

KEYFRAME-BASED VIDEO SUMMARIZATION DESIGNER

A Degree Thesis

Submitted to the Faculty of the

Escola Tècnica d'Enginyeria de Telecomunicació de

Barcelona

Universitat Politècnica de Catalunya

by

Carlos Ramos Caballero

In partial fulfilment

of the requirements for the degree in

AUDIOVISUAL SYSTEMS ENGINEERING

Advisors: Horst Eidenberger and Xavier Giró I Nieto

Barcelona, July 2015

 1

Abstract

This Final Degree Work extends two previous projects and consists in carrying out an

improvement of the video keyframe extraction module from one of them called Designer

Master, by integrating the algorithms that were developed in the other, Object Maps.

Firstly the proposed solution is explained, which consists in a shot detection method,

where the input video is sampled uniformly and afterwards, cumulative pixel-to-pixel

difference is applied and a classifier decides which frames are keyframes or not.

Last, to validate our approach we conducted a user study in which both applications were

compared. Users were asked to complete a survey regarding to different summaries

created by means of the original application and with the one developed in this project.

The results obtained were analyzed and they showed that the improvement done in the

keyframes extraction module improves slightly the application performance and the

quality of the generated summaries.

 2

Resum

Aquest Treball Final de Grau és una extensió de dos projectes previs i consisteix en la

millora del mòdul d’extracció de keyframes d’un d’ells anomenat Designer Master,

mitjançant la integració d’algoritmes desenvolupats en l’altre, Object Maps.

En primer lloc s’explica la solució proposada, la qual consisteix en un mètode basat en la

detecció d’escena o shot. Primerament el vídeo és mostrejat uniformement, seguidament

s’aplica el mètode de diferència acumulada pixel-to-pixel i finalment un decisor decideix

quins frames són o no keyframe.

Per últim, s’analitzen les puntuacions obtingudes per diversos usuaris en el procés

d’avaluació, als quals se’ls hi ha presentat diferents resums creats amb l’aplicació

original i amb la desenvolupada en aquest projecte. Els resultats mostren que la millora

introduïda en el mòdul d’extracció millora lleugerament el rendiment de l’aplicació i la

qualitat dels resums que es poden generar.

 3

Resumen

Este Trabajo Final de Grado es una extensión de dos proyectos previos y consiste en la

mejora del módulo de extracción de keyframes de uno de ellos, cuyo nombre es

Designer Master, mediante la integración de algoritmos desarrollados en el otro, llamado

Object Maps.

En primer lugar se explica la solución propuesta, la cual consiste en un método basado

en la detección de escena o shot. Primeramente el video es muestreado uniformemente,

acto seguido se aplica el método de diferencia acumulada pixel-to-pixel y finalmente un

decisor se encarga de decidir qué frames son o no keyframe.

Por último, se analizan las puntuaciones obtenidas por diversos usuarios en el proceso

de avaluación, a quién se les ha presentado varios resúmenes creados con la aplicación

original y con la desarrollada en este proyecto. Los resultados muestran que la mejora

introducida en el módulo de extracción mejora ligeramente el rendimiento de la

aplicación y la calidad de los resúmenes que se pueden generar.

 4

This thesis is dedicated to my parents and grandparents. For their endless love, support

and constant encouragement I have got over the years.

 5

Acknowledgements

First, I would like to thank my project advisors, Professor Horst Eidenberger, for hosting

me at Vienna University of Technology and Professor Xavier Giró i Nieto for all the

support and encouragement he gave me during my thesis. Their advices and comments

helped me a lot in the development and writing of the thesis.

I would also like to thank Andreas Waltenberger and Manuel Martos for meeting me at

the beginning of this project when I was absolutely lost and stuck. All your help and

feedback have been absolutely invaluable for me.

To all my friends and colleges, thank you for your understanding and encouragement in

my many, many moments of crisis. Your friendship makes my life a wonderful experience.

I cannot list all the names here, but you are always on my mind.

To my girlfriend, for all the support, patience and love. Thank you so much for being there

every single day throughout my staying in Wien.

Finally, I would also like to thank my family for all of their support and inspiration over the

years. Suffice to say, without them, none of this would have been possible.

This thesis is only the beginning of my journey.

 6

Revision history and approval record

Revision Date Purpose

0 24/06/2015 Document creation

1 08/07/2015 Document revision

2 10/07/2015 Document approval

DOCUMENT DISTRIBUTION LIST

 Name e-mail

 Carlos Ramos Caballero carlosart_74@hotmail.com

 Horst Eidenberger eidenberger@tuwien.ac.at

 Xavier Giró I Nieto xavier.giro@upc.edu

Written by: Reviewed and approved by:

Date 24/06/2015 Date 10/07/2015

Name Carlos Ramos Caballero Name Xavier Giró i Nieto

Position Project Author Position Project Supervisor

 7

Table of contents

Abstract .. 1

Resum .. 2

Resumen .. 3

Acknowledgements .. 5

Revision history and approval record .. 6

Table of contents .. 7

List of Figures ... 9

List of Tables .. 10

1. Introduction .. 11

1.1. Goals of the thesis .. 12

1.2. Motivation ... 12

1.3. Requirements and specifications .. 13

1.3.1. Work packages .. 14

1.3.2. Incidences and deviations ... 14

1.3.3. Time plan (Gantt diagram) ... 15

2. State of the art of the technology applied in this thesis .. 16

2.1. Definitions .. 16

2.1.1. Moving-image skimming .. 16

2.1.2. Static summaries ... 16

2.2. Color Models .. 17

2.2.1. RGB color model ... 17

2.2.2. CMY color model ... 18

2.2.3. YIQ color model ... 18

2.2.4. YUV color model ... 18

2.3. Shot segmentation .. 19

2.3.1. Software Initiative Studies at UCSD .. 21

2.3.2. Course Project of Binshtok and Greenshpan at BGU 21

3. Methodology / project development: .. 24

3.1. Implemented solution ... 24

3.1.1. Overview ... 24

3.1.2. Uniform Sampling .. 25

3.1.3. Gray scale domain... 26

3.1.4. Difference computation .. 27

 8

3.1.5. Normalization .. 27

3.1.6. Decision making .. 28

3.2. Environment ... 28

3.3. The application: Designer Master ... 29

4. Results .. 36

4.1. Method ... 36

4.2. Participants... 37

4.3. Test data .. 37

4.4. Execution time .. 38

4.5. Procedure ... 39

4.6. Data analysis .. 43

5. Budget ... 46

6. Conclusions ... 47

Bibliography .. 49

Appendices ... 51

 9

List of Figures

Figure 1. One-image video summary after drag and dropping images in tiles. 11

Figure 2.- Gantt Diagram .. 15

Figure 3.- RGB graph of the primary colors. ... 17

Figure 4.- RGB primary color cube. .. 17

Figure 5.- Shot boundary detection example [2]. ... 19

Figure 6.- Implemented solution architecture. .. 24

Figure 7.- Example of color model transformation from RGB to YIQ 26

Figure 8.- Decision model consisting of a one-level decision tree. 27

Figure 9.- Main window of the user interface. ... 29

Figure 10.- Pop up window with the available templates. .. 30

Figure 11.- Automatic keyframe extraction after opening the video. 32

Figure 12.- Keyframe extraction progress bar and cancellation button “X”. 32

Figure 13.- One-picture video summary after drag and drop the keyframes manually. 32

Figure 14.- Example of available actions to the images in tiles.. 33

Figure 15.- Edit tab allows the user to change templates’ color and enlarge them 33

