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IHepiinyn

H evoopdtmon g eneepyasiog pUOIKNG YADGOAG GTNV OpOCT) VTOAOYIGTAOV £XEL GNUEUDGEL G0
VTIKT TPOd0o Ta TEAELTOLO YPOVIa, XApT oTn cvveyn eEEMEN g Pabidg unyovikng pabnong. 'Eva
KOIVOTOWO TPOPAN O TO 0010 GLVILALEL TN UNYAVIKT OpOoT] Kot TNV ene&epyacio pUGIKNG YADOOOS
glvat auTtd NG KUTATUNONG AVTIKEWWEVOVY 08 aKoAovBieg eucovav (Pivteo) pe Tn ypnon avoeopiKmv
EKQPAcE®V, OOV Uia TPATUCT] PUGIKNG YA®ooag kabopilel mold aviikeijevo npémel va kataTundel
o€ éva Pivteo. Mo and Tig HEYOADTEPEG TPOKANGELS OVTNG TNG EQAPHOYNG elvar 1 EALEWYT GLVOL®V
dedoUéEvmV Leyang KATpakag, Eottiog Tov VITEPPOAKE LEYAAOV XPOVOL KOl OVOPOTIYIG TPOCTAOELOC
7OV omotteitan yio T cvAAoyn tovg. EmimAiéov, ta vadpyovia chvora 6£S0UEVOV VTOPEPOLY OO
ETIKETEG KAKNG TOLOTNTOC KOOMG, GOUQ®VAL LLE L0 GYETIKT AVAADOT), TEPITOL Lia OTIC SEKO EKPPACELC
OV TEPLEYOVTOL GE QT OTOTVYYAVOLVY VO, TEPLYPAWYOLV LLOVAOIKE, TO OVTIKEIUEVO-GTOYO.

O oKOTdG TNG TOPOVOHG LUETATTUYLOKNG EPYACIOG EIVOL VO, OVTILETORICEL OVTEG TIG TPOKANGELG
TPOTEIVOVTOG [0l KOVOTOHO HEBOSO Yl TNV TOPOY®YT GUVOETIKDY aVUPOPIKMDY EKPPACEMV Y10, L0
gwova (evog kapé Tov Bivreo). H pébodog autr mopdyet cuvOeTIKES AVaPOPIKES EKPAGELS XPTCLOTOL-
®OVTOG POVO TIG ETIKETEG OVOPOPAG TOV AVTIKELLEVOV LL0G EIKOVOS T BivTeo, kabdg Kot Ta yapaKTnpt-
GTIKA TOVG, TOL OTOT0L OVIYVEVOVTOL OO £VOL VIEPGVYYPOVO BBV VELPOVIKO SIKTVO EKTOOEVLEVO V1oL
ToV evtomiopd avtikelévoyv. Eva amd to mAeovekTipoTo T mpotelvopevns nebodov eival 611 o
OPIOHOG TNG EMITPEMEL TV EPOUPLOYN TNG GE OTOLOONTOTE AAAO GUVOAO OEQOUEVOV EVTOMIGHOD N
KOTATUNONG OVTIKELLEVOV.

XpNOHOTOIDOVTAG TV TPOTEWOUEVT LEB0SO0, TAPOoLGLALETAL TO TPATO LEYAANG KAILOKOG GOVOAO
GUVOETIKOV dE0UEVOV LE AVAPOPIKES EKPPACELES Y10 KOTATUNOT AVTIKEWEVOV o€ Bivieo, faciouévo
0€ £V VTTAPYOV GUVOLO OO UEVOV KATATUNGNG AVTIKEWEV®Y G€ Bivieo. H mapovca epyacio meptiopt-
Bavel oTatioTKn ovAAVOT KAOMOS KOl GOYKPLOT) TOV TOPAYOLEVOV GUVOAOD GUVOETIKOV Oed0UEVOV e
VILAPYOVTA GUVOAD SESOUEVOV KATACKEVAGUEVA OO TOV (vOpOTO.

Ta mepdparta mov dieEnydnoay o Tpio dSLoPoPETIKA GHVOLN SEFOUEVOV TTOL £X0VV XPNCLLOTOIN el
YlOL TV KOTATUNOT] OVTIKEHEVOV GE PIVTED LE TN (PTIOT AVOPOPIKDY EKPPAGEDV, ATOSEIKVDOVY TNV
OTTOTEAEGLOTIKOTITO TOV TOPAYOUEVOV CUVOETIKOV dEOOUEVOVY. ZVYKEKPLUEVA, TO OTOTEAEGLLOTOL
EMOEUVVOLV OTL TPO-EKTALOEVOVTAS £VOL B VELPOVIKS STKTVO LLE TO TPOTEWVOUEVO GUVOAO GUVOETL-
KOV dedopévarv, glval duvartn 1 Pedtimon g yevIKeLoNG TOV SIKTVOV GE SLUPOPETIKA GUVOAD OEQOLE-
vov. To GUYKEKPIUEVO AMOTELES LA £XEL AKOLLO LEYOADTEPN a&ial oV avaAOYIoTEL KaVEIC OTL T EMiTEVLEN
TOV 0gV cvuUmEPIAAUPAEVEL KavEVE EMTAEOV KOGTOG Y10, VTOGNUEINGT dEOOUEVODV 0mtd avOpDTOVG.

A&Eerc KAEWOA

Opaon Yroroyiotwv, Encéepyacio vokng I'lwccag, Opaon kot I'Adcoa, Avagpopikéc Exppdcetg,
Katdtunon Avtikeipévov og Bivteo, [apaymyn Zvvletikdv Agdopévov






Abstract

Integrating computer vision with natural language processing has achieved significant progress
over the last years owing to the continuous evolution of deep learning. A novel vision and language
task, which is tackled in the present Master thesis is referring video object segmentation, in which a
language query defines which instance to segment from a video sequence. One of the biggest chal-
lenges for this task is the lack of relatively large annotated datasets since a tremendous amount of
time and human effort is required for annotation. Moreover, existing datasets suffer from poor qual-
ity annotations in the sense that approximately one out of ten language expressions fails to uniquely
describe the target object.

The purpose of the present Master thesis is to address these challenges by proposing a novel
method for generating synthetic referring expressions for an image (video frame). This method pro-
duces synthetic referring expressions by using only the ground-truth annotations of the objects as well
as their attributes, which are detected by a state-of-the-art object detection deep neural network. One
of the advantages of the proposed method is that its formulation allows its application to any object
detection or segmentation dataset.

By using the proposed method, the first large-scale dataset with synthetic referring expressions for
video object segmentation is created, based on an existing large benchmark dataset for video instance
segmentation. A statistical analysis and comparison of the created synthetic dataset with existing ones
is also provided in the present Master thesis.

The conducted experiments on three different datasets used for referring video object segmen-
tation prove the efficiency of the generated synthetic data. More specifically, the obtained results
demonstrate that by pre-training a deep neural network with the proposed synthetic dataset one can
improve the ability of the network to generalize across different datasets, without any additional an-
notation cost. This outcome is even more important taking into account that no additional annotation
cost is involved.

