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Περίληψη

Ηενσωμάτωση της επεξεργασίας φυσικής γλώσσας στην όραση υπολογιστών έχει σημειώσει σημα-
ντική πρόδοο τα τελευταία χρόνια χάρη στη συνεχή εξέλιξη της βαθιάς μηχανικής μάθησης. Ένα
καινοτόμο πρόβλημα το οποίο συνδυάζει τη μηχανική όραση και την επεξεργασία φυσικής γλώσσας
είναι αυτό της κατάτμησης αντικειμένων σε ακολουθίες εικόνων (βίντεο) με τη χρήση αναφορικών
εκφράσεων, όπου μια πρόταση φυσικής γλώσσας καθορίζει ποιό αντικείμενο πρέπει να κατατμηθεί
σε ένα βίντεο. Μια από τις μεγαλύτερες προκλήσεις αυτής της εφαρμογής είναι η έλλειψη συνόλων
δεδομένων μεγάλης κλίμακας, εξαιτίας του υπερβολικά μεγάλου χρόνου και ανθρώπινης προσπάθειας
που απαιτείται για τη συλλογή τους. Επιπλέον, τα υπάρχοντα σύνολα δεδομένων υποφέρουν από
ετικέτες κακής ποιότητας καθώς, σύμφωνα με μια σχετική ανάλυση, περίπου μία στις δέκα εκφράσεις
που περιέχονται σε αυτά αποτυγχάνουν να περιγράψουν μοναδικά το αντικείμενο-στόχο.

Ο σκοπός της παρούσας μεταπτυχιακής εργασίας είναι να αντιμετωπίσει αυτές τις προκλήσεις
προτείνοντας μια καινοτόμο μέθοδο για την παραγωγή συνθετικών αναφορικών εκφράσεων για μια
εικόνα (ενός καρέ του βίντεο). Η μέθοδος αυτή παράγει συνθετικές αναφορικές εκράσεις χρησιμοποι-
ώντας μόνο τις ετικέτες αναφοράς των αντικειμένων μιας εικόνας ή βίντεο, καθώς και τα χαρακτηρι-
στικά τους, τα οποία ανιχνεύονται από ένα υπερσύγχρονο βαθύ νευρωνικό δίκτυο εκπαιδευμένο για
τον εντοπισμό αντικειμένων. Ένα από τα πλεονεκτήματα της προτεινόμενης μεθόδου είναι ότι ο
ορισμός της επιτρέπει την εφαρμογή της σε οποιοδήποτε άλλο σύνολο δεδομένων εντοπισμού ή
κατάτμησης αντικειμένων.

Χρησιμοποιώντας την προτεινόμενη μέθοδο, παρουσιάζεται το πρώτο μεγάλης κλίμακας σύνολο
συνθετικών δεδομένων με αναφορικές εκφράσειες για κατάτμηση αντικειμένων σε βίντεο, βασισμένο
σε ένα υπάρχον σύνολο δεδομένων κατάτμησης αντικειμένων σε βίντεο. Η παρούσα εργασία περιλαμ-
βάνει στατιστική ανάλυση καθώς και σύγκριση του παραγόμενου συνόλου συνθετικών δεδομένων με
υπάρχοντα σύνολα δεδομένων κατασκευασμένα από τον άνθρωπο.

Τα πειράματα που διεξήχθησαν σε τρία διαφορετικά σύνολα δεδομένων που έχουν χρησιμοποιηθεί
για την κατάτμηση αντικειμένων σε βίντεο με τη χρήση αναφορικών εκφράσεων, αποδεικνύουν την
αποτελεσματικότητα των παραγόμενων συνθετικών δεδομένων. Συγκεκριμένα, τα αποτελέσματα
επιδεικνύουν ότι προ-εκπαιδεύοντας ένα βαθύ νευρωνικό δίκτυο με το προτεινόμενο σύνολο συνθετι-
κών δεδομένων, είναι δυνατή η βελτίωση της γενίκευσης του δικτύου σε διαφορετικά σύνολα δεδομέ-
νων. To συγκεκριμένο αποτέλεσμα έχει ακόμα μεγαλύτερη αξία αν αναλογιστεί κανείς ότι η επίτευξή
του δεν συμπεριλαμβάνει κανένα επιπλέον κόστος για υποσημείωση δεδομένων από ανθρώπους.

Λέξεις κλειδιά

Όραση Υπολογιστών, Επεξεργασία Φυσικής Γλώσσας, Όραση και Γλώσσα, Αναφορικές Εκφράσεις,
Κατάτμηση Αντικειμένων σε Βίντεο, Παραγωγή Συνθετικών Δεδομένων
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Abstract

Integrating computer vision with natural language processing has achieved significant progress
over the last years owing to the continuous evolution of deep learning. A novel vision and language
task, which is tackled in the present Master thesis is referring video object segmentation, in which a
language query defines which instance to segment from a video sequence. One of the biggest chal-
lenges for this task is the lack of relatively large annotated datasets since a tremendous amount of
time and human effort is required for annotation. Moreover, existing datasets suffer from poor qual-
ity annotations in the sense that approximately one out of ten language expressions fails to uniquely
describe the target object.

The purpose of the present Master thesis is to address these challenges by proposing a novel
method for generating synthetic referring expressions for an image (video frame). This method pro-
duces synthetic referring expressions by using only the ground-truth annotations of the objects as well
as their attributes, which are detected by a state-of-the-art object detection deep neural network. One
of the advantages of the proposed method is that its formulation allows its application to any object
detection or segmentation dataset.

By using the proposed method, the first large-scale dataset with synthetic referring expressions for
video object segmentation is created, based on an existing large benchmark dataset for video instance
segmentation. A statistical analysis and comparison of the created synthetic dataset with existing ones
is also provided in the present Master thesis.

The conducted experiments on three different datasets used for referring video object segmen-
tation prove the efficiency of the generated synthetic data. More specifically, the obtained results
demonstrate that by pre-training a deep neural network with the proposed synthetic dataset one can
improve the ability of the network to generalize across different datasets, without any additional an-
notation cost. This outcome is even more important taking into account that no additional annotation
cost is involved.

Key words

Computer Vision, Natural Language Processing, Vision and Language, Referring Expressions, Video
Object Segmentation, Synthetic Data Generation
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Σύνοψη

Ο συνδυασμός της όρασης υπολογιστών και της επξεργασίας φυσικής γλώσσας έχει προσελκύσει
το ενδιαφέρον της επιστημονικής κοινότητας τα τελευταία χρόνια, μιας και θεωρείται ένα σημαντικό
βήμα προς τη δημιουργία αυτόνομων συστημάτων τεχνητής νοημοσύνης τα οποία θα είναι ικανά να
αξιοποιούν και τα δύο είδη πληροφορίας για την επίλυση προβλημάτων του πραγματικού κόσμου
[Hu16a, Yu18, Ye19]. Ένα παράδειγμα τέτοιου προβλήματος, με το οποίο καταπιάνεται η παρούσα
μεταπτυχιακή εργασία, αποτελεί η κατάτμηση αντικειμένων σε εικόνες και βίντεο με τη χρήση αναφο-
ρικών εκφράσεων φυσικής γλώσσας. Ως αναφορική έκφραση ορίζεται μια πρόταση φυσικής γλώσσας
αν και μόνο αν αποτελεί ακριβή περιγραφή ενός συγκεκριμένου και κανενός άλλου αντικείμενου που
εμφανίζεται στην ίδια σκηνή [Reit92]. Το πρόβλημα αυτό χρησιμοποιεί σαν οδηγό μια αναφορική
έκφραση που περιγράφει ένα μοναδικό αντικείμενο-στόχο προκειμένου να εντοπίσει σε επίπεδο εικο-
νοστοιχείου το αντικείμενο διαχωρίζοντάς το από άλλα αντικείμενα του ίδιου ή άλλου τύπου.

Η πρόοδος αυτού του καινοτόμου ερευνητικού πεδίου έχει επωφεληθεί από την πρόσφατη πρόοδο
της βαθιάς μηχανικής μάθησης η οποία για να είναι αποδοτική απαιτεί μεγάλο αριθμό δεδομένων.
Ωστόσο, μια από τις κύριες προκλήσεις του προβλήματος με το οποίο ασχολείται η παρούσα εργασία
είναι η έλλειψη τέτοιων μεγάλων συνόλων δεδομένων με βίντεο τα οποία να περιλαμβάνουν ταυτόχρο-
να ετικέτες αντικειμένων σε επίπεδο εικονοστοιχείου και εκφράσεις φυσικής γλώσσας, όπως είναι για
παράδειγμα το RefCOCO [Kaze14] για στατικές εικόνες. Η δημιουργία τέτοιων συνόλων δεδομένων
απαιτεί μεγάλη ποσότητα χρόνου και ανθρώπινης προσπάθειας και αυτό έχει ωθήσει την επιστημονική
κοινότητα να επενδύσει σε μεθόδους όπως η ημι/αυτο-επιβλεπόμενη μάθηση και η χρήση συνθετικών
δεδομένων. Τα συνθετικά δεδομένα έχουν χρησιμποποιηθεί αποτελεσματικά σε διάφορες ερευνητι-
κές εργασίες τόσο στην όραση υπολογιστών σε προβλήματα όπως η εκτίμηση οπτικής ροής [Doso15],
η ανίχνευση αντικειμένων [Peng15], η σημασιολογική κατάτμηση [Sale18] και η κατάτμηση αντικει-
μένων σε βίντεο [Khor19], όσο και σε προβλήματα που συνδυάζουν τη μηχανική όραση και την
επεξεργασία φυσικής γλώσσας όπως η συλλογιστική μέσω εικόνων [Liu19] και η πλοήγηση μέσω
όρασης και γλώσσας [Frie18].

