
000

001

002

003

004

005

006

007

008

009

010

011

012

013

014

015

016

017

018

019

020

021

022

023

024

025

026

027

028

029

030

031

032

033

034

035

036

037

038

039

040

041

042

043

044

000

001

002

003

004

005

006

007

008

009

010

011

012

013

014

015

016

017

018

019

020

021

022

023

024

025

026

027

028

029

030

031

032

033

034

035

036

037

038

039

040

041

042

043

044

ECCV

#24
ECCV

#24

PixInPix: Hidding Pixels in Pixels

Anonymous ECCV submission

Paper ID 24

Abstract. PixInPix is an steganography hidding system of images within
other images. The system designed is able to create, from an cover image
and a message, a new steganography image. This new stego-image looks
as similar as possible as the cover but has the message hidden in it. Our
approach adopts the U-net architecture and combines two reconstruction
losses to provide a simple yet effective approach tested in low resolution
images from MNIST, CIFAR and ImageNet.

Keywords: Steganography, Deep Learning, U-Net

1 Introduction

Steganography and watermarking are two well known techniques to hide infor-
mation in media content such as images, videos or audio files. The main difference
between them is related to what is hidden in them. While in watermarking the
information hidden is related to its content, in steganography the hidden part
usually do not have any relation with its content. The work we present tack-
les the field of steganography, however it could be easily reformulated into any
watermarking problem.

Some works with convolutional neural networks [13, 16] have addressed the
lossless case in which binary messages were hidden in a steganography image,
studying the perturbations with respect to the original cover image. Our work
addresses the scenario in which perturbations in the message are also acceptable,
as this would be the case of visual information. Images are already typically
encoded with lossy compression algorithms whose distortions are unnoticeable
for humans. Our PixInPix model solves the task of hiding a message (or secret)
image into a cover images, as task previously addressed in [1, 3]. In our case we
provide a lightweight implementation that does not require any pre-processing of
the message image. Hiding images into other images has applications in encoding
depth, multi-view or short animations withing n a standard RGB image.

PixInPix follows a classic encoder-decoder paradigm which are trained to-
gether to hide images into other images. The encoder takes care of hiding a
message into a cover image in such a way that pixel perturbations are hardly
noticeable by a human eye. In our experiments, we apply different distortions
and transformation on the encoded image and assess their impact in the recovery
of the message image.



045

046

047

048

049

050

051

052

053

054

055

056

057

058

059

060

061

062

063

064

065

066

067

068

069

070

071

072

073

074

075

076

077

078

079

080

081

082

083

084

085

086

087

088

089

045

046

047

048

049

050

051

052

053

054

055

056

057

058

059

060

061

062

063

064

065

066

067

068

069

070

071

072

073

074

075

076

077

078

079

080

081

082

083

084

085

086

087

088

089

ECCV

#24
ECCV

#24

2 ECCV-20 submission ID 24

Our source code and trained models will be publicly available upon accep-
tance1.

2 Related work

Hiding information in image pixels is a task extensively addressed in the broad
field of steganography with multiple and diverse approaches [4–6, 10, 11, 15].
Recently, deep neural networks have achieved outstanding results, in parallel
with several other task in the field of computer vision. They mostly follow the
same basic architecture we adopt, with a convolutional neural network as encoder
to hide the message with the cover image, and a convolutional decoder that
outputs the message. A baseline system would define a reconstruction loss for
the cover image at the output of the encoder, and a second reconstruction loss
for the message at the output of the decoder.

Hidden [16] encodes the message by replicating and concatenating it to the
pixel embeddings obtained by a 2D convolutional encoder, while in our case
we concatenate the message directly into the cover image. Hidden incorporates
an adversarial loss to improve the realistic appearance of the stego image. The
work provides a detailed study of the trade-offs between capacity, secrecy and
robustness of the method. Stegastamp [14] follows a similar approach, but focuses
in the specific application of encoding hyperlinks into image pixels, reporting
satisfactory results in practice for up to 56 bits per message.

Both Hidden and Stegastamp limit their study to the encoding of binary
messages in the form of vector, while our work addresses scenarios in which
some losses are acceptable. PixInPix presents many points in common with
Deep-Stego [1], which also hides images into images, but requires a specific pre-
processing of the message. A similar pre-processing scheme was later adopted
by Duan et al. [3] and extended by adopting a U-Net [12] neural architecture
and a BEGAN adversarial training, a similar set up as the one adopted in the
popular Pix2Pix [7] model for image translation. PixInPix also benefits from
the U-Net [12] architecture but adopts a simpler approach because it does not
apply any pre-processing neither adversarial loss.

3 System architecture

The architecture of our system is shown in Figure 1. It is composed of an encoder
and a decoder deep neural network that are trained together to hide a message
image in the cover image.

We feed the network with a 6 channel 32x32 pixel input. Three channels for
each image (cover and message). The output of the network is a 32x32 RGB
image. We used low resolution images to ease the training process, as larger
images take more computational time and resources.

1 http://anonymous.url



090

091

092

093

094

095

096

097

098

099

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

090

091

092

093

094

095

096

097

098

099

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

ECCV

#24
ECCV

#24

ECCV-20 submission ID 24 3

Fig. 1: Overall system structure

The message encoder is the convolutional neural network in charge of creating
the new image, the steganography image. This stego image should look as similar
as possible to the cover image, despite containing the message image hidden
within.