Figure 16.- Example of scaled image to half of its original size 34

Figure 17.- Final summary crated with Designer Master ... 34

Figure 18.- Evaluation survey of the application test. .. 38

Figure 19.- Web-based evaluation survey shared on Facebook social network. 40

Figure 20.- Content quality of the created images rating. .. 42

Figure 21.- Results of the summary rates used to compute the MOS. 43

Figure 22.- The Intouchables trailer recognition rate. .. 43

Figure 23.- Ease-of-use rating .. 44

Figure 24.- Image created by participant 1 with Designer Master v1. 44

Figure 25.- Image created by participant 1 with Designer Master v2. 44

Figure 26.- Image created by participant 1 with Designer Master v1. 44

Figure 27.- Image created by participant 1 with Designer Master v2. 44

Figure 28.- Image created by participant 1 with Designer Master v1. 44

Figure 29.- Image created by participant 1 with Designer Master v2. 44

Figure 30.- Image created by participant 1 with Designer Master v1. 44

Figure 31.- Image created by participant 1 with Designer Master v2. 44

Figure 32.- Image created by participant 1 with Designer Master v1. 44

Figure 33.- Image created by participant 1 with Designer Master v2. 44

 10

List of Tables

Table 1.- Videos used in the user study. ... 37

Table 2.- Designer Master v1 & Designer Master v2 processing time comparison. 38

Table 3.- Personnel cost. .. 46

Table 4.- Open source means no cost. ... 46

Table 5.- Total cost of the project. ... 46

 11

1. Introduction

Digital video has become an emerging force in current computer and telecommunication

industries for its large mass of data. This fact involves a lot of data that many times users

do not have time to review. Therefore, it is important to find a method able to efficiently

summarize this large amount of data. For this purpose, the most widespread proposal is

the extraction of keyframes. Video keyframes provide a concise access to the video

content. It maps an entire video segment to a small collection of representative images.

The extraction of keyframes should be automatic and content based so that they could

maintain the salient content of the video while avoiding the redundancy.

On the other hand, images are usually represented by thumbnails for a faster image

browsing. In addition, new portable devices, such as smartphones or tablets, increase the

accessibility and production of videos through social networks and user-generated

content sites. The most common way to access video search results is by making use of

textual metadata but it is not always the best option to summarize a video. Shared

content requires efficient retrieval technologies to access the content properly in a fast

and intuitive way.

This thesis addresses the problem of video content summarization using Shot-based

methods to extract the keyframes, analyzing the video and helping users to understand a

video content item in a fast and visual way.

Figure 1. One-image video summary after drag and dropping images in tiles.

 12

1.1. Goals of the thesis

This thesis is an extension and adaptation of the previous work carried out by two

students, supervised by the professor H. Eidenberger and performed in the framework of

the department research.

The purpose of this project is to improve Designer Master, an existing Java desktop

application which was implemented by the student Andreas Waltenberger [1]. This

improvement has to be done by using the tools developed by Manuel Martos [2] in his

final thesis in order to perform a more accurate summary than the existent one.

The project main goals are:

 Improving the keyframe extraction block in the existing tool.

 Assessing the improvement according to a scientific methodology.

1.2. Motivation

This project starts when Professor Xavier Giró from the Image Processing Group at the

UPC (Universitat Politècnica de Catalunya) put me in contact with Professor Horst

Eidenberger from the Interactive Media Systems Group at the TUW (Technische

Universität Wien) in order to perform my bachelor thesis.

Professor Eidenberger was the advisor of Manuel Martos and Andreas Waltenberger’s

thesis. Manuel developed a system for automatic video summarization which made use

of shot boundary detection algorithms required to reduce time redundancy of the video

and different detectors to extract relevant objects from each keyframe. Otherwise,

Andreas developed a keyframe-based video summarization interface that allows the user

to design a customized one-picture video summary from extracted keyframes by drag

and dropping arrangement in tiles. Keyframe extraction is made uniformly and therefore,

the images are extracted without taking into account if they represent well an event, shot

or a given video sequence.

Hence, professor Eidenberger proposed to carry out an integration of both projects,

improving the keyframe extraction block of the Andreas’ application.

 13

1.3. Requirements and specifications

Project requirements:

- Development of semantic-aware keyframe extraction algorithms for our application.

- Replacement of the uniform keyframe extraction block of the current UI by integrating

 Manuel Martos’ algorithms.

- The extraction block must work well for videos as generic as possible.

- Comparisons with other state of the art solutions.

Project specifications:

- The current UI, Keyframe-Based Video Summarization Designer requires the following

software to be installed:

 Ant (Version >= 1.9.0)

 Java Development Kit (Version >= 8)

- It must be developed in Java programming language.

- Taking advantage of the OpenCV library.

- Real-time application (computational cost as low as possible).

The whole project has been developed in Java programming language for two reasons:

In the first place, Java is a general-purpose computer programming language that is

concurrent and object-oriented specifically designed to have as few implementation

dependencies as possible. It is intended to let application developers "write once, run

anywhere" (WORA), meaning that compiled Java code can run on all platforms that

support Java without the need for recompilation. In the second place, due to the previous

projects to be integrated were written in Java.

Otherwise, we used OpenCV due to it is a powerful open source computer vision library

and it was built to provide a common infrastructure for computer vision applications and

to accelerate the use of machine perception in the commercial products, which it is ideal

for real-time purposes.

https://en.wikipedia.org/wiki/Write_once,_run_anywhere
https://en.wikipedia.org/wiki/Write_once,_run_anywhere
https://en.wikipedia.org/wiki/Compiler

 14

1.3.1. Work packages

 WP1: Documentation

 WP2: State of the art

 WP3: Software

 WP4: Datasets

 WP5: Results assessment

 WP6: Oral defense

In order to analyze more in detail the work packages, we make reference to

CRamos_work_plan.pdf. This document has not been modified since it was created, thus

initial work plan can be compared with the final plan.

1.3.2. Incidences and deviations

As already mentioned in the critical review document, we had several problems

throughout the installation and execution of the state of the art software.

The first problem I had was while studying Designer Master code, I did not be able to run

the program due to there were missed libraries when I downloaded the .RAR archive

from the Interactive Multimedia Systems (Vienna University of Technology) repository. To

solve that, I downloaded another .RAR archive from the GitHub repository with the

complete package. Once I loaded the project into the IDE, there were more problems that

didn’t let the application work properly such as missed paths to libraries that we had to

add manually.

The second problem we had was while studying Manuel Martos’ thesis, this time it was

compatibility problems with Java due to the included libraries were compiled using 32bits

and objectMaps.jar application can only be executed using a 32bit JRE. Once all the

programs were installed and working properly, it was needed a learning process about

how to program with Java and how to make use of the OpenCV libraries as well as how

Designer Master and Object Maps’ code works. This process took me a bit longer than

expected and as a consequence, some tasks were delayed.

Another source of delaying was while acquiring the databases we will use to test the

application. It was difficult to download them from Windows, so I had to install a Linux

virtual machine in my computer to be able to get them and copy them back to Windows.

 15

1.3.3. Time plan (Gantt diagram)

Figure 2.- Gantt Diagram

 16

2. State of the art of the technology applied in this thesis

In this chapter, we describe the video summarization techniques employed today to

achieve new levels of understanding. The main goal of this project is to improve the

keyframe extraction block of the current application, Designer Master. Thus, the first

section is an explanation of the existing types of video summarization techniques. In

section 2.2 we review some color image models. Finally in section 2.3, we explain the

technologies involved in the process and discuss several temporal segmentation

methods.

