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Abstract—The main objective of this project is to implement   a 

new way to compute saliency maps and to locate an object in an 
image by using a brain-computer interface. To achieve this, the 
project is centered in designing the proper way to display the 
different parts of the images to the users in such a way that they 
generate measurable reactions. Once an image window is shown, 
the objective is to compute a score based on the EEG activity and 
compare its result with the current automatic methods to 
estimate saliency maps. Also, the aim of this work is to use the 
EEG map as a seed for another segmentation algorithm that will 
extract the object from the background in an image. This study 
provides evidence that BCI are useful to find the location of the 
objects in a simple images via straightforward EEG analysis and 
this represents the starting point to locate objects in more 
complex images. 

Index Terms— Brain-computer interfaces (BCI), 
Eelectroencephalography (EEG), segmentation, saliency map, 
rapid serial visual presentation (RSVP) 
 

I. MOTIVATION 

HIS paper presents a final report on a project in the 
School of Electronic Engineering carried out as part of 
an Erasmus program in the research center CLARITY 

at DCU. The work consists of exploring what information it is 
possible to extract from a Brain Computer Interface (BCI) 
during a local exploration of an image containing an object of 
interest. Specifically, the project has a double purpose: on one 
hand, the work is focused on finding out if BCI devices are 
useful to estimate visual saliency maps. On the other hand, the 
aim is to use  EEG signals to extract the location of an object 
in the whole image and perform its segmentation. 
 
Visual saliency maps automatically estimate which regions in 
the image mostly attract the attention of the user. They are 
computed by the intrinsic features of the image such as color, 
texture, orientation, intensity, etc. The purpose of this work is 
to compute these kind of maps based directly on the brain 
response of the user, instead of applying computer vision 
techniques on the image. A similar purpose has been realized 
in other works with eye tracker devices [1], and it has shown a 
correlation between the saliency maps and the inspection of 
the image by the user. However, BCI devices have not been 
used to compute these maps to the best of the author’s 
knowledge.  
 
Concerning the segmentation, the system would be a new 
interaction mechanism to segment an image, where the 
"interaction" would be reduced to the minimum expression: 

the user is just asked to look at the presentation of different 
image blocks. This way, s/he would be released of any kind of 
manual task like drawing a box around the object of interest or 
drawing scribbles on the object and the background [2]. In this 
work, the semi-supervised segmentation algorithm will be 
seeded directly by the reaction of the brain. 

II. RELATED WORK 

Previous works combining Brain Computer Interfaces (BCI) 
and computer vision [3][4][5] have been mainly focused in 
image retrieval and object detection. In these works, the way 
to present the images follows the oddball paradigm. This 
approach consists in presenting a "target" image between a 
large amount of "distractor" images in a Rapid Serial Visual 
Presentation (RSVP). The images are presented at a high rate, 
around 10Hz, in such a way that a specific signature in their 
EEG signals is produced when the user sees the target images 
(or rare stimulus). This signature is known as P300 wave and 
it is a kind of Event-Related Potential (ERP) related to the 
process of the recognition of a specific visual stimulus. The 
wave consists mainly in a positive peak in the EEG wave after 
300ms following the visual stimulus. 
 

 
Fig.  1 Ilustration of the oddball paradigm. The P300 wave appears in the EEG 

data acquired 300ms after the target image. 

Two previous works of a BCI system applied to image 
retrieval and detection were presented by Wang (2009) [3] and 
Healy (2011) [4]. In both cases the authors perform a RSVP at 
10 Hz of images from known datasets (Caltech and ALOI, 
respectively) to detect those images in which a specific object 
appears. It is remarkable that in Wang’s paper the user is not 
asked to press any additional button when a  target image is 
seen.  
The main reference for this project was from Bigdely-Shamlo 
(2008) [5], where satellite images are explored by local 
windows to detect which of them contain airplanes. 
Nevertheless, such work differs from the goal of this work, 
where objects may be distributed in multiple adjacent 
windows. This project targets a challenging approach because 
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it focuses on target windows instead of target images. This 
means that the object of interest may be partially included in a 
window. It is possible that the size ratio between the object 
part and the window will influence the associated EEG 
response. 