Ακολουθώντας αυτή την κατεύθυνση, η παρούσα μεταπτυχιακή εργασία προτείνει μια καινοτόμο
μέθοδο για την παραγωγή συνθετικών αναφορικών εκφράσεων για μια εικόνα (ενός καρέ του βίντεο),
η οποία βασίζεται μόνο στις ετικέτες αναφοράς των αντικειμένων καθώς και στα χαρακτηριστικά
τους, τα οποία ανιχνεύονται από ένα υπερσύγχρονο βαθύ νευρωνικό δίκτυο εκπαιδευμένο για τον
εντοπισμό αντικειμένων [Ren15]. Η προτεινόμενη μέθοδος εφαρμόζεται σε ένα υπάρχον μεγάλης
κλίμακας σύνολο δεδομένων κατάτμησης αντικειμένων σε βίντεο, το YouTube-VIS [Yang19], το
οποίο χάρη σε αυτή τη μέθοδο εμπλουτίζεται με συνθετικές αναφορικές εκφράσεις, χωρίς κανένα
κόστος που να αφορά ανθρώπινη εργασία. Με την προτεινόμενη μέθοδο, είναι δυνατή η δημιουργία
πολλαπλών αναφορικών εκφράσεων για το ίδιο αντικείμενο σε κάθε καρέ του βίντεο συνδυάζοντας
διαφορετικές ιδιότητες του αντικειμένου όπως η κλάση στην οποία ανήκει, τα χαρακτηριστικά του
(π.χ. το χρώμα του), η σχετική του θέση και το σχετικό του μέγεθος ως προς άλλα αντικείμενα. Ένα
παράδειγμα διαφορετικών αναφορικών εκφράσεων οι οποίες παράγονται με την προτεινόμενη μέθοδο
απεικονίζεται στην Eικόνα 0.1.

Το παραγόμενο σύνολο δεδομένων, ονόματι SynthRef-YouTube-VIS, αποτελεί το πρώτο μεγάλης
κλίμακας σύνολο συνθετικών αναφορικών εκφράσεων για κατάτμηση αντικειμένων σε βίντεο αποτε-
λούμενο από 2,238 βίντεο και 15,798 διαφορετικές συνθετικές αναφορικές εκφράσεις. Η προτεινόμε-
νη μέθοδος αλλά και το εν λόγω σύνολο δεδομένων αξιολογούνται μέσω πειραμάτων τα οποία πραγμα-
τοποιούνται χρησιμποιώντας ένα βαθύ νευρωνικό δίκτυο που ονομάζεται RefVOS [Bell20]. To δίκτυο
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Figure 0.1: Example of synthetic referring expressions automatically generated with the proposed
method. Multiple referring expressions can be created for the same video or even for the same frame.

αυτό χρησιμοποιεί δύο υπερσύγχρονα μοντέλα για την κωδικοποίηση των εικόνων (καρέ του βίντεο)
και των αναφορικών εκφράσεων. Συγκεκριμένα, το DeepLabv3 [Chen17b] που έχει χρησιμοποιηθεί
με μεγάλη επιτυχία στη σημασιολογική κατάτμηση, κωδικοποιεί την οπτική είσοδο, και το BERT
[Devl19], ένα από τα πιο επιτυχημένα μοντέλα αναπαράστασης φυσικής γλώσσας, κωδικοποιεί τις
αναφορικές εκφράσεις. Ο κατάλληλος συνδυασμός των εξαγόμενων οπτικών και γλωσσικών χαρακτη-
ριστικών παράγει την τελική κατάτμηση του αντικειμένου-στόχου.

Τα πειράματα που πραγματοποιήθηκαν στην παρούσα μεταπτυχιακή εργασία είναι δύο ειδών:

1. Το πρώτο αφορά στην προ-εκπαίδευση του μοντέλου με τη χρήση πραγματικών (παραγόμενες
από ανθρώπους), συνθετικών (παραγόμενες με την προτεινόμενη μέθοδο) ή συνδυασμό και των
δύο ειδών αναφορικών εκφράσεων και την αξιολόγησή του σε διαφορετικά σύνολα δεδομένων.

2. Το δεύτερο πείραμα αποσκοπεί στην απευθείας σύγκριση πραγματικών και συνθετικών αναφο-
ρικών εκφράσεων μέσω της εκπαίδευσης του μοντέλου στο ίδιο σύνολο δεδομένων βίντεο
αφενός με πραγματικές εκφράσεις και αφετέρου με συνθετικές, και της αξιολόγησής του στο
ίδιο σύνολο πραγματικών δεδομένων.

Τα αποτελέσματα του πρώτου πειράματος επιδεικνύουν ότι προ-εκπαιδεύοντας ένα βαθύ νευρωνι-
κό δίκτυο με το προτεινόμενο σύνολο συνθετικών δεδομένων, είναι εφικτή η βελτίωση της ικανότητας
γενίκευσης του δικτύου σε διαφορετικά σύνολα δεδομένων, ειδικά στην περίπτωση που τα συνθετικά
δεδομένα χρησιμοποιούνται σε συνδυασμό με πραγματικά. Επίσης, ακόμα μεγαλύτερη βελτίωση
όσον αφορά την ακρίβεια κατάτμησης εντοπίζεται όταν το προ-εκπαιδευμένο μοντέλο χρησιμοποιεί-
ται σε ένα διαφορετικό σύνολο δεδομένων από αυτό στο οποίο έχει εκπαιδευτεί. Αυτό το αποτέλεσμα
είναι σημαντικό γιατί σε πολλές εφαρμογές του πραγματικού κόσμου, τα μοντέλα μηχανικής μάθησης
δεν έχουν τη δυνατότητα να εκπαιδεύονται στο τελικό σύνολο δεδομένων, αλλά βασίζονται σε μεγάλο
βαθμό στην προ-εκπαίδευση.

Από την άλλη, τα αποτελέσματα της σύγκρισης μεταξύ των πραγματικών και συνθετικών αναφορι-
κών εκφράσεων, η οποία διεξάγεται στο δεύτερο πείραμα, οδηγεί στο συμπέρασμα ότι οι πραγματικές
εκφράσεις, όντας πιο πλούσιες στην περιγραφή των αντικειμένων, οδηγούν σε καλύτερα αποτελέσμα-
τα. Ωστόσο, αν αναλογιστεί κανείς το μεγάλο κόστος για την συλλογή των πραγματικών εκφράσεων
και το αντίστοιχο μηδενικό για τη δημιουργία των συνθετικών, τα αποτελέσματα είναι συγκρίσιμα.
Επίσης, γίνεται μελέτη της επίδρασης της πληροφορίας που εμπεριέχεται στις συνθετικές αναφορικές
εκφράσεις, όπου φαίνεται ότι όσο περισσότερες ιδιότητες του αντικειμένου συμπεριλαμβάνονται
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(όπως για παράδειγμα η σχετική του θέση ή το χρώμα του), τόσο βελτιώνεται η τελική ακρίβεια
κατάτμησης.

Τέλος, η παρούσα μεταπτυχιακή εργασία ενθαρύννει την περαιτέρω επέκτασή της προτείνοντας
μελλοντικές κατευθύνσεις. Αυτές αφορούν πρώτον στην εφαρμογή της προτεινόμενης μεθόδου σε
άλλα σύνολα δεδομένων εντοπισμού και κατάτμησης αντικειμένων σε εικόνες και βίντεο και δεύτερον
στην ενίσχυση της προτεινόμενης μεθόδου για την παραγωγή πιο πλούσιων συνθετικών εκφράσεων
με την εισαγωγή άλλων στοιχείων όπως οι σχέσεις μεταξύ των αντικειμένων που εμφανίζονται.
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Chapter 1

Introduction

Inspired by the great success of deep learning in the fields of computer vision (CV) and natural
language processing (NLP), the research community has invested on the integration of the aforemen-
tioned fields, by proposing several vision and language tasks and by trying to build models capable
of combining visual and linguistic information effectively. A recently proposed vision and language
task, addressed in the present Master thesis, is referring video object segmentation in which, given a
linguistic phrase and a video, the goal is to generate a binary mask for the referred object in all the
video frames where it is present. A visual description of the aforementioned task is provided in Figure
1.1.

1.1 Vision and Language Integration

Recent advancements in deep learning research has led the fields of computer vision and natural
language processing see a significant progress in several tasks independently. This success has also
increased the interest in solving challenges that combine visual and linguistic information, i.e. the
integration of vision and language. Integrating vision and language is considered an important step
towards the creation of powerful artificial intelligence (AI) systems that will be able to reason by
processing multi-modal input.