2.1. Definitions

A video summary can basically take two forms: static image summary and moving-image

skimming. Video summarization aims to allow users to access video content easily,

providing concise video summaries. This field has received more attention in recent years

due to new utilities such as social networks or portable devices.

2.1.1. Moving-image skimming

The moving-image skimming, also known as dynamic video skim, consists of a collection

of video clips, as well as the corresponding audio segments extracted from the original

sequence and is thus itself a shorter version of the original video. They can be classified

into two types: Overview and Highlight.

In the classic case of movie trailers, the user is usually unaware of the content and is

interested in a much reduced summary of the video content to decide before watching the

full versions. We call this kind of video skimming overview. For a specific domain like

news or sports, users want to see the most important events in the video (goals, news

headlines) according to their interests. This type is called highlight. Unlike overviews,

which are presented as single condensed videos, highlight-based summaries are usually

presented as an organized list of interesting events along with some associated metadata.

2.1.2. Static summaries

A static summary, also known as storyboard summary, is a small collection of salient

images or a single one extracted or generated from the underlying video source.

According to the method used to extract representative images, we can classify static

 17

video summaries into sampling-based, shot-based, motion-based, mosaic-based and

object mapping methods.

Sampling-based methods select video keyframes by random or by uniform sampling of

the input video. For shot-based methods, the source video is temporally segmented into

shots using shot boundary detection algorithms. Motion-based methods refer to the

temporal dynamics of the video by motion analysis using image pixel differences or

optical flow. When the camera motion can be detected, a mosaic image can be

constructed to represent the whole content of a dynamic shot. Finally, object mapping

aims to extract relevant objects from the source video to create a composite image.

2.2. Color Models

In this section we review the four types of accepted colour models in our shot detection

system.

2.2.1. RGB color model

The RGB color model is widely used throughout computer graphics. This model specifies

the intensity of the three primary colors: red, green, and blue on a scale of 0 to 255, with

0 (zero) indicating the minimum intensity. The three primary colors and their combination

in visible light spectrum are shown in Fig.3. With different weights, (R, G, B), their

combination can indicate different colors and they are represented by a three-

dimensional, Cartesian coordinate system as shown in Fig.4. The colors on the diagonal

line, from the origin to the coordinate (1, 1, 1) of the cube, means the grey-level values [7]

[9].

 Figure 3.- RGB graph of the primary colors. Figure 4.- RGB primary color cube.

 18

The RGB color model is the most prevalent choice for computer graphics due to color

displays use red, green and blue to create the desired color. Therefore, the choice of this

space simplifies the architecture and design of the system.

2.2.2. CMY color model

The CMY color model is based on complementary colors: cyan, magenta, yellow. This

color model can be expressed as:

[
𝐶
𝑀
𝑌

] = [
1
1
1

] − [
𝑅
𝐺
𝐵

]

(1)

Fig. 3 shows the relationship of the component color of the CMY color model. The CMY

color model is applied to the output devices, such as printers [8].

2.2.3. YIQ color model

The YIQ color model is designed to refer to the characteristics of the human’s visual

system. In the human’s visual system, people are more sensitive to the lightness

component than the hue component. So, the YIQ color model is set to separate colors

into luminance (Y) and hue (I and Q) [8] [7]. The relationship between YIQ and RGB is

expressed as:

[
𝑌
𝐼
𝑄

] = [
0.299 0.587 0.114
0.596 −0.275 −0.321
0.212 −0.523 0.311

] [
𝑅
𝐺
𝐵

]

(2)

Where Y is the luminance, I and Q indicate the weights of hue.

The advantage of the YIQ color model is that we can deal with the luminance component

independently. The YIQ color model is the standard model applied to the signal

transmission of color TV sets.

2.2.4. YUV color model

The YUV color model is also considered to be similar to human eye’s retina. The main

channel, luminance, denoted as Y channel, describes the intensity of light. Chrominance

components, called U and V, carry the color information [7] [9]. The relationship between

YUV and RGB is expressed as:

 19

[
𝑌
𝑈
𝑉

] = [
0.299 0.587 0.114

−0.147 −0.289 0.436
0.615 −0.515 −0.100

] [
𝑅
𝐺
𝐵

]

(3)

2.3. Shot segmentation

Temporal redundancy is a very important issue that needs to be solved when facing

video processing. Deleting redundant information is achieved by segmenting the video

into shots. A shot is a continuous recording of video content without breaks in a scene.

Then, keyframes may be extracted from each shot with different techniques based on

pixel-to-pixel comparison, histogram-based comparisons, motion flow vectors, etc. This

process is called Shot Boundary Detection.

Figure 5.- Shot boundary detection example [2].

Pixel-to-Pixel methods are the core methods and probably the most straightforward ones

[3]. Indeed, the first idea that comes to mind when we want to compare two images in

terms of similarity is to compare their pixels.

Histogram-based methods get better reflection of global properties of a picture, which is

their main advantage [4]. These techniques are significantly more robust against camera

and object motion. However, there are drawbacks: a shot boundary occurring in two

frames with similar histograms will be missed; also, significant luminance difference

between frames will declare false positives in shot boundary detection.

Histograms may be compared in different ways [5]. A first approach would be to calculate

the histogram of each color channel that form the image and, then, calculate the

 20

difference between the bins in each histogram of the two successive frames. Another

technique is to calculate the difference of all channels between the histograms in the two

images and take the maximum to the sums in order to detect significant changes in one

channel. Finally, a variation of the last technique is to weight the importance of each color

channel.

A method that uses Hausdorff approximation to determine the outliers is used in [5]. The

Hausdorff method performs an edge detection process of the image and compares the

location of the edge points produced by the edge detector. The method checks for each

point whether a corresponding edge exists in the successive image. If the sum of non-

correlated edges is greater than some threshold, a shot boundary is declared.

[5] also presents a combination of all the commented methods by building an ensemble

method, Neural Network (NN). The inputs are the outputs of the different methods with a

supervised learning process to easily adapt results for different type of videos.

Weaknesses of each method are compensated by the others and the NN is adapting to

any given threshold by propagating the errors to its weights.

More recent techniques include a higher-level segmentation of videos into scenes.

Rasheed and Shah [6] present a method based on a graph partitioning problem that

clusters shots into scenes constructing a graph called shot similarity graph (SSG). Each

node represents a shot and the edges between them are weighted based on their

similarity based according to color and motion information. Then, the SSG is split into

sub-graphs by applying normalized cuts representing individual scenes. They also

propose a method to describe the content of each scene by selecting a representative

keyframe.

To sum up, there exist several shot segmentation techniques:

 Simple approaches compare pixel intensity and image histogram to decide

 whether two frames belong to the same shot.

 Later approaches include edge evaluation and comparison between

 frames using Hausdorff distance.

 Learning processes using NN are also used to adapt the shot detection to

 the source video regardless of thresholds.

 Recent techniques use clustering methods to group similar frames based

 on pixel color, motion flow information, etc.

 21

In the next subsections we describe in detail the approaches that were analysed

throughout the thesis development.

2.3.1. Software Initiative Studies at UCSD

In this approach, each frame is divided into NxN regions. Then, the pixel change is

estimated for each region and pairs of frames. If the pixel change is greater than some

threshold and its cumulative sum is greater than the region threshold for the frame, then it

triggers the shot boundary detection. This technique also provides a simple frame

averaging to avoid luminance changes that could be detected as a shot boundary. This

pixel-to-pixel method combines low computational requirements with satisfactory results,

but also tends to generate some false detection, which generate an over-segmentation of

the video.

