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Abstract 
 
 

The amount of digital video content available in the web is constantly 

increasing. Its handling requires efficient technologies: text search on large databases 

provides users a great amount of videos; the content results are accessible by a 

description. Users need a fast and visual way to access relevant video content 

effectively. Quick visualization of content using static image summarization is a 

sophisticated problem. However, it is worth it because it may solve video navigation 

problems. Users can very rapidly get an idea of the video with no need to browse 

through it with a sliding bar as normally done. 

In this work a system for automatic video summarization is developed. It 

creates an object map the segments of which are extracted from an input video. It 

allows enhancing video browsing and large video databases management generating 

a visual index so that the user can rapidly grasp the most relevant content. Finally, 

accessing them with a simple action requires several technologies that define a 

complex information processing. 

Firstly, shot boundary detection algorithms are required to reduce time 

redundancy of the video. Secondly, different relevant objects are extracted from 

each keyframe (faces, cars, etc.). We also describe a workflow to train detection 

models using multiple open source solutions. Furthermore, faces are a particular and 

very relevant semantic class. For this reason, we use clustering methods in order to 

recognize them in an unsupervised recognition process. The image composition of all 

selected objects and faces is the final stage of the architecture. Composition is 

defined as the combination of distinct parts to form a whole, therefore, objects have 

to be rendered in the map in a visually attractive manner.  

To validate our approach and assess end-user satisfaction, we conducted a 

user study in which we compare requirements collected by analyzing related 

literature. We analyze redundancy and informativeness as well as pleasantness.  

The results show that our approach effectively creates an image 

representation for videos and is able to summarize customizable content in an 

attractive way. 
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1 
Introduction 

 

 

The volume of video content is growing every day. The manipulation, 

interaction and management of large video collections are far from other types of 

media such as text or images; one of the main reasons is the temporal nature of 

video. Text searches can be done in many ways, e.g. search command on single 

words with very specific metadata. On the other hand, images have thumbnail 

representations for rapid image browsing. Furthermore, new portable devices, such 

as smart phones or tablets, along with social networks and User-Generated Content 

sites greatly increase the accessibility and production of videos. Normally, video 

search results descriptions are accessible by textual metadata but it is not always the 

best way to summarize a video. Shared content requires efficient retrieval 

technologies to access this content properly in a fast and visual way. 

This thesis addresses the problem of video content summarization using 

relevant objects, analyzing the video and helping users to understand a video content 

item in a fast and visual way. Automatic video summarization aims at improving 

video browsing and temporal search of digital multimedia content supporting users 

in navigation of large videos archives.  

Our approach for automatic video summarization into an object map is based 

on content analysis. Object mapping is the process of taking data from one form of 

representation (video) to another (image). The research aims at complementing the 

capabilities of summaries over other media summaries, such as text summaries, 

using relevant content extraction. 
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1.1 Focus of the thesis 

We design an automatic system with existing algorithms that can create 

efficient image representations of video content items to help users detect important 

objects as well as providing a quick navigation through it. 

Selecting the main content for the summary is performed dividing the video 

into keyframes. Then object detection algorithms are used to extract the most 

important items appearing in the key frames [1]. Finally, the composition of all 

selected objects into one image is performed to create the final static image 

summary. 

 

Fig. 1 Video summary example of relevant faces 

 

When designing the summary the research questions that we address are: 

1. How good can be a single image representation of video content? 

A single image output is a requirement of the system. However, it is not the 

only requirement we want to fulfill. The image must Browse the video and sort its 

content. A second question is suggested: 

2. Which is the best method to compose the resulting object map? 

We do not want to create an object map with randomly positioned items, but 

rather generate a self-explanatory map which may be used by users for browsing the 

video. As can be seen, users’ opinion is very important for the thesis. We focus our 

last two questions on them: 

3. Which content may be selected for the user to understand a video? 
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Content selection is very important in order to create a good representation. 

We will analyze user attention models approaches [2] to detect where would we find 

users’ regions of interest. The approach should be validated by verifying whether its 

results fulfill the original user requirements. Evaluating video summarization is a 

difficult but important problem: 

4. How can we evaluate the video summarization results taking into 

consideration the users’ point of view? 

An evaluation process is performed to validate our approach by means of a 

user study. We present the motivation of the Thesis in next section as well as 

analyzing different application fields in Section 1.3. 

 

 

1.2 Motivation 

Today, video summaries are based on textual descriptions of video content, 

such as duration, type, authorship, relevance... of the video. This data does not 

always give enough information to the user and they have to browse the video 

content in order to determine if it is relevant or not. 

Another type of video summarization is video skimming. A video skim is a 

temporally compacted form of video stream that should preserve the most 

important information. As synonyms to video skim, researchers have used the terms 

preview and trailer in the literature. 

Finally, other summarization systems are based on keyframe representations 

of the video content. With these methods, multiple keyframes should be used in 

order to generate a complete representation of the whole video. However, Dufaux 

presents a method to automatically extract a single image representation as a 

summary analyzing semantic content and movement in the video scenes as a variant 

of keyframe-based summarization [1]. 

With object mapping we group different keyframes information, content-

based video analysis and the simplicity of static story-board summarization. Object 

maps can give complete and compacted information of the video content to the user 

as well as methods to rapidly navigate through the original video giving him the 

opportunity to select which parts are important. Some interesting applications are 

explained in the next section. 
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1.3 Applications 

Object mapping has numerous applications for video navigation, search and 

database management and aid to include hyperlinks of existing content. A quick 

visualization of the video content helps users to rapidly detect if it is relevant. 

Regarding large video databases, for example, it may reduce significantly the time 

required for searching a specific content or a specific video. 

Video navigation is another application for our approach. With a static image, 

users can use the object map as a visual index that will allow a fast access to the shot 

where each object was extracted from without using sliding bars or other techniques, 

only with a simple click. 

Furthermore, the visual representation would complete textual metadata of 

the video, not only general video metadata, but metadata related to each 

represented region in the map by defining clickable areas within it. Who is the 

actress? What model is that car? Where can I buy it? Does it appear in other 

moments of the video? These are some questions that the provider of the summary 

would want to add as textual metadata, links to the stores selling the object and 

more. 

Finally, the proposed approach can also be useful for automatic indexing 

applications because the selected regions may be the only ones processed by pattern 

recognition algorithms. This way, the object mapping technique would be 

understood as a pre-processing that selects a small subset of regions to be processed 

by other image processing techniques. For example, if automatic indexing system 

contains a face recognizer for actors/actresses in the video, evaluating it in every 

single frame of the video is not needed, but only on the selected regions included in 

the object maps. By doing so, the required computational effort could be 

dramatically reduced. 

 

 

1.4 Outline of the thesis 

The rest of the thesis is structured as follows: In Chapter 2 we describe 

different techniques used for video summarization, some of them are shorter video 

representations: video skimming. We then describe others based on static image 

representations. They will be deeply analyzed mentioning face and object detection 

algorithms to extract semantic content from the video. 
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In Chapter 3 we analyze the system requirements as well as the priorities to 

get them in terms of user’s acceptance of the proposed summary. Then, in Chapter 4 

we propose our solution approach. Domain knowledge using movie trailers is applied 

to analyze the relevance of the content included in the video summary. The 

composition of the final mapping is performed using this knowledge, but also the 

architecture can be customized using self-trained object detection methods. Our 

solution approach is validated in Chapter 5 by means of a user study, and in Chapter 

6 and 7 we discuss our conclusions and future work. 
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2 
Video Summarization: Related 

work 

 

 

In this chapter we describe the video summarization techniques to achieve 

new levels of understanding. We begin on Section 2.1 with an explanation of existing 

types of video summarization techniques. Then, in subsequent sections we will 

explain the workflow of the process and the involved technologies. In Section 2.2 we 

discuss the temporal segmentation methods that researchers use. In Section 2.3 we 

explain different content selection techniques used by the community in order to 

detect important video segments to be included in the video summary. Finally, in 

Section 2.4 we present object extraction methodologies for the correct 

understanding of our final architecture approach for video summarization. 

In Section 2.1 we define video summarization terminology used in related literature. 

We also describe briefly existing summarization techniques in order to understand 

how this chapter is divided in subsequent sections. 
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2.1 Video summarization. Definitions 

Video summarization engages in providing concise and informative video 

summaries in order to help people browsing and managing video files more 

efficiently. It has received more and more attention in recent years because new 

utilities (social networks, portable devices, etc.) allow users to access video 

content easily but they need to manage this content properly. Basically, there are 

two different kinds of video summaries: static image summary and moving-image 

skimming. 

 

2.1.1 Moving-image skimming 

The moving-image skimming, also known as video skim, consists of a 

collection of video clips, as well as the corresponding audio segments extracted from 

the original sequence and is thus itself a shorter version of the original video. They 

can be classified into two types: Overview and Highlight. 

In the classic case of movie trailers, the user is usually unaware about the 

content and is interested in a much reduced summary of the video content to decide 

before watching the full versions. We call this kind of video skimming overview. For a 

specific domain like news or sports, the user wants to see the most important events 

in the video (goals, news headlines) according to their interests. This kind is called 

highlight. Unlike overviews, which are presented as single condensed videos, 

highlight-based summaries are usually presented as an organized list of interesting 

events along with some associated metadata. 

 

2.1.2 Static summaries 

The static summary, also known as static storyboard, is a small collection of 

salient images or a single one extracted or generated from the underlying video 

source. According to the method used to extract representative images, we can 

classify static video summaries into sampling-based, shot-based, motion-based, 

mosaic-based and object mapping methods. 

Sampling-based methods select video keyframes by random or uniform 

sampling the input video. For shot-based methods, the source video is temporally 

segmented into shots using shot boundary detection algorithms. Motion-based 
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methods refer to the temporal dynamics of the video by motion analysis using image 

pixel difference or optical flow. When the camera motion can be detected, a mosaic 

image can be constructed to represent the whole content of a dynamic shot. Finally, 

object mapping aims to extract relevant objects from the source video to create a 

composite image. 

In the next sections we will review different technologies used to construct 

the commented summaries as well as techniques to temporally segment the source 

video and extracting relevant object content (faces, cars, etc). 

 

 

2.2 Shot segmentation 

Temporal redundancy is a very important issue to solve when facing video 

processing. Deleting redundant information is achieved by segmenting the video into 

shots. A shot is a continuous recording of video content without breaks in a scene. 

Then, keyframes may be extracted from each shot with different techniques based 

on pixel-to-pixel comparison, histogram-based comparisons, motion flow vectors, 

etc. This process is called Shot Boundary Detection. 

 

Fig. 2 Shot boundary detection example 

Pixel-to-Pixel methods are the core methods and probably the most 

straightforward ones [11]. Indeed, the first idea that comes to mind when we want to 

compare two images in terms of similarity is to compare their pixels.  

Histogram-based methods get better reflection of global properties of a 

picture, which is their main advantage [12]. These techniques are significantly more 

robust to a camera and object motion. However, there are drawbacks: a shot 

boundary occurring in two frames with similar histograms will be missed; also, 
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significant luminance difference between frames will declare false positive shot 

boundary detection. 

Histograms may be compared in different ways [13]. A first approach would 

be to calculate the histogram of each color channel that form the image and, then, 

calculate the difference between the bins in each histogram of the two successive 

images. Another technique is to calculate the difference of all channels between the 

histograms in the two images and take the maximum to the summation in order to 

detect intense changes in one channel. Finally, a variation of the last mentioned 

technique is to weight the importance of each color channel. 

A method that uses Hausdorff approximation to determine the outliers is 

used in [13]. Hausdorff method performs an edge detection process of the image and 

compares the location of the edge points produced by the edge detector. The 

method checks for each point whether a correlating edge exists in the successive 

image. If the sum of non correlated edges is greater than some threshold, a shot 

boundary is declared. 

 

Fig. 3 Shot detection example using Hausdorff distance method 

[13] also presents a combination of all the commented methods by building a 

Neural Network (NN) which inputs are the outputs of the different commented 

methods with a supervised learning process to easily adapt results for different type 

of videos. Weaknesses of each method are compensated by the others and NN is 

adapting to any given threshold by propagating the errors to its weights. 

More recent techniques include a higher-level segmentation of videos into 

scenes. Rasheed and Shah [14] present a method based on graph partitioning 

problem that clusters shots into scenes constructing a graph called shot similarity 

graph (SSG). Each node represents a shot and the edges between them are weighted 

based on their similarity based according to color and motion information. Then, the 

SSG is split into sub-graphs by applying normalized cuts representing individual 

scenes. They also propose a method to describe the content of each scene by 

selecting a representative keyframe. 

To sum up, there exist several shot segmentation techniques: 

 First approaches compare pixel intensity and image histogram to decide 

whether two frames belong to the same shot. 

 Later approaches include edge evaluation comparison between frames using 

Hausdorff distance. 
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 Learning processes using NN are also used to adapt the shot detection to the 

source video regardless preset thresholds. 

 Recent techniques use clustering methods to group similar frames based on 

pixel color, motion flow information, etc. 

In the next subsections we describe in detail the chosen approaches used in 

the Thesis, the development of which development is explained in Chapter 4, Section 

4.2. 

 

2.2.1 Software Initiative Studies at UCSD 

In this approach, each frame is divided into NxN regions. Then, the pixel 

change is estimated for each region between frames. If the pixel change is greater 

than some threshold and its cumulative sum is greater than the region threshold for 

the frame threshold number of regions in the frame, then it triggers the shot 

boundary detection. This technique also provides a simple frame averaging to avoid 

luminosity changes that could be detected as a shot boundary. This pixel-to-pixel 

method combines low computational requirements with satisfactory results, but also 

tends to generate some false detection, which generate an over-segmentation of the 

video (see Fig. 4 Shot boundary detection using UCSD pixel regions difference). 