Figure 1.1: The task of referring video object segmentation. Top: A referring expression and a video
are given as input. Bottom: A segmentation mask of the referent (highlighted in red) is produced at
every frame. The provided referring expression is from the Refer-YouTube-VOS dataset [Seo20].
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After more than half a century of research in neural networks and machine learning, deep learn-
ing has been establishing as the state-of-the-art technique of artificial intelligence since its break-
through in 2012, when Krizhevsky et al. [Kriz12] presented a deep neural network, called AlexNet,
which outperformed by a large margin all previous techniques in the Large Scale Visual Recogni-
tion Challenge (LSVRC). The release of large, high-quality, publicly available labelled datasets like
ImageNet [Deng09], along with the empowerment of parallel GPU computing, which enabled the
transition from CPU-based to GPU-based training, has led to the domination of deep learning in nu-
merous AI fields, including computer vision and natural language processing.

More specifically, by using deep learning, computer vision has achieved prominent improve-
ments in tasks such as visual content classification [Kriz12, Simo14, He16], object detection [Ren15,
Redm16], semantic [Chen17a], instance [He17] and video object segmentation [Cael17, Vent19].
Convolutional neural networks (CNNs) [Fuku80, LeCu90] have become the standard approach for
solving computer vision tasks. Most of the techniques rely on transferable general visual features by
leveraging tasks such as image classification, detection, semantic segmentation, and action recogni-
tion. Usually, most preferred transferable global image representations are learned with deep CNN ar-
chitectures like VGG [Simo14] and ResNets [He16] using large datasets such as ImageNet [Deng09].
These networks are used as the backbone of task-specific networks which transfer and enhance the
obtained feature representations for solving downstream tasks.

Besides computer vision, deep learning has contributed to the significant progress in NLP re-
search and its applications. For a long time, the majority of methods applied to NLP problems em-
ployed hand-crafted features using n-grams and bag-of-words [Joac98] models or standard machine
learning techniques like Support Vector Machines (SVMs) [Cort95]. Such methods had been fac-
ing problems such as the curse of dimensionality since linguistic information was represented with
high-dimensional features. However, with the recent popularity and success of word embeddings like
word2vec [Miko13], which are low dimensional, distributed representations, deep neural networks
have achieved superior results on various language-related tasks as compared to previously used tech-
niques.

Similar to CNNs for computer vision, several neural network architectures and techniques have
been established in NLP research such as Recurrent Neural Networks (RNNs) [Rume86], Long Short-
Term Memory (LSTM) [Hoch97] and attention mechanism [Vasw17] in order to efficiently capture
context in textual information. Especially in the last years, NLP has focused its efforts in solv-
ing multiple tasks at once with unsupervised pre-training of deep generalized language models like
ELMo [Pete18], GPT-3 [Radf18] andBERT [Devl19], using large unlabeled corpora such asWikipedia
articles. These models have achieved incredible results in a wide variety of tasks such as machine
translation, question answering and language inference.

Encouraged by the independent success of deep learning in CV and NLP fields, the research com-
munity has endeavored to build models combining vision and language. The aim of this integration
is to produce systems which are able to provide complete understanding of visual and textual content
at the same time. Several of the most important challenges that such systems have to tackle include:

• Generation of textual descriptions about visual content and vice versa, i.e. generation of visual
content from textual descriptions

• Identification of objects and their relationships in visual content for reasoning or answering
questions about them

• Navigation in an environment by leveraging input from both vision and natural language in-
structions

• Generation of short captions or longer stories about visual content

• Translation of textual content from one language to another with visual content used for disam-
biguation
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The aforementioned challenges can be associated to many practical applications of vision and
language. One possible application in the biomedical domain can be the assistance of visually impaired
individuals to get a holistic visual scene understanding by getting information about a scene from
its textual descriptions and by answers received when asking questions about it. Other applications
include automatic surveillance, autonomous driving, human-computer interaction and navigation.

Several tasks integrating language and vision have been proposed during the past years. An
overview of them is depicted in Figure 1.2. These tasks include language observed in different levels
such as words, phrases, sentences, paragraphs and documents while visual information is represented
with images or videos. A brief description of the tasks presented in Figure 1.2 is provided below:

• Referring ExpressionGeneration andComprehension/Segmentation: Referring expression gen-
eration focuses on the creation of referring expressions (noun phrases) that identify specific
entities called targets or referents [Mao16]. The inverse task is comprehension where a target
objects must be localized [Hu16b] or segmented [Hu16a] based on such expressions.

• Visual Description Generation (Captioning): The goal of visual description generation or im-
age/video captioning is to generate either global or dense descriptions to a given visual input in
the form of a sentence [Elli13].

• Visual Storytelling: The aim of visual storytelling is to generate stories from one or more im-
ages or a video. Visual storytelling extends visual description generation by creating several
sentences forming something similar to a paragraph [Huan16].

• Visual Question Answering: The goal of visual question answering (VQA) is to learn a model
which comprehends the visual content at both global and local-level for finding an association
with pairs of questions and answers in the natural language form [Anto15].

• Visual Dialogue: The goal of the visual dialogue task is to create an AI agent which, given an
image, a history about dialogues and a question about the image, is able to infer context from
the history, and answer the question accurately [Das17].

• Visual Reasoning: Visual reasoning targets to answer sophisticated queries by reasoning about
the visual world. Efforts in this task have focused on creating diagnostic tests going beyond
benchmarks such as VQA and reducing the biases of question-answer pairs by having detailed
annotations describing the kind of reasoning each question requires [John17].

Figure 1.2: Different tasks combining vision and language [Moga19].
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• Image Entailment: The task of predicting whether an image semantically entails a text, given
image-sentence pairs where premise is defined by an image instead of a natural language sen-
tence [Xie19].

• Language-to-Vision Generation: The aim of this task is to generate images/videos conditioned
on natural language descriptions. The rapid evolution of generative adversarial networks (GANs)
[Good14] has helped the growth of this task [Mans15].

• Vision-and-Language Navigation: The goal of vision-and-language navigation is to enable an
agent or a robot to navigate within an environment given by the photo-realistic image views by
interpreting natural language instructions [Ande18].

• Multi-modal Machine Translation: This task refers to the translation of a source language de-
scription into a target language using image/video information as additional context [Spec16].

1.2 Referring Video Object Segmentation

Video object segmentation is the task whose goal is to separate foreground objects from the back-
ground throughout a video sequence. This task has attracted wide attention lately due to its appli-
cability to many practical problems including video analysis and video editing. Typically, this task
has been addressed in semi-supervised or unsupervised setups. In the first case, a user manually an-
notates an object in a video frame and a system generates a pixel-wise binary mask for the object
in the rest of the frames. The drawback of this setting is that pixel-wise annotations involve tedious
and time-consuming human effort. In the unsupervised scenario [Goel18, Wang19b], estimation of
object masks is performed without any guidance, by using salient features, independent motions, or
known class labels. Although such approaches may be suitable for video analysis, according to Seo
et al. [Seo20], the ambiguity and the lack of flexibility in defining foreground objects make them
unsuitable for video editing which requires to segment arbitrary objects or their parts flexibly.

As an alternative approach, language referring expressions have been proposed as a different form
of supervision for the task of video object segmentation. Referring expressions are linguistic ex-
pressions that allow the identification of an individual object (the referent) in a discourse or scene.
According to computational linguistics and natural language processing community, a (noun) phrase
is considered as a referring expression if it is an accurate description of the referent, but not of any
other object in the current scene [Reit92]. Such linguistic expressions allow a more natural and direct
human-computer interaction than interactive annotations in form of bounding boxes, masks, scribbles
or points. Also, such expressions could be parsed from human speech processing systems allowing a
direct human-machine communication in applications such as autonomous driving where the driver
would refer to an object in the road scene and the computer would identify it.

The task of video object segmentation using referring expressions is a novel task first addressed by
Khoreva et al. [Khor18] in 2018 and later tackled in a similar setting from Gavrilyuk et al. [Gavr18]
andWang et al. [Wang19a] as “actor-action segmentation from a sentence”. The name referring video
object segmentation, in correspondence to referring image segmentation, was introduced by Seo et
al. [Seo20] who also released the first large-scale benchmark for the task, called Refer-YouTube-VOS,
in a concurrent work to the Master present thesis. An example illustrating the task of referring video
object segmentation is provided in Figure 1.1.

1.3 Main Challenges and Motivation

Despite the increasing interest and research in the field, referring image and video object segmen-
tation remains an extremely challenging task which is still far from being solved. The main challenges
for the task presented below, are divided into those concerning data and those concerning models. In
terms of models used for referring video object segmentation, challenges include:
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• Temporal consistency: In contrast to static images, where the task of referring image segmen-
tation has achieved significant progress, the video domain is more challenging as objects ap-
pearing in a video frame may disappear, reappear or be occluded from other objects. Consis-
tency of segmentation masks across video frames is a challenging task and previous works have
employed different techniques in order to achieve it. Recurrent architectures [Seo20] and 3D
CNNs [Gavr18, Wang19a] are some of the ways previous works have tackled this challenge.
Also, Khoreva et al. [Khor18] include a temporal consistency score in their objective function
used for computing box proposals in each frame, based on the assumption that objects tend to
move smoothly, and thus box proposals in consecutive frames should have a high overlap.