III.  LOCAL EXPLORATION OF THE IMAGE 

A. Input EEG Device. 

The EEG device used in this project is the KT88-1016, the 
same one used in [4]. The sampling rate is 100Hz and offers 
16 channels of acquisition. Both of these features are low 
resolution compared to other studies [3][5], which indicates 
that this research exploits basic low-cost acquisition 
equipment. In addition, it was decided to adopt an even 
simpler configuration, by just considering the 8 channels  
located mainly at the bottom of the head. These channels were 
chosen because this area is the most sensitive to P300 
detection. 
 

B. Sliding Window Interface 

A first version of the interface to present the images was 
developed from scratch in Python. It consisted in a black mask 
that covered the entire image except one square region. The 
presentation was the movement of this window across the 
image with a continued scan: the window started in the top-
left corner of the image and moved to the right. When it 
arrived to the border, it moved down the size of the window, 
and started the inspection to the left. This movement was 
repeated until all the regions of the image were shown. 
 

 
Fig 2 Screen shot of the Sliding window interface. 

 
The time reference of the local computer and the position of 
the window in the image is recorded during the presentation. 
Simultaneously the EEG activity of 8 channels is recorded 
relative to the local computer time, so it is possible to  
associate the brain reaction of the user to each position in the 
window. 
 

C. Problems of the Sliding Window 

After running the first experiment with one user and obtaining 
only noise, we analyzed the possible problems with this 
implementation. We held a videocall with two experts in the 
neureosicence field: Thomas Ward and Nima Bidgely Shamlo, 
one of the authors of [5], from the Center for Computational 
Neuroscience of San Diego. After the discussion, the 
following drawbacks were identified: 
 

1- The movement of the window around the screen 
forced the users to move the eyes during the 
presentation and it is known that this generates 
artifacts on the acquired EEG signal. 

2- The progressive exploration of the image may not 
generate any useful response in the EEG waves due 
to the fact that the brain mainly reacts to abrupt 
changes. 

3- Due to the size of the objects of the images selected,  
the amount of target windows was too high, 
another issue that may hamper the triggering of any 
useful reaction in the brain. 

4- The way to synchronize the time of the visual 
stimulus and the EEG activity may generate 
misalignements due to possible delays between the 
script for the presentation and the one for the 
acquisition. 

 

D. Second Design: Random RSVP at local scale based on the 
SNAP interface. 

In order to fix the problems of the Sliding Window Interface, a 
second design based in the Simulation and Neuroscience 
Application Platform (SNAP) developed in the Swartz Center 
for Computational Neuroscience1 was adapted to the purpose 
of this project. 
 
The new implementation consisted in cropping the images in 
the different windows to later display the windows in a 
random order following the RSVP approach at 10Hz of 
frequency. 

Fig 3 On the left, windows cropped from one image (The windows containing 
the flower are considered the target windows, the rest are the distractor 

windows). On the right, screen shot of the SNAP interface adapted: All the 
windows of the image are displayed in the same fixed position in a random 

order. 
 

 With the new implementation: 
1- The window of the image was in a fixed position on 

the screen, to avoid the movement of the eyes. 
2- The inspection of the image was random instead of 

progressive. 
3- We built a brand new controlled image dataset 

instead of the Grabcut dataset, previously used due to 
its popularity in interactive segmentation work. The 
new dataset consists in 32 natural photos with their 
manually generated ground truth masks. Each image 
presents a single salient object in a uniform 
background. The main feature is that the size of the 
object is small compared to the size of the 

 
1http://sccn.ucsd.edu/ 
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background (around 15% of target window for each 
image).  

4- The best way to fix the problem of the 
synchronization would have been using one of the 
channels of the EEG device as a signal to mark when 
the visual events happen. But due to the extra time 
that would be required to implement this, it was 
decided to keep the same method of 
synchronization (same computer time for the visual 
events and EEG acquisition) for the first trials. 

