , que tiene como finalidad responder preguntas sobre
imágenes.

Estudiamos diferentes redes convolucionales (CNN - Convolutional Neural Networks) para
extraer la representación visual de las imágenes: Kernelized-CNN (KCNN), VGG-16 y Residual
Networks (ResNet). También analizamos el impacto de utilizar embeddings precomputados que
han sido entrenados en bases de datos más grandes (GloVe embeddings). Asimismo, examinamos
diferentes técnicas para combinar vectores de datos de diferentes modalidades. Este trabajo ha
sido presentado a la segunda edición del Visual Question Answering Challenge y ha obtenido un
43.48% de exactitud.
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Chapter 1

Introduction

.

1.1 Statement of purpose

Human communication is based on the exchange of information between an emitter and a
receiver. Through questions and answers, we humans can exchange and increase our knowledge.
For this reason, the Artificial Intelligence (AI) community has focused a great attention on the
creation of automatic systems capable of communicating through questions and answers.

Over the last five years, the number of research projects related to Deep Learning has increased
exponentially, both in the academic and industrial worlds. Such growth has been boosted by the
success of deep learning models in tasks which were considered especially challenging, such as
computer Vision or natural language processing. Therefore, solutions have been found to many
tasks obtaining good performances, leading to more complex tasks derived from these ones.

Since 2016, Virginia Tech organizes an annual competition combining the visual and textual
modalities: the Visual Question Answering (VQA) challenge. This benchmark deals with the
creation of an AI system able to answer natural language questions related to an image. Par-
ticipating models require a step forward in terms of reasoning and comprehension of the visual
scene in order to relate the content it to its natural language representation [3].

The most common solution to solve this task is using Convolutional Neural Network (CNNs) to
obtain the visual representation, and word embeddings from Recurrent Neural networks (RNNs)
(for instance Long Short-Term Memory Networks -LSTM- [4]) to obtain the textual representa-
tion. These two type of representations are combined to predict the answer [5] (Figure 1.1). The
Image Processing Group (GPI) at the Universitat Politecnica participated in the 2016 edition as a
result of the bachelor thesis by Issey Masuda [6], a first experience at our university in the fusion
of textual and visual information with deep learning.

Based on this context, the objectives of this project were the following:

• Participate in the VQA Challenge 2017 organized by VirginaTech (deadline: 30 June 2017).

• Explore different ideas with the latest deep learning designs, considering the previous ex-
perience at UPC [6] as the baseline.

• Improve the model presented by the UPC team in Edition 2016 [6], which provides a 40.28%
of accuracy in the new VQA 2.0 Dataset [7] used this year in the challenge (Chapter 4 for
more details ).

• Develop a reusable software project using programming good practices.
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Figure 1.1: Typical VQA solution consisting on CNN and RNN

1.2 Requirements and specifications

The main goal for this project is to create and evaluate different Visual Question Answering
models and submit the results to the 2nd Edition of the VQA challenge. Regarding this, the
requirements are the following:

• Test different VQA models and try to increase the accuracy of the model submitted last
year by the team representing the UPC.

• Prepare the UPC submission to the second edition of the CVPR17 VQA Challenge 1.

• Develop a software than can be used for future submissions to the VQA Challenge and
future research in the field of visual reasoning [2].

The specifications are the following

• Use Python as a programming language to develop the project.

• Develop the project using the Keras2 software framework for deep learning, a wrapper of
lower level deep learning libraries such as Theano3 or TensorFlow4 backends.

1.3 Methods and procedures

This thesis considers as a baseline the model developed by the UPC team [6] for the VQA
2016 Challenge. This baseline project was developed using Keras, a deep learning framework
built to enable easy and fast experimentation. This fast prototyping is accomplished by building
a wrapper over Theano or TensorFlow frameworks, which provides a high-level neural networks

1http://www.visualqa.org/challenge.html
2https://keras.io/
3http://deeplearning.net/software/theano/
4https://www.tensorflow.org/

12



API with which you are able to build both convolutional and recurrent networks, as well as a
combination of those. On that basis, Keras was a perfect perfectly to our needs. Regarding to the
backend, we have chosen TensorFlow. This is largely due to the fact that TensorFlow compiles
faster and, contrary to Theano, it provides a very useful visualization tool (TensorBoard). Apart
from Keras we have used DeepFramework5, an API that facilitates beginners to organize their
projects and helps with tasks which are not purely related to deep learning.

The baseline project [6] used pre-computed visual features provided by the Computer Vision
group at Universitat de Barcelona, obtained using Kernelized Convolutional Neural Networks [8].
This need of using pre-computed visual features is explained with more detail in Section”1.5,
as the problem has persisted during the development of this thesis. This is why all the models
considered in this thesis have pre-trained weights from models trained in a large and popular
image classification dataset named ImageNet [9].

1.4 Work Plan

This project has been held between the GPI and the TALP research groups at Universitat
Politècnica de Catalunya, having a regular weekly meeting to discuss decisions to be made.
This meting has been complemented with a weekly seminar with other students developing their
bachelor, master or Phd thesis at GPI to present our research and share our knowledge.

The work plan is described in the following work packages and Gantt diagram, as well as the
modifications introduced since the first version.

1.4.1 Work Packages

• WP 1: Project proposal and work plan

• WP 2: Introduction to visual question-answering tasks and Keras

• WP 3: Dealing with VQA models

• WP 4: Critical Review of the project

• WP 5: Participate in the VQA Challenge

• WP 6: Final report of the project

• WP 7: Presentation and oral defense

5https://github.com/issey173/DeepFramework
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1.4.2 Gantt Diagram

Figure 1.2: Gantt Diagram of the Degree Thesis

1.5 Incidents and Modification

The project has experienced some modifications since the beginning of it, mainly due to
time constraints. Moreover, as long as some release dates were reached, some WP dates and
milestones have been moved.

