	PixInPix: Hidding Pixels in Pixels	000
	0	001
		002
	Anonymous ECCV submission	003
		004
	Paper ID 24	005
		006
		007
	A bature at Divila Divis on stanon amon by hidding system of images within	800
	Abstract. PixinPix is an steganography hidding system of images within other images. The system designed is able to create from an cover image	009
	and a message, a new steganography image. This new stego-image looks	010
	as similar as possible as the cover but has the message hidden in it. Our	011
	approach adopts the U-net architecture and combines two reconstruction	012
	losses to provide a simple yet effective approach tested in low resolution	013
	images from MNIST, CIFAR and ImageNet.	014
Versionale, Channeller Deer Learning, U.N.		015
	Keywords: Steganography, Deep Learning, U-Net	016
		017
1 Introduction		018
1 11	Infoduction	019
~		020
Stegan	ography and watermarking are two well known techniques to hide infor-	022
mation	in media content such as images, videos or audio files. The main difference	023
betwee	in them is related to what is hidden in them. While in watermarking the	024
lniorm	ation model is related to its content, in steganography the model part	025
usuany log tho	field of storenography, however it could be easily reformulated into any	026
wetorn	arking problem	027
Sor	na works with convolutional neural networks [13, 16] have addressed the	028
100 ومواجعهما	a case in which binary messages were hidden in a steganography image	029
studvi	og the perturbations with respect to the original cover image. Our work	030
addres	ses the scenario in which perturbations in the message are also acceptable	031
as this	would be the case of visual information. Images are already typically	032
encode	ad with lossy compression algorithms whose distortions are unnoticeable	033
for hur	nans. Our <i>PixInPix</i> model solves the task of hiding a message (or secret)	034
image	into a cover images, as task previously addressed in [1,3]. In our case we	035
provid	e a lightweight implementation that does not require any pre-processing of	036
the me	ssage image. Hiding images into other images has applications in encoding	037
depth,	multi-view or short animations withing n a standard RGB image.	038
Pix	<i>InPix</i> follows a classic encoder-decoder paradigm which are trained to-	039

PixInPix follows a classic encoder-decoder paradigm which are trained to gether to hide images into other images. The encoder takes care of hiding a
 message into a cover image in such a way that pixel perturbations are hardly
 noticeable by a human eye. In our experiments, we apply different distortions
 and transformation on the encoded image and assess their impact in the recovery
 of the message image.

Our source code and trained models will be publicly available upon acceptance¹.

2 Related work

Hiding information in image pixels is a task extensively addressed in the broad field of steganography with multiple and diverse approaches [4-6, 10, 11, 15]. Recently, deep neural networks have achieved outstanding results, in parallel with several other task in the field of computer vision. They mostly follow the same basic architecture we adopt, with a convolutional neural network as encoder to hide the message with the cover image, and a convolutional decoder that outputs the message. A baseline system would define a reconstruction loss for the cover image at the output of the encoder, and a second reconstruction loss for the message at the output of the decoder.

Hidden [16] encodes the message by replicating and concatenating it to the pixel embeddings obtained by a 2D convolutional encoder, while in our case we concatenate the message directly into the cover image. *Hidden* incorporates an adversarial loss to improve the realistic appearance of the stego image. The work provides a detailed study of the trade-offs between capacity, secrecy and robustness of the method. Stegastamp [14] follows a similar approach, but focuses in the specific application of encoding hyperlinks into image pixels, reporting satisfactory results in practice for up to 56 bits per message.

Both *Hidden* and *Stegastamp* limit their study to the encoding of binary messages in the form of vector, while our work addresses scenarios in which some losses are acceptable. PixInPix presents many points in common with Deep-Steap [1], which also hides images into images, but requires a specific pre-processing of the message. A similar pre-processing scheme was later adopted by Duan et al. [3] and extended by adopting a U-Net [12] neural architecture and a BEGAN adversarial training, a similar set up as the one adopted in the popular Pix2Pix [7] model for image translation. PixInPix also benefits from the U-Net [12] architecture but adopts a simpler approach because it does not apply any pre-processing neither adversarial loss.

3 System architecture

The architecture of our system is shown in Figure 1. It is composed of an encoder and a decoder deep neural network that are trained together to hide a message image in the cover image.

We feed the network with a 6 channel 32x32 pixel input. Three channels for each image (cover and message). The output of the network is a 32x32 RGB image. We used low resolution images to ease the training process, as larger images take more computational time and resources. ¹ http://anonymous.url

Fig. 1: Overall system structure

The message encoder is the convolutional neural network in charge of creating the new image, the steganography image. This stego image should look as similar as possible to the cover image, despite containing the message image hidden within.

