Exploring Visual Representations for Sign Language

Translation
Maram A. Mohamed Xavier Giro
African Masters of Machine Intelligence (AMMI/Senegal) UPC
mmohamed@aimsammi.org xavier.giroQupc.edu

Laia Tarrés
UPC

laia.tarres@upc.edu

Abstract

Sign Language Translation (SLT) task has been addressed in multiple approaches
in recent years. In this work we aim to investigate the impact of using different
types of visual sign language representation for SLT. For this investigation we use
the state-of-the-art in SLT, the Sign Language Transformers model. We compare
the translation output performance of two types of body pose estimation models as
our skeleton extractor, and 2D CNN features trained on the test dataset. These later
perform best, and I3D features outperform the pose estimation-based ones.

1 Introduction

Sign Language is the primary communication channel for hearing-impaired people. It consists of
manual articulations combined with non-manual elements, such as facial expressions, body poses
or mouth motions (Sandler and Lillo-Martin [2006)). Together, it results in a very complex natural
language. Contrary to common belief, each local community developed and currently uses its own
Sign Language, which have been listed to exist 150 different Sign Languages (Eberhard, Simons, and
Fennig|2021)), although there may exists more which have not been documented yet.

Unfortunately, communication for deaf communities with the hearing ones is very difficult, due to
the lack of knowledge on Sign Languages. In this scenario, automatic machine translation for Sign
Language appears to be a practical solution and could have significant beneficial impacts.The goal
of sign language translation is to either convert written language into a video of sign (production)
(Rastgoo et al.|2021)) or to extract an equivalent spoken language sentence from a video of someone
performing continuous sign (Camgoz, Hadfield, et al.[2018a)). Furthermore, a Sign Language has its
own linguistic singularities, such as grammar or semantics, as any other language, which are different
for each sign. Hence, there is not a one-to-one mapping from the signs to its direct translation, as it is
more complex. There exist gloss annotations. For sign languages glosses are the direct transcription
of Sign Language that differ from the spoken translation because it contains textual information about
the sign and may include words which do not have an equivalent in the spoken language.

In the field of computer vision, much of this latter work has focused on recognising the sequence
of sign glosses (Continuous Sign Language Recognition (CSLR)) rather than the full translation to
a spoken language equivalent (Sign Language Translation (SLT)). This distinction is important as
the grammar of sign and spoken language are very different. These differences include : different
word ordering, multiple channels used to convey concurrent information and the use of direction
and space to convey the relationships between objects. current state-of-the-art models utilize video



recordings containing signers performing Sign Language content to model such tasks. Relaying on
the raw video signal is computationally expensive and can lead to overfitting, and non-generalization
of the model. In an attempt to overcome this dependence, body pose estimation has been suggested
as an alternative being a person-independent, privacy-preserving, and low-dimensional representation
source of data, that provides information about the body pose and how the signer changes over time.

The main contributions of this research work can be summarized in the following way: (1) we aim
to investigate the impact of using different types of sign language representation for SLT. For this
investigation we use the state-of-the-art in SLT, the Sign Language Transformers model(Camgoz,
Koller, et al.[2020).(2) We compare the translation output performance of two types of body pose
estimation models as our skeleton extractor, as well as the pre-trained 2D Convolution Neural Network
(CNN) features provided by(Camgoz, Koller, et al.|2020), following with the performance of 13D
features.(3) We adapt the state-of-the-art Sign Language Transformer model to How2Sign and provide
baseline results work as starting point for further research on this setup.

This work is organised as follows: In Section 2 we survey the previous studies on SLT and the state-
of-the-art model in SLT. In Section 3, we discuss the process of Reproducing and Adapting the Sign
Language Transformers. We share our experimental setup with the different types of representations
for the input in Section 4. We then report the experimental results of the Sign Language Transformers
with different type of features in Section 5 and present new baseline results for the previously defined
SLRT model with How2Sign datasets. We conclude the thesis work in Section 7 by discussing our
findings and possible future work.