At the very beginning of the project we wanted to run completely over Keras and Deep-
Framework, but we finally decided to replace some specific parts of this last API with our own
implementation. This modification required much more time to reuse the code developed last
year and, therefore, to begin to build new VQA architectures and test them.

Secondly, the limited computational resources to run our experiments have been an important
bottleneck due to the high demand in the GPU cluster from the GPI research group. The VQA
Dataset contains a large amount of samples to train our models. The VQA 1.0 from for the 2016
challenge contained 2,483,490 samples, while the VQA 2.0 dataset used in 2017 almost double
its size, as it contains 4,437,570 samples). We need about 40 epochs to obtain an acceptable
result for the train and validation curves. Notice that an epoch is defined as a single pass of
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all the examples in the training set through the model under training. As a Bachelor student at
GPI, we only have access to a single NVidia Titan X GPU at the cluster of servers of the Image
Processing Group at UPC, equipped with 12 GB of RAM 4.1. With this resources, fine-tuning the
visual representation of a basic VQA model takes about 11 hours per epoch. In other words, to
train a model we would need to have our process running during 18 days to obtain an acceptable
result. For this reason, it was not easy to train the visual feature extractor for the VQA task,
forcing us to use pre-trained models from other datasets.
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Chapter 2

State of the art

In recent years, multimodal problems that combine multiple data types (images, audio, video,
natural language...) have been a rising trend in Artificial Intelligence research. This tasks are
typically addressed by breaking down the whole problem into separate sub-tasks.

Visual Question-Answering is an example of these kind of multidisciplinary problems, in which
the model needs to understand the scene and objects represented by an image together with the
relations between them in order to answer natural language questions about them. Section 2.1
reviews the state of the art in VQA, focusing in Multimodal Compact Bilinear (MCB) pooling
et. al. [1], the state of the art after the VQA Challenge 2016.

However, during the first half of 2017, it has been proved that these models have poor
performances for complex questions which require understanding of many object attributes and
relations between them, leading the community to look for models that perform more reasoning
steps, emerging a new concept: Visual Reasoning (Section 2.2).

2.1 Visual Question Answering

Since the launch of the VQA Dataset, Visual Question Answering has received a lot of attention
from the community. However, performances obtained until the moment are far from resembling
the human level, so efforts to solve this task are growing exponentially.

As stated in Section 1.1, the most common solution to solve the VQA task is to merge the
visual representation obtained from a convolutional neural network and the text representation
obtained from an embedding recurrent network. However, humans do not answer questions by
analyzing the image and the question independently, but we focus on parts of the image depending
on the question. A typical approach to model this behavior is to merge the embedded question
with the image representation, to predict attention weights over convolutional layers and later
project the resulting image representation to the textual vector domain. This approach, called
Soft Attention (SA) mechanism, was proposed by Xu et al. for image captioning [10] and by
Yang et al. [11] and Xu and Saenko [12] for VQA.

Taking the SA as a basis, Fukui et. al. [1] made a study on how to merge the visual and
the textual representations. Typically, the way to merge this vectors is through an element-wise
sum or product or through a concatenation of both of them. However, they claimed that the
outer-product is a more efficient way to fully capture the associations between both modalities,
and, because it is unfeasible due of the high dimensionality of the parameters to learn, they
propose a novel method called Multimodal Compact Bilinear pooling (MCB pooling).

Basically, they project both representations to a lower dimensional space using the Count
Sketch algorithm [13], reducing the amount of parameters to be learned to obtain the multimodal
representation. To avoid computing explicitly the outer product, and as the count sketch of the
outer product of two vectors can be expressed as convolution of both count sketches, they
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Figure 2.1: Multimodal Compact Bilinear Pooling with Attention architecture [1]

compute the element-wise product of both vectors in the frequency domain.

This method set a new state-of-the-art and won the 2016 Open-Ended VQA Challenge, ob-
taining a 66.9 % of accuracy. In the VQA 2.0 used in the 2017 challenge, it obtained a 62.27%.

This year at ICLR conference Jin-Hwa Kim et al. presented the Hadamard product for low-
rank bilinear pooling [14], which outperforms the MCB pooling in the Multiple Choice category of
the VQA 1.0 Dataset, obtaining a 70.29% in front of the 70.10% obtained by the MCB method.
Moreover,on the Open-Ended category they perform with a 66.89% of accuracy.

2.2 Visual Reasoning

The idea of Visual Reasoning comes from the human skill to manipulate one’s mental repre-
sentation of an object or a scene in order to extract some conclusions about it. When humans
are asked about a visual scene, we first process the question to understand what the emitter is
talking about and, once it is understood, we perform a series of actions to analyze the image and
be able to answer correctly to the question (e.g. for the question ”What color is the object next
to the cube?” we would have to first localize the cube, look next to it and then detect the color
of the object in that position). This reasoning pipeline is not applied in conventional methods
that solve VQA tasks, as the actions that the system should learn to perform are not determined.