The first layer of the encoder the down-sampling process was designed with multiple 2D convolutional layers followed by a ReLU activation function. In each down-sampling step, we double the number of feature channels and we add a max pooling layer at the end. In particular, we used five down-sampling steps to go from a 6 channels to 256 feature channels. In the up-sampling phase, we used the same structure. Several 2D convolutional layers preceded by 2D transposed convolution operations. At each up-sampling step the feature map from the down-sampling process is add as part of the input to improve the final results. At the end, the output we obtain is a 3 channel 32x32 RGB image.

The message decoder contains almost the same layers as the image encoder, with the only difference that the input is the stego image and the output the reconstructed message image.

Both encoder and decoder networks follow a U-Net-like architecture [12] that allow a better recovery of the spatial resolution thanks to the skip connections between the down-sampling and up-sampling layers. The details of the message encoder are depicted in Figure 2.

Fig. 2: Image encoder architecture

Experiments and results

In our experiments we used three well-known low resolution datasets for fast pro-totyping: MNIST [9], CIFAR10 [8] and a down-sampled ImageNet [2]. We used 50,000 images for training and 10,000 images for testing. We trained the model for 100 epochs and set the learning rate to 0.01 and used the SGD optimizer and mean square error (L2) as loss.

The particularity of the training procedure is that two loss terms needed to be balance: a reconstruction loss for the stego-image compared to the cover image, and a reconstruction loss for the message image. The two L2 were linearly weighted and their parameters were set after a naive hyper-parameter search.

We performed two types of experiments hiding both gravsalce and RGB images into RGB images. First, an MNIST image was hidden into a CIFAR10 image (Figure 3) and an ImageNet image was later hidden into a CIFAR10 image (Figure 4).

Conclusions

PixInPix offers a lightweight solution for hiding gravscale and color images into BGB images by exploiting the U-Net architecture and combining two reconstruc-tion losses: one for the stego-image and another one for the message image. Our qualitative results show how this simple scheme can successfully hide images in low resolution set ups and provide a solid ground to extend the work to more complex scenarios.

Future work should address generating higher quality images and exploring other applications that may benefit from hiding in images, or the opposite.

6 ECCV-20 submission ID 24

225 References

- 226
 226
 226

 227
 1. Baluja, S.: Hiding images in plain sight: Deep steganography. In: Advances in
 227

 228
 Neural Information Processing Systems. pp. 2069–2079 (2017)
 228

 229
 2. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: A large 229
- scale hierarchical image database. In: 2009 IEEE conference on computer vision and pattern recognition. pp. 248–255. Ieee (2009)
- 3. Duan, X., Jia, K., Li, B., Guo, D., Zhang, E., Qin, C.: Reversible image steganography scheme based on a u-net structure. IEEE Access 7, 9314–9323 (2019)
- 4. Guo, L., Ni, J., Shi, Y.Q.: An efficient jpeg steganographic scheme using uniform
 embedding. In: 2012 IEEE International Workshop on Information Forensics and
 Security (WIFS). pp. 169–174. IEEE (2012)
- 5. Holub, V., Fridrich, J.: Designing steganographic distortion using directional fil ters. In: 2012 IEEE International workshop on information forensics and security
 (WIFS). pp. 234–239. IEEE (2012)
- 6. Holub, V., Fridrich, J., Denemark, T.: Universal distortion function for steganography in an arbitrary domain. EURASIP Journal on Information Security 2014(1), 1 (2014)
- 7. Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: CVPR (2017)
 8. Krichowsky, A. Nair, V. Hinton, G.: Cifar 10 (canadian institute for advanced 243)
- 8. Krizhevsky, A., Nair, V., Hinton, G.: Cifar-10 (canadian institute for advanced research) http://www.cs.toronto.edu/ kriz/cifar.html
- 9. LeCun, Y., Cortes, C.: MNIST handwritten digit database (2010), http://yann.lecun.com/exdb/mnist/
- Mielikainen, J.: Lsb matching revisited. IEEE signal processing letters 13(5), 285–
 287 (2006)
- 11. Pevnỳ, T., Filler, T., Bas, P.: Using high-dimensional image models to perform highly undetectable steganography. In: International Workshop on Information Hiding. pp. 161–177. Springer (2010)
- 12. Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. pp. 234–241. Springer (2015)
- 25413. Tancik, M., Mildenhall, B., Ng, R.: Stegastamp: Invisible hyperlinks in physical
photographs. CoRR abs/1904.05343 (2019), http://arxiv.org/abs/1904.05343
- 14. Tancik, M., Mildenhall, B., Ng, R.: Stegastamp: Invisible hyperlinks in physical photographs. In: CVPR (2020)
- 15. Yedroudj, M., Comby, F., Chaumont, M.: Steganography using a 3 player game. CoRR abs/1907.06956 (2019), http://arxiv.org/abs/1907.06956
 16. With the state of the state of
- ²⁵⁹ 16. Zhu, J., Kaplan, R., Johnson, J., Fei-Fei, L.: Hidden: Hiding data with deep net-works. In: Proceedings of the European conference on computer vision (ECCV).
 pp. 657–672 (2018)