2 Related Work

Sign languages have been studied by the computer Vision and NLP community recently (Tamura and
Kawasaki |1988)), (Starner, Weaver, and Pentland|1998). The end goal of computational sign language
research is to build translation and production systems (Cormier et al. [2019), that are capable of
translating sign language videos to spoken language sentences and vice versa. Nevertheless, most of
the research has mainly focused on Isolated Sign Language Recognition (Joze and Koller[2018), (Yin,
Chai, and X. Chen 2016), (Wang, Chai, Hong, et al.[2016), (Camgoz, Kindiroglu, and Akarun [2016),
(Siizgiin et al. 2015), (Tornay et al.|2019), working on application specific datasets (Wang, Chai, and
X. Chen[2016), (Ebling et al. 2018)),(Camg6z, Kindiroglu, Karabiikli, et al.|2016). More recent work
has tackled sign language translation tasks as video based SLT systems and the state-of-the-art work
in this approach is Sign Language recognition and Translation in an end-to-end manner(Abadi et al.
2016).

The most important obstacle to vision based SLT research has been the availability of suitable
datasets.There are datasets available from linguistic sources (Schembri et al.[2013)), (Hanke et al.
2010) and sign language interpretations from broadcasts (Cooper and Bowden 2009). However, the
available annotations are either weak (subtitles) or too few to build models which would work on a
large domain of discourse. In addition, such datasets lack the human pose information which legacy
Sign Language Recognition (SLR) methods heavily relied on.

To address these issues, Camgoz et al. (Camgoz, Hadfield, et al.[2018b) released the first publicly avail-
able SLT dataset, PHOENIX 14T, which is an extension of the popular RWTH-PHOENIXWeather-
2014 (PHOENIX14) CSLR dataset. The authors proposed a system using Convolutional Neural
Networks (CNNs) in combination with attention-based NMT methods (Luong, Pham, and Manning
2015), (Bahdanau, Cho, and Bengio [2014) to realize the first end-to-end SLT models. In addition
to this, they proposed the current state of the art model for SLT using PHOENIX14T dataset in this
work (Bungeroth and Ney [2004). Following this, Ko et al. proposed a similar approach but used body
key-point coordinates as input for their translation networks, and evaluated their method on a Korean
Sign Language dataset (Ko et al. 2019).Generally, there is no many research works in SLT using
keypoints coordinates.



2.1 Sign Language Transformers

(Camgoz, Koller, et al.2020) In their work, the authors introduce a state-of-the-art approach for Sign
Language recognition and translation in an end-to-end manner. They present an novel architecture
based on Transformers (Cooper and Bowden 2009), which is the current model used to address
sequence-to-sequence tasks. In Fig. 1 it can be observed an overview of the architecture of a single
Transformer layer, which follows the encoder-decoder classic model. It is designed to generate the
English sentence translations from the sign language videos, with intermediate gloss supervision.

On the left side of the image, one can find the encoder model, named SLRT. It correspond to the
Sign Language Recognition Transformer. It receives as input the output of the Spatial Embedding
layer, which extracts the sign video features from the raw frames. It is summed to the positional
encoders (Cooper and Bowden 2009)), responsible of adding the temporal coherence of the frame
sequence. The SLRT model follows the classic encoder architecture, as can be seen in the figure, with
a Self-Attention module, with all operations followed by residual connections and a normalization
step. Its goal is to recognize and predict the glosses corresponding to the input sign videos and,
more importantly, learning meaning- ful spatio-temporal representations for the further sign language
translation. In order to train the encoder, they used the Connectionist Temporal Classification (CTC)
sequence- to-sequence learning loss function, instead of cross-entropy loss, as they mention it would
require much more precision of gloss annotations, which is not common.

On the left side of the image, one can find the encoder model, named SLRT. It correspond to the
Sign Language Recognition Transformer. It receives as input the output of the Spatial Embedding
layer, which extracts the sign video features from the raw frames. It is summed to the positional
encoders(Vaswani et al.|2017)), responsible of adding the temporal coherence of the frame sequence.
The SLRT model follows the classic encoder architecture, as can be seen in the figure, with a
Self-Attention module, with all operations followed by residual connections and a normalization
step. Its goal is to recognize and predict the glosses corresponding to the input sign videos and,
more importantly, learning meaningful spatio-temporal representations for the further sign language
translation. In order to train the encoder, they used the Connectionist Temporal Classification (CTC)
sequence-to-sequence learning loss function, instead of cross-entropy loss, as they mention it would
require much more precision of gloss annotations, which is not common.