Key words

Computer Vision, Natural Language Processing, Vision and Language, Referring Expressions, Video
Object Segmentation, Synthetic Data Generation






Xovoyn

O cvvdvacpdg TG OPUCNG VIOAOYIGTAOV Kol TNG ENEEPYUGINS PUOIKNG YADGGOG £XEL TPOGEAKVGEL
TO EVOLAPEPOV TNG EMIGTILOVIKTG KOWVOTNTAG TO TEAELTALN ¥POVIaL, oG Kot Oempeitotl Evo onHavTiKo
e Tpog T dnpovpyic. AVTOVOUMY GLGTNUATOV TEXVNTNAG VONHOGUVIG To omtoia Ba eivar tkavd va
0EL0TO10VY KoL ToL dVO €101 TANPOPOpiag Yo TNV EMIAVCT TPOPANUAT®Y TOV TPAYUATIKOD KOGHLOL
[Hulé6a, Yul8, Yel9]. 'Eva mapdderypo T£€T10100 TPOPAILOTOG, LHE TO 0010 KATATIAVETOL 1) TOPOVGO
LETATTLYLOKY] EPYOCIN, OTOTEAEL 1 KATAUTUN GO OVTIKEWLEV®V GE EIKOVEG Kot BIVTEO LLE T XP1OT) OVOLPO-
PIKOV EKPPAGEDY PLGIKNG YADGGAS. 26 avapOopIKn EKPPacT) 0pileTal Lo TPOTACT PUGIKNAG YADGGOG
oV Kol LOVO av amoTeAel akpiPn mepLypapy EVOG GUYKEKPIUEVOD KOl KAVEVOS AALOL AVTIKEILLEVOL TTOV
epoaviletar oty idwe oknvn [Reit92]. To mpdPAnpa avtd ¥pnoiponolel cov odnyd pio avopoptkn
£KQPOGCT TOV TEPLYPAPEL EVAL LOVOIIKS OVTIKEIIEVO-GTOYO TPOKELLEVOL VAL EVIOTIGEL GE EM{MEDO E1KO-
vooTtoyeiov o avtikeipevo daywpilovtds to amd dAlo avtikeipeve Tov 18100 1| GAAov THTOoL.

H ntpd000¢ 00to0 TV KOVOTOROV £pELVNTIKOD TTEdI0V £XEL ETOPEANOEL 0 TNV TPOSPATN TPOOSO
™™g Pabidg unyovikng udbnong n omoio yuo vo gival omodoTikn amortel peyddlo aptldpd dedopévav.
Qo61660, Lo, 0d TIG KOPLEG TPOKANGEL TOV TPOPANUATOC LE TO OTOI0 OGYOAEITAL 1) TAPOVSA EPYAGIOL
glvarn EAAenym TETO®V PEYAA®Y GUVOL®V dedopévav pe Bivteo To omoio va mepiAapfdvouy TanTdypo-
VOl ETIKETEC AVTIKELEV®V OE EMMESO EIKOVOGTOLYEIOV KOl EKPPATELG PLGIKNG YADOOAG, OTTMG vl Y10l
napdaoderypo o RefCOCO [Kazel4] yio otatikég ewodveg. H dnpovpyio t€T010v GuvOL®V dE00UEVOV
omottel peydAn ToooTNTO ¥POVOL Kot ovOpOTIVIG TPOCTAOELNG KOl VTO EYEL WONGEL TNV EMIGTILLOVIKY|
KOwoTNTa Vo enevdvael 6€ HeBddoVg OTTmG 1) UV o To-emPAETOUEVT LAONGT Kot 1) ¥p1ioT CLUVOETIKGOV
dedopévov. Ta cuvBetikd dedopéva £xouv xpNCIUTOTOMOEl OMOTEAEGLATIKA GE SLAPOPES EPELVNTL-
KEG EPYOGIEG TOCO BTNV OPOCT] VTOAOYIOTAOV GE TPOPANLOTO OTWS M EKTIUN G onTikNG ponig [Dosol5],
N aviyvevon avtikelpnévov [Pengl 5], n onpacioloykn katdtunon [Salel8] kot 1) KaTdTUNGN AVTIKEL-
uévov og Pivteo [Khorl9], 6co kai oe mpofAnpota mov cuvdvdalovy T UNYAvIK 0pact Kot TV
eneEepyncio PLOIKNG YAMGGOG OTTMG 1| GLAAOYIGTIKY HEc® ekOvav [Liul9] kol n mionynon péocw
opoong Kot yhwooag [Friel§].

AxolovBdvTag vt TV Katevbuvon, 1 Tapohco LETATTUYLOKT EPYOCIN TPOTEIVEL LK KOLVOTOLO
UEBOSO Yo TNV TOPAY@YT CUVOETIKOV AVOPOPIKAOY EKQPAGEMV Y10, i EIKOVA (VOGS KAPE TOV Pivteo),
N omoia Pociletar HOVO OTIC ETIKETEG AVAPOPAS TWV OVTIKELLEVOV KOOMG KOl GTO YOUPUKTNPIOTIKA
TOVG, T OO0 AVIYVEVOVTOL OO Eva VIEPSVYYPOVO PabD VELPOVIKO HIKTVO EKTAUOELUEVO Yo TOV
eviomiopd avtikepévov [RenlS]. H mpotevdpevn pébodog epappoletar o€ Eva vdpyov HeyoAng
KApokag cUVolo dedopévev KatdTunong avtikelwévav o Pivteo, To YouTube-VIS [Yangl9], 1o
omoio yépn o€ avty ™ HEB0SO eUTAOVLTICETAL [e GVVOETIKEG AVAPOPIKEG EKQPACELS, XOPIG KOVEVA
KOGTOG OV Vo, apopd avOpmTivy epyacio. Me v tpotevopevn pnébodo, ival duvartn 1 dnuovpyio
TOAATADY OVOPOPIKMDY EKPPACEMVY Y10 TO 1010 avTikeipevo o€ Kabe Kapé Tov Bivieo cuvovalovtag
SLOPOPETIKEC OLOTNTES TOV AVTIKELEVOL OIS 1) KAAGT GTNV OToid OVIKEL, TO, YOPUKTNPLOTIKA TOL
(.. TO XPOUO TOV), 1) OYETIKN TOL BE0T Kot TO GYETIKO TOL péyebog g mpog dAro avtikeipeva. Eva
TOPASELY LA, SLUPOPETIKMV OVOPOPIKDY EKPPAGEDY 01 OTOIEG TOPAYOVTAL LLE TNV TPOTEWOUEVT LEB0DO
anewoviCetal otnv Ewodva 0.1.

To mapayodpevo chvoro dedopévav, ovopatt SynthRef-YouTube- VIS, amotelel To mpdTo peyding
KMUPOKOG GOVOAO GUVOETIK®V AVAPOPIKAOV EKPPAGE®V Y10 KATATUNOT AVTIKEIWEV®VY 6€ BlvTEO amoTe-
Aovpevo amd 2,238 Pivteo kot 15,798 dropopetikés cuVOETIKES avapopikés ekppaoels. H mpotevope-
v 1€B0S0G AALG Kot TO £V AOY® GUVOAO SESOUEV®Y AELOAOYOVVTOL LEGM TEIPOUATOV TO OTOT0L TPOLY L0~
TOTOLOVVTOL PN CIUTOLDVTOG £va. fabD vevpmviko diktvo Tov ovopdletor RefVOS [Bell20]. To diktvo



Figure 0.1: Example of synthetic referring expressions automatically generated with the proposed
method. Multiple referring expressions can be created for the same video or even for the same frame.