One of the first approaches to deal with this pipeline was done by Jacob Andreas et al.
who proposed the Neural Module Networks (NMN) [15]. Their research is based in exploiting
the compositional language structure using a hand-engineered syntactic parser, which determines
which actions to perform. Each of this actions represent a module, and each module is composed
by a set of neural layers. Therefore, for each question the system decides which actions to perform
between the possible set of actions and builds its neural network concatenating these modules.
Then, it joins this visual vector representation to a textual embedded vector to obtain the most
probable answer. Although this approach obtained worse results than the MCB pooling (58.7%
of accuracy in the test-dev split of the VQA dataset), it represents a big step forward towards the
modeling of humans capacity to reason about the world. Nevertheless, the syntactic parser fails
when it has to deal with more complex questions that may involve many relationships between
the objects of the scene (comparisons, counting, identifying attributes...).
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Recently Justin Johnson et al. [2] have proposed a program-induction method inspired in the
work previously mentioned, dividing the system into two different parts: the program generator
and the execution engine. The program generator refers to the system that predicts the actions
(named functions) to perform for an input question. This set of functions are named program.
As well as in the NMN, each function represents a set of neural layers, so each program will be
represented by its own neural network. The execution engine is the part of the system in charge
of mapping each function to its neural module, building the network and predict the answer.

Figure 2.2: Visual Reasoning program-induction overview [2]

The main differences between the NMN and this novel method are:

• The syntactic parser is no longer hand-engineered. As questions are sequences of words,
they replace the syntactic parser with a standard LSTM sequence-to-sequence model [16].
There is a catalogue of possible functions to predict which has a fixed arity (e.g. a com-
parison module would need two inputs while to detect the color of an object you would
just need a vector of image features). This allows them to establish a syntactic hierarchy
when deciding the order of the functions in the program generator.

• Modules have a generic architecture. Contrary to NMN, where modules had its own lay-
ers architecture, this approach keeps the same set of layers for each function and lets the
network to learn to perform them. This becomes an advantage because fixing modules ar-
chitectures ensure that for every valid predicted program the execution engine will generate
a valid neural network.

Both components of the system can be trained independently if we have a program ground
truth in our dataset. However, labeling a whole dataset with suitable programs is very expensive
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and most of the datasets would have none or few programs as ground truth. The desired solution
would be to train end-to-end the whole system using triplets of image-question-answer, but it
is impossible to backpropagate the error through an argmax operator (the predictor layer of
the program generator takes the most probable function at each timestep), so they replace this
operator with sampling and make use of reinforcement learning using as a reward the zero-
one loss of the execution engine. Doing so, they are now able to backpropagate the error.
Notwithstanding, training from scratch the model using this method is also very expensive as
the network must learn without understanding what functions mean. They finally conclude
determining that a semi-supervised learning approach is the most suitable for the task context,
using a small set of ground truth programs to train the program generator, to later fine-tune with
reinforcement learning.

This method was tested through many experiments, showing that there is still a work to do to
identify unknown attributes by the network or to process correctly long complex questions that
include many descriptive aspects of the objects present in the scene. Furthermore, there is still
the need to add functions that perform ternary operations (if/else/then) and loop operations
(for/do) to be able to answer questions such as ”What color is the object of the unique shape?”,
in which we need to loop over every object detecting its shape and filter the color just if there is
just one object of this shape.
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Chapter 3

Methodology

3.1 VQA 2.0 Dataset

With the second edition of the VQA Challenge in 2017, the organizers have provided a new
dataset. Many simple architectures performed surprisingly well in the 2016 challenge edition by
learning language biases, resulting that these models ignore the visual information to answer the
question. For instance, people tend to ask questions such as ”Is there any tree in the image?” if
there is actually a tree in the image, so many models would automatically answer ”yes” without
considering at all the image features. On the other hand, in order to avoid this problem, this
year the dataset has been balanced by collecting pairs of complementary images which are similar
between them, but have different answer for the same question (Fig. 3.1).

Figure 3.1: Examples of complementary images from the VQA 2.0 Dataset

This dataset uses the images from Microsoft Common Objects in Context (MSCOCO) Dataset
1, designed for image recognition, segmentation, and captioning, and containing 82,783 images
in the train split, 40,504 in the validation split and 81,434 images in the test split. Each image
has associated 5.36 questions on average, which results in a total of 443,757 questions on the
training split, 214,354 on the validation one and 447,793 in the test. Each question has as a
ground truth a set of 10 plausible answers, making the amount of samples up to 4,437,570,
2,143,540 and 4,477,930 for the train, validation and test splits respectively. Comparing to last
year dataset we can notice that the number of samples has increased by a factor of 2 in each
dataset division.

1http://mscoco.org/home/
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All the questions and answers have been made by different annotators, and they are divided
depending on the type of answer that is given (yes/no questions, number questions and other).

The Challenge itself is divided into four different categories, depending on the content of
the image and the kind of answers to predict. It firstly differentiates between real and abstract
(artificial) scenes. Also, questions can be Open-Ended, in which the most probable answer over a
whole dictionary must be predicted, and Multiple-Choice, in an answer over four possible options
must be chosen. In our case we have decided to work with the Real and Open-Ended category,
the most challenging one.

3.2 Preprocessing Data

3.2.1 Image Data

When working with CNNs we normally use raw images as input data, but some preprocessing
must be done before. CNNs learn by continually adding gradient error vectors (multiplied by
a learning rate) obtained from a backpropagation through many matrices batch by batch. It
is in our interest to ensure that every image has a similar range of values in order to avoid
that the gradients run out of control, and the way to do it is by subtracting the mean of the
whole image dataset to each sample. This way, the gradients act uniformly for each channel.
Otherwise, the learning rate would cause corrections in each dimension that would differ, and
compensating a correction in one weight dimension might imply undercompensating in another,
provoking difficulties for the loss to stabilize.

3.2.2 Natural Language Data

Analogously to humans, an AI system chooses the answer to a question from a known vo-
cabulary. This vocabulary, also called dictionary, contains a number of indexed unique words,
usually between 10,000 or 20,000, which can be predefined and customized. In our case we
customized our dictionary by parsing all the questions and answers, and selecting the top 10,000
most common words, a common figure in other similar works.