2.3.2. Course Project of Binshtok and Greenshpan at BGU

This second software kit was developed by Max Binshtok and Ohad Greenshpan [5], two

students at the Ben-Gurion University of the Negev (BGU) in Israel. The proposed

software includes four different algorithms for the shot boundary detection: a pixel-to-pixel

method, a histogram-based method, a third one based on the Haussdorf distance, and a

learning process based on NN.

There are many types of pixel comparisons used in the approach:

 Global Pixel-to-Pixel: This method sums the pixels’ intensity values over the whole

image, and compares it to the sum of the pixels’ intensity values in the second image

as shown in equation (4).

|∑ ∑ 𝐼(𝑡, 𝑖, 𝑗) − ∑ ∑ 𝐼(𝑡 + 1, 𝑖, 𝑗) 𝑌
𝑗=1

𝑋
𝑖=1 𝑌

𝑗=1
𝑋
𝑖=1 |

256 · 𝑋 · 𝑌
> 𝜏

(4)

𝐼(𝑡, 𝑖, 𝑗) represents the intensity value of pixel (𝑖, 𝑗) at time. If the difference is

bigger than some threshold (𝜏), a shot detection is declared. It is obvious that the

local differences between pixels’ intensity values are ignored.

 22

 Cumulative Pixel-to-Pixel: This method sums the differences between each pixel’s

intensity value in one image and its intensity value in the successive image. We take

into consideration local details in the images as shown in (5).

∑ ∑ |𝐼(𝑡, 𝑖, 𝑗) − 𝐼(𝑡 − 1, 𝑖, 𝑗)| 𝑌
𝑗=1

𝑋
𝑖=1

256 · 𝑋 · 𝑌
> 𝜏

(5)

The histogram-based methods compare the pixel histograms of neighboring frames to

determine the shot boundaries. They introduce robustness against camera and object

motion, but they fail at segmenting two shots whose colors are similar. Important methods

are:

 Simple histogram: This method calculates one histogram per color channel that form

the image and compute the difference between the bins in each histogram of the two

images using (6).

∑ ∑ |𝐻(𝑡, 𝑐, 𝑏) − 𝐻(𝑡 − 1, 𝑐, 𝑏)|𝐵𝑖𝑛𝑠
𝑏=0𝐶𝜖{𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠}

|𝑝𝑖𝑥𝑒𝑙𝑠| · |𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠| · 2
> 𝜏

(6)

𝐻(𝑡, 𝑐, 𝑏) represents the histogram value of the bin b in the color channel C at time t.

 Max histogram: This method calculates the differences over all channels between

histograms in the two images and takes the maximum of the sums. It can be

influenced by an intense change in one channel as shown in formula (7).

max
𝐶𝜖{𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠}

∑ |𝐻(𝑡, 𝑐, 𝑏) − 𝐻(𝑡 − 1, 𝑐, 𝑏)|𝐵𝑖𝑛𝑠
𝑏=0

|𝑝𝑖𝑥𝑒𝑙𝑠| · 2
> 𝜏

(7)

 Weighted histogram: It also takes into account the histograms’ difference in all

channels and gives each one a weight, determined by luminance proportions of the

channel, thus giving more weight to the prevalent color channel in the image as

shown in (8).

∑ ∑
𝑤𝑐

𝑤𝑚𝑒𝑎𝑛
|𝐻(𝑡, 𝑐, 𝑏) − 𝐻(𝑡 − 1, 𝑐, 𝑏)|𝐵𝑖𝑛𝑠

𝑏=0𝐶𝜖{𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠}

|𝑝𝑖𝑥𝑒𝑙𝑠| · |𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠| · 2
> 𝜏

(8)

 23

The Hausdorff method performs an edge detection process with the Sobel operator on

the images and compares the locations of these points between frames. It is a good

approximation to get the same face or object twice if there exists any smoothing or view

improvements.

Finally, Binshtok and Greenshpan's thesis states that the option that combines the three

methods using a neural network provides the best results for the typical keyframe

extraction.

 24

3. Methodology / project development:

After considering the state of the art and the requirements that our tool have to fulfill, we

specify the approach design. Furthermore, we describe the implementation of the

elements.

This chapter is structured as follows: Section 3.1 provides an explanation about the

implemented solution. In section 3.2 we explain the development environment and finally,

in section 3.3 we explain how to use the application.

3.1. Implemented solution

3.1.1. Overview

Video shot boundary detection is the first and most important step in the video processing

framework. We have to remark that our proposed solution is not exactly a shot boundary

detector but it is inspired on it. Hence, in order to achieve the specific purpose of our

application we have decided to implement a pixel to pixel method to carry out the

keyframe extraction task. Concretely, we have integrated the cumulative pixel to pixel

difference method from the software kit resulting from a course project by Max Binshtok

and Ohad Greenshpan, two students at the Ben-Gurion University of the Negev (BGU) in

Israel that it was already used in Manuel’s thesis.

The reasons why we have chosen this method are: in the first place, because it is well

known and it has been widely studied and despite its relative simplicity, it produces good

results [5] [2]. Secondly, because it does not require too much computational effort which

it is ideal for the accomplishment of the real-time requirement of the application. Finally,

because with this setting Object Maps got its best performance. However, it is easily

adjustable in the source code, so another Shot-based method could be applied.

Cumulative pixel to pixel method is sensitive to object motion and other local changes in

the scene which means that naturally generates over segmentations of the videos due to

changes in luminosity or points of view. Thus, it might provide different views of the same

object which it is desirable to build the final one-picture video summary by selecting the

best view of each keyframe.

http://in.bgu.ac.il/en/Pages/default.aspx

 25

Fig. 6 shows the architecture of the proposed solution. The first block consists in a

uniform sampling of the source video. The sampled frames are scaled to grey due to

luminance information is by far the most important to distinguish visual features.

Straightaway the cumulative pixel to pixel difference is applied every two successive

sampled frames and normalized in order to apply a classifier with a defined threshold (𝜏).

Finally if the difference value is bigger than (𝜏) the current frame will be considered as a

keyframe.

Figure 6.- Implemented solution architecture.

3.1.2. Uniform Sampling

In this block, a uniform sampling extraction of the video frames is performed using the

FrameGrabber and FfmpegFrameGrabber classes from the ffmpeg library, wrapped

by JavaCV, a Java Interface from OpenCV. This extraction of frames is performed with a

fixed sampling rate and aims at reducing the processing time, as shown in equation (9):

𝑆𝑎𝑚𝑝𝑙𝑖𝑛𝑔 𝑅𝑎𝑡𝑒 = 𝑚𝑎𝑥 (𝑟𝑜𝑢𝑛𝑑 (𝑓𝑝𝑠𝑖), 𝑟𝑜𝑢𝑛𝑑 (
𝐿𝑖

𝑁0
⁄))

(9)

Where 𝑓𝑝𝑠𝑖 is the frame rate of the input video obtained by using the method

getFrameRate() from the class FfmpegFrameGrabber. 𝐿𝑖 is the total number of frames

of the input video obtained by using the method getLengthInFrames() also from the class

FfmpegFrameGrabber1 and 𝑁0 , the total number of frames we want to keep in order to

be processed by posterior algorithms.