OVTO YPTOILOTOLEL OVO VIEPGVYYPOVA LOVTEAD Y10 TNV KMOSIKOTOINON TOV EIKOVOV (KapE TOL Pivieo)
KOl TOV 0vVOQOPIKAV ekppicewy. Zvykekpiuéva, to DeepLabv3 [Chenl7b] mov €xetl ypnoomoindet
pe peydAn emituyio oTn ONUAGIOAOYIKY KOTATUNGT, K®OIKOTOEL TV ONTIKY €i60d0, kot to BERT
[Devll9], éva amd o mo emruynuéva LOVTELD aVaTapACGTAoNS PVOIKNG YADCCAGS, KMOUKOTOLEL TIg
avaQOPIKEG EKPPAcELS. O KATAAANAOC GUVIVAGLOC TOV EENYOLEVMY OTTTIKOV KO YADGGIKMV YOPUKTT-
PLOTIKAOV TOPAYEL TNV TEAKT] KATATUNGT] TOV OVTIKELLEVOV-GTOHYOV.

To Telpdpota Tov TPOYUATOTOONKAY TNV TAPOoVGO LETATTLYLOKY EpYacia ival 600 E10MV:

1. To Tp®dTO OPOPA GTNV TPO-EKTAIOEVGT] TOV LOVTELOV LE TN YPTON TPOYUATIKOV (TOPUYOUEVES
amd avOpAOTOVG), CUVOETIKMOV (TOPUYOLEVES LLE TNV TPOTEWVOLEVT] LEBOGO) 1] GLVIVAGIE Kot TV
300 E10MV OVAPOPIKAOV EKPPACEDV Kot TNV aEL0AOYNOT) TOV GE SLUPOPETIKG GHVOAL SESOUEV®V.

2. To devtepo meipopa amookonel 6TV anevdeiog cOYKPION TPAYUATIKDV KOl GUVOETIKOV 0vapo-
PIKOV eKQPECE®Y PECH TNG EKMAIOELONG TOL HOVTEAOD GTO 1010 GUVOAD dedopévmv Pivieo
OPEVOG LLE TPAYLOTIKEG EKQPACELG KO APETEPOL e GLVOETIKEG, Kot TNG a&loAdOYNOTG TOL GTO
1010 chHVOLO TPAYLLATIK®DY OEOOUEVAV.

To, 0ToTEAEGUATO TOV TTPAOTOV TEIPAUOTOG ETOEIKVDOOVV OTL TPO-EKTOIOEVOVTAG EVOL PV vevp@VI-
K6 S1KTLO LLE TO TPOTEIVOLEVO GUVOAO GLUVOETIKMOV SEOUEV®V, EIvOL EPIKTN 1) BEATI®OON TNG IKOVOTNTOG
YEVIKELGNG TOL SIKTVOL GE JLOPOPETIKA GUVOAN SESOUEV®V, E101KE GTIV TEPITTMGT TOL T GUVOETIKA
dedopéVa YPNOLOTOOVVTAL 08 GLVOVAGHO pE TTpayuatikd. Emiong, axdpo peyaidtepn Peitioon
0G0V apopd TNV axpifela KaTaTUN oG EVTOTILETOL OTAV TO TPO-EKTOLOEVUEVO LOVTELD YPNCILOTTOLET-
TOL € EVO OLOPOPETIKO GHVOAO OEOOUEVDV atd ALTO GTO 0010 £)el EKTAdEVTEL. AVTO TO ATOTEAEGLOL
elvat onUavTIKG Y10Ti 68 TOAAES EPUPLOYES TOV TPAYLLATIKOD KOGHOV, T LOVTEAL UNYAVIKNG LaBnong
dgv £Y0VV TN SLVATOTNTO VO EKTTOOEVOVTOL GTO TEMKO GUVOAO dedopévav, aArd facilovtol o peydio
Babud oy mpo-gkmaidevon.

A6 TV GAAN, TA 0TOTEAEGUATA TG GVYKPLONG HETOED TV TPOYUATIKMV KOl GUVOETIKOV avopopl-
KOV eKppacewv, n onoia die&dyetat 6to dehTEPO TEIPALLD, 00NYEL GTO CUUTEPACLLA OTL OL TPOLYLLATIKES
EKQPACELG, OVTOG TTLO TAOVGLEG GTNV TEPLYPAPT] TOV OVTIKEWEVOV, 0T YOUV GE KOAVTEPO, ATOTEAEG L0
ta. Qo61660, 0V avaroyloTel Kaveig To HEYAAO KOGTOC Y1 TV GLAAOYY TOV TPOYUATIKOV EKQPACEDY
KOl TO aVTIOTOL0 UNdeVIKO Yo TN Snpovpyic TV GLUVOETIK®OV, TO. ATOTEAEGLOTO EIVOL CUYKPICLA.
Eniong, yiveron pedétn g emidpaong g TANpoeopiog Tov EUTEPLEYETUL OTIC CLVOETIKES AVAPOPIKES
EKPPACELG, OOV QAiveTAL OTL OGO TEPIOCOTEPES OLOTNTEC TOV OGVTIKEIUEVOL GLUTEPIAAUPBAVOVTOL

10



(61w Yoo mopadeyo 1 GYETIKN Tov B€om 1 TO XpdUA TOV), TOG0 PelTidvetor 1 TEMKN aKkpifeia
KOTATUNONC.

Téhog, N mTapovca PETATTUYIOKY EPYacio evOaPHVVEL TNV TEPUITEP® EMEKTACT TNG TPOTEIVOVTOG
UEALOVTIKEG KATELOOVOEIS. AVTEG OLPOPOVY TPMTOV GTIV EPUPLOYN TNG TPOTEWOLEVNS HEBOOOV GE
GAA0 oHVOAL SEGOUEVOV EVTOTIGLOV KoL KATATUNONG OVTIKEIHEVOV GE EIKOVEG KAl Pivteo kol de0TeEpOV
GTNV €VIGYLON TNG TPOTEWOUEVIC LEBOIOL Y10 TNV TAPOYWYN TLO TAOVGL®Y GLVOETIKMOV EKPPAGEDV
LE TNV el0ay®Y GAA®V 6TOLXEI®V OTMG 01 GYECEIS LETAED TV AVTIKEEV®V TOL ELPavifovTat.
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Chapter 1

Introduction

Inspired by the great success of deep learning in the fields of computer vision (CV) and natural
language processing (NLP), the research community has invested on the integration of the aforemen-
tioned fields, by proposing several vision and language tasks and by trying to build models capable
of combining visual and linguistic information effectively. A recently proposed vision and language
task, addressed in the present Master thesis, is referring video object segmentation in which, given a
linguistic phrase and a video, the goal is to generate a binary mask for the referred object in all the
video frames where it is present. A visual description of the aforementioned task is provided in Figure
1.1.

1.1 Vision and Language Integration

Recent advancements in deep learning research has led the fields of computer vision and natural
language processing see a significant progress in several tasks independently. This success has also
increased the interest in solving challenges that combine visual and linguistic information, i.e. the
integration of vision and language. Integrating vision and language is considered an important step
towards the creation of powerful artificial intelligence (Al) systems that will be able to reason by
processing multi-modal input.