 

Fig. 4 Shot boundary detection using UCSD pixel regions difference 

 

2.2.2 Course Project Binshtok and Greenshpan at BGU  

A second software kit has also been tested resulting from a course project by 

Max Binshtok and Ohad Greenshpan [13], two students at the Ben-Gurion University 

of the Negev (BGU) in Israel. The proposed software includes three different 

methods for the shot boundary detection: a pixel-to-pixel method, a histogram-
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based method, a third one based on the Haussdorf distance, and a learning process 

based on NN. 

While pixel-to-pixel methods might not be state of the art, they work quite 

well for the movie trailers we aim at processing in our Thesis. The classic solutions 

that segment shots based on motion estimation features do not provide different 

views of the same object or faces, a feature which is desirable to build the object 

maps by selecting the best view of every object. The pixel-to-pixel method naturally 

generate over segmentations of the videos due to changes in luminosity or points of 

view as shown in Fig. 5. 

 

 

Fig. 5 False shot detection useful for the project. Frontal and side views  

 

There are many types of pixel comparisons provided by the approach: 

 Global Pixel-to-Pixel: This method sums the pixels’ intensity values over the 

whole image, and compares it to the sum of the pixels’ intensity values in the 

second image as shown in formula ( 1 ). 

 

             
   

 
                   

   
 
    

      
    

( 1 ) 

 

         represents the intensity value of pixel (   ) at time frame  . If the 

difference is bigger than some threshold (τ) value, a shot detection is 

declared. It is obvious that the local differences between pixels’ intensity 

values are ignored. 

 

 Cumulative Pixel-to-Pixel: This method sums the difference between each 

pixel’s intensity value in one image and its intensity value in the successive 

image. We take into consideration local details in the images as shown in ( 2 

). 

 

               
   

 
                  

      
    

( 2 ) 
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The histogram-based methods compare the pixel histograms of neighboring 

frames to determine the shot boundaries. They introduce robustness in front of 

camera and object motions, but they fail into segmenting two shots whose colors are 

similar. Presented methods are: 

 Simple histogram: This method calculates histogram of each color channel 

that form the image and the difference between the bins in each histogram 

of the two images using ( 3 ). 

                               
                    

                      
    

( 3 ) 

 

          represents the histogram value of the bin   in the color channel   

at time frame  . 

 

 Max histogram: This method calculates the difference of all channels 

between histograms in the two images and takes the maximum to the 

summation. It can be influenced by an intense change in one channel as 

shown in formula ( 4 ).  

 

     
               

                             
     

          
    

( 4 ) 

 Weighted histogram: It also takes into account the histograms’ difference in 

all channels and gives each one a weight, determined by luminance 

proportion of the channel, thus giving more weight to the prevalent color 

channel in the image as shown in  ( 5 ). 

 

   
  

     
                            

                    

                      
    

( 5 ) 

The Hausdorff method performs an edge detection process with the Sobel 

detector of the images and compares the location of these points between frames. It 

is a really good approximation to get the same face or object twice if there exists any 

smoothing or view improvements. 

Finally, Binshtok and Greenshpan’s thesis states that the option that 

combines the three methods using a neural network provides the best results for the 

typical keyframe extraction. This is because preset input thresholds values (   do not 

play any role in the shot boundary detection. Instead, NN is adapting to any given 

value by propagating the errors to its weights. 
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Fig. 6 Shot boundary detection using NN 

In the next section we will analyze different content selection techniques 

researchers are using. The better the temporal segmentation and shot boundary 

detection is performed, the less redundant information should be processed and the 

greater performance of content selection methods is achieved.  

 

 

2.3 Content selection 

In this section we will analyze different approaches for the content selection 

included in different video summaries. We will begin on video skimming generation 

in Section 2.3.1 and we will continue reviewing techniques used for static image 

summaries in Section 2.3.2. 

Early attempts did not use content analysis but image processing techniques 

that, in most cases, make the result non self-explanatory and without a well-defined 

structure. Over the years the trend changed to include well balanced content 

extraction and video structure. The problem of most traditional summary generation 

approaches is that they are based on low level features. Hence, they may not be able 

to guarantee that generated results include relevant content. Many attempts try to 

deal with this problem but they are mostly the highlight generation approaches. That 

means video category has to be known to obtain relevant content properly and they 

may not be used on generic videos. 
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2.3.1 Dynamic video skimming 

Dynamic video skimming consists of a collection of audio-video sub-clips. It 

preserves the dynamic properties of the original video. In [3] frames with high-

contrast are detected as the ones containing important content. Furthermore, 

calculating frame-to-frame differences let them extract high-action parts in the 

video. In addition, the average color composition of the whole video is considered to 

include similar frames in the video skimming. Finally, spectrum of simple alphabetic 

characters for dialog recognition is performed. 

Another simple approach based on time compression technology is [4]. It 

allows faster playback speed of the video when playing static video scenes and 

slower speed for short and dynamic video scenes. It uses audio time scale 

modification technology to preserve comprehensibility of speech. However, the 

maximum time compression depends on the speech speed. Also, this approach 

distorts original video temporal property and it does not include content analysis. 

The Informedia project [5] [6] [7] creates the summary by extracting 

significant audio and video information. Text keywords from captioning and manual 

transcript are first extracted using Term-Frequency – Inverse Document Frequency 

technique. This text is used to create skimming version of the audio including some 

neighboring segments for better comprehension. Then, the image skimming is 

created by selecting with a descending priority: frames with faces or texts, static 

frames following camera motion, a combination of frames with camera motion, faces 

and texts, and frames at the beginning of a scene. This synopsis is not aligned with 

the audio in time and it cannot be used with videos with more complex audio 

content (music, audio effects). Even so, both explicit audio content and content 

analysis achieve impressive results. 

A method to generate video skims based on user attention model is 

presented in [2] (see Fig. 7 Framework of user attention model [7]). Attention is 

described as a neurobiological conception that implies the concentration of mental 

powers upon an object or audio track. Computing attention allows them to avoid the 

problem of semantic understanding of the video content. Their attention modeling 

includes visual, audio, and text modalities that together generate the user attention 

curve. Hence, an attention value is assigned to each frame to determine which of 

them are more attractive for the viewer and thus generate the summary.  
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Fig. 7 Framework of user attention model [7] 

This method constructs a video summary without fully semantic content 

understanding. However, humans do not only understand videos by perceiving these 

low level features. Also, the fusion scheme of the attention model parts has to be 

improved because it is not proved whether it is the most effective and the video 

structure information is neglected. 

[8] proposed an approach for summarization that emphasizes both the 

content balance and perceptual quality of the summary. A clustering method is used 

to cut the video and a motion attention model is used to compute perceptual quality 

of shots and clusters. Both together create a temporal graph that describes the 

evolution and importance of the clusters. This temporal graph is utilized to group 

scenes from clusters while the attention values aim to select the appropriate scenes 

for summarization. 

Another method for the creation of video skims based on similarity between 

shots is presented in [9]. A combination of Hausdorff distance and Boolean model is 

used to compare shot similarity. Then, a shot clustering is performed with the Affinity 

propagation clustering method [10] and, finally, content ranking is added to select 

shots included in the video summary. With shot similarity measure clusters can be 

created to reduce redundancy of the summary and thus achieve good compression 

ratios. With partial semantic understanding, good satisfaction and informativity 

measures are achieved in their experimental results. 

To sum up, the used techniques to generate video skimming summaries have 

evolved: 

 First approaches aim at providing summaries without analyzing the content. 

They select important scenes based on image low-level properties. 

 Later approaches provide scenes based on important content. Content 

selection techniques involve both user attention study and relevant object 

detection. 

 Other approaches use clustering methods to measure shot similarity and add 

the most diverse clusters to reduce the redundancy in the resulting 

summary. 
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In the next Section static video summary generation literature is analyzed. 

Most described approaches use similar methods to select the content to be included 

in the summary. The main difference between this section and the next one is the 

content presentation and the importance of compacting information into one single 

image or a group of static representations. 

 

2.3.2 Static video summary 

A static video summary can be expressed in a collection of images or a single 

one that represents the video content. Early work [15] selects video keyframes by 

random or uniform sampling the video image sequence. These methods are simple 

and they are unable to guarantee that important content may be covered by the 

selected result. 

Shots are an important block of the video. They represent a continuously 

captured sequence and shot transition detection has been suggested in various work 

[16] [17] [18] [19] since its visual content can be represented by some frame. These 

methods extract always the first frame of the shot, but in [17] subsequent frame 

histograms are computed. Once the difference exceeds a certain threshold, a new 

keyframe is extracted to include it to the summary. 

In [20] a scene transition graph is constructed for a video by time constrained 

clustering on the video shots. In it each video shot cluster is represented by one node 

in the graph and the transitions between nodes reflect the structure of the video. 

In [21] an unsupervised clustering scheme is proposed to extract the 

keyframes. First, all frames are clustered based on the color histogram similarity 

comparison into a certain number of clusters with a predefined threshold. Next, all 

clusters that are big enough to be considered important a representative frame is 

selected as the closest to the cluster centroid from each of them. The system is 

robust to background noises and motion but its performance highly depends on a 

threshold selection. 

Later works concentrate on organizing shot images by analyzing the video 

structure since videos comprise many video shots. In [22] the video content is 

represented in a tree structure. From top to bottom, a video consists of several 

scenes; each scene is composed by several related shot groups. Each shot group is 

composed by several visually similar and temporally adjacent shots. This tree 

structure represents an abstraction of the video content and it is presented to the 

user as a resulting summary. 

[23] creates a mosaic image to represent the whole content of a dynamic 

video shot when the camera motion can be detected (pan, tilt, zoom, translate). 
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Although this approach is quite informative, it only provides an extended panoramic 

spatial view of the entire static background, but contains no information about the 

moving foreground. In the situation that the scene is changing frequently and the 

camera motion is quite complex, this algorithm tends to achieve poor performance. 

 

Fig. 8 Mosaic representation. Top: Hand-chosen keyframes. Bottom: Mosaic representation without 
foreground occlusions [23] 

Recent works present effective methods for summarizing relevant content. A 

comic book style video summary is generated in [24] such that the size of selected 

images is adjusted according to their importance. The video structure reflects how 

the editor chooses and arranges video shots; they are very valuable information for 

video summarization. 

[25] provides static video summary consisting of three major procedures: 

keyframe extraction regarding temporal information; estimating Region of Interest 

(ROI) from extracted keyframes, and assembling the ROI into one image by arranging 

them according to the temporal order and their size. The proposed method 

generates expressive video summaries and conserves both plot and temporal 

information. 

Video Summagator (VS) [26] is a volume-based interface for abstraction and 

navigation of the video. VS models a video as a space-time cube and visualizes it 

using real-time volume rendering techniques. The project also empowers the user to 

interactively manipulate the video cube to not only understand the content but also 

navigate the content of interest. 

[27] approach automatically extracts and visualizes movie storylines in a 

static image for the purposes of quick overview. Visual Storylines preserves the 

elegance of original videos with a series of video analysis, image synthesis, 

relationship quantification and geometric layout optimization techniques. They 

cluster video shots according to both visual and audio data to analyze and quantify 

story relationships. A multi-level storyline visualization method then organizes both 

location and interested objects and characters (see Fig. 9). This kind of 

representations can be used to assist viewers to grasp video content efficiently, 

especially when a text synopsis is provided. 

Highly condensed video summary techniques in which selected keyframes 

are packed and visualized using irregular shapes [28] have a common problem: due 
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to its highly compact form and losses of information it is nearly impossible for 

viewers to extract stories. Furthermore, Visual Storylines solves the problem of [29] 

by revealing the information of locations and relations between interested objects. 

 

 

Fig. 9 Visual story lines example [27] 

 

To sum up, static summary generation uses similar methods to the video 

skimming adding different composite techniques to correctly plot all selected 

information: 

 First static summarization techniques are based on a single keyframe 

representation. 

 Early approaches represent important content in a mosaic and comic-based 

representations that include more information than a single image 

representation (see Fig. 8). 

 Space-time cube representations are used in later approaches to provide 

navigation utilities for users. 

 Finally, storylines are composed into an image that aim at providing a fast 

understanding of the video content and rapidly grasp the information. 

For our approach purposes, we focus on the video relevant content to build 

our summary. Next section describes in detail briefly several content selection 

techniques that can be used to extract relevant content. Then, used techniques and 

features used to extract relevant content from source videos are described in detail. 
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2.4 Object detection 

Object detection, and especially face detection, has been a core problem in 

computer vision for more than a decade. Not only has there been substantial 

progress in research, but many techniques have also made their way into commercial 

products. 

Viola-Jones [30] machine learning approach for visual object detection is 

capable of processing images extremely rapidly and achieving high detection rates. It 

is distinguished by three key contributions to the object detection field: integral 

image, AdaBoost machine learning and cascade generation that combines 

increasingly more complex classifiers. It is definitely well-tested, scale invariant and 

works fast. However, it is not rotation invariant and requires long training time.  

Another approach that tries to reduce this time and solve rotation variation is 

Speeded-Up Robust Features (SURF) [31]. SURF find interest points in the image using 

Hessian matrices, determine their orientation, and use Haar wavelets in an oriented 

square region around the interest points to find intensity gradients. The matching 

process is done by comparing a training image features to the query image features. 

No training process is needed and objects can be detected in real-time 

implementations. 

There exist other visual features that have been proved to improve the object 

classification performance. Eigenfaces and Fisherfaces treat the visual features as a 

vector in a high-dimensional image space [32]. Working with high dimensions is 

costly and unnecessary in real-time applications. The Eigenfaces approach maximizes 

the total scatter, but it is a problem in an unsupervised scenario because the 

detection algorithm may generate faces with high variance due to the lack of 

supervision in the detection. Although Fisherfaces method can preserve 

discriminative information with Linear Discriminant Analysis, this assumption 

basically applies for constrained scenarios. Some frameworks cannot guarantee a 

training set of images from the same person/object, so the estimated covariance for 

the subspace may be really bad. For this reason [33] propose, with Local Binary 

Patterns Histogram (LBPH), a method that extracts local features and focus on 2D 

texture analysis to create low-dimensional features, trying to preserve the useful 

information. In this way we can create a method for object detection that can avoid 

the training process with large training dataset. 