In order to feed our future network with natural language data, we first have to split the
sentence (question) and assign each word to a number by mapping it to its corresponding index
in the dictionary. This process is referred as tokenizing the question. As we need to have a
fixed input shape to feed our network, we have set the maximum question length to 22 and, if
the question under consideration is shorter, the vector is padded with zeros (which is not a valid
token for a word).
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3.3 Baseline

3.3.1 Architecture

The baseline of this project is the model presented by the UPC team in the CVPR16 VQA
Challenge 3.2. This model uses precomputed image features obtained from our partners of the
Computer Vision group at Universitat de Barcelona, who used a Kernelized CNN (KCNN) [8] to
extract them. This kind of CNN aims to provide better image vectorization than vanilla CNN’s,
as those have shortcomings when trying to analyze complex images.

On the other hand, to obtain the textual vector, the tokenized question is fed into an embed-
ding layer, which projects the question to a different space dimension which captures semantic
and syntactic relationships between words and the context in which the word appears, to later use
a one-layer LSTM to obtain the text representation. The use of LSTM in the question branch is
due to the advantage of having memory over time, using a memory cell or state which is updated
in each iteration and its output is related to this state.

This model obtains a 53,62% of accuracy in the real test of the VQA 1.0 dataset, while in
the new dataset it obtains a 40.25%. More details are presented in chapter 4.

Figure 3.2: Baseline model diagram

3.3.2 Hyperparameters

When training a neural network, we do not only have to choose which layers to use and how
to connect them, but also a large number of hyperparameters that influence the learning process.

Firstly, the precomputed image features have a dimension of 1024. On the text side, by
contrast, we have an embedding layer of dimension 100 (resulting in a tensor of shape 22x100,
being 22 the maximum length of the question 3.2.2), which is fed into an LSTM of 256 depth
- that means, we use a LSTM with 256 hidden units. As we have to join both representations
and they have different dimensions, we project the image features into the text representation
dimension through a Fully Connected layer. Then, having both representations of the same
dimension we can merge them by making an element-wise sum. We predict the answer by using
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a softmax layer of the size of our dictionary, and associating each activation to its index in the
dictionary. For instance, if the maximum value of the softmax layer is obtained the 10th neuron,
we would select the word with index 10 of our vocabulary as the predicted answer.

During the training process, the parameters are updated in order to find a minimum in the
loss function. This is done using a learning rate, which sets how quickly a network abandons old
beliefs for new ones. In general, one wants to find a learning rate that is low enough for a model
to converge to a useful configuration, but high enough to avoid a very long training time. The
starting learning rate is set to 0.0001 and governed by the Adam optimizer[17].

In order to avoid having high variance in the weight updates, we feed the network with a fixed
number of samples at each iteration and update them using the loss of all of them. We have
set this number of samples, called batch size, to the maximum one that fits in the GPU RAM.
This decision must also take into account the space for all the feature maps generated in each
forward pass, as well as its weights. This way, this model uses a batch size of 128. The total
training time of this model is approximately of 2 days (about 1.2 hours per epoch).

3.4 Towards Improving the Baseline Model

3.4.1 Language-only model

One of our biggest concerns about our model is using of the visual features and to avoid
learning just biases from the language and the dataset. In order to be able to determine whether
our models are using image features or not, we have built a model which uses just the questions
as input, omitting completely the image features.

Figure 3.3: Language-only model to capture how many language biases the network learns

This model uses GloVe word embeddings [18], which we proved that work better for our VQA
model than learnable word embeddings (see Section 3.4.2.3 and Chapter 4 for more details). The
architecture follows the same proposed single LSTM layer to predict the most probable answer
over the 10,000 words in the vocabulary.

3.4.2 VGG-16 based model

This approach consists on replacing the KCNN used in [6] with another more common CNN
with high success in Visual Recognition tasks. We adopted the VGG-16 [19] model, which
obtained the first and the second places in the localization and classification tasks respectively
of the ImageNet ILSVRC-2014 Challenge [20].
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3.4.2.1 Model Architecture

This model uses a truncated VGG-16 to obtain image features, meaning that we have removed
the last fully connected layers and we just keep the convolutional layers. In particular, we remove
all the VGG layers from the fc-4096 to the softmax layer. This causes that the image features
extracted will not be a single vector as in the baseline model, but instead a 7x7x512 tensor.
For this reason, we add a Flatten layer to reshape this features into a one dimensional vector
(1x25088) that will be later projected to the dimension of the textual representation.

With this method we have also changed the way to obtain the multimodal representation,
switching from an element-wise sum to an element-wise product, as this method obtains better
performance according to [1].

Figure 3.4: VGG based model diagram joining visual and textual representations through element-
wise product

3.4.2.2 Attempting to Fine-Tune VGG-16

One of the obvious ways to exploit image information is to fine-tune the visual branch with
the dataset we are using. That is, updating the weights of the CNN to adapt them to the
different images in the VQA 2.0 dataset. When fine-tuning a network, one can update all
parameters or freeze some layers, updating just weights of certain parts. However, fine-tuning
the image branch has huge effects on the resources needed, making the training time to increase
disproportionately, as the learning process takes 17 hours per epoch, resulting in 28 days of
training to obtain acceptable weights. This make unfeasible to train this branch in the time span
of this bachelor’s thesis.

Nevertheless, one common cause of poor performance is misusing GPUs, or essentially “starv-
ing” them of data by not setting up an efficient data pipeline. In order to avoid this problem,
we reorganized the data pipeline, saving all of it in the hard disk instead of the RAM. Doing so,
however, we move the bottleneck to the CPU, as it will require more time to load the data while
generating every batch. This is why we used a multi-threading system, in which each worker
generates a batch, and a queue with a double size of the batch to store the data, optimizing the
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memory handling. This allowed us to increase the training speed a 35.29 %, from 17 hours per
epoch to 11 hours.