1
 https://code.google.com/p/javacv/source/browse/src/main/java/com/googlecode/javacv/FFmpegFrameGrabber.java

Uniform
sampling

Grey scale
Cumulative

pixel-to-pixel
difference

Normalization Classifier
Extracted
keyframe

http://ffmpeg.org/
http://code.google.com/p/javacv/
http://opencv.org/

 26

Our application is going to process a maximum of one hundred frames, which means that

𝑁0 is set to 100. These frames are the ones which will be processed by the subsequent

blocks. Firstly, we have considered this as a good value due to the user does not need to

choose amongst more than 100 keyframes to perform a good one-picture video summary.

Secondly, due to this value was already used in the previous work [1] [2].

3.1.3. Gray scale domain

At this stage, once the system has extracted all the frames to be processed, it is applied

a pre-processing step which converts RGB images to grayscale. This step is commonly

used in many applications of image processing due to color information does not help us

to identify important edges or other features. Concretely, our algorithm converts the RGB

images to YIQ color space (see section 2.2.3) and separates the luminance component

(Y) from I and Q components, in order to get the Y component. This is because, in YIQ

color space, the luminance is the intensity of the image, that is, the grayscale signal.

Figure 7.- Example of color model transformation from RGB to YIQ done in this block. (a) RGB components
of the Lena standard image in RGB color model. (b) YIQ components.

 27

3.1.4. Difference computation

The next block to be addressed is the one that computes the cumulative pixel to pixel

difference to the grayscale frames which come from previous stages. This method sums

the difference between each pixel’s intensity value in one image and its intensity value in

its successive image. This method takes into consideration local details in the images. It

is using the following formula:

𝑑 = ∑ ∑ |𝐼(𝑡, 𝑖, 𝑗) − 𝐼(𝑡 − 1, 𝑖, 𝑗)|

𝑌

𝑗=1

𝑋

𝑖=1

(10)

The sum is running on all the pixels in the image and 𝐼(𝑡, 𝑖, 𝑗) represents the intensity

value at time frame t in pixel(𝑖, 𝑗). X and Y are the width and height of the video frames,

respectively.

3.1.5. Normalization

The scores obtained from computing the cumulative pixel to pixel difference in the

previous block may have very different magnitudes depending on pixel values of the

images used in the computation. For this reason, a post-processing stage is required to

make all the values comparable; in this case, it is based on normalization. This step

consists in dividing each score by the following normalization factor, shown in (11):

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟 = 256 · 𝑋 · 𝑌 �̂� =
∑ ∑ |𝐼(𝑡,𝑖,𝑗)−𝐼(𝑡−1,𝑖,𝑗)|𝑌

𝑗=1
𝑋
𝑖=1

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟

(11)

Where �̂� is the normalized value, 256 is the number of grey levels, X and Y are the width

and height of the video frames, respectively. Therefore, this stage is used to make all the

difference values comparable in order to be able to classify them efficiently afterwards.

 28

3.1.6. Decision making

At this stage, the value obtained after computing the normalized difference between

successive frames, goes through the decision block, which decides if the analysed frame

will be selected as a candidate image to be a part of the final summary or not. That is, the

analysed frame will be considered as keyframe if only the difference is bigger than some

threshold value, otherwise it will be discarded (as shown in Fig. 8). The threshold value

used in our application is 𝜏 = 0.1 , the same value used by Manuel in ObjectMaps [2].

Figure 8.- Decision model consisting of a one-level decision tree.

3.2. Environment

This section describes the technologies and programming tools used for the application

development.

Eclipse:

Eclipse 2 is an open source development platform, tools and runtimes for building,

deploying and managing software. It was created by IBM in 2001. It allows developing

projects in many languages as Java, C, C++, Python, etc. For the development of this

thesis, it is been used Eclipse Luna IDE.

Java:

Java 3 is a programming language developed by Sun Microsystems which is now

subsidiary of Oracle Corporation. Java is a general-purpose, concurrent, class-based,

object-oriented language. One of the advantages of using Java is that its applications are

2
 https://eclipse.org/

3
 https://www.java.com/

https://en.wikipedia.org/wiki/Decision_tree_learning

 29

compiled to a class file (byte code) that can run on any Java Virtual Machine (JVM)

regardless of the computer operating system.

OpenCV:

OpenCV4 is a powerful Open source Computer Vision library of programming functions

mainly, developed by Intel, and now supported by Willow Garage. It was built to provide a

common infrastructure for computer vision applications and to accelerate the use of

machine perception in the commercial products. It has Java, C++, C and Python

interfaces and supports Windows, Linux, Mac OS, iOS and Android. It is written in

optimized C/C++ and the library can take advantage of multi-core processing. OpenCV

was designed for computational efficiency and with a strong focus on real-time

applications. It is free for both academic and commercial use.

JavaCV:

JavaCV provides wrappers to commonly used libraries by researchers in the field of

computer vision (OpenCV, FFmpeg, OpenKinect, etc.). Furthermore, although it is not

always required, some functionalities of JavaCV used in the project rely on FFmpeg.

FFmpeg:

FFmpeg5 is a complete, cross-platform solution to record, convert and stream audio and

video. It tries to provide the best technically possible solution for developers of

applications and end users alike. It also is a free software project that contains libavcodec,

libavutil, libavformat, libavfilter, libavdevice, libswscale and libswresample which are the

most notable libraries that can be used by applications.

3.3. The application: Designer Master

In this section, we explain how Designer Master works and how to use it, describing the

different functionalities of every option and pop-up windows. Concretely, we focus on the

performance of the application, not on the code that implements it. However, all the Java

classes and libraries are joined in the code folder where you can see how it is

implemented with helpful comments.

4
 http://opencv.org/

5
 http://ffmpeg.org/

 30

As already explained in previous sections, Designer Master is a desktop java application

which consists basically in an interface that allows the user to choose a template that will

be the one-picture video summary after drag and drop images on it. Once the template is

chosen, a video file must be opened and the extraction of keyframes implemented in this

thesis, starts automatically.

To start running the application just click on the executable jar file, Designer Master v2.

The user does not need to install OpenCV and JavaCV libraries because they are also

released with the code. As you can see, the main window of the application has

appeared, and it looks as shown in Fig. 9:

Figure 9.- Main window of the user interface.

Once the application is executed, it can be observed that the main program window

appears, as shown in Fig.9. There are four tabs: Template, Video, Edit and Export which

allow the user to browse through them and carry out different actions. As it is noticed, the

application asks about opening a video “Open a video” and choosing a template “Choose

a Template” in order to the one-picture video summary can be created by the user.

Therefore, the first thing to be done consists in choosing a template, just by clicking on

the “Template” button. This tab allows the user to choose or import a template which the

keyframes are going to be dragged and dropped in. If the the “Choose...” option has been

 31

chosen, the application let the user choose amongst two templates that are already built

in. Otherwise, if the “Import...” option has been chosen, the user can import its own

templates from the directory where they are located.

The customized templates are defined via XML-Files. Each template has an overall width

and consists of multiple rows with tiles and possible sub-tiles which can contain rows as

well. (see apéndice about how to define templates).

Figure 10.- Pop up window with the available templates

Straightaway, once the template to be used has been selected, the video file must be

opened in order to extract its keyframes and carry out the visual summary. To do it, just

click on the “Video” button. This tab allows the user to “Open…” a video from the

directory where it is located and, once it is selected, the keyframe extraction starts

automatically. The supported input video formats are the same than supported by the

FFmpeg library, due to the application uses the FfmpegFrameGrabber class to read the

video file. Thus, .avi, .mkv, .mp4, .mpg, .wmv, .mov are some well known video formats

accepted by our program, amongst many others.

