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Abstract. PixInPix is an steganography hidding system of images within
other images. The system designed is able to create, from an cover image
and a message, a new steganography image. This new stego-image looks
as similar as possible as the cover but has the message hidden in it. Our
approach adopts the U-net architecture and combines two reconstruction
losses to provide a simple yet effective approach tested in low resolution
images from MNIST, CIFAR and ImageNet.

Keywords: Steganography, Deep Learning, U-Net

1 Introduction

Steganography and watermarking are two well known techniques to hide infor-
mation in media content such as images, videos or audio files. The main difference
between them is related to what is hidden in them. While in watermarking the
information hidden is related to its content, in steganography the hidden part
usually do not have any relation with its content. The work we present tack-
les the field of steganography, however it could be easily reformulated into any
watermarking problem.

Some works with convolutional neural networks [13, 16] have addressed the
lossless case in which binary messages were hidden in a steganography image,
studying the perturbations with respect to the original cover image. Our work
addresses the scenario in which perturbations in the message are also acceptable,
as this would be the case of visual information. Images are already typically
encoded with lossy compression algorithms whose distortions are unnoticeable
for humans. Our PixInPix model solves the task of hiding a message (or secret)
image into a cover images, as task previously addressed in [1, 3]. In our case we
provide a lightweight implementation that does not require any pre-processing of
the message image. Hiding images into other images has applications in encoding
depth, multi-view or short animations withing n a standard RGB image.

PixInPix follows a classic encoder-decoder paradigm which are trained to-
gether to hide images into other images. The encoder takes care of hiding a
message into a cover image in such a way that pixel perturbations are hardly
noticeable by a human eye. In our experiments, we apply different distortions
and transformation on the encoded image and assess their impact in the recovery
of the message image.
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Our source code and trained models will be publicly available upon accep-
tance1.

2 Related work

Hiding information in image pixels is a task extensively addressed in the broad
field of steganography with multiple and diverse approaches [4–6, 10, 11, 15].
Recently, deep neural networks have achieved outstanding results, in parallel
with several other task in the field of computer vision. They mostly follow the
same basic architecture we adopt, with a convolutional neural network as encoder
to hide the message with the cover image, and a convolutional decoder that
outputs the message. A baseline system would define a reconstruction loss for
the cover image at the output of the encoder, and a second reconstruction loss
for the message at the output of the decoder.

Hidden [16] encodes the message by replicating and concatenating it to the
pixel embeddings obtained by a 2D convolutional encoder, while in our case
we concatenate the message directly into the cover image. Hidden incorporates
an adversarial loss to improve the realistic appearance of the stego image. The
work provides a detailed study of the trade-offs between capacity, secrecy and
robustness of the method. Stegastamp [14] follows a similar approach, but focuses
in the specific application of encoding hyperlinks into image pixels, reporting
satisfactory results in practice for up to 56 bits per message.

Both Hidden and Stegastamp limit their study to the encoding of binary
messages in the form of vector, while our work addresses scenarios in which
some losses are acceptable. PixInPix presents many points in common with
Deep-Stego [1], which also hides images into images, but requires a specific pre-
processing of the message. A similar pre-processing scheme was later adopted
by Duan et al. [3] and extended by adopting a U-Net [12] neural architecture
and a BEGAN adversarial training, a similar set up as the one adopted in the
popular Pix2Pix [7] model for image translation. PixInPix also benefits from
the U-Net [12] architecture but adopts a simpler approach because it does not
apply any pre-processing neither adversarial loss.

3 System architecture

The architecture of our system is shown in Figure 1. It is composed of an encoder
and a decoder deep neural network that are trained together to hide a message
image in the cover image.

We feed the network with a 6 channel 32x32 pixel input. Three channels for
each image (cover and message). The output of the network is a 32x32 RGB
image. We used low resolution images to ease the training process, as larger
images take more computational time and resources.

1 http://anonymous.url
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Fig. 1: Overall system structure

The message encoder is the convolutional neural network in charge of creating
the new image, the steganography image. This stego image should look as similar
as possible to the cover image, despite containing the message image hidden
within.

The first layer of the encoder the down-sampling process was designed with
multiple 2D convolutional layers followed by a ReLU activation function. In each
down-sampling step, we double the number of feature channels and we add a
max pooling layer at the end. In particular, we used five down-sampling steps
to go from a 6 channels to 256 feature channels. In the up-sampling phase,
we used the same structure. Several 2D convolutional layers preceded by 2D
transposed convolution operations. At each up-sampling step the feature map
from the down-sampling process is add as part of the input to improve the final
results. At the end, the output we obtain is a 3 channel 32x32 RGB image.

The message decoder contains almost the same layers as the image encoder,
with the only difference that the input is the stego image and the output the
reconstructed message image.

Both encoder and decoder networks follow a U-Net-like architecture [12] that
allow a better recovery of the spatial resolution thanks to the skip connections
between the down-sampling and up-sampling layers. The details of the message
encoder are depicted in Figure 2.

Fig. 2: Image encoder architecture
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4 Experiments and results

In our experiments we used three well-known low resolution datasets for fast pro-
totyping: MNIST [9], CIFAR10 [8] and a down-sampled ImageNet [2]. We used
50,000 images for training and 10,000 images for testing. We trained the model
for 100 epochs and set the learning rate to 0.01 and used the SGD optimizer and
mean square error (L2) as loss.

The particularity of the training procedure is that two loss terms needed
to be balance: a reconstruction loss for the stego-image compared to the cover
image, and a reconstruction loss for the message image. The two L2 were linearly
weighted and their parameters were set after a naive hyper-parameter search.

We performed two types of experiments hiding both graysalce and RGB
images into RGB images. First, an MNIST image was hidden into a CIFAR10
image (Figure 3) and an ImageNet image was later hidden into a CIFAR10 image
(Figure 4).

5 Conclusions

PixInPix offers a lightweight solution for hiding grayscale and color images into
RGB images by exploiting the U-Net architecture and combining two reconstruc-
tion losses: one for the stego-image and another one for the message image. Our
qualitative results show how this simple scheme can successfully hide images in
low resolution set ups and provide a solid ground to extend the work to more
complex scenarios.

Future work should address generating higher quality images and exploring
other applications that may benefit from hiding in images, or the opposite.
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(a) Cover image. (b) Message.

(c) Stego- image. (d) Message reconstruction.

Fig. 3: Outputs using CIFAR10 and MNIST.

(a) Cover image. (b) Message.

(c) Stego- image. (d) Message reconstruction.

Fig. 4: Outputs using CIFAR10 and ImageNet.
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