On the right side of the image, one can find the decoder model, named SLTT. It corresponds to the
Sing Language Translation Transformer. It receives as input the output of the Word Embedding
layer, which computes a one-hot-vector representation of the English transcriptions into a dense
space, and is summed to the positional encoders. The main goal is to generate English sentences
from the sign videos representations. The SLTT model follows the classic autoregressive decoder
architecture, as can be seen in the figure, with a Masked Self-Attention module and an Encoder-
Decoder Attention module, with all operations followed by residual connections and a normalization
step. It is important to remark that in the Encoder-Decoder Attention module, the spatio-temporal
representations learned from the SLRT are combined with the representations learned from the
previous Masked Self-Attention module from the decoder and, there, it learns the mapping between
the sign videos and the English transcriptions. In order to train the decoder, they implemented a
cross-entropy loss for each word.

The network is trained by minimizing jointly the weighted sum of the recognition and the translation
loss multiplied by two hyper-parameters. They trained the model with the PHOENIX2014T (Camgoz,
Koller, et al. [2020), a dataset which contains parallel sign language videos, gloss annotations and
their written translations, in the weather forecast domain from the German TV. We give further details
on the dataset in the following section. Moreover, they specify the following protocols performed to
evaluate their model, stated in (Camgoz, Koller, et al.|2020):

- Sign2Text, which represents the end goal of translating from a sign video to its spoken transcription,
without any intermediary representation.
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Figure 1: Overview of the architecture of a single Sign Language Transformer layer provided by the
authors in their work Camgoz, Koller, et al. 2020

- Gloss2Text, a text-to-text translation problem, which consists in translating from the sign glosses to
the written sentences.

- Sign2Gloss2Text, which represents the current state-of-the-art in Sign Language Transformers. It
mainly consists of recognizing the glosses from the sing videos and then using them to predict the
written transcriptions.

Additionally, the authors introduced two new evaluation protocols:
- Sign2Gloss, which basically consists in sign language recognition from sign videos to glosses.

- Sign2(Gloss+Text), the main contribution of their work, as it represents the joint learning of sign
language recognition of glosses and translation to written sentences.

In conclusion, the work presented by Camgoz introduce a novel architecture based on Transformers
for learning jointly sign language recognition and translation and provide state-of-the-art results for
both tasks, outperforming previous models on the tasks.

3 Reproducing and Adapting the Sign Language Transformers
3.1 Datasets

The experiments for this work have been conducted using two different datasets namely How2Sign
and Phoenix2014T.

3.1.1 Phoenix2014T

This dataset (Camgoz, Koller, et al. |2020) is a large vocabulary, continuous SLT corpus.
PHOENIX14T is a translation dataset focused extension of the PHOENIX14 corpus, which has
become the primary benchmark for continuous sign language recognition (CSLR) in recent years.
PHOENIX14T contains parallel sign language videos, gloss annotations and their translations. The
corpus includes unconstrained continuous sign language from 9 different signers with a vocabulary
of 1066 different signs. Translations for these videos are provided in German spoken language with a



vocabulary of 2887 different words. The dataset version provided by the authors has the text, gloss
and sign video already aligned in a structured framework.

3.1.2 How2Sign

How?2Sign is a Large-scale Multimodal Dataset for Continuous American Sign Language, consisting
of a parallel corpus of more than 80 hours of sign language videos and a set of corresponding
modalities including speech, English transcripts, and depth.

Nevertheless, the corresponding gloss annotations are not available and, hence, we worked without
them. In their place, we used the English text. That is to say, in the recognition task, instead of
predicting the gloss annotations, we tried to predict the English transcriptions. This means that the
recognition and translation tasks are equivalent in this setup. We have decided to fill the gloss part of
the data set with the English sentence because we considered that it was a better temporary solution
than filling it with random or arbitrary words, as this way the model could still learn some meaningful
representations.