The first layer of the encoder the down-sampling process was designed with
multiple 2D convolutional layers followed by a ReLU activation function. In each
down-sampling step, we double the number of feature channels and we add a
max pooling layer at the end. In particular, we used five down-sampling steps
to go from a 6 channels to 256 feature channels. In the up-sampling phase,
we used the same structure. Several 2D convolutional layers preceded by 2D
transposed convolution operations. At each up-sampling step the feature map
from the down-sampling process is add as part of the input to improve the final
results. At the end, the output we obtain is a 3 channel 32x32 RGB image.

The message decoder contains almost the same layers as the image encoder,
with the only difference that the input is the stego image and the output the
reconstructed message image.

Both encoder and decoder networks follow a U-Net-like architecture [12] that
allow a better recovery of the spatial resolution thanks to the skip connections
between the down-sampling and up-sampling layers. The details of the message
encoder are depicted in Figure 2.

Fig. 2: Image encoder architecture



135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

ECCV

#24
ECCV

#24

4 ECCV-20 submission ID 24

4 Experiments and results

In our experiments we used three well-known low resolution datasets for fast pro-
totyping: MNIST [9], CIFAR10 [8] and a down-sampled ImageNet [2]. We used
50,000 images for training and 10,000 images for testing. We trained the model
for 100 epochs and set the learning rate to 0.01 and used the SGD optimizer and
mean square error (L2) as loss.

The particularity of the training procedure is that two loss terms needed
to be balance: a reconstruction loss for the stego-image compared to the cover
image, and a reconstruction loss for the message image. The two L2 were linearly
weighted and their parameters were set after a naive hyper-parameter search.

We performed two types of experiments hiding both graysalce and RGB
images into RGB images. First, an MNIST image was hidden into a CIFAR10
image (Figure 3) and an ImageNet image was later hidden into a CIFAR10 image
(Figure 4).

5 Conclusions

PixInPix offers a lightweight solution for hiding grayscale and color images into
RGB images by exploiting the U-Net architecture and combining two reconstruc-
tion losses: one for the stego-image and another one for the message image. Our
qualitative results show how this simple scheme can successfully hide images in
low resolution set ups and provide a solid ground to extend the work to more
complex scenarios.

Future work should address generating higher quality images and exploring
other applications that may benefit from hiding in images, or the opposite.



180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

ECCV

#24
ECCV

#24

ECCV-20 submission ID 24 5

(a) Cover image. (b) Message.

(c) Stego- image. (d) Message reconstruction.

Fig. 3: Outputs using CIFAR10 and MNIST.

(a) Cover image. (b) Message.

(c) Stego- image. (d) Message reconstruction.

Fig. 4: Outputs using CIFAR10 and ImageNet.



225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

ECCV

#24
ECCV

#24

6 ECCV-20 submission ID 24

References

1. Baluja, S.: Hiding images in plain sight: Deep steganography. In: Advances in
Neural Information Processing Systems. pp. 2069–2079 (2017)

2. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: A large-
scale hierarchical image database. In: 2009 IEEE conference on computer vision
and pattern recognition. pp. 248–255. Ieee (2009)

3. Duan, X., Jia, K., Li, B., Guo, D., Zhang, E., Qin, C.: Reversible image steganog-
raphy scheme based on a u-net structure. IEEE Access 7, 9314–9323 (2019)

4. Guo, L., Ni, J., Shi, Y.Q.: An efficient jpeg steganographic scheme using uniform
embedding. In: 2012 IEEE International Workshop on Information Forensics and
Security (WIFS). pp. 169–174. IEEE (2012)

5. Holub, V., Fridrich, J.: Designing steganographic distortion using directional fil-
ters. In: 2012 IEEE International workshop on information forensics and security
(WIFS). pp. 234–239. IEEE (2012)

6. Holub, V., Fridrich, J., Denemark, T.: Universal distortion function for steganogra-
phy in an arbitrary domain. EURASIP Journal on Information Security 2014(1),
1 (2014)

7. Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with condi-
tional adversarial networks. In: CVPR (2017)

8. Krizhevsky, A., Nair, V., Hinton, G.: Cifar-10 (canadian institute for advanced
research) http://www.cs.toronto.edu/ kriz/cifar.html

9. LeCun, Y., Cortes, C.: MNIST handwritten digit database (2010),
http://yann.lecun.com/exdb/mnist/

10. Mielikainen, J.: Lsb matching revisited. IEEE signal processing letters 13(5), 285–
287 (2006)

11. Pevnỳ, T., Filler, T., Bas, P.: Using high-dimensional image models to perform
highly undetectable steganography. In: International Workshop on Information
Hiding. pp. 161–177. Springer (2010)

12. Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedi-
cal image segmentation. In: International Conference on Medical image computing
and computer-assisted intervention. pp. 234–241. Springer (2015)

13. Tancik, M., Mildenhall, B., Ng, R.: Stegastamp: Invisible hyperlinks in physical
photographs. CoRR abs/1904.05343 (2019), http://arxiv.org/abs/1904.05343

14. Tancik, M., Mildenhall, B., Ng, R.: Stegastamp: Invisible hyperlinks in physical
photographs. In: CVPR (2020)

15. Yedroudj, M., Comby, F., Chaumont, M.: Steganography using a 3 player game.
CoRR abs/1907.06956 (2019), http://arxiv.org/abs/1907.06956

16. Zhu, J., Kaplan, R., Johnson, J., Fei-Fei, L.: Hidden: Hiding data with deep net-
works. In: Proceedings of the European conference on computer vision (ECCV).
pp. 657–672 (2018)