Figure 1.1: The task of referring video object segmentation. Top: A referring expression and a video
are given as input. Bottom: A segmentation mask of the referent (highlighted in red) is produced at
every frame. The provided referring expression is from the Refer-YouTube-VOS dataset [Se020].
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After more than half a century of research in neural networks and machine learning, deep learn-
ing has been establishing as the state-of-the-art technique of artificial intelligence since its break-
through in 2012, when Krizhevsky et al. [Kriz12] presented a deep neural network, called AlexNet,
which outperformed by a large margin all previous techniques in the Large Scale Visual Recogni-
tion Challenge (LSVRC). The release of large, high-quality, publicly available labelled datasets like
ImageNet [Deng09], along with the empowerment of parallel GPU computing, which enabled the
transition from CPU-based to GPU-based training, has led to the domination of deep learning in nu-
merous Al fields, including computer vision and natural language processing.

More specifically, by using deep learning, computer vision has achieved prominent improve-
ments in tasks such as visual content classification [Kriz12, Simo14, Hel6], object detection [Ren1S5,
Redm16], semantic [Chenl7a], instance [Hel7] and video object segmentation [Caell7, Ventl9].
Convolutional neural networks (CNNs) [Fuku80, LeCu90] have become the standard approach for
solving computer vision tasks. Most of the techniques rely on transferable general visual features by
leveraging tasks such as image classification, detection, semantic segmentation, and action recogni-
tion. Usually, most preferred transferable global image representations are learned with deep CNN ar-
chitectures like VGG [Simo14] and ResNets [He16] using large datasets such as ImageNet [Deng09].
These networks are used as the backbone of task-specific networks which transfer and enhance the
obtained feature representations for solving downstream tasks.

Besides computer vision, deep learning has contributed to the significant progress in NLP re-
search and its applications. For a long time, the majority of methods applied to NLP problems em-
ployed hand-crafted features using n-grams and bag-of-words [Joac98] models or standard machine
learning techniques like Support Vector Machines (SVMs) [Cort95]. Such methods had been fac-
ing problems such as the curse of dimensionality since linguistic information was represented with
high-dimensional features. However, with the recent popularity and success of word embeddings like
word2vec [Miko13], which are low dimensional, distributed representations, deep neural networks
have achieved superior results on various language-related tasks as compared to previously used tech-
niques.

Similar to CNNs for computer vision, several neural network architectures and techniques have
been established in NLP research such as Recurrent Neural Networks (RNNs) [Rume86], Long Short-
Term Memory (LSTM) [Hoch97] and attention mechanism [Vasw17] in order to efficiently capture
context in textual information. Especially in the last years, NLP has focused its efforts in solv-
ing multiple tasks at once with unsupervised pre-training of deep generalized language models like
ELMo [Petel18], GPT-3 [Radf18] and BERT [Devl19], using large unlabeled corpora such as Wikipedia
articles. These models have achieved incredible results in a wide variety of tasks such as machine
translation, question answering and language inference.

Encouraged by the independent success of deep learning in CV and NLP fields, the research com-
munity has endeavored to build models combining vision and language. The aim of this integration
is to produce systems which are able to provide complete understanding of visual and textual content
at the same time. Several of the most important challenges that such systems have to tackle include:

Generation of textual descriptions about visual content and vice versa, i.e. generation of visual
content from textual descriptions

Identification of objects and their relationships in visual content for reasoning or answering
questions about them

Navigation in an environment by leveraging input from both vision and natural language in-
structions

Generation of short captions or longer stories about visual content

Translation of textual content from one language to another with visual content used for disam-
biguation
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The aforementioned challenges can be associated to many practical applications of vision and
language. One possible application in the biomedical domain can be the assistance of visually impaired
individuals to get a holistic visual scene understanding by getting information about a scene from
its textual descriptions and by answers received when asking questions about it. Other applications
include automatic surveillance, autonomous driving, human-computer interaction and navigation.

Several tasks integrating language and vision have been proposed during the past years. An
overview of them is depicted in Figure 1.2. These tasks include language observed in different levels
such as words, phrases, sentences, paragraphs and documents while visual information is represented
with images or videos. A brief description of the tasks presented in Figure 1.2 is provided below:

Referring Expression Generation and Comprehension/Segmentation: Referring expression gen-
eration focuses on the creation of referring expressions (noun phrases) that identify specific
entities called targets or referents [Maol6]. The inverse task is comprehension where a target
objects must be localized [Hul6b] or segmented [Hul6a] based on such expressions.

Visual Description Generation (Captioning): The goal of visual description generation or im-
age/video captioning is to generate either global or dense descriptions to a given visual input in
the form of a sentence [Elli13].

Visual Sorytelling: The aim of visual storytelling is to generate stories from one or more im-
ages or a video. Visual storytelling extends visual description generation by creating several
sentences forming something similar to a paragraph [Huan16].

Visual Question Answering: The goal of visual question answering (VQA) is to learn a model
which comprehends the visual content at both global and local-level for finding an association
with pairs of questions and answers in the natural language form [Anto15].

Visual Dialogue: The goal of the visual dialogue task is to create an Al agent which, given an
image, a history about dialogues and a question about the image, is able to infer context from
the history, and answer the question accurately [Das17].

Visual Reasoning: Visual reasoning targets to answer sophisticated queries by reasoning about
the visual world. Efforts in this task have focused on creating diagnostic tests going beyond
benchmarks such as VQA and reducing the biases of question-answer pairs by having detailed
annotations describing the kind of reasoning each question requires [John17].

: Language Vision i
; (Teext) lnage or Vides) !

|

Caption Generation J Storytelling ‘ Question Answering J [ Dialog ‘ i
Reasoning 1 Referring Expression ‘ Entailment W ‘ Visual Generation J :

. Y i

Navigation ‘ Machine Translation W i

Figure 1.2: Different tasks combining vision and language [Mogal9].
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Image Entailment: The task of predicting whether an image semantically entails a text, given
image-sentence pairs where premise is defined by an image instead of a natural language sen-
tence [Xiel9].

Language-to-Vision Generation: The aim of this task is to generate images/videos conditioned
on natural language descriptions. The rapid evolution of generative adversarial networks (GANs)
[Good14] has helped the growth of this task [Mans15].

Vision-and-Language Navigation: The goal of vision-and-language navigation is to enable an
agent or a robot to navigate within an environment given by the photo-realistic image views by
interpreting natural language instructions [Andel8].

Multi-modal Machine Translation: This task refers to the translation of a source language de-
scription into a target language using image/video information as additional context [Spec16].

1.2 Referring Video Object Segmentation

Video object segmentation is the task whose goal is to separate foreground objects from the back-
ground throughout a video sequence. This task has attracted wide attention lately due to its appli-
cability to many practical problems including video analysis and video editing. Typically, this task
has been addressed in semi-supervised or unsupervised setups. In the first case, a user manually an-
notates an object in a video frame and a system generates a pixel-wise binary mask for the object
in the rest of the frames. The drawback of this setting is that pixel-wise annotations involve tedious
and time-consuming human effort. In the unsupervised scenario [Goell8, Wang19b], estimation of
object masks is performed without any guidance, by using salient features, independent motions, or
known class labels. Although such approaches may be suitable for video analysis, according to Seo
et al. [Se020], the ambiguity and the lack of flexibility in defining foreground objects make them
unsuitable for video editing which requires to segment arbitrary objects or their parts flexibly.