When the objects are observed from multiple viewpoints and unconstrained 

scenarios, the detection task becomes harder [34]. The common practice is to divide 

into subcategories.  For instance, faces can be categorized as frontal, right/left 

profile, multiple rotations, etc. 

Different classifiers can be trained for different subcategories. In [35] [36] a 

pose estimator is first built to classify each example into one subcategory. Each 
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subcategory trains its own classifier for detection with manually labeled data. It is a 

very laborious and difficult task for other kind of detections such as cars. Cluster 

boosted tree classifier [37] applies a conventional k-means clustering algorithm to 

split samples when learning rates are low. They show that by using previously 

selected features for clustering, the learning algorithm converges faster and achieves 

better results. 

The misclassification caused by the pose estimator is one weakness of [36] 

method. It also happens in training caused by mislabeling. It is possible that the 

boundary between two viewpoints can be very subtle and differs between different 

people. Furthermore, traditional training processes lack the flexibility to re-categorize 

examples during training. In [38] multiple category learning is proposed to solve this 

problem through adaptive labeling. The winner-take-all multiple category boosting 

algorithm learns simultaneously all subcategory classifiers with the assumption that 

the final classification of an object will only be determined by the highest score of all 

subcategory classifiers. Subcategory labels are dynamically assigned in this process 

reducing the risk of having outliers. 

A method that has become quite popular is the discriminatively trained, 

multiscale, deformable part model for object detection [39] [40]. As described in the 

related literature, detection with deformable part model can be done by considering 

all possible of a distinguished “root” part and, for each of those, finding the best 

configuration of the remaining parts. In [41] a general method for building cascade 

classifiers from these models is described. Star-structured models are primarily 

focused as well as partial hypothesis pruning to speed up object detection without 

reducing detection accuracy. They introduce probably approximately admissible 

thresholds that provide theoretical guarantees on the cascade performance and can 

be computed from a small sample of positive examples. 

 

Fig. 10 Deformable part model detection [41] 

 

To sum up, the object detection methods have evolved into different parts or 

views training processes to improve its performance: 
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 First approaches training processes do not take into account different views 

of the object, thus, they have not good performance in unsupervised 

environments. 

 SURF features solve this problem by selecting points of interest in the image 

and calculating their rotation and position within the training image. 

 There exist also other solutions like LBPH, Eigenfaces, or Fisherfaces that 

combine both learning and matching using different features instead of Haar 

and SURF features. 

 Dividing the training process into multiple viewpoints are later approaches 

solutions to improve rapid object detection performance. 

 Finally, to correctly detect an object, a part-based detection process is 

performed in most recent approaches. 

In the next subsections we describe in detail algorithms we have used in our 

Thesis to extract relevant content as well as different features we have tested. 

 

2.4.1 Haar-based cascade classifiers 

The work proposed by Viola and Jones [30] has shown satisfactory 

performance for simple viewpoint object detection tasks and was improved by R. 

Lienhart [42]. It combines four key concepts: Haar features, integral image concept, 

AdaBoost machine learning and cascade classifier generation. 

Used features are not true Haar wavelets but simple rectangular features. 

They contain better suited rectangle combinations used for visual object detection. 

The presence of a Haar feature is determined by subtracting pixel values of the dark 

region to pixel values of the light one. If the difference exceeds some threshold set 

during the training process, the feature is said to be present. 

 

Fig. 11 Haar-like features used in OpenCV 

The first two features selected by the described approach are shown in Fig. 

12. The two features are shown in the top row and then overlaid in a typical training 

face in the bottom row. The first feature measures the difference in intensity 

between the region of the eyes and a region across the upper cheeks. It capitalizes 
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on the observation that the eye region is often darker than the cheeks. The second 

feature compares the intensities in the eye regions to the intensity across the bridge 

of the nose. 

 

 

Fig. 12 First two features selected in Viola-Jones algorithm 

Feature computation requires summing pixel values covered by the 

rectangles. This addition can be very efficiently performed with the integral image, 

also known as Summed Area Table. 

 

Fig. 13 Summed Area Table example 

The integral image at location     contains the sum of the pixels above and 

to the left of        , inclusive: 

                  

         

 

( 6 ) 

where         is the integral image and        is the original image. In the example 

shown in Fig. 13, the sum of the pixels within the green rectangle can be computed 

with four array references: the value of the integral image at location A is the sum of 

the pixels in red rectangle, 5. The value at location B is 5 + 2, at location C is 5 + 3, 

and at location D is 5 + 2 + 3 + 6. Then, the sum of the original image pixels within the 

green rectangle can be computed as 16 + 5 – (7 + 8) = 6. 

AdaBoost machine-learning method combines many simpler classifiers 

(stages) that give the right answer more often than a random decision to create 

strong classifier. That is because the training error of the strong classifier approaches 

zero exponentially in the number of round. In their approach a variant of AdaBoost is 

used both to select small set of features and train the classifier.  
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The weak learning algorithm is designed to select the single rectangle feature 

from the 180,000 potential features, which best separates the positive and negative 

examples. For each feature, the weak learner determines the optimal threshold 

classification function, such as the minimum numbers of examples that are 

misclassified. Then, a weak classifier    thus consists of a feature   , a threshold    

and a parity    indicating the direction of the inqueality sign: 

 

     
                        

                              
  

( 7 ) 

where   is a pixel sub-window of an image. In practice, no single feature can perform 

the classification task with low error. Features which are selected in early rounds of 

the boosting process had lower error rates (0.1 to 0.3) than features selected in later 

rounds (0.4 and 0.5), because the task becomes more difficult. 

Finally, a cascade of classifier is constructed to achieve increased detection 

performance. AdaBoost gives weights to each stage and set the order of filters in the 

cascade. The higher weighted filter comes first to eliminate non-face regions as soon 

as possible. 

 

Fig. 14 Cascade classifier for face detection 

A cascade is a degenerate decision tree (see Fig. 14). A positive result from 

the first classifier triggers the evaluation of a second classifier which has also been 

adjusted to achieve very high detection rates. A positive result from the second 

classifier triggers a third one, etc. A negative outcome at any point leads to the 

immediate rejection of the sub-window. 

Stages in the cascade are constructed by training classifiers using AdaBoost 

and then adjusting the threshold to minimize false negatives. The default AdaBoost 

threshold is designed to yield a low error rate on the training data and, in general, 

lower threshold yields higher detection rates and higher positive rates. Then, an 

excellent first stage can be constructed by reducing the threshold to minimize false 

negatives: it can be adjusted to detect 100% of positive object samples with a false 
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positive rate of 40% but it would require a significant amount of time to be 

processed. 

The structure of the cascade reflects that, in any single image, a majority of 

sub-window are negative. Hence, the cascade attempts to reject as many negatives 

as possible at an early stage. While a positive instance that triggers the evaluation of 

every classifier in the cascade is a rare event, subsequent classifiers are trained using 

those examples which pass through all the previous stages. As a result, every 

classifier task is more difficult than the previous ones and, at a given detection rate, 

deeper classifiers have higher false positive rates. 

The cascade training process involves two types of tradeoffs. Classifiers with 

more features will achieve higher detection rates and lower false positive rates but 

they require more time to compute. An optimization framework can be defined with: 

the number of stages, the number of features in each stage, and the threshold of 

each stage. It is an extremely difficult problem, because in practice each stage 

reduces the false positive rate and decreases the detection rate. Each stage is trained 

by adding features until the target detection and false positive rates are met and 

stages are added until the overall target for false positive and detection rate is met. 

 

2.4.2 Speeded-Up Robust Features 

SURF [31] is a scale and rotation-invariant interest point detector and 

descriptor. It approximates or even outperforms previously proposed schemes with 

respect to repeatability, distinctiveness, and robustness, yet can be computed and 

compared much faster. It is partly inspired by the SIFT descriptor [43] but the 

standard version is several times faster than SIFT and claimed to be more robust 

against different image transformations. 

The described detector is based on the Hessian matrix because of its good 

performance in computation time and accuracy. Given a point         in an image 

 , the Hessian matrix        in   at scale   is defined as follows: 

         
                

                
  

( 8 ) 

where          is the convolution of the Gaussian second order derivative with the 

image   in point  , and similarly for          and         . Gaussians are optimal 

for scale-space analysis and it is discretised and cropped (see Fig. 15, left half). The 

9x9 filters in Fig. 15 are approximations for Gaussian second order derivatives. 
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Fig. 15 Discrete Gaussian second derivative box filters 

Scale spaces are usually implemented as image pyramids. The images are 

repeatedly smoothed with a Gaussian and subsequently sub-sampled in order to 

achieve higher levels of the pyramid. Using box filters and integral images, they do 

not have to iteratively apply the same filter to the output, but only apply such filters 

of any size at exactly the same speed on the original image. Hence, the scale space is 

analyzed by up-scaling the filter size rather than iteratively reducing the image size. 

In order to extract interest points in the image and over scales, a non-

maximum suppression in a 3x3x3 neighborhood is applied. The maxima of the 

determinant of the Hessian matrix are then interpolated in scale and image space. 

The proposed SURF descriptor is based on similar properties of SIFT. The first 

step consists of an orientation assignment calculating Haar-wavelet responses in x 

and y direction (see Fig. 16). Then, a square region is constructed to the selected 

orientation, and finally they extract the SURF descriptor from it.  

 

Fig. 16 Haar-wavelet in x and y directions 

For the extraction of the descriptor, the first step consists of constructing a 

square region centered around the interest point, and oriented along the selected 

orientation. The region is split up regularly into smaller 4x4 square sub-regions. Each 

sub-region has four-dimensional descriptor vector  : 

                         

   is the Haar wavelet response in horizontal direction and    the Haar wavelet 

response in vertical direction. Both directions are defined in relation to the selected 

interest point orientation to increase the robustness towards geometric 

deformations and localization errors. 

The next figure helps to observe the properties of the descriptor for three 

distinctively different image intensity patterns within a sub-region. In case of a 

homogeneous region, all values are relatively low. In presence of frequencies in   
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direction, the value of       is high, but all others remain low. Finally, if the intensity 

is gradually increasing in   direction both values,     and      , are high. 

 

Fig. 17 SURF descriptor performance in different image intensity patterns 

 

2.4.3 Local Binary Pattern Histograms 

Unlike Eigenfaces and Fisherfaces, LBPH extract local features of the object 

and has its roots in 2D texture analysis [33]. The basic idea of LBP is to summarize the 

local structure in a block by comparing each pixel with its neighborhood. Each pixel is 

coded with a sequence of bits, each of them associated to the relation between the 

pixel and one of its neighbors. If the intensity of the center pixel is greater-equal to 

that neighbor’s, then code the relation with 0; code with 1 otherwise (see Fig. 18). 

 

Fig. 18 LBP code creation example
1
 

At the end, a binary number (LBP code) is created for each pixel. If 8-

connectivity is considered, we will end up with 256 combinations. This histogram-

based approach defines a feature which is invariant to monotonic grayscale 

transformations as shown in Fig. 19. 

The spatial information must also be incorporated in the face recognition 

model. The proposal is to divide the LBP image into 8x8 local regions using a grid and 

extract a histogram from each. Then, the spatially enhanced feature vector is 

obtained by concatenating the histograms, not merging them. 

These features have low-dimensionality implicitly but they are not robust to 

variations in illumination, scale, translation or rotation. For these reasons, it is 

extremely important to apply previous image processing techniques to standardize 

the input block. 

                                                           
1
 Images extracted from OpenCV documentation. 

http://docs.opencv.org/trunk/modules/contrib/doc/facerec/facerec_tutorial.html#local-binary-patterns-histograms
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Fig. 19 LBP invariant to monotonic grayscale transformations 

 

2.4.4 Deformable parts-based cascade classifiers 

[41] describes an object detection system based on mixtures of multiscale 

deformable part models. Deformable part models have become quite popular 

because it provides solution to the problem of detecting and localizing generic 

objects from categories that can vary greatly in appearance such as people or cars. 

While deformable models can capture significant variations in appearance, a 

single deformable model is often not expressive enough to represent a rich object 

category. Even so, simple models can perform better in practice because rich models 

often suffer from difficulties in training. For object detection, rigid templates can be 

easily trained using discriminative methods but richer models are more difficult to 

train, in particular, because they often make use of latent information. 

The part-based model used in this approach is star-structured defined by a 

root filter plus a set of parts filters and associated deformation models. The detection 

score of the model can be calculated as follows: 

                                                             

        

 

( 9 ) 

The score at a particular position and scale within an image, 

              , is the score of the root filter at the given location plus the sum 

over parts of the maximum, over placements of that part, of the part filter score on 

its location minus a deformation cost measuring the deviation of the part from its 

ideal location relative to the root. Fig. 20 shows a star model of a person category 

where (a) is the root filter, (b) are several higher resolution part filters, and (c) a 

spatial model for the location of each part relative to the root which reflects the 

“cost” of placing the center of a part at different locations relative to the root. The 

filters specify weights for histogram of oriented gradients (HOG) features. 
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Fig. 20 Star model of a person category [41] 

The training process use latent SVM (LSVM) to train models using partially 

labeled data, learn  , and data-mining for hard negative examples. Each example   is 

scored by the following function: 

       
        

          

( 10 ) 

  is a vector of model parameters, in the case of a star model it is the concatenation 

of the root filter, the part filters, and deformation cost weights.   are latent values, 

and        is a feature vector, a concatenation of sub-windows from a feature 

pyramid and part deformation features.      is a set of possible latent values for  .   

is learned by minimizing the next function: 

      
 

 
                            

 

   

 

( 11 ) 

with                       , a set of labeled examples. 

The loss function is convex in   for negative examples and       is convex 

when latent variables are specified for positive examples. If there is a single possible 

latent value for each positive example    is linear. 