One of the main functionalities of the application, as it can be observed throughout the

extraction, is that keyframes appear sequentially on the right side of the interface as soon

as each one is extracted. It was discussed with professor Eidenberger that real-time

applications have to show results to the user as soon as possible. Initially, the application

showed all the keyframes once the extraction task was done, which means that the user

 32

had to wait for results an indefinite period of time, without knowing if the application was

working or not. That fact could lead to an undesirable result: to make the user does not

use the application again.

Hence, adding this functionality, the user can start making the one-picture summary

without the need of waiting for the extraction process to end. In addition, the application

has a progress bar which keeps refreshing its status at same time that the algorithm

carries out the extraction. In this way, the user knows the remaining time to complete the

whole keyframe extraction.

Another functionality could be used while the extraction of keyframes is going on; the

user can cancel the extraction process any time, just by clicking on the cancel button “X”,

as shown in Fig.12.

Figure 11.- Automatic keyframe extraction after opening the video.

Figure 12.- Keyframe extraction progress bar and cancellation button “X”.

 33

Once the keyframe extraction is completed, it can be observed that a new slider has

appeared at the same place where the progress bar used to be. This slider allows the

user to reduce the number of selected keyframes which are shown on the right side of the

interface. Reducing the number of keyframes could be useful to do the summary faster

due to the user have less candidates to look through. The application extracts as default

value, a maximum of 100 keyframes that corresponds to the top right position of the slider.

Thus, the user is able to carry out the one-picture video summary by dragging the desired

image and dropping it in one of the tiles on the template.

Figure 13.- One-picture video summary after drag and drop the keyframes manually.

In addition, when the selected keyframes are already in the template, the user can

replace any image at any time just by drag and dropping a new one. We observe that if

the mouse cursor is located above the images in tiles, these can also be enlarged (zoom

in) and inverted horizontally, as shown in Fig.14 (b) and Fig.14 (c) respectively.

Figure 14.- Example of available actions to the images in tiles. (a) Original image in tile. (b) Zoom In action to
the original image. (c) Horizontally inversion to the original image.

 34

While creating the one-picture summary, the application let the user edit the template. To

do it, just click on the “Edit” button and a pull-down menu appears, as shown in Fig.15.

The user can enlarge the main window’s template in order to visualize more in detail a

specific tile just by clicking the Zoom In button. A color palette can be also observed, that

allows to change the color of the templates in order to make the summary more

attractive.

Figure 15.- Edit tab allows the user to change templates’ color and enlarge them (zoom in).

Finally, to save the created one-picture summary, just click on “Export” “Image”. As

observed, it appears a pop-up window which contains one slider, the image summary as

well as other buttons such as “Save” and “Cancel” and a Check box called “Save scaled

image” in the bottom left of the window.

Therefore, by pushing “Save”, the image will be saved as a .png file format with its

original size, that is 1000x500 pixels. Otherwise, the application allows the user to save a

scaled image just by making able the option “Save scaled image” and clicking on the

“Save” button afterwards. By moving the slider, the user can resize the image and see its

preview right away (see Fig. 16).

Independently if the user chooses to save the original or the scaled image, after clicking

“Save”, another emerging window appears asking for the name and location of the image

to be saved.

 35

Figure 16.- Example of scaled image to half of its original size (slider to 0.5), i.e. 500x250 pixels .“Save
scaled image” button is enabled in order to save the scaled video summary.

Figure 17.- Final summary created with Designer Master.

 36

4. Results

The results of this project are the one-image summaries that each user creates after

using the application. Thus, these could be different according to the aesthetic taste of

each user. However, with this evaluation we try to verify if the integrated solution

contributes to improve the performance of the application thanks to its better

representation of the extracted keyframes.

This chapter is structured as follows: In section 4.1, the adopted method to evaluate the

application is commented. Section 4.2 and 4.3 describe the participants and the test data

used in the study, respectively. Section 4.4 describes the procedure it has been followed

to obtain the results. Section 4.5 shows different tables with time measurements. In

section 4.6, the results of the evaluation are discussed. Finally in section 4.7, the findings

throughout the assessment are commented.

4.1. Method

To evaluate our tool in terms of performance and quality of the created images, we

decided to apply the same method proposed by Manuel Martos in his thesis [2]. We

chose an integer score ranging from 1 (Unacceptable) to 5 (Excellent) which was used by

The TRECVID Summarization Evaluation Campaign to rate all the summaries [9].

We have compared both applications; the original version, which extracts keyframes

uniformly and the version we have developed, which makes use of shot detection

techniques in order to extract the keyframes. The evaluation process of our work consists

of two parts and for this reason, two tests were designed.

In the first test, the participants are asked to test both applications and create a summary

with each one. Next, they are asked to complete a survey regarding to their created

images. The purpose of this first test is to collect several pairs of images that are going to

be used in the second test, afterwards. In addition, this test gave us information about the

application performance and quality of the generated images from the point of view of the

user. The disadvantage of this part is that it was difficult to get a high percentage of

participation due to this experiment had to be done one by one ‘in situ’ and it took quite a

long time to complete each one.

 37

However, the second test was designed to evaluate the application performance and the

quality of the generated images as a web-based survey in order to get as much

participation as possible.

4.2. Participants

In the first test, a total of 11 participants were recruited in order to create their summaries

by using the applications and complete the survey they were asked to answer.

In the second test, a total of 43 participants answered the web-based survey which was

shared on Facebook social network.

4.3. Test data

Table 1 reports the video used in the test. We have only tested the applications with one

video due to the length of the experiment. In our case, the first test conditioned the

second part of the assessment.

Commercial movie trailers have been used due to they are one of the main advertising

tools of the movie industry and are chosen among the popular genres and well-known

films. The source of each video trailer is the iTunes Movie Trailers 6 and different

summaries were created by the users making use of both applications:

Title Genre Format fps Duration Resolution Size

The
Intouchables

Biography,
comedy, drama

.mp4 23fps 00:02:18 1280x688 29.1MB

Table 1.- Video used in the user study.

It was decided to do the test with movie trailers due to several reasons: in the first place,

because to improve Designer Master, we have been working with ObjectMaps [2], which

focused at processing movie trailers and thus, we had previous well-known results. In the

second place, we wanted that the time each participant spent doing the test was between

5 and 10 minutes. For this reason, we considered that carrying out the test with complete

films meant much more time and therefore, it was inviable in order to get a minimum of

6
 http://trailers.apple.com/

 38

participation. Finally, due to pixel-to-pixel methods worked quite well in the keyframe

extraction task of movies.

4.4. Execution time

Table 2 shows a comparison between Designer Master v1 and Designer Master v2 in

terms of processing time. What we mean with processing time is, how much time each

application takes to extract the keyframes and show them all in the interface. As can be

observed, different input videos have been tested in order to have an idea of how long it

could take to process similar videos using each version of Designer Master.

Title Format fps
Duration
(h:m:s)

Resolution Size
Designer
Master v1
(min:sec)

Designer
Master v2
(min:sec)

Big Hero 6 .mkv 60fps 01:41:52 1920x1080p 3.04GB 07:47 08:18

Monsters
INC

.mp4 23fps 01:32:15 852x456 0.99GB 01:48 01:51

Pride
prejudice

.mpg 25fps 02:01:26 352x288 774MB 01:05 01:13

The lake
house

.avi 25fps 01:34:30 576x240 702MB 00:39 00.37

Mirror Mirror
trailer

.mp4 25fps 00:02:30 1280x688 30MB 00:08 00:38

The
Intouchables
trailer

.mp4 23fps 00:02:18 1280x688 29.1MB 00:07 00:36

Table 2.- Designer Master v1 & Designer Master v2 processing time comparison.