As an alternative approach, language referring expressions have been proposed as a different form
of supervision for the task of video object segmentation. Referring expressions are linguistic ex-
pressions that allow the identification of an individual object (the referent) in a discourse or scene.
According to computational linguistics and natural language processing community, a (noun) phrase
is considered as a referring expression if it is an accurate description of the referent, but not of any
other object in the current scene [Reit92]. Such linguistic expressions allow a more natural and direct
human-computer interaction than interactive annotations in form of bounding boxes, masks, scribbles
or points. Also, such expressions could be parsed from human speech processing systems allowing a
direct human-machine communication in applications such as autonomous driving where the driver
would refer to an object in the road scene and the computer would identify it.

The task of video object segmentation using referring expressions is a novel task first addressed by
Khoreva et al. [Khor18] in 2018 and later tackled in a similar setting from Gavrilyuk et al. [Gavr18]
and Wang et al. [Wang19a] as “actor-action segmentation from a sentence”. The name referring video
object segmentation, in correspondence to referring image segmentation, was introduced by Seo et
al. [Se020] who also released the first large-scale benchmark for the task, called Refer-YouTube-VOS
in a concurrent work to the Master present thesis. An example illustrating the task of referring video
object segmentation is provided in Figure 1.1.

1.3 Main Challenges and Motivation

Despite the increasing interest and research in the field, referring image and video object segmen-
tation remains an extremely challenging task which is still far from being solved. The main challenges
for the task presented below, are divided into those concerning data and those concerning models. In
terms of models used for referring video object segmentation, challenges include:
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Temporal consistency: In contrast to static images, where the task of referring image segmen-
tation has achieved significant progress, the video domain is more challenging as objects ap-
pearing in a video frame may disappear, reappear or be occluded from other objects. Consis-
tency of segmentation masks across video frames is a challenging task and previous works have
employed different techniques in order to achieve it. Recurrent architectures [Seo20] and 3D
CNNs [Gavrl8, Wangl9a] are some of the ways previous works have tackled this challenge.
Also, Khoreva et al. [Khor18] include a temporal consistency score in their objective function
used for computing box proposals in each frame, based on the assumption that objects tend to
move smoothly, and thus box proposals in consecutive frames should have a high overlap.

Model size: Models used for the task of referring video object segmentation suffer from ex-
cessive size in terms of parameters which leads to huge memory requirements and the need
of a great amount of time to train. The combination of vision and language demands at least
two branches for encoding the image (video frame) and linguistic (referring expression) data,
usually a deep CNN and a LSTM. Especially in videos, where the time dimension is added,
architectures can be even more complex in order to achieve temporal consistency as described
above. Also, as presented in Chapter 2, many of these architectures use attention to effectively
capture the dependencies between visual and linguistic features, adding extra layers and param-
eters to the deep architectures. This is a significant challenge considering the embedding of such
models in cars or mobile phones which have restricted memory and computational resources.

The present Master thesis focuses on the challenges concerning the limitations of currently available
datasets for the task of referring video object segmentation. In particular, the main challenges are:

Lack of large-scale datasets: Before the release of Refer-YouTube-VOS [Se020], which was
created concurrently with the present Master thesis, no large-scale dataset existed for the task
of referring video object segmentation. As it is explained in Subsection 2.2.2, existing datasets
used for language-guided video object segmentation were either small in the number of videos
[Khor18] or object classes [Gavr18]. Especially in deep learning and computer vision research,
large datasets and benchmarks have proven their fundamental importance, enabling targeted
progress and objective comparisons, thus their absence can impend the evolution of a scien-
tific field. The annotation cost in terms of money and/or time is one of the main reasons for
the absence of large-scale datasets. The present work addresses this challenge by proposing a
method to automatically generate synthetic referring expression, thus eliminating human labour-
intensive annotations.

“the man in red is running in a race”

Figure 1.3: Example of an invalid referring expression from A2D Sentences [Gavr18] dataset. The
expression on top of the video frame fails to uniquely identify a specific object.
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Figure 1.4: Categorization of referring expressions by their difficulty and correctness in the validation
set of DAVIS-2017 and the test set of A2D Sentences [Bell20].

Referring expressions quality: A previous work [Bell20] has argued that existing benchmarks
used for video object segmentation with referring expressions are annotated with expressions
that sometimes fail to address the objective of the task, namely to unambiguously refer to
a specific object. Actually, because of the huge annotation time of large-scale dataset, lan-
guage expressions in existing benchmarks for referring image and video object segmentation
are mainly collected through crowdsourcing platforms like Amazon Mechanical Turk!'. Al-
though the crowdsourced annotations are usually validated from other experts, cases of bad
annotations are still observed, like in the example of A2D Sentences [Gavr18], appearing in
Figure 1.3. In this example, the provided referring expression (fithe man in red is running in a
race0) fails to unambiguously refer to a specific object, as it could be referring to three different
instances present in the appearing video frame. An extensive analysis of the aforementioned
work, illustrated in Figure 1.4, shows that approximately 10% of the referring expressions of
two existing datasets used for the addressed task are invalid.

As it is also observed in Figure 1.4, a significant proportion of the videos in existing datasets

concerns trivial cases in which the target object could be identified with simple phrases. For example,
in a video including one dog and one ball, each of them can be referred unambiguously, using just the
class or supercategory in which they belong i.e. simply saying fia dog/animald and fia ballo.

Inspired by this simple scenario and the fact that existing datasets for object detection/segmentation

are labeled in terms of the objects class, the idea of the present work is to create high quality synthetic
referring expressions, starting from the referent’s class and then enhancing them with other cues, with-
out any human annotation cost. The proposed synthetic referring expressions are created on top of the
YouTube-VIS [Yangl9] dataset, which is described in detail in Section 3.1. The main advantage of
this dataset is that all instances of a specified set of classes are annotated, allowing thus the creation
of valid referring expressions.

1.4 Thesis Objectives and Structure

The present Master’s thesis has the following objectives:

1. Study current methods in referring video object segmentation by reviewing related literature.
2. Underline the main challenges encountered on this task.

3. Propose a novel method for generating synthetic referring expressions.
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4. Present and disseminate the first large-scale synthetic dataset for referring video object segmen-
tation.

5. Evaluate the effectiveness of the proposed synthetic data in pre-training a deep neural network
for the current task.

6. Compare the obtained performance using synthetic data with previous works.

7. Suggest future research directions regarding the use of synthetic referring expressions for video
object segmentation.

Related literature is reviewed in Chapter 2 where previous research works in the task of referring
image and video object segmentation are explored by analyzing different techniques employed for
solving the task. In the last section of this chapter, examples of scientific works using synthetic data
in computer vision, natural language processing and their combination are presented.

Following, Chapter 3 describes in detail the proposed method for generating synthetic referring
expressions by explaining how different cues are combined for their creation. Moreover, Chapter 3
introduces the synthetic dataset created using the aforementioned method and includes an analysis
of its statistics as well as some examples of synthetic referring expressions with their corresponding
video frames.