Even with this gain in performance, the training time was still too long, as it would require 18
days to fine-tune the VGG model. Therefore, no fine-tuning was considered in this thesis, taking
all the CNN’s weights from pre-trained models on ImageNet dataset[9]. Doing so, we decrease
the training time to approximately 3 hours per epoch (5 days of training).

3.4.2.3 Moving to GloVe embeddings

Figure 3.5: VGG based model using GloVe embeddings

Another improvement with respect to [6] was to using better word embeddings than the ones
that can be learned using the backpropagation algorithm. We adopted the popular Global Vectors
Word Representations (GloVe), proposed by Jeffrey Pennington et al. [18], which produces a
matrix space with semantic meaning and has been proved to have good performances in word
analogy tasks.

This embedding matrix contains 400,000 different words and their representation in 4 different
dimensions (50, 100, 200 and 300), though we have used the 100-dimensional ones. In order
to add those embeddings into our model, we have kept just the 10,000 words we are using and
sorted the matrix fixing the same word order used in the dictionary. We also needed to add a
zero vector at the first position due to the zero-padding in the question tokenization.

3.4.2.4 Batch Normalization and Average Pooling

As stated in 3.2.1, a normalization step is required as a preprocessing step to make data
comparable across features. However, as data flows through a deep network, the weights and
parameters adjust their values, sometimes making the data too big or too small again, a problem
commonly named internal covariate shift. This difference in the range of values can provoke our
training process to have difficulties to converge, as some features would provide more information
to the network to others.
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Under the assumption of not being exploding image features, we use Batch Normalization
[21] to adapt their values, adding this layer before flattening the VGG image features extracted.
As we are normalizing the visual features, we also want to do it with the textual representation
in order to have similar range values for both vectors. Nonetheless, normalizing both branches
or just one of them caused the network to overfit (Chapter 4), making us to consider other
options. We hypothesized that the fully connected layer was causing this, as we were projecting
a vector from 25,088 dimension to a 256, being possible this transformation to be too specific to
generalize to new images. In order to have a reduced image feature vector, we tried to make an
Average Pooling in two different ways: one first attempt calculating the mean of each row in the
feature map, moving from a tensor of shape 7x7x512 to 1x7x512, and another making the same
operation taking filters of 7x7, which results in a tensor of shape 1x1x512 (Fig. 3.6). However,
the model still overfitted.

Figure 3.6: VGG based model using Batch Normalization and Average Pooling

In order to avoid this overfitting, we attempted several methods without success. Firstly, we
tried adding dropouts [22] into the recurrent layers to constraint the learning in the textual part.
Next, we tested with another kind of regularization, named ”L2”, which penalizes high variance
features - adding this regularization increased the training time to 4.8 hours per epoch -, and
tried reducing the learning rate from 10-4 to 10-5

3.4.3 ResNet based Model

As we were having problems with overfitting using VGG features, and the training time was
not negligible, we decided to move to another CNN which performs better for image classification
tasks, as it was the winning entry in the ILSVRC 2015 ImageNet Challenge[20]. Deep Residual
Networks (ResNet-50) [23]. Apart from performing better in those tasks, the visual features
extracted have a much lower dimension - they are a vector of 2048 length for each image -,
which makes us reduce the training time substantially (about 1 hour and 15 minutes per epoch,
resulting in 2 days of training), as less parameters must be learned in the projection of the image
representation to the semantic space.
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3.4.3.1 Element-wise product merging

ResNet-50 authors ”explicitly reformulated the layers as learning residual functions with refer-
ence to the layer inputs, instead of learning unreferenced functions”. This is done through identity
blocks, which have three convolutional layers and at the end combine the resulting features with
the input tensor through an element-wise sum. Each of these blocks uses Batch Normalization to
adjust the range of values of the features generated, causing the features extracted for this model
to have similar range of values (the mean of all the features is 0.5 and the variance 0.59), reason
why no Batch Normalization have been added to the image branch. On the other hand, we have
kept this layer into the textual branch after the recurrent layer to have both representations in
the same range of values.

Figure 3.7: ResNet-50 based Model merging visual and textual representations using an element-
wise product

As the network was overfitting with the Batch Normalization in both branches, we made two
different tests: (1) adding a dropout to constraint the learning in the projection of the visual
features to the semantic space and (2) adding a dropout after merging the textual and the visual
representation.

3.4.3.2 Element-wise sum merging

The main reason why we moved from merging both representations using an element-wise
sum to an element-wise product was because of the results shown by [1]. However, the best
way of combining the representation may depend on the network and the hyperparameters used,
being possible for a network to perform better obtaining the multimodal vector using a different
technique from the element-wise product(Figure 3.8).

Therefore, we moved back to the element-wise sum, which seemed to be more intuitive
mathematically (Figure 3.8 ), to compare between both methods of merging representations for
our model. We kept the dropout layer after merging both representations as it was the most
successful test of the previous section.
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Figure 3.8: Vectorized representation of the merge operation using element-wise sum

Figure 3.9: ResNet-50 based Model merging visual and textual representations using element-wise
sum

3.4.3.3 Concatenation merging

As explained in Section 3.4.2.4, one of our concerns was the difference of dimensionality
between the textual and the visual representations. All our experiments had taken the image
features and projected them to the semantic space, reducing the dimensionality of them. In the
case of the ResNet based model, moving from a 2048 dimensional vector to a 256 one, to later
project again the merged vector to a 10,000 dimensional to predict the answer.