• Model size: Models used for the task of referring video object segmentation suffer from ex-
cessive size in terms of parameters which leads to huge memory requirements and the need
of a great amount of time to train. The combination of vision and language demands at least
two branches for encoding the image (video frame) and linguistic (referring expression) data,
usually a deep CNN and a LSTM. Especially in videos, where the time dimension is added,
architectures can be even more complex in order to achieve temporal consistency as described
above. Also, as presented in Chapter 2, many of these architectures use attention to effectively
capture the dependencies between visual and linguistic features, adding extra layers and param-
eters to the deep architectures. This is a significant challenge considering the embedding of such
models in cars or mobile phones which have restricted memory and computational resources.

The present Master thesis focuses on the challenges concerning the limitations of currently available
datasets for the task of referring video object segmentation. In particular, the main challenges are:

• Lack of large-scale datasets: Before the release of Refer-YouTube-VOS [Seo20], which was
created concurrently with the present Master thesis, no large-scale dataset existed for the task
of referring video object segmentation. As it is explained in Subsection 2.2.2, existing datasets
used for language-guided video object segmentation were either small in the number of videos
[Khor18] or object classes [Gavr18]. Especially in deep learning and computer vision research,
large datasets and benchmarks have proven their fundamental importance, enabling targeted
progress and objective comparisons, thus their absence can impend the evolution of a scien-
tific field. The annotation cost in terms of money and/or time is one of the main reasons for
the absence of large-scale datasets. The present work addresses this challenge by proposing a
method to automatically generate synthetic referring expression, thus eliminating human labour-
intensive annotations.

Figure 1.3: Example of an invalid referring expression from A2D Sentences [Gavr18] dataset. The
expression on top of the video frame fails to uniquely identify a specific object.
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Figure 1.4: Categorization of referring expressions by their difficulty and correctness in the validation
set of DAVIS-2017 and the test set of A2D Sentences [Bell20].

• Referring expressions quality: A previous work [Bell20] has argued that existing benchmarks
used for video object segmentation with referring expressions are annotated with expressions
that sometimes fail to address the objective of the task, namely to unambiguously refer to
a specific object. Actually, because of the huge annotation time of large-scale dataset, lan-
guage expressions in existing benchmarks for referring image and video object segmentation
are mainly collected through crowdsourcing platforms like Amazon Mechanical Turk1. Al-
though the crowdsourced annotations are usually validated from other experts, cases of bad
annotations are still observed, like in the example of A2D Sentences [Gavr18], appearing in
Figure 1.3. In this example, the provided referring expression (“the man in red is running in a
race”) fails to unambiguously refer to a specific object, as it could be referring to three different
instances present in the appearing video frame. An extensive analysis of the aforementioned
work, illustrated in Figure 1.4, shows that approximately 10% of the referring expressions of
two existing datasets used for the addressed task are invalid.

As it is also observed in Figure 1.4, a significant proportion of the videos in existing datasets
concerns trivial cases in which the target object could be identified with simple phrases. For example,
in a video including one dog and one ball, each of them can be referred unambiguously, using just the
class or supercategory in which they belong i.e. simply saying “a dog/animal” and “a ball”.

Inspired by this simple scenario and the fact that existing datasets for object detection/segmentation
are labeled in terms of the objects class, the idea of the present work is to create high quality synthetic
referring expressions, starting from the referent’s class and then enhancing themwith other cues, with-
out any human annotation cost. The proposed synthetic referring expressions are created on top of the
YouTube-VIS [Yang19] dataset, which is described in detail in Section 3.1. The main advantage of
this dataset is that all instances of a specified set of classes are annotated, allowing thus the creation
of valid referring expressions.

1.4 Thesis Objectives and Structure

The present Master’s thesis has the following objectives:

1. Study current methods in referring video object segmentation by reviewing related literature.

2. Underline the main challenges encountered on this task.

3. Propose a novel method for generating synthetic referring expressions.

1 https://www.mturk.com/
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4. Present and disseminate the first large-scale synthetic dataset for referring video object segmen-
tation.

5. Evaluate the effectiveness of the proposed synthetic data in pre-training a deep neural network
for the current task.

6. Compare the obtained performance using synthetic data with previous works.

7. Suggest future research directions regarding the use of synthetic referring expressions for video
object segmentation.

Related literature is reviewed in Chapter 2 where previous research works in the task of referring
image and video object segmentation are explored by analyzing different techniques employed for
solving the task. In the last section of this chapter, examples of scientific works using synthetic data
in computer vision, natural language processing and their combination are presented.

Following, Chapter 3 describes in detail the proposed method for generating synthetic referring
expressions by explaining how different cues are combined for their creation. Moreover, Chapter 3
introduces the synthetic dataset created using the aforementioned method and includes an analysis
of its statistics as well as some examples of synthetic referring expressions with their corresponding
video frames.

Chapter 4 consists of an extensive analysis of the conducted experiments and the obtained results.
More specifically, the datasets and metrics used in the experiments are described in detail and tables
and figures of results comparing results with previous works are illustrated.

Finally, in Chapter 5, the conclusions of the present thesis are summarized and future research
directions for the topic under study are suggested.
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Chapter 2

Literature Review

2.1 Referring Image Segmentation

2.1.1 Methods

Referring image segmentation, the task of segmenting objects or regions in images given a linguis-
tic expression, was introduced by Hu et al. [Hu16a]. The authors distinguish this task from previous
ones that were restricted to a fixed set of classes, like semantic segmentation [Long15, Chen17a],
the task of predicting pixel-wise labels for a predefined set of object or stuff categories, or instance
segmentation [He17], which additionally distinguishes different instances of an object class. Previous
works about grounding natural language expressions were limited to only resolving a bounding box
in an image [Hu16b, Mao16], therefore this was the first attempt of grounding language at pixel level.

The model they employ for solving this novel tasks consists of four main components which
are depicted in Figure 2.1. The first is a language encoder based on a LSTM network. The input
language expression is first converted into a sequence of fixed-length vectors using an embedding
matrix. Then each of the τ word embeddings of the sequence S = (w1, ..., wτ ) is processed by the
LSTM network at each time step t. At the final time step t = T , when the the whole text sequence
is processed by the LSTM, the hidden state hτ of dimension Dtext = 1000 is used as the encoded
vector representation of the language expression. The second and third components of the model are
two fully convolutional neural networks where the first of them is used as the image encoder and
the second as a pixel classification network. The image encoder is a fully convolutional network as
the one proposed by Long et al. [Long15] for semantic segmentation which, given an image of input
W ×X , outputs a spatial feature map of dimension w × x ×Dim. This means that the final spatial
feature map includes Dim = 1000 local descriptors for each pixel of the pooled w × x image where

Figure 2.1: Model used by Hu et al. [Hu16a] who introduced the task of referring image segmentation.
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w = W/s and h = H/s with s = 32. Also, two extra channels are added to each local descriptor,
representing the relative coordinates of each pixel location from the upper left corner and the lower
right corner of the feature map (represented as (−1,−1) and (+1,+1) respectively), so that the model
can reason about spatial relationships found in expressions e.g. “cat on the left”.

After having extracted the visual and language features, hτ is first tiled and concatenated to the
local descriptor at each spatial location of the spatial feature map to obtain a w × h × D∗ (where
D∗ = Dim + Dtext + 2) multi-modal spatial map containing both visual and linguistic features.
The combined features are then passed through the third component of the model which is a two-
layer fully convolutional classifier consisting of two 1 × 1 convolutions, that outputs a w × h low
resolution segmentation map of the image. In order to recover the original image size, an upsampling
operation using deconvolution (or transpose convolution) [Zeil11] is performed producing aW ×H
high resolution response map, whose values represent the confidence of whether a pixel belongs to
the referred object. Since their work was the first to directly predict segmentation based on natural
language expressions, the authors compare their model performance with strong baselines they created
such as segmentation from bounding boxes or classification proposals and combination of per-word
semantic segmentation, indicating that their method outperforms all these baselines.

Instead of modeling the image and langauge features independently and then combining them to
produce the segmentation map, subsequent works tried to jointly model the two modalities, in order to
better exploit the correlations between words and image regions. Liu et al. [Liu17] combine visual and
word features with an LSTM to recurrently refine the segmentation masks. Dynamic filters were used
in [Marg18] and [Chen19b] to capture the recursive nature of language and the spatial information of
the target object respectively. Li et al. [Li18] presented a recurrent refinement network (RRN) which
refines the segmentation result by utilizing the feature pyramid structures in order to take advantage
of multi-scale semantics.