Chapter 4 consists of an extensive analysis of the conducted experiments and the obtained results.
More specifically, the datasets and metrics used in the experiments are described in detail and tables
and figures of results comparing results with previous works are illustrated.

Finally, in Chapter 5, the conclusions of the present thesis are summarized and future research
directions for the topic under study are suggested.
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Chapter 2

Literature Review

2.1 Referring Image Segmentation

2.1.1 Methods

Referring image segmentation, the task of segmenting objects or regions in images given a linguis-
tic expression, was introduced by Hu et al. [Hul6a]. The authors distinguish this task from previous
ones that were restricted to a fixed set of classes, like semantic segmentation [Longl5, Chenl7a],
the task of predicting pixel-wise labels for a predefined set of object or stuff categories, or instance
segmentation [Hel7], which additionally distinguishes different instances of an object class. Previous
works about grounding natural language expressions were limited to only resolving a bounding box
in an image [Hul6b, Mao16], therefore this was the first attempt of grounding language at pixel level.

The model they employ for solving this novel tasks consists of four main components which
are depicted in Figure 2.1. The first is a language encoder based on a LSTM network. The input
language expression is first converted into a sequence of fixed-length vectors using an embedding
matrix. Then each of the word embeddings of the sequence S = (wq;::;; W ) is processed by the
LSTM network at each time step t. At the final time step t = T, when the the whole text sequence
is processed by the LSTM, the hidden state h of dimension Dex¢ = 1000 is used as the encoded
vector representation of the language expression. The second and third components of the model are
two fully convolutional neural networks where the first of them is used as the image encoder and
the second as a pixel classification network. The image encoder is a fully convolutional network as
the one proposed by Long et al. [Long15] for semantic segmentation which, given an image of input
W X, outputs a spatial feature map of dimensionw X  Djmy. This means that the final spatial
feature map includes Djy, = 1000 local descriptors for each pixel of the pooled w X image where
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Figure 2.1: Model used by Hu et al. [Hu16a] who introduced the task of referring image segmentation.
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w = W/s and h = H/s with s = 32. Also, two extra channels are added to each local descriptor,
representing the relative coordinates of each pixel location from the upper left corner and the lower
right corner of the feature map (represented as (—1;—1) and (+1; +1) respectively), so that the model
can reason about spatial relationships found in expressions e.g. ficat on the lefto.

After having extracted the visual and language features, h is first tiled and concatenated to the
local descriptor at each spatial location of the spatial feature map to obtainaw h D (where
D = Dim + Dtext + 2) multi-modal spatial map containing both visual and linguistic features.
The combined features are then passed through the third component of the model which is a two-
layer fully convolutional classifier consisting of two 1 1 convolutions, that outputs aw  h low
resolution segmentation map of the image. In order to recover the original image size, an upsampling
operation using deconvolution (or transpose convolution) [Zeill1] is performed producinga W H
high resolution response map, whose values represent the confidence of whether a pixel belongs to
the referred object. Since their work was the first to directly predict segmentation based on natural
language expressions, the authors compare their model performance with strong baselines they created
such as segmentation from bounding boxes or classification proposals and combination of per-word
semantic segmentation, indicating that their method outperforms all these baselines.

Instead of modeling the image and langauge features independently and then combining them to
produce the segmentation map, subsequent works tried to jointly model the two modalities, in order to
better exploit the correlations between words and image regions. Liu et al. [Liul7] combine visual and
word features with an LSTM to recurrently refine the segmentation masks. Dynamic filters were used
in [Marg18] and [Chen19b] to capture the recursive nature of language and the spatial information of
the target object respectively. Li et al. [Lil18] presented a recurrent refinement network (RRN) which
refines the segmentation result by utilizing the feature pyramid structures in order to take advantage
of multi-scale semantics.

Posterior works in referring image segmentation leverage attention to model the visual information
of each word. MAttNet [Yul8] decomposes referring expressions using three modules related to the
object’s appearance, location and relationships with other objects and then uses both language and
visual attention to direct each module to focus on the desired part of the expression and the image.
Shi et al. [Shil8] use attention to extract keywords from a referring expression which are important
for identifying the target object. Cross-modal self-attention is used in CMSA [Yel9] to better capture
the long-range dependencies between linguistic and visual features. While STEP [Chen19a] works in
the same direction, it also uses a convRNN [Xing15] to refine the textual representation and improve
the segmentation. A recent work by Hu et al. [Hu20] proposes a bi-directional cross-modal attention
module to learn the relationship between multi-modal features. Finally, Huang et al. [Huan20] use
multi-modal graph reasoning to identify the correct object as well as suppress other irrelevant ones.

2.1.2 Relevant datasets
RefCOCO

RefCOCO is a large-scale dataset and benchmark for referring image segmentation. It is collected
on top of the Microsoft COCO (Common Objects in Context) image collection [Lin14], which includes
images of complex everyday scenes containing common objects in their natural context.

It is one of the three most frequently used benchmarks for referring image segmentation: Ref-
COCO, RefCOCO+ and RefCOCOg [Yul6]. RefCOCOg was collected using Amazon Mechanical
Turk in a non-interactive setup, while RefCOCO and RefCOCO+ were collected using the Refer-it
Game [Kazel4]. In this two-player game, the first player is shown an image with a segmented target
object and asked to write a natural language expression referring to the target object. The second
player is shown only the image and the referring expression and asked to click on the corresponding
object. Ifthe target object is correctly identified, the players receive points and swap roles. Otherwise,
they are presented with a new image and target object. Images in these collections were selected with
the requirement to contain two or more objects of the same object category.
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RefCOCO consists of 142,209 referring expressions for 50,000 objects in 19,994 images. The
average number of words in its sentences is 3.61. Unlike RefCOCO+, where annotators are disal-
lowed to use location words in their referring expressions, RefCOCO does not have any restrictions
on its expressions. Moreover RefCOCO’s referring expressions tend to be more concise than the ones
from RefCOCOg which have an average length of 8.43. Another advantage of RefCOCO over Ref-
COCOg is that is contains more instances of same-category objects, having an average of 3.9 over 1.6
respectively.

Besides images, RefCOCO has been used for pre-training frame-based models on the task of refer-
ring video object segmentation like in the works of Khoreva et al. [Khor18] and Bellver et al. [Bell20],
since a similar large-scale dataset for videos was not available. In the experiments of the present work,
RefCOCO is also used along with the proposed synthetic dataset in order to assess how the synthetic
data can contribute to a better pre-training of a deep neural network.