In order to avoid this abrupt changes in dimensionality, we can expand the dimension of
the textual representation, for example using a stack of two LSTM’s and concatenating their
outputs like in [1] or simply by adding more hidden units, but this would also lead to an increase
in training time. Instead, we omitted the projection of the image features to the semantic
space and concatenate both representations (of size 2048 and 256 for image and textual features
respectively). This way, the merged vector will have a dimensionality of 2304. The learning of the
relations between the features of this multimodal vector were been tested in two different ways:
(1) feeding directly the concatenated vector to the predictor layer and (2) adding an intermediate
Fully Connected layer to work with a learnable multimodal vector.
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Figure 3.10: ResNet-50 based Model merging visual and textual representations using concate-
nation + FC
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Chapter 4

Results

This chapter presents the results obtained with the different models explained in Chapter 3
to try to improve the baseline system described in Section 3.3.

4.1 Computational requirements

Experiments have been run with the computational resources available at the Image Processing
Group of the Universitat Politecnica de Catalunya. When dealing with deep learning projects,
one of the main concerns is the computation resources you have, as you are often working with
hundreds of thousands or millions of data. This is why GPI has a cluster of servers which is
shared between all the research group and in which we can run very long experiments. For each
experiment we must ask for the resources needed (number of GPU’s/CPU’s, reserve RAM) and
is sent to a queue of processes. As soon as there is enough resources as you demanded, your
process start running. Notice that as TFG student it is just possible to reserve a NVidia Titan X
GPU with 12GB of RAM 1 and run just one single process using it.

4.2 Dataset

Before describing how a VQA model is evaluated and the results obtained, it is worthwhile to
summarize the explained in Section 3.1 about VQA 2.0 Dataset:

• Training split: 82,783 images, 443,757 questions and 4,437,570 answers

• Validation split: 40,504 images, 214,354 questions and 2,143,540 answers.

• Test split: 81,434 images and 447,793 questions.

There is also a smaller dataset split called test-dev, which has 107,394 questions associated
to any of the images from the test split. This smaller set is used to test the different models, as
there is a limit of 5 submissions for the whole test dataset.

4.3 Evaluation metric and EvalAI

All the different models have been tested using the evaluation metric proposed by the organiz-
ers of the challenge which, according to them, ”is robust to inter-human variability in phrasing
the answers”. This metric responds to the following equation:

1http://www.geforce.com/hardware/desktop-gpus/geforce-gtx-titan-x/specifications
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Acc(ans) = min(
#humans said ans

3
, 1) (4.1)

The overall accuracy is calculated by an average of the accuracies of all the answers to the
test questions. Equation 4.1 means that an answer is given the maximum accuracy if at least
three human annotators gave that answer for that question, while if the answer has no matches
with the ground truth annotations it is given an accuracy of 0%. From this, each match implies
an increase of 33% in accuracy. Notice that there are a total of 10 ground truth annotations for
each question.

In order to calculate the overall accuracy you must submit a results JSON file which must
follow the format established by the organizers. Before evaluating your submission file, their
script makes some processing to the predicted answers like replacing upper case characters to
lower case, adding apostrophes in contractions that are missing, removing determinants...

Furthermore, they have made use of a new platform to hold the challenge, named EvalAI.
EvalAI is an open-source web platform that aims to help researchers, students and data scientists
create, collaborate and participate in AI challenges.

They have divided the submissions into three different categories: Real test-dev2017, Real
test2017 and Real Challenge test2017. The Real test-dev2017 is to test your different models
with the test-dev split and has no limits in submissions, and the submissions done in this category
are not considered to be participating in the VQA Challenge. On the other hand, we have the
Real test2017 and Real Challenge test2017, whose submissions imply participate to the Challenge
as you are using the test split. The main difference between these two categories is that for the
first one your results will be shown to the community while for the second one your results remain
invisible until the challenge deadline.

4.4 Experimentation

When working with Deep Learning projects we analyze the results using training and, more
important, validation loss, computing those values at each epoch. If everything goes as expected,
both the training and the validation losses should decrease epoch per epoch. Once the validation
loss starts increasing or converges, we can stop training our model. In Section 4.4.1 we show and
analyze the different curves obtained for some experiments. Notice that due to the singularity of
the evaluation metric this curves just gives us an intuition of how is the network doing, but does
not provide accurate information about the future results in the testing. Due to time constraints,
we have forced the training to stop when there is no validation loss improvement in six consecutive
epochs.

In Section 4.4.2 we show the results obtained in the test-dev split for the selected models and
in 4.4.3 we expose some qualitative examples obtained from our best model.

We have trained all our models using triplets of image-question-answer except from the
Language-Only model, in which we have used pairs of question-answer.
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4.4.1 Experiment Analysis

In this section we will revise the training and validation loss curves for some different experi-
ments we made:

• Decide which word embedding to use:

One of the first experiments we decided to do was to choose between using a learnable word
embedding layer or GloVe embeddings (Section 3.4.2.3). In order to do it we trained twice
the model presented in Figure 3.5, one time using pre-computed GloVe and one other time
training from scratch this layer. We can see in Figure 4.1 how using GloVe embeddings
seem to work better, as the validation loss in lower.

• Test how much language biases is the network learning:

Making use of the Language-Only model (Figure 3.3 ) we pretended to know how many
biases are learned just from the language model. We present the losses obtained in Figure
4.2 , and see how the validation loss ends up higher for that model than for the tested
in the previous experiment, indicating that the network is actually using image features to
make predictions.

Figure 4.1: Training and validation losses using GloVe (blue) and a learnable embedding layer
(orange).