 
With the changes 1) and 2) the approach became more similar 
to the oddball paradigm, because a few stimuli were presented 
between a large amount of distractors. Nevertheless, the rate 
of targets is still higher if it is compared with the 1% of target 
images used in [3]. 

IV. EXPERIMENTAL SET-UP 

After the review of the interface, the effort was focused in 
trying to detect some "easy reactions" before running the main 
experiment. The reason was to make sure that the device was 
working properly and the synchronization method was good 
enough to identify the visual stimuli with the brain response 
from user.  

A. Checking the electronics and synchronization:  

1) Alpha waves 
When the user has closed the eyes the dominant frequency of 
the brain is around 8Hz-12Hz [7]. These kind of waves are 
known as alpha waves and they are easy to detect even in the 
time domain. Visualizing these waves in real time before any 
experiment provides an easy way to make sure that the EEG 
device is working properly. 
 

 
 

Fig 4. 5 seconds of closed and opened eyes. The waves look different in the 
time domain, this fact becomes an easy way to check if the device is properly 

connected. 
 
2) Detecting ERPS from a series of flashes 
When the user is exposed to abrupt visual changes, like a 
white flash after seeing a black screen, a specific ERP is 
generated. The ERP associated to a flash presents a positive 
peak  100ms  (P100) after the flash stimuli, and a negative 
peak around the 150-200ms (N100). Related literature and 
discussions with Dr. Graham Healy and Dr. Michael Keane 
suggested that a good way to find the ERP wave forms is by 

averaging a large amount of reactions to the flashes. By 
averaging, the high noise present in EEG signals is canceled 
and it is possible to see the ERP. 
 

 
Fig 5. Average technique to find the ERP response

2
.  

 
Figure 6 is the average of 60 flashes presented to one user. 
The experiment consisted in presenting one flash each 2 
seconds. 
 
This study ensures correct synchronization of the visual 
events. This test also indicated that the detection of a specific 
waveform requires the repetition of the same stimulus several 
times, 60 times in this experiment. 
This fact highlights that it would be probably necessary to 
display multiple times the different windows of an image in 
the final experiment to obtain a clear EEG waveform of the 
brain reaction, at least, in the time domain. 
 
 

 
Fig 6. ERP response found from on user after 60 flashes. The lines represent 

the average 1 second after the flash stimuli in each of the 8 considered 
channels. The first positive peak for each signal is marked in green (P100), 

and the main negative peak (N100) is marked in red. The exact time values for 
each channel and their average are also provided in the table near the figure. 

 
3) Simplifying the images to the easiest case: Synthetic 
images 

The results obtained from the first trials were evidence that it 
is possible to generate some detectable reaction in the brain. 
The next challenge was to test the presentation scheme 
described in Section III.D and how to process the captured 
EEG signals.  To reduce the complexity of the experiment, the 
collection of 32 real images was replaced by 4 synthetic 
images where a geometric shape is fitted to a window (Fig 7) 

 
 

2Figure extrated from https://uwaterloo.ca 
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Fig 7. Synthetic image dataset and their ground truth masks.  

 
Each image has a resolution of 300x300 pixels and they were 
cropped into a 30x30 pixel windows, having an amount of 100 
windows per image, where only one window is a target 
window. 
 
Using these images in the experiment allows inspection of 
each window more than once. Otherwise there would not be 
enough target examples to train a classifier because there is 
only one target among the 100 windows per image. In 
addition, the results of detecting the ERPS of the flashes is 
evidence that it is necessary to repeat several times the 
stimulus to see a clear waveform. 

V. SIGNAL PROCESSING OF EEG SIGNALS 

1) The experiment 
The experiment was run in the Faraday Cage of the Nursing 
Building of Dublin City University. The room is designed 
specifically to run EEG experiments and isolates the user from 
external noises. 
 
The 4 synthetic images were displayed by the adapted SNAP 
interface to one user who was completely free of any 
mechanical interaction. Each image was presented 32 times 
and after 8 repetitions of each image (~5 minutes of 
presentation),  the user had a rest period. 
 