3.2 Reproducing the Author’s results

Reproducing the author’s results was a warm up step for our experiments , Here are some actions we
did to reproduce the same results :

3.3 Visual Features

The sign information released together with the SLT code does not contain the raw video frames,
but the features extracted from a pretrained CNN (Koller, Camgoz, Ney, et al. 2019). This net-
work was pretrained for a sign language recognition task with the PHOENIX2014T dataset, in a
CNN+LSTM+HMM configuration.

3.4 Code modifications

In order to reproduce the experiment, we had to carry out the following:

First, we prepared the environment for the task. We struggled configuring the versions of the
required packages. Therefore, some of the final package versions differed from the specified in the
requirements. Second, we modified the data path in the configuration file.

3.5 Evaluation Protocol.

To asses the impact of using different visual representations, we use BLEU-4 score(Papineni et al.
2002). BLEU-4 is used for comparing a candidate translation of text to one or more reference
translation. For the recognition task we use the Word Error Rate (WER).

3.6 Results

After configuring the setup, we trained the SLT model, which took two hours approximately. The
obtained results, showed in[I] are similar to the ones provided by the authors (Camgoz, Koller, et al.
2020), in terms of translation (BLEU scores, the higher the better).

DEV TEST

Sign2(Gloss+Text) Task | WER | BLEU-1 | BLEU-2 | BLEU-3 | BLEU-4 | WER | BLEU-1 | BLEU-2 | BLEU-3 | BLEU-4
Authors’ best results on Recog. | 24.61 46.56 34.03 26.83 22.12 24.49 47.20 34.46 26.75 21.80
Authors’ best results on Trans. | 24.98 47.26 34.40 27.05 22.38 26.16 46.61 33.73 26.19 21.32

Ourresu]ts(Recog+Trans.)‘48.92‘ 4430 ‘ 31.47 ‘ 2435 ‘ 19.88 ‘48.06‘ 44.62 ‘ 31.80 ‘ 24.40 ‘ 19.79

Table 1: Comparison between the authors’ results and our results obtained with the same setup.



4 Sign Language Representation

As mentioned previously, the SLT model was not trained with raw sign videos, but with extracted
features that function as Spatial Embeddings (SE). In Fig. 1, this corresponds to the first layer where
the video frames are fed to and its output is the input to the Encoder Transformer (SLRT). We conduct
our experiments with two different types of data inputs. Firstly, we extract body pose estimation,
from the raw videos using OpenPose(Cao, Hidalgo, et al.[2019) and Mediapipe(Lugaresi et al. 2019).
Later, we extract R6D angular encodings(Zhou et al. 2019) from Mediapipe. Following, we did
another experiment with the pre-trained CNN features provided. Eventually, we used the sign video
Embeddings represented as an I3D neural network architecture (Carreira and Zisserman 2017)) from
(Alvarez, Nieto, and Benet n.d.) to extract the features by(Camgoz, Koller, et al.2020).

4.1 Body Pose estimation

Body pose estimation models have been recently used in different areas of computer vision as an
efficient way of representing the human body(Cao, Hidalgo, et al.|[2019; Cao, Simon, et al. 2017
Yang et al.[2021). They are robust to different people and background and can be used to preserve the
privacy of the person in the video (one of the challenges when working with sign language videos). It
is designed to extract 2-dimensional (2D) or 3-dimensional (3D) coordinates that represents the joints
of the human body, or also called keypoints (KPs).

The keypoints can be captured via special equipment or directly from video frames. While motion
capture equipment can often provide better quality pose estimation, they are still very expensive and
intrusive. An alternative to that are pose estimation methods from monocular videos(Cao, Hidalgo,
et al. 2019; Xu et al. 2020; Pishchulin et al. 2012; Y. Chen et al. 2017; Giiler, Neverova, and
Kokkinos[2018)). Here we choose the two state-of-the-art body pose estimation models and used them
out-of-the-box to extract the keypoints from the raw videos used in our experiments.