Figure 4.2: Language-Only model freezing Glove(orange) and fine-tuning it (blue).
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• Usage of Average Pooling in image branch

One of our hypothesis was that projecting a big vector to a much lower dimensional space
could lead to bad generalization. In order to know if that statement was right, we tested
the VGG based model using an Average Pooling of 7x7 (Figure 3.6 without the Batch
Normalization layer) and another one without using it (Figure 3.5 ). The validation curves
showed us that using this pooling does not help with the training, probably because we are
getting rid of spatial information. This must be also the reason why when using ResNet
features, which are averaged pooled, we obtain higher loss than with VGG features (compare
validation loss values from Figure 4.3 and 4.4).

• Selection the merge operand

One of the main issues we have to deal with when working with a VQA system is how to
combine visual and textual information. We have tested the ResNet based model using
three different merge operation methods and four experiments: element-wise product,
element-wise sum and concatenation with an intermediate Fully Connected (FC) layer and
without it (Figures 3.7, 3.9 , 3.10 and 3.10 without the FC after the merge operation
respectively). In Figure 4.4 we can see the curves, and how the element-wise sum is the
one which obtains lower validation loss.

As we obtained better curves using the element-wise sum, we tested this join operation
method also with the VGG based model using GloVe word embeddings (Figure 3.5 ) to
compare the results in that network, although because of technical issues it was not possible
to finish the training. However, in Figure 4.5 we see how using the sum operand was working
worse.

Figure 4.3: VGG based model from Figure 3.4 (blue) and from Figure 3.6 without the Batch
Normalization layers (orange) to know the effect of Average Pooling.

• Addition of decay in learning rate:

As we can see in Figure 4.4, the validation loss for the element-wise sum (purple curve)
converge really quickly while the training loss remains decreasing. This can be a sign that
we are doing ”too big steps” when looking for the validation loss minimum. A way to
deal with this behavior is to add a decay in the learning rate when it starts being in this
situation, so that the learning rate value decreases and the ”steps” are smaller. As we see
in Figure 4.6, at the 20th epoch approximately this decay happened and the network was
able to find a lower minimum.

• Fine-Tuning GloVe word embeddings:

As we obtained better results using GloVe embeddings, we decided to try also initializing
the word embedding layer with them but fine-tuning it, under the assumption that training
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Figure 4.4: Training and validation losses for the ResNet model using element-wise product
(purple), element-wise sum (dark blue), concatenation + FC (light blue) and concatenation
(orange) methods.

Figure 4.5: VGG based model with GloVe embeddings using element-wise product (orange) and
element-wise sum (blue) merge operands

Figure 4.6: ResNet based model using element-wise sum with learning rate decay (blue) and
without (orange)

the embedding layer could detect useful biases from the language (e.g., every time a
question starts with ”How many...?” the model could detect that the answer must be a
number). This can’t be done freezing the GloVe embeddings as they have not been trained
using a question-answering dataset. However, this did not suppose any improvement in
performance.
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• Adding Batch Normalization after joining visual and textual representations:

The usage of Batch Normalization in all our models had provoked them to overfit. At last
moment, we decided to make one more test using the ResNet model with element-wise
sum and learning rate decay, but adding a Batch Normalization layer between the merge
operation and the prediction block to ensure the whole batch is in the same range of values.
Besides of obtaining better results for the validation loss (Figure 4.7), the training time
decreases to less than an hour per epoch, confirming what it is stated in [21]. We had no
time to compute its accuracy nor to test it with the VGG based model, but we expect it
to improve the performance of our system.

Figure 4.7: ResNet based model using element-wise sum with learning rate decay (blue) and
adding a Batch Normalization after joining visual and textual representations (orange)

4.4.2 Quantitative Results

After having an intuitive idea of how our models are working using the validation curves, we
have generated the predictions for the test-dev split dataset and evaluated them in EvalAI. The
results obtained are shown in Table 4.1.

Model Yes/No Number Other Overall
Baseline (KCNN) (Figure 3.2) 66.05 29.77 20.35 40.25
Language-Only (Figure 3.3) 66.15 31.17 24.87 42.59
Language-Only + Fine-Tune GloVe (Figure 3.3) 66.14 30.42 24.47 42.31
VGG + elem-wise product (Figure 3.4) 66.59 31.01 25.83 43.21
VGG + GloVe + elem-wise product (Figure 3.5) 67.10 31.54 25.46 43.30
ResNet + elem-wise product (Experiment 1 Figure 3.7) 64.97 30.22 22.31 40.78
ResNet + elem-wise product (Experiment 2 Figure 3.7) 65.51 29.99 22.02 40.84
ResNet + elem-wise sum (Figure 3.9) 65.57 30.20 22.80 41.26
ResNet + elem-wise sum + LR decay (Figure 3.9 65.90 30.00 22.80 41.37
ResNet + concat + FC (Figure 3.10) 64.66 29.49 21.27 40.08

Table 4.1: Results for different models in the test-dev split

The most remarkable conclusion obtained from the results is that the models tested learn
mostly from language biases, as the Language-Only model obtains a 42.59 % of accuracy,
while the VGG-based with GloVe and element-wise product, which has been the most successful
method, obtains a 43.30%.
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Another point to highlight is the bad performance of omitting the spatial information, as the
features obtained from both KCNN and ResNet have sizes of 1024 and 2048 respectively and got
the worst accuracies -even worse than the language-only model-, while the obtained from VGG,
our best model, have a size of 7x7x512. Looking at the results, it is clear that using average
pooling before joining image and textual representation does not work for our task. That does
not mean that VGG is the optimum CNN to use, probably we would have got better results
extracting features from a previous layer of ResNet with spatial information.