Posterior works in referring image segmentation leverage attention tomodel the visual information
of each word. MAttNet [Yu18] decomposes referring expressions using three modules related to the
object’s appearance, location and relationships with other objects and then uses both language and
visual attention to direct each module to focus on the desired part of the expression and the image.
Shi et al. [Shi18] use attention to extract keywords from a referring expression which are important
for identifying the target object. Cross-modal self-attention is used in CMSA [Ye19] to better capture
the long-range dependencies between linguistic and visual features. While STEP [Chen19a] works in
the same direction, it also uses a convRNN [Xing15] to refine the textual representation and improve
the segmentation. A recent work by Hu et al. [Hu20] proposes a bi-directional cross-modal attention
module to learn the relationship between multi-modal features. Finally, Huang et al. [Huan20] use
multi-modal graph reasoning to identify the correct object as well as suppress other irrelevant ones.

2.1.2 Relevant datasets

RefCOCO

RefCOCO is a large-scale dataset and benchmark for referring image segmentation. It is collected
on top of theMicrosoft COCO (CommonObjects in Context) image collection [Lin14], which includes
images of complex everyday scenes containing common objects in their natural context.

It is one of the three most frequently used benchmarks for referring image segmentation: Ref-
COCO, RefCOCO+ and RefCOCOg [Yu16]. RefCOCOg was collected using Amazon Mechanical
Turk in a non-interactive setup, while RefCOCO and RefCOCO+ were collected using the Refer-it
Game [Kaze14]. In this two-player game, the first player is shown an image with a segmented target
object and asked to write a natural language expression referring to the target object. The second
player is shown only the image and the referring expression and asked to click on the corresponding
object. If the target object is correctly identified, the players receive points and swap roles. Otherwise,
they are presented with a new image and target object. Images in these collections were selected with
the requirement to contain two or more objects of the same object category.
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RefCOCO consists of 142,209 referring expressions for 50,000 objects in 19,994 images. The
average number of words in its sentences is 3.61. Unlike RefCOCO+, where annotators are disal-
lowed to use location words in their referring expressions, RefCOCO does not have any restrictions
on its expressions. Moreover RefCOCO’s referring expressions tend to be more concise than the ones
from RefCOCOg which have an average length of 8.43. Another advantage of RefCOCO over Ref-
COCOg is that is contains more instances of same-category objects, having an average of 3.9 over 1.6
respectively.

Besides images, RefCOCO has been used for pre-training frame-based models on the task of refer-
ring video object segmentation like in the works of Khoreva et al. [Khor18] and Bellver et al. [Bell20],
since a similar large-scale dataset for videos was not available. In the experiments of the present work,
RefCOCO is also used along with the proposed synthetic dataset in order to assess how the synthetic
data can contribute to a better pre-training of a deep neural network.

2.2 Referring Video Object Segmentation

2.2.1 Methods

Despite the increasing interest in referring image segmentation, only a few works have explored
the segmentation of objects using referring expressions in the video domain i.e. referring video object
segmentation. Khoreva et al. [Khor18] were the first to transfer the referring expression segmentation
task from images to videos by collecting referring expressions for the DAVIS-2017 dataset [Pont17].
They use the image-based MAttNet [Yu18] model, pretrained on RefCOCO [Kaze14], to localize
the target object, and then train a segmentation network with DAVIS-2017 to produce the pixel-wise
prediction, using also temporal coherency across frames. Gavrilyuk et al. [Gavr18], in a relevant work,
provide natural language sentences for Actor-Action Dataset (A2D) [Xu15] and J-HMDB [Jhua13]
which are datasets used for action and human pose recognition and segmentation. They employ a 3D
fully-convolutional model with dynamic filters in order to segment an actor in each frame of a video
as specified by a language query. Although the task is similar to referring video object segmentation,
the referring expressions they provide are intended to describe an actor and its action. The first large-
scale dataset for referring video object segmentation, called Refer-YouTube-VOS, has been created
concurrently to the present Master thesis by Seo et al. [Seo20] on top of YouTube-VOS [Xu18], a
popular benchmark for video object segmentation. Besides the dataset, the authors propose a model
called URVOS, which performs language-based object segmentation and mask propagation jointly
using a single deep neural network. The network combines a cross-modal attention module, inspired
by CMSA [Ye19] and a memory attention module to encourage temporal consistency across frames.

RefVOS

In another recent work, RefVOS [Bell20] has been the first model to leverage BERT [Devl19]
for encoding the referring expressions. They have shown that using BERT instead of a bidirectional
LSTM fed with GloVe embeddings [Penn14], which is a common practice in related works, brings
significant improvements to the final segmentation. In the present Master thesis, RefVOS is the model
used for the conducted experiments which aim at evaluating the proposed method and the generated
synthetic dataset. A visual description of the architecture of RefVOS is depicted in Figure 2.3.

RefVOS is a frame-based model which uses DeepLabv3 [Chen17b] as its visual encoder. Con-
volutional Neural Networks deployed in fully convolutional fashion have shown to be effective for
the task of semantic segmentation. However, the repeated combination of max-pooling and striding
at consecutive layers of these networks significantly reduces the spatial resolution of the resulting
feature maps. In order to recover the spatial resolution, deconvolutional (or transposed convolution)
layers [Zeil11] have been employed in previous works using also skip connections to combine high
resolution features from the contracting path to the upsampled output [Long15, Noh15, Ronn15].
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Figure 2.2: Illustration of atrous convolution with rates 1 (standard convolution), 6 and 24.

Instead of decreasing and then increasing the feature maps spatial resolution, DeepLabv3 uses
“atrous convolution”, whichwas originally developed for the efficient computation of the undecimated
wavelet transform in the “algorithme à trous” scheme [Hols90] and then used in the convolutional
neural networks context [Gius13, Serm13, Papa15]. Considering two-dimensional signals, for each
location i on the output y and a filter w, atrous convolution is applied over the input feature map x as:

y[i] =
∑
k

x[i+ r · k]w[k] (2.1)

where atrous rate r corresponds to the stride with which the input signal is sampled. This is equivalent
to convolving the input x with upsampled filters produced by inserting r − 1 zeros between two
consecutive filter values along each spatial dimension (hence the name “atrous convolution” where
the French word “trous” means holes in English). Typical convolution is a special case of Equation 2.1
where r = 1. A visualization of atrous convolution with different atrous rates can be seen in Figure
2.2. By increasing the atrous rate r, one is able to use a wider field-of-view without the need to apply
multiple convolutions or use larger kernels, i.e. without increasing the computational cost.

As seen in Figure 2.3 (top branch), DeepLabv3 applies four parallel atrous convolutions with dif-
ferent atrous rates, an architecture called Atrous Spatial Pyramid Pooling (ASPP) initially proposed
in the first version of DeepLab [Chen17a], which is used in order to effectively capture multi-scale
information. Besides the three 3 × 3 atrous convolutions, a 1 × 1 convolution and a global average
pooling layer are involved. The features extracted from the five different operations are further pro-
cessed in separate branches and fused to generate the final result. RefVOS model applies the ASPP
architecture with atrous rates of 12, 24 and 36, as depicted in Figure 2.3.

The authors of DeepLabv3 also introduce the term of output stride to denote the ratio of input
image resolution to the final feature map output resolution. Typical CNN architectures used for clas-
sification have an output stride of 32, meaning that the dimension of final feature responses, before
fully connected layers, is 32 times smaller than the respective of the input image. Atrous convolu-
tions, from the other side, allow to extract dense features without significantly decreasing the spatial
resolution. RefVOS [Bell20] uses the architecture of DeepLabv3 with an output stride of eight.

Finally, in order to recover feature maps to the original image resolution for efficient segmen-
tation, DeepLabv3 uses bilinear interpolation, which is sufficient in this setting because the feature
maps produced with atrous convolutions are quite smooth. This way there is no need for extra de-
convolutional (transpose convolution) layers which would increase the number of parameters and
consequently memory requirements and total training time.

In order to obtain a linguistic embedding for the referring expression, RefVOS uses BERT, which
stands for Bidirectional Encoder Representations from Transformers, and is a state-of-the-art language
representation model presented by Devlin et al. [Devl19] (Google AI). Language model pre-training
has been shown to be effective for improving performance in several natural language processing
tasks. Before the publication of BERT, two typical strategies for applying pre-trained language rep-
resentations to downstream tasks were used: (i) feature-based, such as ELMo [Pete18] and (ii) fine-
tuning, such as the Generative Pre-trained Transformer (OpenAI GPT) [Radf18].
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Figure 2.3: Architecture of the RefVOS model [Bell20].

The aforementioned approaches share the same objective function during pre-training, where they
use unidirectional language models to learn general language representations. This means that they
look at a text sequence either from left to right or combined left-to-right and right-to-left while training.
In contrast, BERT is applying a bidirectional training and its performance in several downstream tasks
shows that a language model which is bidirectionally trained can have a deeper sense of language
context and flow than single-direction language model.

BERT makes use of Transformer [Vasw17], an attention mechanism that learns contextual rela-
tions between words (or sub-words) in a text. As opposed to directional models, which read the text
input sequentially (left-to-right or right-to-left), the Transformer encoder reads the entire sequence of
words at once, therefore it is considered bidirectional. This characteristic allows the model to learn the
context of a word based on all of its surroundings (left and right of the word). In order to achieve that,
the authors of BERT, use a “masked language model” (MLM) pre-training objective, inspired by the
Cloze task [Tayl53]. The masked language model randomly masks some of the tokens from the input,
and the objective is to predict the original vocabulary id of the masked word based only on its con-
text. Unlike left-to-right language model pre-training, the MLM objective enables the representation
to fuse both left and right context, which allows a bidirectional pre-training.