2) Data acquired 
An amount of 128 images were displayed (32 repetitions for 
each one of the 4 shapes), having an amount of 32 examples of 
target windows and 3,168 examples of distractor windows. 
 
3)  Data preprocessing 
The data was processed with Matlab 7.12. The 8 EEG raw 
data obtained (one for each connected channel) was low-pass 
filtered to 50Hz and normalized to 0 mean and standard 
deviation 1 as suggested in [8]. 
Each presented window was associated to 1 second of 
preprocessed EEG activity after its presentation. So, each 
presented window corresponded to 8 feature vectors of 100 
samples corresponding to 1 second after the stimulus 
presentation for each EEG channel. 
 
4) Single Trial 
The process to extract the proper features is critical for 
successful classification of the windows. The main challenge 
corresponds to a high variability in the waveforms of target 
and distractor stimuli [9]. Figure 8 presents two single 

exemplars from the two classes, while Figure 9 plots the 
overlap of all considered single trials. 

 
Fig 8. One second of EEG response of one of the channels for one single trial 

of target window (red) and distractor window (blue). 
 

 
 

Fig 9. One second of EEG response for each channel. In each plot the 100 
vectors associated to each windows of one image. In red, the target reaction, 

in blue the 99 distractors for one of the 32 repetitions. 
 
The waveforms obtained are similar between the targets and 
the distractors. Whilst, there exists related work in the state of 
the art to analyze the single trials and extract the proper 
features by wavelet representations and complex methods, 
these are out of the scope of this thesis. 
 
5) Averaged Trials 
The average of the 32 feature vectors of each window was 
computed, following the same idea to find the ERPS of the 
flashes presented in Section IV.A. 
 

 
Fig 10. 1 second of  averaged EEG response for each channel. In each plot the 

100 averaged vectors associated to each windows of one image. In red, the 
averaged reaction for 32 examples of target window, in blue the 99 averaged 

reactions for the distractors. 
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Figure 10 indicates now that the peaks of averaged targets in 
channels 2, 3, 5, 7 and 8 may indeed be distinctive to the 
averaged distractors if considering the amplitudes. This 
observation suggests that the two patterns can be 
discriminated through machine learning techniques.  
 
6) Feature Extraction 
The absolute value of the signals and the mean of 96 targets 
and 96 distractors from a random window are plotted in Figure 
11. 
 

 
Fig 11. Absolute value for the EEG response associated to 96 distractor and 

96 target of one channel. In green, the mean of the values. 
 

It can be observed that the mean of the absolute values of the 
distractors and the targets is mainly different during the first 
600ms. For this reason, it was decided to characterize each 
window directly with the energy value of the EEG response 
from the 0 to the 600ms after the visual stimuli.  
 

 
 

Fig 12. For one image (100 windows) and considering EEG channel 2: The 
histogram of the values of the energy computed. On the left, the values 

computed over the single trials; on the right the values computed over the 
average of the 32 trials. 

 
Considering only one channel and computing the energy 
feature for all the single trials of one image, a similar value is 
obtained for all the windows (Fig. 12, left). Meanwhile, when 
the 32 trials of each window are averaged, a clear distinction 
between the distractors and the target window is obtained (Fig. 
12, right). This result means that it is easier to distinguish the 
signals between averaged EEG responses of the windows 
presented than analyzing the single trials. 
 
Furthermore, and focusing on only one channel, the fact of 
having a single value per window allows us to generate the 
first EEG map of the synthetic images based on the energy of 
the averaged signals. These initial EEG maps are show in 

Figure 12. The position of the target window (in white) is 
clearly distinguishable in 3 of the 4 images only by 
considering one of the channels of the EEG device and 
without any classification algorithm. 
 

 
Fig 12. Synthetic images presented and their EEG map based on the value of 

the energy for the averaged trials. 
 