To detect objects in an image they compute an overall score for each root 

location according to the best possible placement of the parts. High-scoring root 

parts that yield a high-scoring root location define a full object hypothesis. Dynamic 

programming and generalized distance transforms are used to compute the best 

locations for the parts as a function of the root location. 
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Fig. 21 Matching process for Deformable parts-based models approach [41] 

Fig. 21 illustrates the matching process at one scale. Responses from the root 

and part filters are computed at different resolutions in the feature pyramid. The 

combined scores clearly show two good hypotheses for the object at this scale. 

Finally, the detection results for one object show a lot of overlapping 

detections. The chosen solution is to sort detections by score. They add the detection 

one by one and skip those which have detection overlap of at least 50%. 
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3 
Requirements 

 

 

As we have seen in the previous chapter, video summarization systems can 

serve different purposes; they can be developed for specific types of content or 

different types of users. In Section 3.1 we narrow down the scope of this thesis and 

we analyze the requirements from the users’ perspective in Sections 3.2 and 3.3. 

 

 

3.1 Scope of the thesis 

In this Thesis we address the problem of designing an automatic system with 

existing algorithms that can create efficient image representation of video content 

items to help users detect important objects in the video as well as providing a quick 

navigation through it. Our aim is to design a system that can automatically create a 

high quality video summary from a content source video. 

For instance, we use commercial movie trailers as source videos. They are 

one of the main advertising tools of the movie industry. They are not made to give a 

fair impression of a film, but rather to convince people to watch the movie; they are 

constructed with a proper onset time of main characters, important locations and 

relevant objects inside the movie. We will use this marketing strategy to select the 

important content the user wants to see in our summary. 
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How do people actually choose what to watch? People tend to read a film 

overview for movies they want to watch. Another very interesting tendency is select 

those movies in which your favorite actor/actress appears. In TV watching behavior, 

for example, people consult program guides during viewing time to look for 

information. 

A rapid grasp of the video content is a great source of information for every 

user. Allowing users to browse different moments of the source video easily through 

a relevant content representation allows them to temporally navigate avoiding 

extensive search efforts on the full video and without sliding bars. 

Since the relevant content will be available in the final summary, additional 

textual metadata should be added. Each object within the summary may be 

described accessing the Internet. For instance, if Brad Pitt appears in the movie, a 

user may want to see his filmography in order to know which other movie has Brad 

Pitt done. This can be applied to objects too. Where can I buy this car? What are its 

technical specifications? The provider of the summary would want to add this 

information hyperlinking all these regions in the image. This leads to the question 

“What content is relevant for users?” 

In the next section we try to answer this question by presenting a set of 

requirements that the video summary should fulfill.  

 

 

3.2 Requirements analysis 

Our user requirement for fast and convenient content selection is derived 

from related literature on video summarization (see Chapter 2 and [2] [27] [25]). The 

outcome of this analysis is a list of ten requirements grouped in four categories: 

priority, uniqueness, structural and navigability. 

Priority requirements specify what type of content should be preferably 

included in the abstract. Uniqueness requirements aim at avoiding redundancy in the 

summary regions to achieve maximal efficiency. Structural requirements deal with 

the presentation of different regions within the result. Finally, navigability 

requirements concern to the source video browsing options. 

The next subsections contain a complete list of requirements for each 

category that our video summarization system should fulfill. 
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3.2.1 Priority requirements 

Priority requirements indicate which content should be preferably included in 

the summary to convey as much relevant information as possible in each region of 

the resulting image. 

Requirement P.1 People and main characters 

The system has to center on people as the most relevant content in the source video. 

Viewers naturally are interested in seeing the characters that are part of the video; 

therefore, frames including people should be preferred for being included in the final 

result. 

Requirement P.2 Fast understanding 

Although an image can contain storyline information, it has to contain frames with 

widely known relevant objects. It will allow users to rapidly grasp the content of the 

original video and they should be able to easily and quickly understand the included 

content. 

Requirement P.3 Visual variability 

Including different scenes within the video into the summary will allow our system to 

be more efficient. Furthermore, content and scene variability will help to maximize 

the whole source understanding of the abstraction. 

 

3.2.2 Uniqueness requirements 

A summary should provide unique, non-redundant information to be 

efficient. Uniqueness requirements aim to penalize redundancies in the content. 

Requirement U.1 Non-repetition 

An object map should not contain any repetition of a scene of the original video. This 

means that we have to include as much different information as possible splitting the 

video scenes correctly. 

Requirement U.2 Visual uniqueness 

Representing different content maximizes the efficiency of the video summary by 

minimizing redundancy in the visual domain. This means that visually, the objects 

included in an object map should be as different from each other as possible. 

Requirement U.3 Characters uniqueness 

The object map has to avoid redundancy when representing characters. Frames or 

mapping regions showing main characters of a video should not be repeated. 
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3.2.3 Structural requirements 

Structural requirements provide rules that constrain the content 

presentation within the video summary. 

Requirement S.1 Main characters excel 

The more a character appears in the video source, the more relevance will she have 

in the summary. This means that larger regions will represent the more important 

content. 

Requirement S.2 Style 

Resized frames or Regions of Interest (ROI) should not be distorted. This means that 

the chosen representative of each relevant object must be selected as the one with 

less distortion after processing. For instance, a large face will be less distorted than a 

small one.  

 

3.2.4 Navigability requirements 

Quickly browse the video is contained in navigability requirements in order to 

allow users selecting important scenes. 

Requirement N.1 Region boundaries 

Users must understand which the boundaries between different region 

representations are. This allows him to rapidly realize where he can browse different 

timestamp content. 

Requirements N.2 Metadata supplement 

The system may be complemented with textual metadata. It should facilitate this 

task by creating a textual description of the mapping structure. 

 

 

3.3 Overview and priorities 

In a real system, the implementation of each requirement has a cost in terms 

of processing power, memory consumption and time required for computation. The 

design is focused first to prioritize the requirements with the highest priority. 
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Time consuming computation is not always a priority because we are talking 

about an offline service. This means that the video source can be introduced in the 

system at any time to be processed and the application will, eventually, generate an 

object map representation. 

Moreover, a distinction can be made between requirements that must be 

fulfilled and requirements in which the degree of fulfillment influences the quality of 

the final result without invalidating it in case of incomplete fulfillment. We assign the 

highest priority score, 1, to the ones that must be fulfilled while all the other cases 

receive scores 2 and 3. 

 

Requirement Priority 

P.1 People and main characters 1 
P.2 Fast understanding 3 
P.3 Visual variability 2 
U.1 Non-repetition 1 
U.2 Visual uniqueness 2 
U.3 Characters uniqueness 2 
S.1 Main characters excel 1 
S.2 Style 2 
N.1 Region boundaries 2 
N.2 Metadata supplement 3 

 

Table 1 Requirements overview and priorities 
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4 
Solution approach 

 

 

After having the requirements that our content-based video summary should 

fulfill in Chapter 3, we specify the solution approach in Chapter 4. In this chapter we 

further specialize and describe the implementation of the elements, constraints and 

functions that appeared in Chapters 2 and 3.  

The rest of this chapter is structured as follows: Section 4.1 provides an 

overview of our solution approach that is further explained in subsequent sections. 

Section 4.7 focuses on the development environment and all the steps necessary to 

use the application. 

 

 

4.1 Overview 

 

Fig. 22 Proposed system architecture 



36 
 

Our approach to solve the video summarization generation problem consists 

of three main steps: a preparation step, a content selection step, and a composite 

step. Each step may also be divided into different architecture blocks (see Fig. 22 

Proposed system architecture). Each block aims at solving various requirements 

described in Chapter 3 shows an overview of the requirements and architecture 

blocks. 

 

Table 2 Overview of requirements and architecture blocks 

 

In the preparation step, the input video is sampled uniformly. Then, shot 

boundary detection selects frames included in the summary. In this step we aim at 

solving as many priority requirements as possible. 

In the content selection step we analyze selected keyframes to extract 

relevant objects. We use object detection algorithms to locate regions of interest. 

Firstly, we focus on faces as the most relevant object in content summaries. Adding 

variability in the resulting object map is a requirement that we want to solve at this 

stage. We cluster same person faces using face recognition algorithms. Then, we 

select largest faces in largest clusters as the representative to be included in the map. 

Secondly, for general object detection we perform a color-based similarity algorithm 

or maximum matching score results in order to group similar objects and select a 

representative for each detected object. In this step we aim at solving uniqueness 

requirements as well as structural ones. 

Finally, in composite step, we create a visually attractive image composed by 

the most important content extracted in previous steps. We also want the object 

map to be as intuitive as possible to improve the browsing experience through the 

source video. The user must know what are the different regions and timestamps he 



4. Solution approach 

37 
 

can navigate through. In this step we aim at fulfilling navigability requirements 

properly. 

In next sections we describe all block’s implementation and we mention third 

party software and approaches (described in detail in Chapter 2) we have used and 

those which have been rejected. 

 

 

4.2 Shot segmentation 

Video summary generation requires a temporal segmentation of the source 

video. This process is named shot boundary detection and shot detection by 

researchers and there exist significant amounts of methods. First, we perform a 

uniform sampling of the source video. Then, we detect shot boundaries between 

sampled frames. We have been working with different shot detection algorithms in 

order to create the optimal temporal sampling of each video. 

At this stage of the architecture block we aim at providing solutions to 

various requirements. Firstly, the visual variability (requirement P.3); we detect 

different scenes in order to reduce visual redundancy at the compositing stage. 

Secondly, shot segmentation is also related to the rapid understanding (requirement 

P.2) of the video by plotting several shot representations (requirement U.1) trying to 

obtain as much information as possible in the summary. 

 

4.2.1 Uniform sampling 

Firstly, a uniform sampling extraction of the video frames is performed using 

ffmpeg2 library wrapped by JavaCV3 project, a Java Interface to OpenCV 4and other 

commonly used libraries in the field of Computer Vision. Used programming tools are 

described in detail in Section 4.7. 

This extraction of frames is performed with a fixed sampling frame rate that 

depends on the length of the source video and its frame rate: 

                                                           
2
 http://www.ffmpeg.org/ 

3
 See Section 4.7 for further information about the development environment. 

4
 http://opencv.org/ 

http://www.ffmpeg.org/
http://opencv.org/
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              , 

( 12 ) 

where      represents the acquisition frame rate in which the input video was 

generated,    the total number of frames we actually want to keep at the output to 

be processed by our shot detection algorithm, and    is the total number of frames of 

the input video. The second term corresponds is an upper bound and the first one is 

the downsampling rate (
  

  
 ) of the video sequence. We will vary    depending on 

the available JVM memory. The minimum number of frames we can obtain 

corresponds to a Sampling Rate of one frame per second. 

 

4.2.2 Finding shot boundaries 

The Software Studies Initiative5 from the University of California in San Diego 

(UCSD) provides a very intuitive and simple source code from its Google repository6. 

We needed to modify the input data to get memory structures of the frame data and 

finally detect not only shots in the video, but the shot boundaries. Its method is 

described in detail in Chapter 2, Section 2.2.1. 

Binshtok and Greenshpan [13] source code includes three different methods 

for the shot boundary detection: a pixel-to-pixel method, a histogram-based method, 

and a third one based on the Hausdorff distance. Furthermore, it includes an 

additional option that combines the three methods with a neural network (NN). This 

is the best and most complete solution we have found so far and it is described in 

detail in Section 2.2.2. 

However, since Hausdorff and the neural network-based solutions require 

too much computational effort, we decided to discard them. In addition, given the 

interest of this application to obtain multiple views of every object, we adopted 

solutions with a tendency to generate over-segmentations of the shots to extract 

more face (see Section 4.3 Face detection) and object samples (see Section 4.5 

Object detection) and generate more populated clusters (see Section 4.4 Face 

clustering). For these reasons, we decided to use initially the pixel and histogram-

based techniques. 

Although the two solutions are incorporated, Binshtok Cumulative Pixel-to-

Pixel technique is selected by default. It generates an over-segmentation that works 

quite well for the purposes of the project as we want to obtain different views of the 

same object or face. 

                                                           
5
 http://lab.softwarestudies.com/ 

6
 https://code.google.com/p/softwarestudies/ 

http://lab.softwarestudies.com/
https://code.google.com/p/softwarestudies/
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We have reduced the time redundancy of a video as the first milestone to be 

accomplished to finally create our summary. Now, we focus on the content selection 

stage. Particularly, we focus on the object which is the most relevant in a video, 

faces. In the next Section we will describe the development of our face detection 

algorithm. 

 

 

4.3 Face detection 

Face detection algorithm used in this architecture block is explained in 

Chapter 2, Section 2.4. We run a generic face detection engine provided by OpenCV 

based on Viola-Jones [30] [42] algorithm. 

We focus on detecting different types of face views (frontal, right profile, and 

left profile). For this reason, we present the results in subsequent figures as follows: 

frontal face detections are painted yellow, right profile detections are painted blue, 

and left profile detections are painted green. Finally, removed detections by filtering 

are painted red. 

Fig. 23 shows how the face detector typically presents two types of problems: 

1. Overlapping detections 

2. Extreme size detections 

 

Fig. 23 Frontal (yellow) and profile (blue) detections over extracted keyframe 

 

These problems can also be understood as false positive detections. The 

project includes two new blocks to solve these problems: size filtering and overlap 

filtering which complete the three face detections stages as shown in Fig. 24: 
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 Frontal face detection 

 Profile face detection 

 Horizontal flip of the input image to detect the opposite profile and 

correction of the coordinates. 