OpenPose (OP)[Cao, Hidalgo, et al. 2019] is an open-source library for multi-person 2-dimensional
keypoints detection. It is designed to estimate a total of 137 keypoints being 70 keypoints from the
face, 25 keypoints for the body and 21 keypoints for each hand. Although the 2D representation of
the body provided by this method can be used to represent the signer’s body, we use the 2D to 3D
lifting method proposed by(Zelinka and Kanis 2020)) in order to obtain the 3D representation of the
sign language videos. This pipeline was used by previous methods as a sign language representation
for sign language production(Zelinka and Kanis 2020; Saunders, Camgoz, and Bowden 2020; Viegas
et al. 2022).

Mediapipe v.07 (MP)(Lugaresi et al. 2019)) is a 3D body pose estimation library that provides a total
of 543 keypoints, being 468 keypoints for the face, 33 for the body pose and 21 keypoints for each
hand.

6D Rotational Representation (R6D)(Zhou et al. 2019) Although this 3D Cartesian representa-
tion(Keypoints) allows handling occlusions and different camera angles much more effectively, it
suffers from sensitivity to scale and length of the speaker’s limbs. To obtain a representation that
is invariant to changes in scale, we decided to convert the Cartesian coordinates to a 6D rotational
representation called R6D. In essence, with a rotational representation such as axis-angle or R6D, we
represent a body joint as its rotation with respect to its parent joint.

The conversion process involves a number of steps. Since we compute the rotation of a joint against
its parent, we perform the conversion by traversing a kinematic tree. It is necessary to define a
root bone, from which to start the traversal. We set the root bone to be the neck, since it is a very
non-informative body part of a signer and it is therefore safe to assume it remains fixed. For each
triplet of joints, we compute vectors u and v, representing the parent bone and the “’rotated” one,
respectively. Then, we obtain the axis a” and angle by which the rotation from the parent to the child
joints is achieved. Vector a” is the axis-angle representation of the central joint w.r.t to its parent joint.
From this, we can easily obtain its rotation matrix and its R6D representation (which corresponds to
vectorizing the first two columns of the rotation matrix)



4.2 Pre-trained 2D CNN features

We use the pre-trained CNN features(Koller, Camgoz, Bowden, et al.|2019) provided by the authors
of(Camgoz, Koller, et al.|2020). This network was used for the sign language recognition task with
the PHOENIX2014T dataset (Camgoz, Hadfield, et al. 2018a). In their work, the authors trained
a CNN feature extractor and use an LSTM classifier that produced weak and noisy labels, later
refined by a multi-stream Hidden-Markov-Model (HMM). The provided feature vectors are of 1024
dimensions.

4.3 13D Features

We used the sign video Embeddings represented as an I3D neural network architecture [3] from [5]
to extract the features. 13D features are new Two-Stream Inflated 3D ConvNet (I3D) that is based on
2D ConvNet inflation: filters and pooling kernels of very deep image classification ConvNets are
expanded into 3D, making it possible to learn seamless spatio-temporal feature extractors from video
while leveraging successful ImageNet architecture designs and even their parameters.

5 Experiments

In this section , different experiments with our setups will be discussed. Generally speaking, The
experiments have been conducted using PHOENIX2014T dataset and few of them with How2Sign
dataset, taking into account the model by Camgoz et al., Sign Language Tranformer.We first go over
the implementation details and introduce the evaluation metrics we will be using to measure the
performance of our models.

Method. We have used the public implementation of SLRT(Camgoz, Koller, et al.|2020) to develop
our experiments. The overall model is trained by optimizing a weighted sum of the recognition
and the translation loss. This configuration is referred as Sign2(Gloss+Text). We use the same
configuration as the authors for our experiments.

Dataset. We use the publicly available PHOENIX2014T dataset(Camgoz, Hadfield, et al. 2018a).
It comprises a collection of weather forecast videos in German SL, segmented into sentences and
accompanied by German transcripts and sign-gloss annotations. The dataset is divided into training,
validation, and test set with respectively 7,096, 519, and 642 sentences.
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Figure 2: BLEU-4 metric for the validation dataset at each epoch based on different types of input
representations.