2.2 Referring Video Object Segmentation

2.2.1 Methods

Despite the increasing interest in referring image segmentation, only a few works have explored
the segmentation of objects using referring expressions in the video domain i.e. referring video object
segmentation. Khoreva et al. [Khor18] were the first to transfer the referring expression segmentation
task from images to videos by collecting referring expressions for the DAVIS-2017 dataset [Pont17].
They use the image-based MAttNet [Yul8] model, pretrained on RefCOCO [Kazel4], to localize
the target object, and then train a segmentation network with DAVIS-2017 to produce the pixel-wise
prediction, using also temporal coherency across frames. Gavrilyuk et al. [Gavr18], in arelevant work,
provide natural language sentences for Actor-Action Dataset (A2D) [Xul5] and J-HMDB [Jhual3]
which are datasets used for action and human pose recognition and segmentation. They employ a 3D
fully-convolutional model with dynamic filters in order to segment an actor in each frame of a video
as specified by a language query. Although the task is similar to referring video object segmentation,
the referring expressions they provide are intended to describe an actor and its action. The first large-
scale dataset for referring video object segmentation, called Refer-YouTube-VOS, has been created
concurrently to the present Master thesis by Seo et al. [Se020] on top of YouTube-VOS [Xul8], a
popular benchmark for video object segmentation. Besides the dataset, the authors propose a model
called URVOS, which performs language-based object segmentation and mask propagation jointly
using a single deep neural network. The network combines a cross-modal attention module, inspired
by CMSA [Ye19] and a memory attention module to encourage temporal consistency across frames.

RefVOS

In another recent work, RefVOS [Bell20] has been the first model to leverage BERT [Devl19]
for encoding the referring expressions. They have shown that using BERT instead of a bidirectional
LSTM fed with GloVe embeddings [Penn14], which is a common practice in related works, brings
significant improvements to the final segmentation. In the present Master thesis, RefVOS is the model
used for the conducted experiments which aim at evaluating the proposed method and the generated
synthetic dataset. A visual description of the architecture of RefVOS is depicted in Figure 2.3.

RefVOS is a frame-based model which uses DeepLabv3 [Chenl7b] as its visual encoder. Con-
volutional Neural Networks deployed in fully convolutional fashion have shown to be effective for
the task of semantic segmentation. However, the repeated combination of max-pooling and striding
at consecutive layers of these networks significantly reduces the spatial resolution of the resulting
feature maps. In order to recover the spatial resolution, deconvolutional (or transposed convolution)
layers [Zeill1] have been employed in previous works using also skip connections to combine high
resolution features from the contracting path to the upsampled output [Longl5, Nohl5, Ronnl15].
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Figure 2.2: Illustration of atrous convolution with rates 1 (standard convolution), 6 and 24.

Instead of decreasing and then increasing the feature maps spatial resolution, DeepLabv3 uses
“atrous convolution”, which was originally developed for the efficient computation of the undecimated
wavelet transform in the “algorithme a trous” scheme [Hols90] and then used in the convolutional
neural networks context [Gius13, Serm13, Papal5]. Considering two-dimensional signals, for each
location 1 on the output y and a filter w, atrous convolution is applied over the input feature map X as:

yli]=> X[i+r KwlK] 2.1

k

where atrous rate I corresponds to the stride with which the input signal is sampled. This is equivalent
to convolving the input X with upsampled filters produced by inserting r 1 zeros between two
consecutive filter values along each spatial dimension (hence the name “atrous convolution” where
the French word “trous” means holes in English). Typical convolution is a special case of Equation 2.1
where r = 1. A visualization of atrous convolution with different atrous rates can be seen in Figure
2.2. By increasing the atrous rate r, one is able to use a wider field-of-view without the need to apply
multiple convolutions or use larger kernels, i.e. without increasing the computational cost.

As seen in Figure 2.3 (top branch), DeepLabv3 applies four parallel atrous convolutions with dif-
ferent atrous rates, an architecture called Atrous Spatial Pyramid Pooling (ASPP) initially proposed
in the first version of DeepLab [Chenl7a], which is used in order to effectively capture multi-scale
information. Besides the three 3 3 atrous convolutions, a1l 1 convolution and a global average
pooling layer are involved. The features extracted from the five different operations are further pro-
cessed in separate branches and fused to generate the final result. RefVOS model applies the ASPP
architecture with atrous rates of 12, 24 and 36, as depicted in Figure 2.3.

The authors of DeepLabv3 also introduce the term of output stride to denote the ratio of input
image resolution to the final feature map output resolution. Typical CNN architectures used for clas-
sification have an output stride of 32, meaning that the dimension of final feature responses, before
fully connected layers, is 32 times smaller than the respective of the input image. Atrous convolu-
tions, from the other side, allow to extract dense features without significantly decreasing the spatial
resolution. RefVOS [Bell20] uses the architecture of DeepLabv3 with an output stride of eight.

Finally, in order to recover feature maps to the original image resolution for efficient segmen-
tation, DeepLabv3 uses bilinear interpolation, which is sufficient in this setting because the feature
maps produced with atrous convolutions are quite smooth. This way there is no need for extra de-
convolutional (transpose convolution) layers which would increase the number of parameters and
consequently memory requirements and total training time.

In order to obtain a linguistic embedding for the referring expression, RefVOS uses BERT, which
stands for Bidirectional Encoder Representations from Transformers, and is a state-of-the-art language
representation model presented by Devlin et al. [Devl19] (Google Al). Language model pre-training
has been shown to be effective for improving performance in several natural language processing
tasks. Before the publication of BERT, two typical strategies for applying pre-trained language rep-
resentations to downstream tasks were used: (i) feature-based, such as ELMo [Pete18] and (ii) fine-
tuning, such as the Generative Pre-trained Transformer (OpenAl GPT) [Radf18].
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Figure 2.3: Architecture of the RefVOS model [Bell20].

The aforementioned approaches share the same objective function during pre-training, where they
use unidirectional language models to learn general language representations. This means that they
look at a text sequence either from left to right or combined left-to-right and right-to-left while training.
In contrast, BERT is applying a bidirectional training and its performance in several downstream tasks
shows that a language model which is bidirectionally trained can have a deeper sense of language
context and flow than single-direction language model.

BERT makes use of Transformer [Vasw17], an attention mechanism that learns contextual rela-
tions between words (or sub-words) in a text. As opposed to directional models, which read the text
input sequentially (left-to-right or right-to-left), the Transformer encoder reads the entire sequence of
words at once, therefore it is considered bidirectional. This characteristic allows the model to learn the
context of a word based on all of its surroundings (left and right of the word). In order to achieve that,
the authors of BERT, use a “masked language model” (MLM) pre-training objective, inspired by the
Cloze task [Tayl53]. The masked language model randomly masks some of the tokens from the input,
and the objective is to predict the original vocabulary id of the masked word based only on its con-
text. Unlike left-to-right language model pre-training, the MLM objective enables the representation
to fuse both left and right context, which allows a bidirectional pre-training.

Sentences given as input to BERT are transformed to token sequences. The first token of every
sequence is always a special classification token ([CLS]). The final hidden state corresponding to
this token is used as the aggregate sequence representation for classification tasks. Since in the task
of referring image/video object segmentation the whole sentence is important for the identification
of the referred object, RefVOS uses the learned embedding corresponding to the [CLS] token as its
linguistic representation, which is subsequently combined with the visual features.

The output of BERT is a 768-dimensional vector for each token of the sequence. To obtain a multi-
modal embedding, the encoded linguistic phrase is first converted to a 256-dimensional embedding
through a linear projection, in order to match the number of extracted visual features from DeepLabv3,
i.e. the feature maps. Then, the linguistic embedding is element-wise multiplied with the visual
features at every pixel position, producing a multi-modal embedding. Finally,al 1 convolutional
layer predicts two maps, one for the foreground class, i.e. the referent, and another for the background.