 Size filtering 

 Overlap filtering 

 

Algorithm FACE DETECTION 

 
Given collection of frames V = {f1, …,fn}, 
minimum detection size smin, 
frontal cascade file Ffile, 
profile cascade file Pfile; 
 
1: begin 
2:  Initialize output ROI structures 
3:  F = load classifier cascade(Ffile) 
4:  for i = 1, …, n do 
5:   fi ← get frame (fi є V) 
6:      ← detect faces (fi, F) 
7:      ← remove faces (smin) 
8:   if (profile detection flag) then 
9:    P = load classifier cascade(Pfile) 
10:           ← detect faces (fi , P) 
11:           ← remove faces (smin) 
12:    fi’ ← flip image (fi) 
13:            ← detect faces (fi’, P) 
14:            ← remove faces (smin) 
15:    overlap filtering (      ,        ) 
16:    overlap filtering (  ,       ) 
17:    overlap filtering (  ,        ) 
18:   end 
19:   release images (fi, fi’) 
20:  end for 
21: end 

 

 

Fig. 24 Face detection stages architecture 

At this architecture block we aim at providing solutions to important 

requirements. Firstly, people (requirement P.1) are treated as the most relevant 
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content in the video. With face detection we label regions of interest for this type of 

content in every single keyframe. Fast understanding requirement (P.2) is also 

improved because people may tell the story of a video. Finally, by keeping reference 

to the largest faces in keyframes removing extreme size detections, we aim at 

providing solution to the Style (requirement S.2) of the final object map. 

In next subsections, every stage of the face detection architecture block is 

explained in detail by providing useful examples for their understanding. We can 

divide them into three stages: detection, size filtering, and overlap filtering. 

 

4.3.1 Detection stage 

The model files for face detection are provided by default with OpenCV, 

haarcascade_frotalface_alt_tree.xml and haarcascade_profileface.xml. The detection 

of frontal faces has proved to be reliable, with no feed to retrain. However, the 

default model for profile faces included in OpenCV is significantly less reliable and 

that motivates the filtering methods. Fig. 25 shows how detectors work for each case 

and their reliability. 

 

 

Fig. 25 Results for frontal and profile face detections 

The output of this stage is a set of detected Regions of Interest (ROI) that 

need to be filtered to avoid as much false positive detections as possible.  

 

4.3.2 Size filtering stage 

Small detections, both frontal and profile, must be removed because they are 

not considered good enough to be included in the output object map. This operation 
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is performed with a size filter that compares each detected region with a predefined 

threshold. 

Our first approach was to consider that faces size can be diverse depending 

on the camera shots (close, medium, long and full shots). The threshold should be 

adaptive for each image by estimating the mean size of frontal detections. We 

considered using a median filter that may work better. Thus, the outliers are not 

involved in the size estimation. Then, those detections that are far from this size are 

removed. 

Finally, we found that this solution is not good enough for neither the object 

map generation nor the face clustering architecture block. It means that small faces 

will be resized to be included on the mapping image, then, their quality would be 

poor to guarantee a high precision to build next stages. We consider that better 

representatives of main characters in the video could be found on other keyframes 

so a fixed threshold is selected to avoid small and poor quality faces (see Fig. 26). 

 

Fig. 26 Removed detections with size filtering 

 

4.3.3 Overlap filtering stage 

The final stage of our face detection architecture is the overlap filtering 

process. Overlap detections between different classifiers are removed by using a 

simple algorithm that takes every pair of detections and compares their (x,y) 

coordinates and sizes (width, height). This filter is used to remove those less reliable 

regions, which normally corresponds to profile detections: 

1. Overlap between frontal faces (primary) and right profile faces (secondary). 

2. Overlap between frontal faces (primary) and left profile faces (secondary). 

3. Overlap between right profile faces and left profile faces. 
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Fig. 27 Removed profile detection overlapping with frontal one 

The resulting image is shown in Fig. 28. In this example we observe how the 

number of detections has been reduced to one frontal and one profile. Even so, there 

are some overlapped profile detections within the sample classifier (right or left 

profile). The profile face classifier is not recommended and has to be retrained if 

someone wants to use it alone. If Fig. 29 result is used, the profile detected region 

sequences must be re-filtered. The adaptive size filtering process commented in 

Subsection 4.3.2 and the overlap filter should be used to remove the farthest one, 

whether bigger or smaller. 

 

Fig. 28 Face detection output 

 

Fig. 29 Profile detection example 

The output of the face detection algorithm is used as input to the next 

content selection stage, the face clustering or recognition method. We aim at 

recognizing different people appearing in the video frames to minimize content 

redundancy in the final object map. 
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4.4 Face clustering 

The next block to be addressed in the proposed architecture is face 

clustering. This block must process all detected faces to decide: 

 Which faces belong to the same person? 

 Which faces appear more often in the video? 

The expected inputs are several face samples but, experiments have shown 

that profile detections are much less reliable than frontal detection samples. For this 

reason, profile detection will not be used for the clustering process by default. 

Our approach for clustering will be based on the recognition solutions 

already available in OpenCV. Although there are several face recognition algorithms, 

they are not suitable for this project because they require an initial ground truth to 

properly initialize a model for each of the faces to be recognized. In our project, no 

initial label set is available because there is no prior knowledge about who appears in 

the video. We will handle this limitation by adopting a model update approach over 

the features provided by Local Binary Patterns Histograms (LBPH), described in 

Section 2.4.3. Fig. 31 shows how LBPH have been used in order to achieve good 

results. 

The main drawback for choosing this approach is that our framework cannot 

guarantee a training set of images from the same person. Also, our detected faces 

are not perfect and light and position settings cannot be guaranteed. For this reason, 

the face recognition block has been divided in two parts: pre-processing input frames 

before the feature extraction, and face labeling iterative method to properly update 

each created face model.  

The face recognition block aims at meeting the expected accuracy to fulfill 

some of the requirements. Specifically, we want to provide the main solutions to 

priority and uniqueness requirements. Selecting larger clusters we should locate 

which characters are the most important in the video story (requirement P.1). Also, 

with different clusters we may obtain enough information to create a good result in 

terms of visual variability (requirement P.3) and fast understanding (requirement 

P.2). About uniqueness, we aim at minimizing characters redundancy (requirement 

U.3) within the summary. Finally, the recognized largest cluster may contain the 

character who appears more frequently in the video. This means we will highlight this 

region of interest in the object map (requirement S.1). 
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4.4.1 Pre-processing of face detection boxes 

Performing face recognition directly on a raw image would probably turn into 

a low accuracy rate (around 10%). One of the most important limitations of face 

recognition algorithms is the sensitivity to lightning conditions. This problem may 

prevent the recognition of a same person if they are in a dark or bright location. In 

addition, the face should be in a very consistent position within detected bounding 

box, not including pixels coming from the background or hair. 

The first step of our pre-processing is to convert RGB images to grayscale 

used for recognition. Secondly, the facial image is cropped in order to remove 

background pixels that add noise to the recognition process. For our project 

detections, a 20% of edge pixels are removed. Resizing the image to a preset size is 

the next step and, finally, histogram equalization automatically standardizes the 

brightness and contrast of all facial detections. 

Fig. 30 shows the process chain for each facial bounding box detected in 

previous steps: 

 

Fig. 30 Pre-processing facial images for face features extraction 

 

4.4.2 Face labeling 

The main challenge of the labeling problem is that the detected faces 

correspond to an unknown amount of characters, and that it is not known which 

pairs of detections belong to the same character. A solution based on OpenCV was 

adopted to simplify the system architecture, an algorithm which does not need to be 

trained with several manually annotated images. 

The proposed solution is based on an iterative estimation of the face clusters 

by sequentially labeling each face, and using these automatic labels to retrain the 

same face recognition algorithm. This is a case of unsupervised learning, the most 

challenging scenario for machine learning.  

Specifically, the face recognizer will predict a label and associated confidence 

with the existing trained data. This is none for the first images, one for the second… 

Then, it updates the model in order to generate a better prediction for the next 
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images. This algorithm has a weakness: if there are few labeled detections, the model 

cannot be properly created. As a consequence, many clusters with very few elements 

will be generated. In order to reduce this effect that appears mainly in the first facial 

images to be recognized when an early model is created, an iterative algorithm has 

been defined (see Fig. 31) and described in detail below: 

1. The first face is used to initialize the face recognizer model 

2. For every remaining non-labeled face, the recognition is performed. If the 

confidence value is greater than a manually preset threshold, the input face 

is labeled as a new one and the new model is created, otherwise, the 

matching model is updated. 

3. When all faces have been labeled, those belonging to smaller clusters are 

deleted. They are considered as false positives from the face detector, or 

either belonging to people who do not appear often enough in the video. 

4. The image with the highest confidence in each cluster is identified and 

considered as the representative sample for the whole cluster. 

5. Representative samples of the existing cluster are used to initialize again the 

face recognizer model. Then, the algorithm iterates again starting from step 

2… 

6. …unless the whole loop has been already completed a predefined number of 

times. Our experiments have pointed out that four iterations may be enough. 

This algorithm not only allows the removal of false positive face detection, 

but also achieves better recognition precision comparing facial images with more 

representatives in every iteration. The number of iterations to be considered must 

depend on the number of detected faces. 

Results for four iterations are shown as an example (see Fig. 32, Fig. 33, and 

Fig. 34). We can observe how the number of clusters is being reduced every iteration 

in parallel with the increase of samples per cluster. On the first iteration in Fig. 32, 

clusters tend to contain few elements. Then, the second iteration shown in Fig. 33 

shows how smaller clusters disappear because more representative elements have 

been chosen. In the last iteration (Fig. 34), the two main characters in the movie 

trailer appear in the largest clusters with backgrounds dark blue and orange. 

Finally, the selection of a representative face for each cluster is another issue 

to be solved. We select the largest faces in the largest clusters as a representative 

facial image of the main people to composite the output object map. This selection is 

performed by sorting clusters and their elements by size. We will focus now on other 

relevant content to be included in the result using different object detection 

techniques. 
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Fig. 31 Face clustering algorithm block diagram 
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Fig. 32 First iteration of face clustering block 

 

Fig. 33 Second iteration of face clustering block 

 

Fig. 34 Final iteration of face clustering block 
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4.5 Object detection 

The previous section has focused on a very specific class of object: faces. The 

system should be able to work with any kind of object class but there are so many 

options that one could not provide a solution to all of them. The solution is to adopt 

a generic object detector and allow the final user to train it with the object of interest 

they prefer. The last content selection stage of the video summarization approach is 

the general object detection. The Thesis aims at providing to the user the 

opportunity to add in the object map the content he wants. For this reason, multiple 

options have been developed to let the provider choose. 

There exist several solutions for object detectors. This project provides 

support for some of the state of the art implementations explained in Chapter 2, 

Section 2.4: 

 Whether the user has a sample image of the object, SURF matching is used 

to search object of interest. 

 If they have a trained cascade classifier, Haar-based object detector is used. 

 Finally, a parts-based model can be used to search relevant content. 

Then, a selection method of the best candidates is performed for each option 

to select those objects that better represent the actual object.  

In this block we aim at providing solution to various requirements. Firstly, an 

adequate representation of the object helps the user to better understand the 

summary (requirement P.2). We also want to increase the visual variability by 

allowing the user to include several and different object classes that will be included 

(requirement P.3). Secondly, with the selection method developed for each type of 

detection features we try to reduce redundancy and provide solution to uniqueness 

requirements (U.2). Finally, by adding different object representations, we help the 

summary provider to complement properly related metadata (requirement N.2). 

In next sections we explain in detail how to run the different included 

techniques as well as their required inputs. 

 

4.5.1 Haar cascade classifiers 

The Haar features-based object detection technique [30] [42] is widely used 

by researchers. This technique has two well differentiated stages: training and 

detection. The key point of this technique is that the required time of the detection 

stage is very low. The larger and complete cascade the training stage creates, the 
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lower the detection of the object over an image in the detection stage will be (see 

Chapter 2, Section 2.4.1). 

The cascade creation in training stage involves several techniques and 

utilities. They are briefly explained in Section 4.7.4 and numerated below: 

1. Create the object image database with positive and negative samples. 

2. Use opencv_createsamples tool to create the binary format file of the 

positive dataset. 

3. Use opencv_traincascade utility to create the cascade classifier. 

When the cascade is created it can be introduced to the application as an 

input parameter to perform object detection over the keyframes selected in shot 

detection block architecture. 

 

Fig. 35 Car object detection examples 

The output of our haar object detection algorithm is a list of sorted ROIs that 

can be included in the summary. This detection method fails at giving good results 

with different object views (see Fig. 35) as described in Chapter 2, Section2.4.1. For 

this reason, and to avoid the user training its own cascade classifiers, we present a 

simple real-time object detection algorithm based on robust features (SURF) in the 

next subsection. 

 

4.5.2 Detection using SURF features 

For those users that do not have cascades we have developed an additional 

solution based on SURF features. This approach is described in detail in Chapter 2, 

Section 2.4.2. 

In contrast to cascade classifiers, no additional training stage is required with 

this solution. The user only needs to select an example image of the object to be 

detected and introduce it in the application as an input parameter. This image will be 

named as training image. It is also very important that the training image contains 
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only the object and must be free from any harsh lightning. In Fig. 36 we present two 

different examples to evaluate how important is the training image selection. 

 

Fig. 36 SURF training images 

This method’s strength relies on being scale and rotation invariant, robust, 

fast and most importantly, its ability to work with a single training image. A short 

description of what the developed algorithm does is numerated below separated 

into two stages: descriptors extraction and matching strategy. 

The descriptors extraction involves the training image. At this stage, we want 

to extract interest points from the image as follows (see Fig. 37): 

1. Find robust features or interest points in the image as described in [31] with 

cvExtractSURF method from OpenCV. 

2. Determine the location, size, and orientation of each feature. 

 

Fig. 37 SURF descriptors extraction 

Now that SURF descriptors have been extracted from the training image, we 

employ a matching strategy to match descriptors from every frame with the 

descriptors of the object and find out good matches. Note that if the selected 

training image does not represent properly the object, the matching process will be 

difficult (see airplane example in Fig. 38, left) and few matched points will be found. 

In contrast, the number of matched points in the box example (see Fig. 38, right) is 

extremely high: 

1. Extract SURF descriptors of the image with cvExtractSURF. 

2. Find matching points between the training image’s descriptors and the 

frame’s descriptors using a laplacian filter for each one and finding its nearest 

neighbor using Fast Approximate Nearest Neighbor method. If the neighbor 

distance is lower than a preset threshold, the matching is positive. 
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3. With all matching points extracted, we try to detect the ROI where the object 

is represented in the image. 