Results. Our contributions are mostly in exploring different alternatives based on keypoints (KPs).
We adapted the implementation of SLT(Camgoz, Koller, et al.[2020) to work with keypoints by using
a smaller dimension in their input linear layer. Following the approach in(Saunders, Camgoz, and
Bowden 2020) when using 3D keypoints features for the PHOENIX2014T dataset, we used 50 KPs
instead of the 137 KPs provided by OpenPose because most of the information is contained in the



Table 2: Results for the different types of visual representations

Features Validation  Test
KPs OpenPose (random) 2.19 4.05
KPs OpenPose Cao, Hidalgo, et al. 2019 10.50 11.00
KPs MediaPipe Lugaresi et al. 2019 9.16 9.50
KPs MediaPipe Zhou et al. 2019|(R6D) 8.80 9.56
13D features 14.74 13.63
2D CNN(Camgoz, Koller, et al.|2020) 19.88 19.79

hands and arms. Similarly, for the MediaPipe case we selected the KPs for these body parts, which
resulted in 48 keypoints.

As a sanity check, we also trained the model with wrong pairs of OpenPose KPs and spoken English
transcriptions. In this set up, the decoder may at most learn an English language model, but will
ignore the visual features as they are not related with the translated phrase.

In the case of the CNN features, we used the ones provided by the same authors of SLT(Camgoz,
Koller, et al.|2020) and successfully reproduced their results.

We present the results in Table[2] We can see that the 2D CNN features outperforms the keypoints
with this model. Compared to CNN features, using keypoints contributes negatively to the results even
when we compute the R6D features, which should be more robust than their Cartesian counterparts.
Moreover, we took advantage of the I3D features extracted from PHOENIX2014T dataset , as we can
see the results obtained were better than the ones from keypoints but still the results with the CNN
features were the best.

We hypothesize that there are multiple causes for this poor performance of KP-based features. First,
the automatic detection of poses is noisy, which introduces more difficulty to this problem. Second,
the skeletal dimension is reduced by almost 10 compared to the CNN features, which even if we
are keeping the most important information, some information are lost. Third, when working with
keypoints, we know the kinematic tree, but this information is not known by the model, making
it specially difficult to learn. Lastly, the translation model has been specifically designed and its
hyperparameters optimized to work with the CNN features trained on the PHOENIX dataset, which
might cause them to outperform other visual features.

5.1 Adapting to How2Sign

We also trained the model with the multimodal American Sign Language dataset, How2Sign. It repre-
sents a much more complete and extensive dataset in the Sign Language field than PHOENIX2014T,
the one used by the original authors. Moreover, we took advantage of the keypoints computed with
the How2Sign video frames. Nevertheless, there are several limitations we have faced during the
development of this work that should be addressed, Firstly, the servers we work on have a time limit
of 24 hours and, consequently, non of the models we trained actually converged. As the environment
is already designed to train from the checkpoints, we plan to continue our research by retraining our
current models until they converge. Following that, the annotation glosses are not available, hence
the recognition task itself cannot in fact be fulfilled. This represents a major problem, due to the fact
that the original authors show that the joint learning of the translation and recognition tasks improves
substantially the performance, than learning them separately. Finally, the data was miss-aligned in
terms of text and frame pairs and this affect the results with no doubt. As a result the performance of
the model on How2Sign was mostly random.

6 Conclusions and future work

In this work, we have explored keypoint-based visual representations for Sign Language Translation
on the PHOENIX2014T dataset. We conclude that for this specific model and dataset, the 2D CNN



features trained for sign recognition in the dataset are the best option. Although we have not been
able to successfully train a model with any of the keypoint-based features, we consider it is still an
interesting venue that should be further studied. In the future, we aim at exploring the limitations of
the keypoint-based features, as we expect that the performance of the model can be improved if the
performance of the human keypoint detection algorithm also improves. We will also consider other
features based 3D CNNN features(Renz et al.|[2021)) or optical flow(Moryossef et al.[2020). We also
think it is important to evaluate the performance of the model for different sign language datasets as
the PHOENIX2014T dataset is focused on the very specific domain of weather forecast.
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