Sentences given as input to BERT are transformed to token sequences. The first token of every
sequence is always a special classification token ([CLS]). The final hidden state corresponding to
this token is used as the aggregate sequence representation for classification tasks. Since in the task
of referring image/video object segmentation the whole sentence is important for the identification
of the referred object, RefVOS uses the learned embedding corresponding to the [CLS] token as its
linguistic representation, which is subsequently combined with the visual features.

The output of BERT is a 768-dimensional vector for each token of the sequence. To obtain a multi-
modal embedding, the encoded linguistic phrase is first converted to a 256-dimensional embedding
through a linear projection, in order to match the number of extracted visual features fromDeepLabv3,
i.e. the feature maps. Then, the linguistic embedding is element-wise multiplied with the visual
features at every pixel position, producing a multi-modal embedding. Finally, a 1 × 1 convolutional
layer predicts twomaps, one for the foreground class, i.e. the referent, and another for the background.

2.2.2 Relevant datasets

DAVIS-2017

The first dataset combining video object segmentation and referring expressions was DAVIS-
2017 [Pont17], where the nameDAVIS stands for “Densely Annotated Video Segmentation”. The first
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DAVIS dataset was presented in 2016 by Perazzi et al. [Pera16], being the first benchmark specifically
designed for the task of video object segmentation, including 50 videos with one pixel-wise annotated
object in each. In 2017 a new version of DAVIS was released by Pont-Tuset et al. [Pont17], which,
besides having a bigger number of sequences (100 additional videos), wasmodified to includemultiple
annotated objects in its videos, in contrast with the previous version. Of course, for the task of referring
video object segmentation, which is tackled in this work, DAVIS-2017 is a more suitable benchmark,
since disambiguation between different classes of objects is one of the main challenges of this task.

DAVIS-2017 was annotated with referring expressions by Khoreva et al. [Khor18], who were
the first to propose the replacement of the first frame mask supervision with a referring expression
for the task of video object segmentation. They collected two different types of annotations from two
annotators: (i) first frame annotations which are the ones produced by only looking at the first frame of
the video and (ii) full video annotationswhich are produced after seeing thewhole video sequence. The
annotation procedure involved a non-interactive referential two-player game setup. A first annotator
was asked to provide a language description of the object, which has a mask annotation by looking
either at the first frame or at the full video (according to the type of annotation previously described).
Then another annotator is given the first frame or full video and the corresponding description, and
is asked to identify the referred object. If the second annotator correctly identifies the target object
the expression is accepted, otherwise, it is corrected to remove ambiguity and to specify the object
uniquely.

The augmented with referring expressions DAVIS-2017 contains 1,544 referring expressions for
386 unique objects appearing in 150 videos. The average length for the first frame and full video
expressions is 5.5 and 6.3 words respectively. Although the videos of DAVIS-2017 consist of a large
number of annotated frames (69.7 on average) in comparison to other relevant datasets, its validation
set is much smaller than the respective of other datasets including only 30 videos. For this reason the
experiments of the present work include also an evaluation on both the training and validation sets of
DAVIS-2017 (90 videos in total), for the models which are not fine-tuned on this dataset.

A2D Sentences

Another dataset used in language-guided video object segmentation is A2D Sentences, created by
Gavrilyuk et al. [Gavr18]. This dataset is based on the Actor-Action Dataset (A2D) [Xu15], which
is a benchmark for action understanding consisting of 3,782 videos from YouTube. It includes seven
annotated actor classes considered to perform a set of eight possible actions. A2D Sentences is the
augmented version of A2Dwith natural language descriptions, stating what each actor is doing in each
video.

The creators of the dataset, following the guidelines of RefCOCO dataset [Kaze14], ask the anno-
tators for a discriminative referring expression of each actor instance if multiple objects are present in
a video. A2D Sentences is finally composed of 6,656 sentences for 3,782 videos and 4,825 objects.
Its sentences contain on average more words than the extended with referring exprssions DAVIS-
2017 [Khor18] (7.3 versus 5.9). Since it is a dataset targeted for action description, its sentences
emphasize on verbs having a total of 225 different verbs.

Refer-YouTube-VOS

The last video dataset augmented with referring expressions is Refer-YouTube-VOS, created by
Seo et al. [Seo20]who employedAmazonMechanical Turk to collect referring expressions for YouTube-
VOS [Xu18]. YouTube-VOS is the largest existing benchmark for video object segmentation, includ-
ing more than four thousand high-resolution videos collected from YouTube with a small duration of
three to six seconds each. It includes pixel-level mask annotations for 94 different object categories
at every five frames, while its videos have a frame rate of 30 frames per second.

In order to collect crowd-sourced referring expressions, the authors of Refer-YouTube-VOS firstly
selected around 50 annotators after performing a validation test. Each annotator was given a pair of
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videos, the original video and the mask-overlaid one with the target object highlighted, and was asked
to provide a discriminative sentence within 20 words that describes the target object accurately. Sim-
ilar to Khoreva et al. [Khor18], two types of annotations were collected, one based on the first-frame
and one on the full video. After the initial annotation, a verification and cleaning step was conducted
for all annotations, and objects which could not be localized using just the produced language expres-
sion, were excluded from the dataset. In the end, Refer-YouTube-VOS consists of 27,899 expressions,
referring to 7,451 objects in 3,975 videos, being the largest dataset with referring expressions in the
video domain. Finally, Refer-YouTube-VOS has the largest average number of words per referring
expression which is 7.5 for the first-frame annotations and 10.0 for the full-video ones.

SinceYouTube-VOS, the basis of Refer-YouTube-VOS, andYouTube-VIS, the basis of the present
work’s proposed synthetic dataset, have a high overlap in their videos, the subset of Refer-YouTube-
VOS that corresponds to YouTube-VIS has served as a benchmark for a direct comparison of the
human-produced referring expressions with the respective synthetic ones proposed in the presentMas-
ter thesis.

2.3 Object Detection

Object detection is the task of locating and classifying existing objects of a certain semantic class,
as well as labeling them with rectangular bounding boxes which show the confidence of their exis-
tence. Being a classic computer vision problem, before the deep learning revolution in 2010s object
detection has been approached with other machine learning-based methods. These methods first ex-
tract hand-crafted features like Haar [Viol01] or HOG [Dala05] features and SIFT keypoints [Lowe99]
and then use machine learning techniques such as SVMs [Cort95] to do the classification.

However, after the recent advancements in deep learning, CNN-based methods have pushed the
state-of-the-art in object detection as these techniques are able to detect objects in an end-to-end fash-
ion without specifically defining features, outperforming classic computer vision methods in terms of
detection accuracy. The frameworks of deep learning-based object detection methods can be mainly
categorized into two types. The first one follows the traditional two-stage object detection pipeline,
generating region proposals at first and then classifying each proposal into different object classes.
The second considers object detection as a regression or classification problem, adopting a unified
framework to acquire final object classes and locations in one step (single-stage detectors).

Two-Stage Detectors

Regarding two-stage detectors, the first stage is called a Region Proposal Network (RPN). A RPN
takes an image (of any size) as input and outputs a set of rectangular object proposals, each with an ob-
jectness score, which measures the proposal’s membership to a known set of object classes versus the
background. Two-stage object detectors were introduced in the Selective Search work [Uijl13], while
R-CNN [Girs14] was the first work to upgrade the second-stage classifier to a convolutional neural
network yielding large gains in accuracy and introducing the deep learning era of object detection.
The RPN of R-CNN extracts nearly 2000 region proposals, warps them into a square and feeds them
to a convolutional neural network that produces a 4096-dimensional feature vector as output. Finally,
a SVM takes as input these features acting as a classifier which decides on the presence of the object
within that candidate region proposal. Besides predicting the presence of an object within the region
proposal, the algorithm also predicts four values which are offset values to increase the precision of
the bounding box. The pipeline of R-CNN is illustrated in Figure 2.4a.

Fast R-CNN [Girs15] instead of inputting 2000 region proposals to the CNN, uses the CNN to
generate a featuremap from the input image. From the convolutional featuremap, the region proposals
are identified and warped into squares. Then, a region of interest (RoI) pooling layer is used to reshape
them into a fixed size so that they can be fed into a fully connected layer. The RoI pooling operation
significantly speeds up the process as the same input feature map can be used for a big number of
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(a) R-CNN (b) Fast R-CNN

Figure 2.4: Overview of R-CNN [Girs14] and Fast R-CNN [Girs15] two-stage frameworks for object
detection.

region proposals of different size to finally get a list of corresponding feature maps with a fixed size.
Finally, from the RoI feature vector, a softmax layer is used to predict the class of the proposed region
and a softmax regression layer to predict the bounding box coordinates. An overview of the Fast
R-CNN network is depicted in Figure 2.4b.