 

Fig. 38 SURF matching examples 

The last step of the object detection process is to compare the number of 

matched points between all keyframes. We have developed a selection method that 

sorts all keyframes with the number of matching points. The more matching points 

the keyframe has, the more probability of object appearance it has. 

The resulting sorted list is returned by the object detection class to the next 

architecture block, the summary image compositing but it is not always possible to 

locate the object in the image because we may not have enough matching points. In 

the next subsection we will introduce briefly the deformable parts-based object 

detection method to counter the weaknesses the haar-based cascade and the SURF 

methods have. 

 

4.5.3 Deformable parts-based object recognition 

Finally, deformable parts-based object detection software has been added to 

the application. It is one of the most used ways today to solve multiple view object 

detection problems. The main algorithm is based on the detection method proposed 

by Felzenszwalb et al. [41] and described in detail in Chapter 2, Section 2.4.3. 

The input of the detector is a single image, where the detection procedure is 

carried out. Depending on the target object class, a different object model is used. 

Such model is a computational description of an object class. It is stored in a binary 

file with .mat extension. Some of these model files are included in the released 

package: car, horse, person, bicycle, etc. 
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Fig. 39 Root filter of car model
7
 

LibPaBOD7 is built on top of two already used libraries: OpenCV8 and MatIO9. 

Among other things, OpenCV library is used to handle images using the IplImage 

structure as well as CvMat and CvMatND structures to perform matrix operations. 

MatIO library allows the software to read the object model file and load it into 

memory. 

A simplified usage of the software is possible due to a developed Java 

wrapper that allows detecting objects over extracted keyframes (see Section 4.2). 

First, each extracted frame is saved into a temporal directory in order to be read by 

the executable. Secondly, the used model for the detection process is defined as an 

input parameter of our Java application. Finally, a detection threshold is preset in 

order to avoid as much false positives as possible. By default, the threshold is set to 

0.0 but it can be changed in the source code if the user does not get enough 

detections for a specified object. 

Once the software has finished the object extraction, a .txt file is saved into 

the output directory. Each line of the file describes one object detected bounding box 

as follows: x coordinate, y coordinate, width, height, and detection score. 

The highest scores obtained by the detector are those with more confidence 

of object appearance. Our application reads the output txt file and creates a 

detection structure class for each frame. In order to sort detected objects, all 

detections are sorted by their scores and better detections will be relevant object 

representations to be included in the resulting object map as explained in the next 

section. 

 

                                                           
7
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Fig. 40 Different view car detection using libpabod 

 

 

4.6 Object map compositing 

The object map compositing techniques are extremely powerful and 

informative when talking about summarization. There are many ways to create those 

images and it is challenging to predict the most informative objects and views to be 

used in the summary.  

The rendering of the resulting map has been presented in two different ways: 

content segmentation and tile-based composition techniques. Regarding the content 

segmentation solution, its rendering has been divided in two different stages: 

foreground stage and background stage. We describe in detail these two options in 

next subsections showing examples and analyzing how well they comply with the 

requirements. 
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4.6.1 Content segmentation solution 

At this development stage, we focus on faces as the most relevant content to 

be rendered in the object map. This composite algorithm has been tested with faces 

only. For this reason, in this section we will refer to face maps instead of object maps. 

Firstly, foreground faces are selected with the output of the clustering 

method described in Section 4.4. They are segmented with an object segmentation 

java library added to the system architecture, the Interactive Natural Image 

Segmentation10. This segmentation approach [46] is based on a watershed algorithm 

and regions are labeled as foreground or background by applying an algorithm of 

markers propagation based on deformed graphs [45] [44]. Fig. 41 shows an example 

image and its generated partition: 

 

Fig. 41  Left: Source image. Right: Partition image 

In the project, detected frontal faces from the detection algorithm described 

in Section 4.3 are used to create marker images. This marker image is used to 

initialize the image segmentation algorithm, which will try to adjust these markers to 

the actual contents of the image. Our proposal is to create an oval model to indicate 

the location of the face. In addition, the vertical boundaries of the face bounding box 

are also used to create a negative labeled region for the background and extend it 

through the image to the opposite side of the detected face, represented as a blue 

rectangle (see Fig. 42, right). 

 

Fig. 42 Left: Detected faces with bounding boxes. Right: Positive oval marker in red, negative marker 

in blue 

Finally, we extract segmented face (see Fig. 43) as a result of expanding the 

markers through the image partition. As we have been working with movie trailers, 
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we assume that faces look to the center of the image. If the face is placed on the left 

side of the image, it will probable correspond to a right-profile face; and a left-profile 

face if located on the right side. This assumption helps to achieve a natural rendering 

of the foreground since it will be used to place all representative faces into the map 

ordered by their position on the image. We split the width of the face map into N 

regions (the total of representative faces) and paint each ordered face left to right. 

 

Fig. 43 Segmented face 

Secondly, the background for the face map is selected as the keyframe 

representative of the longest shot in the video trailer. We adopted this solution 

under the assumption that, in movie trailers, the longest shot will also be very 

important for the summary. 

These presented techniques for the foreground and background rendering 

were tested on a collection of 30 movie trailers. Some of these results are shown in 

the following face maps: 

 

Fig. 44 Face maps with largest shot background representation 

The results are quite promising but notice that several backgrounds are the 

credits of the movie or text frames. We changed the criterion for the background 

selection: we used as background the whole frame where the largest face was 

detected. With this approach, new results were generated, as can be seen in next 

figure. 
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Fig. 45 Face maps with largest face background representation 

These presented results show that, if the face associated to the background 

is large, there might not be enough space to add other faces or objects in the map 

and we will not provide solution to visual variability  requirement (P.3). Furthermore, 

foreground faces might overlap faces from the background frame, a situation that 

should be avoided because they may be important for the summary and we will not 

fulfill other priority requirements (P.1 and P.2). Finally, region boundaries distortion 

of the foreground faces cannot be attractive for the user (requirement S.2) and they 

may not be navigation-friendly (requirement N.1). 

 

4.6.2 Tile-based composite solution 

Our second approach for composite object maps tries to solve some of the 

problems we observed with the content segmentation solution. With tile-based 

composite we aim at generating a navigation-friendly object map. In addition, we 

want to excel properly main characters and background selection frame for a better 

understanding of the source video. 

Tile-based structures are trendy and provide us a well structured solution 

based avoiding region overlaps. As we want to provide solution to a great amount of 

different content selection results, the developed composite technique is dynamic 

concerning the number of regions obtained in previous architecture blocks that can 

be plotted. 

The first stage of the composition technique is to segment the resulting map 

into a predefined number of regions following the next rules: 

 The largest region will be on the top-left side of the map. It will contain the 

background selection frame, whether it is the largest shot frame or the most 
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important face extracted from the clustering algorithm described in Section 

4.4. 

 On the top-right side of the resulting map we will plot all important faces 

returned by the clustering method. If the clustering returns less than four 

faces, we will create a single square region to paint the most representative 

one. We will create four smaller square regions otherwise. 

 The bottom side of the map will be devoted to other important objects 

extracted from the object detector described in Section 4.5. If no object 

detection is performed, other frames containing less important faces are 

plotted. Furthermore, if no more faces are available, the bottom side of the 

map is removed. 

 

Fig. 46 Example of tile-based map with void regions 

When a map description is created, we plot all the different regions. Each 

painted region is labeled with its content frame number. We want to reduce content 

redundancy as much as possible. For this reason, we do not allow the same frame 

number for different regions. 

Next figures show different results for 30 different movie trailers. As can be 

seen, different types of object maps are created according to the number of selected 

regions extracted from previous architecture blocks. Note that, a single video may 

generate more than one summarization result depending on the unsupervised face 

clustering stage: 
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Fig. 47 Tile-based composition examples 

With this solution approach we aim at providing better solution to 

navigability requirements (requirement N.1) by defining better region boundaries 

and helping the user browse the video from different frames. We also avoid 

overlapping problems; hence we achieve better understanding of the video content 

(requirement P.2). Main characters excel (requirement S.1) is accomplished by 

selecting different sizes to different regions depending on where the content comes 

and its relevance. Finally, the non-repetition requirement fulfillment (U.1) is possible 

labeling all added scenes to the supplement metadata and avoiding its repetition 

and, therefore, summary redundancy. 

Next section describes the used technologies to create the proposed 

software as well as the programming tools and IDEs. 
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4.7 Development 

This section briefly describes the technologies and programming tools used 

for the application development. We also mention how the application has to be 

executed and all its dependencies in Subsection 4.7.1. 

Eclipse11 is an open source development platform, tools and runtimes for 

building, deploying and managing software. It was originally created by IBM in 2001 

and allows developing projects in Java, C, C++, Python, etc. For the application 

development, Eclipse has been used as an IDE. 

Subversion12 is an open source Software Configuration Management tool. 

This version control system has been used with the Subeclipse connector as a secure 

code backup and allowing shared versions of the project with the advisors. Each 

member in the Subversion server has a branch to develop their code and all branches 

are associated to a unique trunk that contains the shared version of the project. 

Java13 is a programming language developed by Sun Microsystems which is 

now subsidiary of Oracle Corporation. Java is a general-purpose, concurrent, class-

based, object-oriented language. One of the advantages of using Java is that its 

applications are compiled to a class file (byte code) that can run on any Java Virtual 

Machine (JVM) regardless of the computer operating system. 

OpenCV14 is an Open source Computer Vision library of programming 

functions mainly aimed at real-time computer vision, developed by Intel, and now 

supported by Willow Garage15. It is free for both academic and commercial use. It has 

C++, C, Python and Java interfaces and supports Windows, Linux, Mac OS, iOS and 

Android. Written in optimized C/C++, the library can take advantage of multi-core 

processing. Its community and estimated number of downloads exceeds six million. 

OpenCV libraries are not the only resources used for the project. We also 

have used two different utilities to train Haar cascade classifiers: 

 opencv_createsamples is used to prepare a training dataset of positive and 

test samples in a format that is supported by opencv_traincascade. The 

output is a file with *.vec extension, it is a binary format which contains 

images. 

 opencv_traincascade is used to train a cascade classifier and generate the 

*.xml cascade file. 
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Working with OpenCV Java interface is possible since version 2.4.4 out on 

March 1st, 2013. This project thesis began on October 2012, hence we use JavaCV16. It 

provides wrappers to commonly used libraries by researchers in the field of 

computer vision (OpenCV, FFmpeg, OpenKinect, etc). To use JavaCV 0.3, you will 

need to install the following software: 

 An implementation of Java SE 6 or 7. 

 OpenCV 2.4.3 library. 

Furthermore, although not always required, some functionality of JavaCV and 

used in the project relies on: 

 FFmpeg 1.2.x. 

Even so, associate Thesis code includes all required libraries used for Image 

Processing and Video management. 

FFmpeg17 is a complete, cross-platform solution to record, convert and 

stream audio and video. It also is a free software project which most notable parts 

are: 

 Libavcodec: the leading audio/video codec library. 

 Libavformat: an audio/video container mux and demux library 

Graphical Annotation Tool (GAT)18 provides an interface to create ontologies 

and to label positive, negative and neutral instances for each ontology class [47]. GAT 

originally generates an annotation file in XML and it is capable of generating an 

annotation to work with some OpenCV utilities described in Subsection 4.7.4. 

In this Thesis, GAT has been used to create positive/negative image instances 

to generate OpenCV annotations. These annotations allow us to train object models 

and generate cascade files for object detection described in Section 4.5. 

 

Fig. 48 GAT user interface 
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4.7.1 Using the application 

The Java software released is easy to use. The user does not need to install 

OpenCV and JavaCV libraries because they are also released with the code. All 

compiled libraries are saved into the “user.home” directory if they do not exist. Then, 

the software loads them to handle video IO and image processing structures used by 

JavaCV libraries linked to the project. All libraries are compiled to work with 

Windows 32-bit OS. 

The objectMaps.jar can be run with the next command line arguments: 

>> java –jar objectMaps.jar input_video [options] 

where input_video is the path to the video to be summarized. All results are 

saved into the user.home/results/input_video_filename directory.  

The options supported by the application are the different object detection 

(see Section 4.5) methods included in the project. The application automatically 

recognizes the input models by their file extensions: 

 To use Haar-based cascade object detection, option will be the path to the 

cascade.xml file. 

 To use Surf object detection, current image formats supported are: .jpeg, 

.jpg, .png, .bmp, and .gif 

 To use parts-based object detector, the model file must have .mat extension. 

It is possible to run the application with more than one type of object 

detection algorithms. The resulting object map will be constructed by considering the 

order of the input option parameters: first options have more relevance to be plotted 

in the map than later ones. 
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5 
Evaluation 

 

 

In this chapter we validate our object map summarization approach by 

means of a user study. The algorithm is evaluated in terms of the quality of the 

generated summaries. 

This chapter is structured as follows. In Section 5.1 we present the hypothesis 

upon which the user study is based. The method we adopted is discussed in Section 

5.2. Participants, test material and set-up are described in Sections 5.3, 5.4 and 5.5. 

Finally, the results of the test are discussed in Section 5.6. 

 

5.1 Hypothesis 

To evaluate the performance and the quality of the proposed summarization 

approach, the algorithm needs to be tested against control methods for generating 

video summaries. A simple algorithm that can be used for benchmarking is the 

uniform sampling algorithm. It generates a summary image by selecting uniform 

sampled frames of the source video with no content evaluation and composing them 

into a tile-based map. We expect summaries generated using the uniform sampling 

technique would be of considerably lower quality than summaries generated using 

our object map approach. 
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An additional control method for our evaluation is the manual selection of 

movie still frames from an online movie database, iMDb19, in order to have unbiased 

realistic samples of relevant content appearance. These manually made samples 

certainly represent an upper-bound for the overall quality of the represented content 

of the summaries. 