As can be seen in table 2, Designer Master v2 processing time is higher than the time

that Designer Master v1 takes to process the video. These results are as we expected

due to computing the cumulative pixel-to-pixel difference is computationally more

expensive than doing only a uniform sampling. However, there is not much difference

between processing times for a given video, which means that Designer Master v2

performs better than version one with approximately the same time.

 39

4.5. Procedure

To obtain the results, a survey was created for each test. The first survey was answered

by every participant locally, after testing the applications. The second survey was created

in Google forms7
 and the link was given to the participants through social networks in

order to perform the experiment. At the beginning of each survey, a short introduction

about the evaluation procedure was explained.

In the first experiment, each participant was asked to test Designer Master with and

without the improvement that it has been implemented. Let’s call Designer Master v1 to

the version that extracts keyframes uniformly and Designer Master v2 to the version that

extracts keyframes making use of shot-based methods.

Hence, before starting to use the application all participants had to watch the movie trailer

they had to summarize in order to guarantee the same knowledge conditions about it.

People usually remember elements of the video items they see and use them in their

summaries during the test. The order in which each application was used could therefore

influence the outcome of the test. For this reason, we also took into account the order

that participants were testing the applications trying to minimize this influence. Each user

tested the applications without knowing if they started using Designer Master v1 or v2.

Next, as soon as the participants obtained the video summaries, they were asked to

complete a survey as the one shown in Fig.17. Participants were asked to select which

application allowed them to create a better summary easily and which representation let

them better recognize the video content. They were also asked to rate each

representation of their own summary with and integer ranging from 1 (Unacceptable) to 5

(Excellent). Finally, they were asked to rate the ease-of-use of the application.

7
 http://www.google.com/forms/about/

 40

Figure 18.- Evaluation survey of the application test.

 41

In the web-based survey, participants were asked to complete 5 polls as shown in Fig. 18.

In each of them, the two summaries created by the participants of the first test were

presented. Participants were asked to select the representation which let them better

recognize the video content. They were also asked to rate each representation of the

summary with and integer ranging from 1 (Unacceptable) to 5 (Excellent).

 42

Figure 19.- Web-based evaluation survey shared on Facebook social network.

 43

4.6. Data analysis

After collecting all the results, the time each participant spent carrying out the first test

(using the applications + ‘in situ’ survey) was about 7 minutes on average. Otherwise, the

web-based survey for the second test was designed to spend less than 3 minutes. The

evaluation process considers the Mean Opinion Score (MOS) test, which is a widely used

measure of the system quality by averaging the ratings given by the users. All the results

have been obtained using only one input video: The Intouchables trailer.

Fig. 19 shows the global analysis of the ratings obtained from the question: “Please, rate

the summary 1” and “Please, rate summary 2”. As can be observed, Designer Master v2

gives the best performance in terms of quality of the created images (MOS = 3.81).

Nevertheless, Designer Master with uniform extraction method achieves almost the same

result (MOS = 3.76).

Figure 20.- Content quality of the created images rating.

3,76 3,81

0,00

1,00

2,00

3,00

4,00

5,00

The Intouchables trailer

sc
o

re

MOS

Designer Master v1

Designer Master v2

 44

Figure 21.- Results of the summary rates used to compute the MOS.

In addition to the MOS analysis, the representativeness of the summaries is assessed

through a user recognition rate of the related movie, obtained from the question: “Which

summary let you better recognize the video content?”

Figure 22.- The Intouchables trailer recognition rate.

0,0% 0,0%

40,5% 42,9%

16,7%

0,0%
4,8%

38,1%

28,6% 28,6%

0,0%

10,0%

20,0%

30,0%

40,0%

50,0%

60,0%

70,0%

80,0%

90,0%

100,0%

1 2 3 4 5

(%
)

MOS - Scores distribution

Designer Master v1

Designer Master v2

35,5%
41,3%

23,2%

0,0%

10,0%

20,0%

30,0%

40,0%

50,0%

60,0%

70,0%

80,0%

90,0%

100,0%

The Intouchables trailer

R
e

co
gn

it
io

n
 r

at
e

 (
%

)

Recognition Rate

Designer Master v1 summary

Designer Master v2 summary

Both summaries

 45

In Fig. 21 shows how the 41.3% of participants affirmed that they better recognized the

movie with the summaries obtained by using Designer Master v2. The 35.5% of

participants affirmed they could better recognize the movie with the summaries obtained

by using Designer Master v1. Finally, 23.2% of participants affirmed that both summaries

are equal in terms of video recognition.

Finally, a measure of the ease-of-use of Designer Master was also asked with an integer

ranging from 1 (Unacceptable) to 5 (Excellent). The ratings were obtained from the

question: “Do you think the application is intuitive and easy to use?”

Figure 23.- Ease-of-use rating.

Both applications were tested by different participants with ages between 20 and 55

years. A significant fact that we extracted was that users considered Designer Master an

intuitive and easy to use application, as can be observed in Fig. 22. In terms of ease-of-

use, Designer Master was valued by the users between “very good” and “Excellent”

(MOS = 4.91), concretely 9.1% scored with a 4 and 90.9% scored the maximum value 5.

4,91

0,00

1,00

2,00

3,00

4,00

5,00

Designer Master ease-of-use

sc
o

re

MOS ease-of-use

 46

5. Budget

This project has been carried out with Java, Eclipse as IDE and making use of OpenCV.

The main reasons are that everything about Java is open source: from the language, to

the standards, to the core libraries, to the virtual machine and the development tools. In

addition, OpenCV is released under a BSD license. The BSD license is a permissive free

software and therefore, we do not have a license cost. An important aspect of Eclipse is

that it is an open source IDE which focuses on enabling the use of open source

technology in commercial software products and services under the Eclipse Public

License (EPL), a commercial OSI approved licensed. Hence, due to all the software we

used is open source under free licenses, we only have the junior engineer cost.

 Personnel Cost / hour Dedication Salary # Months TOTAL

Junior

Engineer
1 8.00€ / hour 80h / month 640€ 5 3200€

Table 3.- Personnel cost.

Used software Units Cost / unit TOTAL

Java 1 Open source 0€

OpenCV 1 Open source 0€

Eclipse 1 Open source 0€

Table 4.- Open source means no cost.

TOTAL COST 3200€

Table 5.- Total cost of the project.

http://www.eclipse.org/org/documents/epl-v10.php
http://www.eclipse.org/org/documents/epl-v10.php

 47

6. Conclusions

This thesis has been developed in compliance with the requirements stated by the

Technische Universität Wien (TUW) and Universitat Politècnica de Catalunya (UPC). The

main goal aims at improving Designer Master making use of the implemented algorithms

by Manuel Martos in his thesis. Designer Master is a Java desktop application that

extracts keyframes uniformly and was implemented by Andreas Waltenberger, a

computer science student at the TUW. Our proposed solution consists in implementing a

shot-based method using cumulative pixel to pixel difference as engine to carry out the

keyframe extraction task.