Furthermore, we can see how using GloVe or a learnable word embedding layer has a tiny
impact, performing a 0.09% better the first ones. Looking at the validation curves we may
think that this difference is too low, but as the singularities of the evaluation metric can provoke
”wrong” answers to obtain higher accuracies than 0% (look at Figure 4.9 for some examples).
However, we see how fine-tuning this layer does not suppose any benefit.

The same could be said about setting a decay for the learning rate (mentioned as LR at table
4.1), which in the case of the ResNet based model performed a 0.11% better. No decay was
applied to the VGG based model because the validation loss decreased epoch by epoch.

The method in Figure 3.5 was the one presented to the VQA Challenge and obtained a 43’48%
of overall accuracy in the test split, a 31.38% in the number category, a 25.81% in the other
and a 66.97% in the yes/no.

4.4.3 Qualitative Results

In this section we will present some qualitative results for our best model, obtained from the
validation split as we don’t have available the test questions’ ground truth answers. We have
also calculated the associated accuracy for all these examples, according to Equation 4.1.

As we can see in the different samples from Figure 4.9, the conceptual range of the questions
in VQA 2.0. Dataset is huge, forcing the model to perform tasks such us object recognition,
sentiment analysis, activity detection, attribute identification, etc.

From these examples we can try to extract some conclusions about the dataset and the
models we have tested. For instance, in the upper left example of Figure 4.9 we see how the
model answers the object it recognizes. We could think that the joining operation of the question
and the image representations is not working correctly, at least for this sample, as it seems to
be answering what would predict the ResNet model for an object recognition task. Nevertheless,
when giving as input the question ”What are the people in the background doing?” for the
same image, it answers correctly that they are ”watching”. The closeness in semantic meaning
between words like looking and watching can also make us think that are the language biases
which are being exploded, assuming that when someone makes a question related to this action
(look, watch or similar) they expect the answer to be the main character of the scene. And the
same could be happening in the middle bottom example of Figure 4.9, as animals lay down most
frequently when they are tired and they want to rest.

In order to analyze this with more detail we have compared some complementary samples,
which are images with the same question associated but with different answer for it (Section 3.1).
From the examples shown in Figure 4.8 we see how our model struggles with those questions
which require more comprehension from the image, like the upper left example, in which we must
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relate the object we detect with an attribute (being acidic or not).

Figure 4.8: Predictions from random complementary samples
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Figure 4.9: Results obtained from random samples using Equation 4.1
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Chapter 5

Budget

This thesis has been developed without any aim to create any kind of product to be sold,
so there will not be any analysis on this matters. As we have used the resources available at
the Image Processing Group (GPI) at UPC there has been no real cost for the hardware needed.
However, we can make an approximation about the cost we would have had if those resources
were not provided by the research group looking at the prices offered by Amazon Web Services
(AWS) at their cloud computing service.

The resources used for this project are a GPU with 12GB of RAM and about 40GB of regular
RAM (Section 4.1). Taking this under consideration, the most similar EC2 instance on AWS to
the resources used is the p2.xlarge, which gives us a GPU with 12 GB of RAM and a CPU with
61GB of RAM, having a cost of 0’9 $ per hour, which is equivalent to 21.60 $ per day. As we
have used those resources about 100 days approximately, the cost ascends to 2160.00 $, which is
equivalent to approximately 1940e (currency exchange rate at 20/06/2017, when 1e= 1’11 $).

Apart from this, the only other cost that may be considered is the wage of the engineers
working on the project, as all the software used is open-source and don’t suppose any cost. The
salary costs, considering that the length of the project has been of 24 weeks (Section 1.4.2),
amounts to 18000e (Table 5.1).

Therefore, we can estimate that the total cost of this project would be 19940e.

Wage/hour Work Time Total

Junior engineer 10 e/h 30 h/week 7200 e

Senior engineer 50 e/h 3 h/week 3600 e

Senior engineer 50 e/h 3 h/week 3600 e

Senior engineer 50 e/h 3 h/week 3600 e

Total 18000 e

Table 5.1: Wages of the project participants
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Chapter 6

Conclusions

When starting this project our main goal was to explore different deep learning ideas in order
to improve UPC’s last year submission to the VQA Challenge. Derived from this, we wanted also
to present our results to the second edition of that challenge. Moreover, we wanted to build a
software using best practices in order to make it reusable for future work.

Regarding the first objective we can say we have accomplished it, as we have improved last
year model’s performance in the current dataset by 3.05%. However, this improve is not huge,
fact that remarks the need of working with bigger visual feature maps and/or fine-tuning the
image branch, which was impossible for us due to computation constraints. We presented our
model to the VQA Challenge and obtained a 43.48 % of accuracy, although at writing time the
challenge is still active.

After looking at the results obtained by our model and comparing with last year winers of the
challenge, model that obtains a 62.27% of accuracy in the current dataset (Section 2.1), it also
seems obvious the need of adding attention to the model. This task remains to be done in the
near future. Besides, we are also planning to add a better language model, as LSTM’s are good
just learning sequences. Instead, combining CNN’s and LSTM’s in the question branch we could
create a more semantic-syntactic aware textual feature extractor.

Nonetheless, the latest research that has recently emerged about Visual Reasoning has at-
tracted a lot of our attention. At the very beginning of the thesis, Facebook AI Research 1,
together with Stanford University, announced a new Visual Question-Answering dataset, named
CLEVR [24], which tests a range of visual reasoning abilities. We pretended to test our model
in that dataset, but they did not release it until the end of the thesis.

The usage of modular networks, like in [15] or [2], implements much more accurately the
reasoning steps that humans do when we are asked about an image. This is why, with the aim to
create models able to reason, we want to try this new way of designing VQA systems and start
working with CLEVR dataset.

1https://research.fb.com/category/facebook-ai-research-fair/
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