The question we aim at answering with this user study is whether our object 

map-based approach actually generates better video summaries than the uniform 

sampling method. Additionally we would like to know how much higher the quality 

of manually selected frames is with respect to the content representation of our 

algorithm. The general hypothesis we want to verify in this test is: 

H0. Our object map-based approach provides a higher quality summary of a 

video item than the uniform keyframes sampling selection method. 

What we mean with higher quality summary needs to be further specified in 

order to properly design the test. In relation to the requirements described in 

Chapter 3, we can split the generic hypothesis H0 into four more specific ones: 

H1. The object map generated by our approach can represent better the whole 

trailer and it is more informative than the uniform sampling method 

representation and less informative than a manual selection method. 

H2. The content represented by our approach is more relevant and variable than 

the one generated by the uniform sampling method but less relevant and 

variable than the content of the manually selected frames. 

H3. Our approach better represents main characters than the uniform sampling 

method but worse than the manual selection method. 

H4. Our approach allows better navigation through the video than both uniform 

sampling method and manual selection representation. 

In next section we discuss the method used to verify our generic hypothesis 

and the rating method we adopt in order to rank specific hypothesis we have 

presented. 

 

 

5.2 Method 

Different methods to generate video summaries are compared (object map, 

uniform sampling, and manual selection). Each subject judges all summary versions 

and can see the movie trailer to have further information. The advantage of using 

this design is that a smaller number of participants are necessary. The disadvantage is 
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that, because subjects see all summary versions, in evaluating a summary, a subject 

is influenced by having seen other versions. 

The goal of the study is to obtain the performance of the proposed approach 

in subjective and objective terms [48] [49]. In objective terms, we analyze how the 

proposed approach improves the video understanding without seeing the whole 

source video and how it reflects the users’ perceived quality in terms of visual 

content presented. Visual redundancy and main characters appearance are 

evaluated. In subjective terms, the user study is designed to evaluate if our results 

can help user quickly grasp video content and navigability through it without 

watching the whole video. Note that it is generally very difficult for someone to 

understand the semantic content of a video from a single image without knowing any 

contexts. For this reason, we let the subjects choose whether to watch the trailer or 

not according to their knowledge about the evaluated video. 

For this study we choose and integer score ranging from 1 (Unacceptable) to 

5 (Excellent) which is used by The TRECVID Summarization Evaluation Campaign [48] 

[49] to rate all summary versions and hypothesis questions. 

 

 

5.3 Participants 

A total of 36 users were recruited by e-mailing the research groups and 

students of participating universities: Vienna University of Technology and Technical 

University of Catalonia. The online survey was also shared on the authors’ social 

networks (Facebook and Twitter). None of them had been involved in the 

development of the algorithms for the video summarization technique. 

In order to control results submission, we started with a pilot study with the 

research groups’ participants and, after analyzing the data, we decided to open the 

survey to the social networks. 

 

 

5.4 Test data 

Table 3 reports the video items used in the test. They are chosen among the 

popular genres and well-known films. The source of each video trailer is the iTunes 



66 
 

Movie Trailers20 and different summaries (uniform sampled and object map) were 

created for each one. 

All the summaries were created using related object detection models. For 

instance, Fast & Furious summary was created using a car model and Django 

Unchained video was processed using a horse model running the included parts-

based object detector (see Chapter 4, Section 4.5.3). 

 

Trailer ID Title Genre 
Duration 
(min:sec) 

1 The Intouchables 
Biography, 
comedy, drama 

2:18 

2 The Matrix 
Action, 
adventure, sci-Fi 

2:20 

3 16 Blocks 
Action, crime, 
drama 

2:23 

4 Dark Shadows Comedy, fantasy 2:33 

5 
The Twilight Saga: Breaking Dawn – 
Part 1 

Adventure, 
drama, fantasy 

2:30 

6 
Star Wars: Episode I – The Phantom 
Menace 

Action, 
adventure, 
fantasy 

2:25 

7 The Fast and the Furious 
Action, crime, 
drama 

1:40 

8 Mirror, Mirror 
Adventure, 
comedy, drama 

2:06 

9 Resident Evil 5: Retribution 
Action, horror, 
sci-Fi 

2:30 

10 50/50 Comedy, drama 2:49 

11 
The Lord of the Rings: The Fellowship 
of the Ring 

Action, 
adventure, 
fantasy 

2:47 

12 The Dictator Comedy 2:31 

13 Django Unchained 
Adventure, 
crime, drama 

2:35 

Table 3 Video items used in the user study 
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5.5 Procedure 

The participants were given a web-based survey21 with a short introduction 

about the evaluation procedure. Then, they were asked to complete 13 online polls 

(see Fig. 49). In each of them, two summaries created with each of the considered 

techniques (uniform sampling and object map) were presented together with a visual 

representation of the manually selected frames from iMDb. Users were asked to 

select the representation which let them better recognize the movie. They were also 

asked to rate each representation, the object map effectiveness and attractiveness of 

the summarized trailer with and integer ranging from 1 (Unacceptable) to 5 

(Excellent). Finally, the video trailer was embedded in order to help users to better 

recognize the source data. 

People usually remember elements of the video items they see and use them 

in their evaluation during the test. The order in which the different summaries and 

the different video items are shown can therefore influence the outcome of the test. 

To minimize this influence, the presentation order should be as balanced as possible. 

The test should satisfy the following constraints: 

 The summary representations have to be seen first by the participant. 

 Participants have to select the best representation before seeing the source 

video. 

 The overall rating of the summaries should be done before watching the 

video. 

 If the participant does not know anything about the evaluated video item, 

the trailer should be added and could be watched before answering the 

requirements questions of the proposed summary. 

 Same genres should not be analyzed consecutively. 

In order to evaluate our hypothesis, participants had to answer three 

particular questions and rate each presented option: 

Q1. Which summary let you recognize the movie? 

Q2. Does object map summary effectively represent the movie? 

Q3. Is object map summary visually attractive? 

Q4. Please, rate each Summary 

Question Q1 aimed at directly testing hypothesis H1, question Q2 aimed at 

testing hypothesis H2 and H3. Finally, question Q3 aimed at testing directly 

hypothesis H4 and each representation rating process aimed at testing the general 

hypothesis H0. 
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At the end of the test, they could report general remarks of the test and were 

asked how long it took to do the experiment. The test sessions lasted on average 

14.41 minutes (median: 14, max: 30, standard deviation: 7.71). 

 

Fig. 49 Web-based evaluation survey 

 

 

5.6 Experimental results 

The evaluation process considers the Mean Opinion Score (MOS) test, which 

is widely used measure of the system quality by averaging the ratings given by the 

users. Fig. 50 shows the global analysis of the Q4 ratings. The manual selection 

approach gives the best performance in terms of content selection (MOS = 3.40). 

Even so, the automatic object map approach achieves similar results (MOS = 3.29) 

and it performs significantly better than the uniform sampling method (MOS = 2,76). 
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At this point, we state that our proposed approach is considered a good summary of 

the source video. 

 

Fig. 50 Global rating of the summaries 

 

Fig. 51 Individual rating of the summaries 

 

We also present the individual results (see Fig. 51) for each evaluated trailer. 

Table 3 shows the identifiers for each video. We observe how our approach receive a 

“Fair” rate in trailer 1 (object map MOS = 2.75). This result was obtained by running 

car object detection with parts-based algorithm (Fig. 52). This solution presents high 

content redundancy presenting two tiles with a similar scene of car detection. This 

makes the summary slightly worse than the other options, as can be seen in Fig. 53. 

 

 

Fig. 52 Object map summary for trailer 1, The Intouchables 
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Fig. 53 Uniform sampling summary for trailer 1, The Intouchables 

 

In contrast, results for trailer 7 shows how our approach (object map MOS = 

3.5) summarizes considerably better the video content with a similar set up (see Fig. 

54). That is using a deformable parts-based object detector using a car model. In this 

example we observe the importance of cars for this particular movie trailer and 

object map obtains nearly a “very good” rate. Furthermore, the rating for other 

solutions, like trailer 6, is similar for every summary option. That means that it has 

very specific content or well-known characters. Specifically, trailer 6 corresponds to a 

Star Wars movie. Thus, it has very particular characterization and clothing that allows 

users to rapidly select a “good” rating. 

 

Fig. 54 Object map summary for trailer 7, The Fast and the Furious 

 

We conclude that a good summary can be obtained whether the object 

detector model selection is accurate. It is very important to select a model that is 

able to summarize relevant objects for each video in order to obtain a rich summary. 

In addition to the MOS analysis, the representativeness of the summaries is 

assessed through a user recognition rate of the related movie, Q1. Fig. 55 shows the 

average recognition score for each technique with the following interpretation: 

uniform sampling (a), uniform sampling + object map (b), and uniform sampling + 

object map + manual selection (c).  
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Fig. 55 Global recognition rate 

 

In ¡Error! No se encuentra el origen de la referencia. we observe that 

36.78% of participants recognized the movie seeing only the uniform sampling 

solution. Using object maps, the amount of participants that recognized the movie 

were 74.76%. Finally, participants saw the manual selection option and 88.70% of 

user could recognize the movie. The 100% is not achieved with (c) because some 

users did not recognize some movies.  

 
Fig. 56 Individual recognition rate 

 

Regarding movie recognition, we present individual results in Fig. 56. Some 

results are closely related to the MOS value obtained for each video. For instance, a 

less reliable object map summary (trailer 1) may result into a bad recognition rate. 

The recognition relevance of the trailer 1 object map summary is significantly smaller 

than other trailers. The same result is obtained with trailer 4 and trailer 9 but with 

different reason. The reason why uniform sampling achieves high recognition rate is 

because the trailer title is shown in the summary (see Fig. 57 and Fig. 58) and they 

can be easily recognized. 
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Fig. 57 Uniformly sampled summary of trailer 4, Dark Shadows 

 

Fig. 58 Uniformly sampled summary of trailer 9, Resident Evil 5: Retribution 

Finally, an average measure of the attractiveness (Att) and effectiveness (Eff) 

of object maps summaries were asked with an integer ranging from 1 (Unacceptable) 

to 5 (Excellent), Q2 and Q3. The global results are presented in Figure 11 while 

individual results are shown in Fig. 60. 

 
Fig. 59 Global acceptance rate 

 
Fig. 60 Individual acceptance rate 
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Object maps are aesthetically valued by users between “good” and “very 

good” in results shown in Fig. 59 (Att = 3.34). Furthermore, their effectiveness is 

graded as slightly better than “good” (Eff = 3.11). These results show that our 

approach can effectively generate rich content summaries. Furthermore, they are 

attractive for them, so they can be used to represent videos without requiring user 

attention during some time seeing a video preview. Object maps do not need any 

interaction to rapidly grasp the image content, it is a static and non-stressful content 

result environment. 

 

Trailer ID Object detector Duration (min:sec) 
1sec processing time 

(seconds) 

1 H 2:18 3 

2 N 2:20 0.5 

3 P 2:23 88.6 

4 N 2:33 0.8 

5 N 2:30 0.7 

6 N 2:25 0.7 

7 P 1:40 70.1 

8 N 2:06 1.3 

9 H 2:30 2.2 

10 N 2:49 0.8 

11 P 2:47 28.2 

12 N 2:31 1.5 

13 P 2:35 55.6 

Table 4 Object map summary setup 

 

We have been talking about different summaries created using different 

object detectors. It is also important to measure the computational effort for the 

generation of these summaries. The processing time in the summary creation 

process is mainly related to the used object detection technique. If parts-based 

object detector is used, the processing time is incredibly higher. Even so, the results 

are better as it has been demonstrated in the user study and the performance of the 

object detector is highly improved than using other options as we can obtain 

different views of the same object class. With Haar cascades, we can obtain different 

objects to be included in the summary by slightly incrementing the processing time. 

Table 4 shows the object detector algorithm used for each trailer, the duration of the 

trailer, and a summary processing time value related to one second of the source 

video. The object detectors have the following interpretation: N (None), H (Haar 

cascades), P (Deformable parts-based), S (SURF matching). 
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Conclusions 
 

 

This Thesis has been developed in compliance with the requirements state by 

Technische Universität Wien (TUWien) and Universitat Politècnica de Catalunya 

(UPC). We aim at providing solution to video content summarization using relevant 

objects, analyzing the video and helping users to understand a video content item in 

a fast and visual way. We use various Computer Vision techniques for visual content 

analysis creating an open source algorithmic approach to generate object map-based 

summaries. 

We have elicited user needs with respect to video summarization by 

analyzing related literature on video summarization and relevant content extraction. 

The proposed solution takes into account several requirements to allow fast and 

convenient content selection to be introduced in the summary. These requirements 

can be divided into four categories: priority, uniqueness, structural, and navigability. 

Priority requirements indicate which content should be preferably included in the 

summary to convey as much relevant information as possible. Uniqueness 

requirements state that a summary should provide unique, non-redundant 

information to be efficient.  Structural requirements provide rues that constrain the 

content presentation within the video summary. Finally, navigability requirements 

deal with the rapid selection of important scenes. 

Based on these requirements, we have created an open source Java software 

specialized for the generation of object maps. Our solution approach is based on 

three main steps (see Figure. 22 in Chapter 4, Section 4.1): preparation, content 

selection, and composition. In the preparation step the video is sampled uniformly. 

Then, shot boundary detection algorithm selects keyframes to be analyzed in the 

next steps. In the content selection step we analyze selected keyframes to extract 

relevant objects and recognize them. We use Haar cascade-based face detection to 

extract faces of each keyframes. Then, a recognition process based on Local Binary 

Patterns Histogram features is used to cluster those detections that belong to the 

same person and select a representative face of the most important clusters to 

composite the output object map. We also provide solution to general content 

detection that can be customized by the user to include different types of content 

into the summary. User can use different solutions such as Haar cascade classifiers, 
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SURF matching, and Deformable parts-based object detection to extract relevant 

content. Finally, in composite step we create a visually attractive tile-based image 

composed by the most important content extracted in previous steps. The object 

map aim at being as intuitive as possible to improve the browsing experience 

through the video. 