Straightaway, we assess the improvement according to a scientific methodology by

means of a comparison between the state of the art solution, Designer Master v1 and the

improved version, Designer Master v2. This assessment aims to verify if our work

provides a better performance to the current application, that is, we want to confirm

whether Designer Master v2 lets the user create better summaries and more easily

thanks to the better quality of its extracted keyframes.

Regarding to the first goal, we can affirm that it has been accomplished successfully due

to we have been able to solve the problem initially proposed by Professor Eidenberger in

time and as he required it. A proof of this is that Designer Master v2 works properly and

Professor Eidenberger as been very satisfied with the work done. An indicator of quality

is that they may develop this work into a product for the Austrian Broadcasting station

ORF.

Furthermore, after obtaining and analyzing all the results, it has been demonstrated that

Designer Master v2 performance has been slightly better than Designer Master v1 even

though both versions were valued by the users between “good” and “very good” with

MOSv1 = 3.76 and MOSv2 = 3.81, as shown in Fig. 19

In terms of quality of the summaries, the participants have been able to create good

summaries with both versions, independently of which keyframe extraction method was

implemented in each one. In this case, Designer Master v2 is still slightly better than

version one, the 41.3% of participants affirmed that created summaries by using version

two allow a better understanding and recognition of the video. While the other 35.5% and

23.2% belong to those participants who affirmed that summaries obtained by using

 48

Designer Master v1 let them better recognize the movie and who affirmed that both

summaries are equal in terms of video recognition, respectively. Thus, we can affirm that

our improvement, Designer Master v2 allows the user to create better video summaries

and easily due to the better quality of the extracted keyframes. These results make sense

because in version one keyframes are extracted uniformly and therefore, the images are

selected without taking into account if they represent well an event, shot or a given video

sequence.

To conclude, we can affirm that with our work, although we have not obtained very high

results, Designer Master has been slightly improved regarding the original version.

Nevertheless, from my point of view, I think that the results we obtained in our test were

so similar due to both applications were tested with one movie trailer. If we had tested

with several complete movies, we would probably have appreciated, in terms of

performance, a major difference between the uniform extraction and our proposed

method.

Finally, I would like to say that carrying out this project has been a challenge for me. I

have learnt a lot about how to be organized and how to solve the different engineering

problems that I had to face. I have been alone doing my thesis most of the time and this

fact has helped me a lot to improve the autonomous learning skill as well as to contact

different people and colleges from different degrees in order to comment and discuss the

problems and trying to find out a solution.

 49

Bibliography

[1] Waltenberger, A. “Keyframe-Based Video Summarization Designer”, Vienna

University of Technology, Austria (2014).

[2] Martos, M. “Content-based Video Summarization to Object Maps”, Vienna University

of Technology, Austria (2013).

[3] Zhao, W., Wang, J., Bhat, D., Sakiewicz, K., Nandhakumar, N., & Chang, W. (1999).

Improving color based video shot detection. Proceedings IEEE International Conference

on Multimedia Computing and Systems 752–756. IEEE Comput. Soc. doi:10.1109/MMCS.

1999.778579

[4] Kasturi, R., Strayer, S. H., Gargi, U., & Antani, S. (1996). An Evaluation of Color

Histogram Based Methods in Video Indexing.

[5] Binshtok, M., & Greenshpan, O. (2006). Segmentation of Video Incorporating

Supervised Learning.

[6] Rasheed, Z., & Shah, M. (2005). Detection and representation of scenes in videos. 7

IEEE Transactions on Multimedia 299–1105. IEEE. doi:10.1109/TMM.2005.858392

[7] Podpora, M., Paweł Korbas, G., & Kawala-Janik, A. (2014). YUV vs RGB - Choosing

a Color Space for Human-Machine Interaction. Federated Conference on Computer

Science and Information Systems 29–34. doi:10.15439/2014F206

[8] Che-Yen Wen, & Chun-Ming Chou (2004). Color Image Models and its Applications

to Document Examination. Department of Forensic Science, Central Police University, 56

Shu Jen Road, Ta Kang Chun, Kwei Shan, Taoyuan, Taiwan, R.O.C. (333).

[9] Over, P., Smeaton, A. F., & Awad, G. (2008). The trecvid 2008 BBC rushes

summarization evaluation. Proceeding of the 2nd ACM workshop on Video

summarization TVS 08 (pp. 1–20). ACM Press. doi:10.1145/1463563.1463564

[10] http://www.compression.ru/download/articles/color_space/ch03.pdf

[11] https://code.google.com/p/javacv/wiki/OpenCV2_Cookbook_Examples

[12] http://blackhole1.stanford.edu/vidsearch/dataset/stanfordi2v.html

[13] https://github.com/bytedeco

[14] https://code.google.com/p/javacv/source/browse/src/main/java/com/googlecode/

/javacv

https://imatge.upc.edu/web/publications/content-based-video-summarisation-object-maps
https://code.google.com/p/javacv/source/browse/src/main/java/com/googlecode

 50

[15] http://docs.opencv.org/java/

[16] http://www.mon-club-elec.fr/mes_docs/my_javacv_javadoc/

[17] http://www.rubydoc.info/gems/ruby-opencv/OpenCV/

[18] http://sourceforge.net/projects/opencvlibrary/?source=typ_redirect

[19] https://docs.oracle.com/javase/8/docs/api/

[20] https://docs.oracle.com/javase/8/docs/api/

http://www.rubydoc.info/gems/ruby-opencv/OpenCV/
http://sourceforge.net/projects/opencvlibrary/?source=typ_redirect

 51

Appendices

I. How to create customized Templates

Templates are defined via XML-Files. Each template has an overall width and consists of

multiple rows with tiles and possible sub-tiles which can contain rows as well. Let's look at

an example:

 …

 <template width="1000">
 <row height="300">
 <tile width="700" />
 <tile width="300">
 <row height="150">
 <tile width="150" />
 <tile width="150" />
 </row>
 <row height="150">
 <tile width="300" />
 </row>
 </tile>
 </row>
 <row height="200">
 <tile width="200" />
 <tile width="200" />
 <tile width="600" />
 </row>
 </template>
 …

The first line defines the overall width of the template (something around 1000px is

generally a good idea). After that the main rows follows, there has to be at least 1 row in

a template up to as many as you want (each row has a defined height which has to be at

least 50px) - so this example gives us a Template which is 1000px wide and 500px high.

Every row has to contain at least 1 Tile up to as many as you want (each tile has a

defined width which has to be at least 150px) - this gives us a Template with 2 rows,

whereas in the first row there are 2 Tiles and 3 Tiles in the second row (the sum of the tile

widths has to match the overall width of the Template).

In addition, every Tile in the Template could be a new Template, that is every Tile can

contain rows which contain Tiles. This recursion works infinitely and is constrained only

by the minimal width of the tiles.

 52

II. Test data

This appendix shows the pair of images every user created using Designer Master v1

and Designer Master v2 used for the web-based survey described in Chapter 4.

Figure 24.-Image created by participant 1 with Designer Master v1.

Figure 25.- Image created by participant 1 with Designer Master v2.

 53

Figure 26.- Image created by participant 2 with Designer Master v1.

Figure 27.- Image created by participant 2 with Designer Master v2.

 54

Figure 28.- Image created by participant 3 with Designer Master v1.

Figure 29.- Image created by participant 3 with Designer Master v2.

 55

Figure 30.- Image created by participant 4 with Designer Master v1.

Figure 31.- Image created by participant 4 with Designer Master v2.

 56

Figure 32.- Image created by participant 5 with Designer Master v1.

Figure 33.- Image created by participant 5 with Designer Master v2.