2.2.2 Relevant datasets
DAVIS-2017

The first dataset combining video object segmentation and referring expressions was DAVIS-
2017 [Pont17], where the name DAVIS stands for “Densely Annotated Video Segmentation”. The first
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DAVIS dataset was presented in 2016 by Perazzi et al. [Peral6], being the first benchmark specifically
designed for the task of video object segmentation, including 50 videos with one pixel-wise annotated
object in each. In 2017 a new version of DAVIS was released by Pont-Tuset et al. [Pont17], which,
besides having a bigger number of sequences (100 additional videos), was modified to include multiple
annotated objects in its videos, in contrast with the previous version. Of course, for the task of referring
video object segmentation, which is tackled in this work, DAVIS-2017 is a more suitable benchmark,
since disambiguation between different classes of objects is one of the main challenges of this task.

DAVIS-2017 was annotated with referring expressions by Khoreva et al. [Khor18], who were
the first to propose the replacement of the first frame mask supervision with a referring expression
for the task of video object segmentation. They collected two different types of annotations from two
annotators: (i) first frame annotations which are the ones produced by only looking at the first frame of
the video and (ii) full video annotations which are produced after seeing the whole video sequence. The
annotation procedure involved a non-interactive referential two-player game setup. A first annotator
was asked to provide a language description of the object, which has a mask annotation by looking
either at the first frame or at the full video (according to the type of annotation previously described).
Then another annotator is given the first frame or full video and the corresponding description, and
is asked to identify the referred object. If the second annotator correctly identifies the target object
the expression is accepted, otherwise, it is corrected to remove ambiguity and to specify the object
uniquely.

The augmented with referring expressions DAVIS-2017 contains 1,544 referring expressions for
386 unique objects appearing in 150 videos. The average length for the first frame and full video
expressions is 5.5 and 6.3 words respectively. Although the videos of DAVIS-2017 consist of a large
number of annotated frames (69.7 on average) in comparison to other relevant datasets, its validation
set is much smaller than the respective of other datasets including only 30 videos. For this reason the
experiments of the present work include also an evaluation on both the training and validation sets of
DAVIS-2017 (90 videos in total), for the models which are not fine-tuned on this dataset.

A2D Sentences

Another dataset used in language-guided video object segmentation is A2D Sentences, created by
Gavrilyuk et al. [Gavr18]. This dataset is based on the Actor-Action Dataset (A2D) [Xul5], which
is a benchmark for action understanding consisting of 3,782 videos from YouTube. It includes seven
annotated actor classes considered to perform a set of eight possible actions. A2D Sentences is the
augmented version of A2D with natural language descriptions, stating what each actor is doing in each
video.

The creators of the dataset, following the guidelines of RefCOCO dataset [Kaze14], ask the anno-
tators for a discriminative referring expression of each actor instance if multiple objects are present in
a video. A2D Sentences is finally composed of 6,656 sentences for 3,782 videos and 4,825 objects.
Its sentences contain on average more words than the extended with referring exprssions DAVIS-
2017 [Khor18] (7.3 versus 5.9). Since it is a dataset targeted for action description, its sentences
emphasize on verbs having a total of 225 different verbs.

Refer-YouTube-VOS

The last video dataset augmented with referring expressions is Refer-YouTube-VOS, created by
Seoetal. [Se020] who employed Amazon Mechanical Turk to collect referring expressions for YouTube-
VOS [Xul8]. YouTube-VOS is the largest existing benchmark for video object segmentation, includ-
ing more than four thousand high-resolution videos collected from YouTube with a small duration of
three to six seconds each. It includes pixel-level mask annotations for 94 different object categories
at every five frames, while its videos have a frame rate of 30 frames per second.

In order to collect crowd-sourced referring expressions, the authors of Refer-YouTube-VOS firstly
selected around 50 annotators after performing a validation test. Each annotator was given a pair of
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videos, the original video and the mask-overlaid one with the target object highlighted, and was asked
to provide a discriminative sentence within 20 words that describes the target object accurately. Sim-
ilar to Khoreva et al. [Khor18], two types of annotations were collected, one based on the first-frame
and one on the full video. After the initial annotation, a verification and cleaning step was conducted
for all annotations, and objects which could not be localized using just the produced language expres-
sion, were excluded from the dataset. In the end, Refer-YouTube-VOS consists 0of 27,899 expressions,
referring to 7,451 objects in 3,975 videos, being the largest dataset with referring expressions in the
video domain. Finally, Refer-YouTube-VOS has the largest average number of words per referring
expression which is 7.5 for the first-frame annotations and 10.0 for the full-video ones.

Since YouTube-VOS, the basis of Refer-YouTube-VOS, and YouTube- VIS, the basis of the present
work’s proposed synthetic dataset, have a high overlap in their videos, the subset of Refer-YouTube-
VOS that corresponds to YouTube-VIS has served as a benchmark for a direct comparison of the
human-produced referring expressions with the respective synthetic ones proposed in the present Mas-
ter thesis.

2.3 Object Detection

Object detection is the task of locating and classifying existing objects of a certain semantic class,
as well as labeling them with rectangular bounding boxes which show the confidence of their exis-
tence. Being a classic computer vision problem, before the deep learning revolution in 2010s object
detection has been approached with other machine learning-based methods. These methods first ex-
tract hand-crafted features like Haar [Viol01] or HOG [Dala05] features and SIFT keypoints [Lowe99]
and then use machine learning techniques such as SVMs [Cort95] to do the classification.

However, after the recent advancements in deep learning, CNN-based methods have pushed the
state-of-the-art in object detection as these techniques are able to detect objects in an end-to-end fash-
ion without specifically defining features, outperforming classic computer vision methods in terms of
detection accuracy. The frameworks of deep learning-based object detection methods can be mainly
categorized into two types. The first one follows the traditional two-stage object detection pipeline,
generating region proposals at first and then classifying each proposal into different object classes.
The second considers object detection as a regression or classification problem, adopting a unified
framework to acquire final object classes and locations in one step (single-stage detectors).

Two-Stage Detectors

Regarding two-stage detectors, the first stage is called a Region Proposal Network (RPN). A RPN
takes an image (of any size) as input and outputs a set of rectangular object proposals, each with an ob-
jectness score, which measures the proposal’s membership to a known set of object classes versus the
background. Two-stage object detectors were introduced in the Selective Search work [Uijl13], while
R-CNN [Girs14] was the first work to upgrade the second-stage classifier to a convolutional neural
network yielding large gains in accuracy and introducing the deep learning era of object detection.
The RPN of R-CNN extracts nearly 2000 region proposals, warps them into a square and feeds them
to a convolutional neural network that produces a 4096-dimensional feature vector as output. Finally,
a SVM takes as input these features acting as a classifier which decides on the presence of the object
within that candidate region proposal. Besides predicting the presence of an object within the region
proposal, the algorithm also predicts four values which are offset values to increase the precision of
the bounding box. The pipeline of R-CNN is illustrated in Figure 2.4a.

Fast R-CNN [Girs15] instead of inputting 2000 region proposals to the CNN, uses the CNN to
generate a feature map from the input image. From the convolutional feature map, the region proposals
are identified and warped into squares. Then, a region of interest (Rol) pooling layer is used to reshape
them into a fixed size so that they can be fed into a fully connected layer. The Rol pooling operation
significantly speeds up the process as the same input feature map can be used for a big number of
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