Our approach was evaluated with a user study in which we compared our 

object map solutions to human-made still frame selection and to uniformly sampled 

frames summaries. The results have shown that presented approach is able to 

properly include relevant content in a visually attractive and effective way. The 

computational effort to create the object maps is mainly related to the used object 

detection technique. If parts-based object detector is used, we process each video 

second in 60 seconds. In contrast, using Haar-based solution or SURF matching, the 

computational effort decreases considerably to 2 seconds per video second. 

Finally, the Thesis provides answers to the four research questions presented 

in Chapter 1, Section 1.1. The first question is related to the quality of a video 

summary into a single image. The results have shown that object maps 

representations can effectively summarize the video content in a static image. The 

second question is related to the composing method of the different extracted faces 

or objects from the source video. We have tested two different representations (see 

Chapter 4, Section 4.6): segmentation-based and tile-based. The second one provides 

a more attractive solution for users because they contain more background 

information and, thus, users can effectively recognize presented scenes. The third 

question states which content should be extracted from the source video in order to 

understand it. We decided to develop a solution that provides flexibility to the user, 

as the system can be tuned with one or multiple object classes, as long as a valid 

model has been trained for that purpose. 

This kind of video summarization systems can be widely used to manage 

large video collections. For instance, User Generated Content sites may summarize 

its videos using proposed approach to increase the content accessibility of the 

viewers. Broadcasting Corporations may also be interested of using our approach. 

Companies related to audiovisual production have to deal with an incredible amount 

of data which may be reviewed and indexed by documentalists. We can facilitate 

their work by presenting a single image and let them grasp rapidly the most relevant 

content. 

The most remarkable contribution of this project has been developing and 

testing an open source software that is able to create rich summaries with 

customized content into a single image: 

 We have developed software that can summarize videos using content-based 

visual analysis. The generic approach of the proposed system allows users to 

select which object classes are relevant and, then, allows them to easily 
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introduce selected models into the software to finally create a custom 

summary of a video item. 

 The developed tile-based object map compositing algorithm allows users to 

rapidly grasp video content and navigate through the video. 

 The Open Source software allows users to change the default algorithms 

used during the summary creation process. Sharing the code is the best 

option to adapt the software to the user needs. Our approach is publicly 

available at sourforge site22. 

 

  

                                                           
22

 http://sourceforge.net/p/objectmaps 
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Future work 
 

At this point, we identify four main directions of research along which the 

presented work could be taken further: 

 Face clustering. 

 Audio content analysis and understanding. 

 Video sequence analysis. 

 Content presentation. 

 Social media. 

The main weakness of the presented work is the face clustering method. As 

we do not have any information about the number of clusters to be created to group 

all characters, neither the necessary ground truth to perform most used recognition 

methods, our clustering method may fail at being accurate and stable. Different runs 

over the same video item can generate different clusters and, therefore, different 

representatives are selected creating different summaries. This process allows users 

to re-run the software in order to get different summary representations and select 

the best one.  

Some changes can be done in order to solve this problem. Running the 

proposed face clustering algorithm several times may result into recognize good 

clusters: those faces that are clustered in a same model may be correctly grouped. 

Furthermore, other clustering methods can be used to solve this problem. Affinity 

Propagation [10] can be used to generate stable clusters and face representatives. 

Liyan Zhang et al. [50] propose a unified framework that automatically learns 

adaptative rules to integrate heterogeneous contextual information (people co-

occurrence, human attributes, clothing….) along with facial features to improve 

unsupervised face clustering recall while maintaining very high precision. 

The basic elements of our summarization technique are visual keyframes. We 

do not perform any audio analysis of the video in order to discover speech, special 

effects (such as explosions, shots, etc.) that are semantically meaningful for human 

beings. This analysis can improve considerably the content selection for the summary 

due to they always grab human attention and help to better understand specific 

video items such as movies, trailers, or TV shows. 
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In order to reduce the false positive detections of the different proposed 

object detection techniques, a sequential analysis over continuous frames may be 

performed. It is also effective to include motion and spatial activity analysis to define 

best candidates to represent a relevant semantic class. 

The compositing stage of a summary is one of the most important parts of 

the architecture. A good representation can make the difference between good and 

bad summaries. The amount of source frame pixels represented in the summary is a 

variable that has to be taken into account if we want to create rich content-based 

summaries. For instance, it is not the same to represent a face or a car; user may also 

want to see the environment that comes with a character and does not need to have 

a big face to recognize the actor/actress appearing in the map. In contrast, we need 

to see a car brand to effectively recognize the car model. The type of object defines 

the importance of its details. 

Object Maps could be used in social media. Social networks need some 

solutions to properly present video content. Today, a keyframe representative is 

shown in most of them. In addition, social media videos are quite different from 

others: they have few scene changes and poor quality. In order to use the presented 

approach with this kind of videos, we may want to analyze the video in a more 

generic way, presenting a global perspective of the video. 
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A 
Test data 

 

 

This appendix shows object maps used for the web-based survey described in 

Chapter 6. They are generated using different types of object detection models such 

as car cascades for Haar-based cascade classifiers, car (see Fig. 61, Fig. 67, and Fig. 

68) and horse (see Fig. 66) models for the deformable parts object detection 

software. 

 

Fig. 61 16 Blocks
23

 

                                                           
23

 http://www.youtube.com/watch?v=9B1bXeNUWGc 
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Fig. 62 50/50
24

 

 

Fig. 63 The Twilight saga - Breaking Dawn part 1
25

 

 

Fig. 64 Dark Shadows
26

 

                                                           
24

 http://www.youtube.com/watch?v=mMaJET7mD0M 
25

 http://www.youtube.com/watch?v=PQNLfo-SOR4 
26

 http://www.youtube.com/watch?v=wpWvkFlyl4M 
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Fig. 65 The dictator
27

 

 

Fig. 66 Django Unchained
28

 

 

Fig. 67 The fast and the furious
29

 

                                                           
27

 http://www.youtube.com/watch?v=DS2lURW4JSI 
28

 http://www.youtube.com/watch?v=eUdM9vrCbow 
29

 http://www.youtube.com/watch?v=2TAOizOnNPo 
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Fig. 68 The Intouchables
30

 

 

Fig. 69 The Lord of the Ring - The Fellowship of the Ring
31

 

 

Fig. 70 The Matrix
32

 

                                                           
30

 http://www.youtube.com/watch?v=34WIbmXkewU 
31

 http://www.youtube.com/watch?v=Pki6jbSbXIY 
32

 http://www.youtube.com/watch?v=r1GrMAqwWcI 
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Fig. 71 Mirror, Mirror
33

 

 

Fig. 72 Resident Evil 5: Retribution
34

 

 

Fig. 73 Star Wars: Episode I - The Phantom Menace
35

 

                                                           
33

 http://www.youtube.com/watch?v=YgbH05rQx1s 
34

 http://www.youtube.com/watch?v=HYuxE3YetQo 
35

 http://www.youtube.com/watch?v=1dWA9DwDQpM 
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B 
Training Object detectors with 

OpenCV and Pascal VOC 
 

 

This appendix makes an overall analysis of the Pascal Visual Object Classes 

Challenge (VOC) 2012 data that has been used to generate training datasets for the 

OpenCV object training process. The next sections will explain in detail how the 

database is structured and the developed Java code used to extract training data. 

Next, we describe OpenCV utilities used during the training process to generate the 

desired cascade. 

 

B.1 Pascal VOC 2012 structure 

The main goal of this challenge is to recognize objects from a number of 

visual object classes in realistic scenes. It is fundamentally a supervised learning 

problem in that a training set of labeled images is provided. The twenty object 

classes that have been selected are: 

 Person: person. 

 Animal: bird, cat, cow, dog, horse, sheep. 

 Vehicle: aeroplane, bicycle, boat, bus, car, motorbike, train. 

 Indoor: bottle, chair, dining table, potted plant, sofa, tv/monitor. 
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Fig. 74 20 VOC object classes examples 

There are three main object recognition competitions: classification, 

detection, and segmentation, a competition on action classification, and a 

competition on large scale recognition run by ImageNet36. 

The training data provided consists of a set of images; each image has an 

annotation file giving a bounding box and object class label for each object in one of 

the twenty classes present in the image. Note that multiple objects from multiple 

classes may be present in the same image. 

In this Thesis, we have used the development kit. After untarring it, the 

resulting directory structure is: 

 VOC2012/ImageSets/Main directory contains text files specifying lists of 

images for the main classification/detection tasks. The files train.txt, val.txt, 

trainval.txt list the image identifiers for the corresponding image sets 

(training, validation, training + validation). Each line of the file contains a 

single image identifier and whether the current object exist (1) or not (-1). 

 VOC2012/JPEGImages directory contains all source images. 

 VOC2012/Annotations directory contains all the annotation files giving a 

bounding box and object class label for each object appearing in the image. 

 

B.2 Dataset generation using Java 

The delivered Java code contains two classes that help users in generating 

specific datasets of a specific object to generate haar classifiers cascades using 

openCV tools.  

The class src.objectDetection.utils.PascalTrainingData-

Generator.java class generates to the output directory two subdirectories 

containing both grayscale positive and negative labeled images. It also generates 

positive.txt and negative.txt files that contain a list of image identifiers prepared to 

be read by opencv_createsamples and opencv_triancascade tools. 

                                                           
36

 http://www.image-net.org 
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This class is easy to use: the input variables are the path to directories 

containing VOC images, text files, annotation files, output directory to save the 

results, and the name of the class to be extracted. 

 

B.3 OpenCV tools to generate Haar cascades 

For training we need a set of samples. PascalTrainingData-

Generator.java class can generate positive and negative samples easily. Sets of 

negative samples obtained by the Java class are already prepared to support cascade 

training process, whereas positive samples must be created using 

opencv_createsamples utility. 

Negative samples are taken from arbitrary images. These images must not 

contain detected objects. They are enumerated in a special file, a text file in which 

each line contains an image filename (relative to the directory of the description file) 

of negative sample images. Note that negative samples are also called background 

samples. Described images may be of different sizes but each image should be (but 

not necessarily) larger than a training window size, because these images are used to 

subsample negative image to the training size. An example of description file: 

Directory structure: 

/negative 
 img1.jpg 
 img2.jpg 
negative.txt 

File negative.txt: 

negative/img1.jpg 
negative/img2.jpg 

Positive samples are created by opencv_createsamples utility. Note 

that you could need a large dataset of positive samples before you give it to the 

mentioned utility, because it only applies perspective transformation. For instance, 

you only need one positive sample for absolutely rigid object like a logo, but you 

definitely need hundreds and even thousands of positive samples for faces, cars, etc.  

The format of the positive description file is as follows: 

[filename] [# of objects] [[x y width height] [… 2nd object] …] 

Where (x, y) is the left-upper corner of the object bounding box and its width 

and height. 
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positive/img1.jpg 1 140 100 45 45 
positive/img2.jpg 2 100 200 50 50 30 25 25 
positive/img3.jpg 1 0 0 20 20 

The opencv_createsamples utility crops regions specified and resize 

these images and convert into .vec format. Using description file obtained by the 

PascalDataGenerator.java class, the used command line arguments for this utility are: 

 -info: Description file of marked up samples. 

 -vec: Name of the output file containing the generated samples. 

 -w: Width (in pixels) of the output samples. 

 -h: Height (in pixels) of the output samples. 

Note that for training, it does not matter how vec-files with positive samples 

are generated, But openc_createsamples utility is the only one way to 

collect/create a vector file of positive samples, provided by OpenCV. 

The next step is the training of classifier. There exist two solutions to train 

cascades: opencv_traincascade (the newer) and opencv_haartraining. 

In this section only the newer tool will be described further. Most frequently used 

command line arguments of opencv_traincascade are: 

 -data: Where the trained classifier should be stored. 

 -vec: Vec-file with positive samples. 

 -bg: Background description file of negative samples. 

 -numPos: Number of positive samples used in each classifier stage. 

 -numNeg:  Number of negative samples used in training for every classifier 

stage. 

 -numStages: Number of cascade stages to be trained. 

 -w: Sample width. It has to be the same value used in the createsamples 

utility. 

 -h: Sample height. It has to be the same value used in the createsamples 

utility. 

 -baseFormatSave: This argument is actual in case of Haar-like features. If it is 

specified, the cascade will be saved in the old format. 

 -minHitRate: Minimal desired hit rate for each stage of the classifier. Overall 

hit rate may be estimated as min_hit_rate^number_stages). 

 -maxFalseAlarmRate: Maxima desired false alarm rate for each stage of the 

classifier. Overall false alarm rate may be estimated as ( 

max_false_alarm_rate^number_stages). 

After the opencv_traincascade application has finished its work, the 

trained cascade will be saved in cascade.xml file in the folder, which was passed as –

data parameter. Other files in this folder are created for the case of interrupted 

training, so you may delete them after completion of training. 
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The training process is finished and you can test your cascade classifier. We 

share a simple Java class that measures the performance of the generated cascade 

using Pascal VOC validation data as described in the next section. 

 

B.4 Cascade evaluation using Java 

The final step of the object detection training process is the performance 

evaluation of the generated classifier cascade. Again, the provided Java code contains 

a class that helps users to evaluate it easily. 

src.objectDetection.utils.PascalDetectionEvaluation.

java class uses the VOC development kit evaluation data to measure the generated 

cascade performance. It detects selected class objects in the images listed in the 

evaluation description file using the haar object detection algorithm described in 

Chapter 4, Section 4.5.1. The input variables to use this class are the object class 

name, the cascade to be evaluated, the directory containing the evaluation 

description files, the directory containing the source images, and the output 

directory to store the results. 

The results are presented as follows: 

 Two subdirectories are created with both positive and negative detections. 

Positive detections bounding boxes are painted and saved into the positive 

subdirectory. 

 A text file containing the results of the evaluation: The total of true positive, 

false positive, true negatives, false negatives, and the evaluation measures 

precision and recall. 