Both of the above algorithms (R-CNN and Fast R-CNN) use selective search [Uijl13] to find out
the region proposals, which is a slow and time-consuming process affecting the performance of the
network. To face this bottleneck and eliminate selective search, Faster R-CNN by Ren et al. [Ren15]
employs a fully-convolutional network as a separate region proposal network (RPN) which has the
ability to predict object bounds and scores at each position simultaneously. In this way the region
proposal stage acts in a nearly cost-free way by sharing full-image convolutional features with the de-
tection network. More specifically, for every point in the output feature map of the fully-convolutional
network, the RPN has to learn whether an object is present in the input image at its corresponding lo-
cation and estimate its size. This is done by placing a set of k “anchors” on the input image for each
location on the output feature map. These anchors are rectangles that indicate possible objects in var-
ious sizes and aspect ratios at this location. As the network moves through each pixel in the feature
map, it has to check whether these k corresponding anchors spanning the input image actually contain
objects, and refine these anchors’ coordinates to give bounding boxes as “object proposals” or regions
of interest. Finally, these proposals are given to a Fast R-CNN [Girs15] object detector (Figure 2.4b)
which predicts the class of the proposed region and also the bounding box coordinates.

Figure 2.5: Architecture of Faster R-CNN [Ren15].
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The proposed method of the present Master thesis employs Faster R-CNN in order to detect at-
tributes of the target objects which are used for the generation of synthetic referring expressions. As
explained above and depicted in Figure 2.4b, the RoI feature vector of Fast R-CNN is guided to two
sibling fully connected networks, one for the classification of the bounding box to the available object
classes and a second for the prediction of the bounding box coordinates. These two branches are called
“RoI heads” or just “heads”. The proposed method for generating referring expressions uses Faster
R-CNN extended with an attribute head by Tang et al. [Tang20] which is trained in order to detect a
number of attributes for the detected objects like for example their color.

Subsequently to the R-CNN family of object detectors, other two-stage frameworks that have
made an impact in object detection include R-FCN [Dai16] and FPN [Lin17]. R-FCN, while using
a RPN similar to the one of Faster R-CNN [Ren15], modifies the classification network to a region-
based fully convolutional detector where almost all computation is shared on the entire image, instead
of applying a costly per-region subnetwork hundreds of times. The last convolutional layer of the
detector produces position-sensitive score maps for each object class and then a position-sensitive
RoI pooling layer is appended to aggregate the responses from these score maps and the predict the
class, while another convolutional layer is appended to obtain class-agnostic bounding boxes.

FPN (Feature Pyramid Network), from the other side, uses an architecture with a bottom-up path-
way, a top-down pathway and several lateral connections to combine low-resolution and semantically
strong features with high-resolution and semantically weak features. While the bottom-up pathway is
a basic backbone convolutional network, in order to build the top-down pathway, feature maps from
higher network stages are upsampled at first and then enhanced with those of the same spatial size
from the bottom-up pathway via lateral connections. Meanwhile, FPN is independent of the back-
bone CNN architecture and can be applied to different stages of object detection (e.g. region proposal
generation) and to many other computer vision tasks (e.g. instance segmentation).

Single-Stage Detectors

The previously described two-stage frameworks are composed of several correlated steps, includ-
ing region proposal generation, feature extraction, classification and bounding box regression, which
are usually trained separately. Even in the end-to-end Faster R-CNN [Ren15], an alternating training
is still required to obtain shared convolution parameters between the RPN and detection network. As
a result, the time spent in handling different components becomes the bottleneck in real-time applica-
tions.

From the other side, single-stage frameworks based on global regression/classification, mapping
directly from image pixels to bounding box coordinates and class probabilities, can significantly re-
duce training and testing time. The most successful and influential single-stage networks for object
detection are YOLO [Redm16] and Single Shot MultiBox Detector (SSD) [Liu16]. YOLO (standing
for “You only look once”) makes use of the whole topmost feature map to predict confidences for both
object categories and bounding boxes. The basic idea of YOLO is that it divides the input image into
an S × S grid where each grid cell is responsible for predicting the object centered in it. Each grid
cell predicts bounding boxes and their corresponding confidence scores. At the same time, regardless
of the number of boxes, C conditional class probabilities are also predicted in each grid cell, corre-
sponding to the known classes. The final bounding boxes are produced by combining the predicted
bounding boxes and their confidences of each grid cell with the class probabilities. Although YOLO
runs much faster than the state-of-the art two-stage object detectors, such as Faster R-CNN [Ren15],
its detection accuracy is generally inferior as it has difficulty in dealing with small objects in groups
or objects in unseen aspect ratios, which is caused by strong spatial constraints imposed on bounding
box predictions and its relatively coarse features due to multiple downsampling operations.

Aiming at these problems, Liu et al.proposed a Single Shot MultiBox Detector (SSD) [Liu16],
inspired by the anchors adopted in MultiBox [Erha14], the RPN of Faster R-CNN [Ren15] and multi-
scale representations [Bell16]. Given a specific feature map, instead of fixed grids adopted in YOLO,
the SSD takes advantage of a set of default anchor boxes with different aspect ratios and scales to
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discretize the output space of bounding boxes. To handle objects with various sizes, the network fuses
predictions from multiple feature maps with different resolutions. By further leveraging techniques
such as hard negative mining, data augmentation and a larger number of carefully chosen default an-
chors, SSD significantly outperforms Faster R-CNN in terms of accuracy on standard object detection
benchmarks, while being three times faster.

2.4 Synthetic Data

Synthesizing training data has been explored in numerous applications in the fields of computer
vision and natural language processing. The need of large amounts of data to train CNNs has encour-
aged the generation of synthetic datasets for solving tasks where real data cannot be easily collected.
Flying Chairs [Doso15] and SURREAL [Varo17] are examples of synthetic datasets effectively used
together with real data for the tasks of optical flow and human pose/shape estimation, respectively.
Peng et al. [Peng15] augmented existing datasets for few-shot object detection by synthesizing im-
ages from freely available 3D CAD models of objects. While on the aforementioned works synthetic
and real data are mixed, Saleh et al. [Sale18] proposed an effective way to use only synthetic data
for semantic segmentation, by differentiating between foreground and background classes and us-
ing a detection-based approach. An enhanced Generative Adversarial Network (GAN) was used by
Shrivastava et al. [Shri17] aiming to reduce the domain gap between real and synthetic images. The
authors showed the effectiveness of their method in the tasks of gaze and hand pose estimation. In a
more recent work, Khoreva et al. [Khor19] recommend a training strategy using fewer in-domain than
large-scale out-of-domain data, by exploiting the provided annotation on the first frame of a video to
synthesize realistic future video frames.

Synthetic linguistic data have also been used for training deep models on vision & language tasks.
Fried et al. [Frie18] proposed a speaker-followermodel to synthesize instructions for the task of vision-
and-language-navigation. Silberer and Pinkal [Silb18] addressed the task of visual semantic role la-
beling and proved the effectiveness of training with synthetic data automatically created by applying
a natural language processing model to image captions.

A highly relevant work to the present is PhraseCut [Wu20]. Its authors address the task of language-
guided image segmentation and create synthetic referring phrases out of Visual Genome [Kris17]
images by combining the ground-truth (annotated by humans) object categories, their attributes and
relationships between them. Examples from the PhraseCut dataset are provided in Figure 2.6. Since
the dataset targets the segmentation of image regions and not only objects, the generated expressions
can refer to multiple objects, therefore they cannot be considered referring expressions, according to

Figure 2.6: Examples from the PhraseCut dataset [Wu20]. Referring phrases are produced by com-
bining object categories (brown text), attributes (blue text) and relationships (green text) with other
objects.
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the definition given in Section 1.2. Another main difference between PhraseCut and the work of the
present Master thesis is that the proposed method of the present work is dataset independent and can
be applied to any existing dataset that includes labeled object categories and bounding boxes.
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Chapter 3

Proposed Method and Generated Dataset

3.1 YouTube-VIS Dataset

The dataset used for the generation of synthetic referring expressions is YouTube-VIS [Yang19],
which is created on top of the large-scale video object segmentation dataset called YouTube-VOS
[Xu18]. YouTube-VOS is the largest existing benchmark for video object segmentation, including
more than four thousand high-resolution videos collected from YouTube with a small duration of 3-6
seconds each. Although YouTube-VOS contains pixel-level mask annotations for 94 different object
categories, the reason that YouTube-VIS was preferred for creating synthetic referring expressions,
is that the former is not exhaustively annotated, meaning that not all objects appearing in a video
(belonging to those 94 categories) have a corresponding bounding box and segmentation mask anno-
tation.

In contrast, YouTube-VIS, despite having a smaller category set of 40 common objects, it has
the advantage that all instances belonging to those categories are labeled. In this way it serves as a
very good data source for the task of generating synthetic referring expressions, as it is necessary to
combine the information of all the present objects in a video frame in order to create valid referring
expressions. YouTube-VIS totally consists of 2,883 videos with 4,883 unique objects belonging to
40 categories and approximately 131K object masks. However, since ground-truth annotations for all
the frames are necessary to apply our proposed method, only the training set of YouTube-VIS can be
used for this task which includes 2,238 videos with 3,374 annotated objects appearing in them.