In order to compute the maps, the value of the energy was 
normalized to 1 by dividing all the scores obtained of all the 
windows by the maximum energy value of the image. This 
post-processing is assuming that at least one window contains 
the object of interest. This normalization should not occur if 
the image may not contain any object. 
 
7) Bootstrapping for the Generation of Averaged Data 
Previous results indicate that averaging the signals is a good 
practice to identify the target windows. However, averaging 
reduces the amount of target examples from 32 single trials to 
just 1 averaged trial. This amount is not enough data to train 
the classifier algorithm. 
 
Acquiring more user data was not feasible because of the 
limited access to the acquisition equipment and, even more 
importantly, the slow and stressing process of data acquisition 
for volunteers. For this reason, a bootstrap aggregation with no 
replacement was applied to generate 96 new examples of 
averaged EEG reactions. This technique generates a new 
sample by averaging 16 target examples randomly selected 
from the 32 available.  

 
14. Boosting technique to generate averaged data. 

 
The boosting is applied as well to generate averaged 
distractors for each of the corresponding 99 images. 
 
8) Support Vector Machine (SVM)  
The algorithm selected to classify windows was a SVM with a 
linear kernel from the package LibSVM for Matlab. This 
library provides the classification label for each instance and 
the probability value that the instance belongs to the predicted 
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class. The value of the probability is considered instead of the 
binary classification in order to generate a grey scale EEG 
map, similar to the saliency and segmentation maps used in 
related works. 
 
The energy associated to each 0-600 ms window for each of 
the 8 channels is considered to define a feature vector of 
dimension 8. This method of channel fusion will let the SVM 
automatically learn which of the channels have the most 
relevant information and which ones are mainly noise to 
efficiently combine their outputs. 
 
The SVM classifier was trained with 96 feature vectors of 
target windows and 96 from the distractors, corresponding to 3 
images used for training. Each training image provides 32 
target feature from its target window, but the 32 distractor 
features from a random sampling among the 99 distractor 
windows available.  

 
Fig 13. EEG maps generated by the probability value provided by the SVM. 

 
The model obtained is tested with the 100 feature vectors of 
the remaining image. A cross validation approach is applied 
by running the experiments with the four possible 
combinations of 3 train + 1 test. 
 
Assuming that the output has to have one object, the EEG map 
is computed by taking the probability value of the window 
classified as a target window, and normalizing this score by 
the maximum value obtained. The results obtained are shown 
in Figure 13, which clearly shows that it is possible to detect 
the object of interest. 

VI.  CONCLUSION 

The work developed did not reach the original goals of the 
project: use the values obtained from EEG maps be compared 
to saliency maps for real images and used as the basis of a 
segmentation algorithm. This was because it became clear in 
this course of this project that these were extremely ambitious 
objectives that would require significantly more time. 
Nevertheless, the results obtained from the synthetic images 
provide evidence that BCI devices could in principle be used 
to locate an object into an image, this result represents a solid 
basis to perform more trials with real images in order to 
achieve the original objectives in the future. 
 
The innovation of the work is the simplicity of the system: 
Simply by extracting the value of the energy of the averaged 
EEG waves, and combining the values obtained from each of 
the 8 channels via to train a SVM with a lineal kernel it is 
possible to locate the object in the synthetic images, whilst  

keeping the user free of any interaction during stimuli 
presentation. 
 
The main weaknesses are that it only has been proved with a 
"simple" images, where the object was fitted in only one of the 
windows of the image instead of tried in real images, where 
having the object partially included in different windows 
becomes more challenging. This opens a huge range of 
variables like size of the object, size of the window, 
percentage of object displayed in the window, number of 
repetitions of the window, etc. that may affect in the issue of 
detecting the target windows. 
 
The system works well when the averaged signals are 
considered.  The direct consequence of this is that, even by 
using the boosting technique to generate more examples of 
data, the number of the image repetitions is high (in this study 
it is required 32 repetitions of each image to succeed in the 
classification of the windows). 
 
Future work should study the extraction of better features that 
may reduce the number of image repetitions and focus in 
analyzing real images.  
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