Figure 3.1: Histogram of object instances per video for the YouTube-VIS [Yang19] dataset.
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Figure 3.2: Overview of the proposed method for generating synthetic referring expressions. Top:
Ground truth labels (object class + bounding boxes) are used to compute a target object’s relative
location and size. Bottom: A Faster R-CNN object detector with attribute head outputs attributes for
the detected objects, which are filtered by the ground truth annotations. The combined cues create a
set of referring expressions that uniquely identify the target object.

3.2 Proposed Method

The proposed method takes advantage of the ground-truth annotations of YouTube-VIS [Yang19]
in order to generate synthetic referring expressions for the objects appearing in its videos. Specifi-
cally, the classes and bounding boxes of the target and other objects present in the frame are used in
order to determine a set of cues which, when combined, are able to generate a referring expression
that is close to a natural language expression. Also, Faster R-CNN [Ren15] (described in Section
2.3), enhanced with an attribute head by Tang et al. [Tang20], is employed for detecting attributes of
the target object. The overview of the method and the cues used for generating synthetic referring
expressions are illustrated in Figure 3.2. Four different cues are leveraged for generating a synthetic
referring expression for a target object: (i) object class, (ii) relative size, (iii) relative location and (iv)
attributes.

3.2.1 Object class

As already mentioned, in trivial cases where a single object of a known class is present, using the
object’s class is enough in order to generate a referring expression. However, the majority of cases
involves multiple objects of the same class, thus other cues are necessary in order to disambiguate
between instances. Relative size and location of a target object with respect to other objects of the
same class are cues that can be easily computed using their bounding boxes.

3.2.2 Relative size

Relative size can be important in scenarios where multiple objects of the same class with similar
characteristics are present. In the proposed method, in order to compute the relative size of a target
object, two scenarios are considered:

1. If there is only one more object of the same class as the target, the areas of the bounding boxes
of the two objects (target and other) are computed and compared. If the area At of the target
object’s bounding box compared to the area Ao of the other object’s bounding box is twice as
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big (At >= 2Ao) or small (At <= 0.5Ao), then a characterization of “bigger” or “smaller”
is added to the synthetic referring expression respectively. Otherwise (0.5Ao < At < 2Ao),
relative size is considered not applicable and is not included in the synthetic referring expression.

2. If there areN >= 2 other objects of the same class as the target, the areaAt of the target object’s
bounding box is compared to the areas Ai

o for i = 1, ..., N of all the other objects’ bounding
boxes. Then, only if the area of the target object’s bounding box is two times bigger or smaller
from the areas of each of the other objects’ bounding boxes (Ai

t >= 2Ai
o for i = 1, ..., N or

Ai
t <= 0.5Ai

o for i = 1, ..., N ) a characterization of “the biggest” or “the smallest” is added
to the synthetic referring expression respectively.

3.2.3 Relative location

In scenarios where two or three objects of the same class are present in a particular video frame,
relative location between these objects can be used in order to disambiguate between them. If the
bounding boxes of the objects are fully separable, or partially above a certain threshold, then it is
assumed that relative location of the referent with respect to the other object(s) of the same class can
be used in order to generate a non-ambiguous referring phrase. In this case, the steps for determining
relative location are the following:

1. The pixel indices of the boundaries of the target and the other object’s bounding boxes are
considered in order to determine which axis (X or Y ) is the most separative between them.

2. Then, three scenarios are considered:

(i) Bounding boxes are fully separable on the determined axis: IfX-axis is the most separa-
tive and the target object’s bounding box pixel indices on theX-axis are smaller than those
of the other object’s, then relative location will be “on the left”. Otherwise, if the indices
are bigger, it will be “on the right”. If Y -axis is the most separative and the target object’s
bounding box pixel indices on the Y -axis are smaller than those of the other object’s, then
relative location will be “in the back”, otherwise, “in the front”.

(ii) Bounding boxes are partially separable on the determined axis: The degree of separation
between the two bounding boxes is calculated by finding the maximum non-overlapping
distance between the two bounding boxes. If this value is above a fixed threshold of 50
pixels, then relative location is applicable and one of the four options mentioned above
is selected, according to the determined axis and the location of the boundaries. If the
maximum non-overlapping distance is smaller than 50 pixels, relative location is not ap-
plicable.

(iii) Bounding boxes are not separable: This implies that one bounding box is enclosed inside
the other. Relative location is not applicable in this case.

3. If there are two other objects of the same class, besides the referent, steps 1 & 2 are computed
between the referent and each of the two other objects and the results are combined. In such
a case, if the referent is located, for example, on the right of the first other object and on the
left of the second one, then its relative location will be “in the middle”. In a similar way more
combinations of the 4 basic relative locations mentioned in step 2 can occur, e.g. “in the front
left”, “in the back right”, etc.

While the choice of “left” and “right” for theX-axis is trivial, “back” and “front” were selected
for the Y -axis as they were found to be the most frequently used words for determining relative loca-
tion in the Y -axis in referring expressions of DAVIS-2017 [Khor18] and A2D Sentences [Gavr18].
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3.2.4 Attributes

Attributes like the color of an object have been proved to be important for the task of referring
image/video object segmentation [Bell20]. In order to detect attributes for a target object, the proposed
method employs Faster R-CNN [Ren15] object detector enhanced with an attribute head by Tang et
al. [Tang20]. Faster R-CNN is pre-trained on Visual Genome [Kris17] with its attribute head enabled,
so that the model is able to predict attributes, like color, for the detected objects. Then, the pre-trained
model is run on YouTube-VIS [Yang19] to obtain, for each frame of a video, a set of detected objects
(with their bounding box coordinates) and their detected attributes. For each detected bounding box
from Faster R-CNN, its overlap with the referent’s ground truth bounding box is computed using their
Intersection-over-Union (IoU) which corresponds to the intersection of the bounding boxes divided
by their union (a detailed description of IoU is provided in Section 4.2). The bounding box with
the highest overlap is considered as the prediction which corresponds to the target object, with the
condition that the IoU is over 50%. The procedure is visually explained in Figure 3.2.

The attributes predicted for the selected bounding box are filtered to color-like and not color-
like attributes and the ones with the highest prediction score, if above 85%, are selected for the two
subsets. For color-like attributes, if the scores of the first two colors are very close, i.e. their score
difference is lower than 2%, both colors are used in the referring expression, since in many cases
more than one color is necessary to describe an object (e.g. “a yellow and green parrot”). For non
color-like attributes only the one with the highest score is selected. Non color-like attributes can be
both adjectives (e.g. “large”, “spotted”) or verbs (e.g. “walking”, “surfing”). The model is able to
detect a total of 201 attributes. An attribute is added to the referring expression of a target object only
if no other objects belonging to the same class have this attribute, so that the final expression satisfies
the definition of a referring expression which is to uniquely describe a target object.

3.2.5 Synthetic Referring Expressions

Finally, the aforementioned cues are combined in a natural order and a proper article is added to the
sentence, ending up with a complete synthetic referring expression. There might be cases where none
of the above cues are applicable for a target object and the generated synthetic language expression
may be ambiguous, although in the vast majority of cases the synthetic referring expressions uniquely
identify the target object.

Since a video consists of a certain number of frames, and an object may change its location or

Figure 3.3: Example of synthetic referring expressions automatically generated with the proposed
method. Multiple referring expressions can be created for the same video or even for the same frame.
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appearance throughout the video, one or more synthetic referring expressions are generated for each
frame of the video. In this way, a network is able to be trained with different referring expressions for
the same video or for the same frame, increasing its capacity to generalize to other data. An example
of synthetic referring expressions generated with the proposed method for the same video is illustrated
in Figure 3.3.

3.3 SynthRef-YouTube-VIS Dataset

Only a few datasets are available for the task of referring video object segmentation. Asmentioned
in Section 2.2, Khoreva et al. [Khor18] and Gavrilyuk et al. [Gavr18] have augmented the DAVIS-
2017 [Pont17] and A2D [Xu15], J-HMDB [Jhua13] datasets respectively. However, the limited num-
ber of videos of the former and the restricted set of object categories of the latter make them unsuitable
for effectively pre-training a deep neural network for the task of referring video object segmentation.
In a concurrent work to the present Master thesis, Seo et al. [Seo20] presented Refer-YouTube-VOS,
which is the first large-scale dataset created for the task of referring video object segmentation. They
employed AmazonMechanical Turk to collect referring expressions for YouTube-VOS [Xu18], which
consists of a large number of videos and object categories.

One can understand that annotating a dataset such as YouTube-VOS, which includes 4,519 videos
and nearly 7,500 objects, involves a big annotation cost both in terms of money and time. On the con-
trary, the proposed dataset with synthetic referring expressions, which we call SynthRef-YouTube-
VIS, is created without any additional human annotation cost. SynthRef-YouTube-VIS is based on
YouTube-VIS [Yang19], a subset of YouTube-VOS [Xu18], originally used for the task of video in-
stance segmentation. The method used for generating SynthRef-YouTube-VIS is described in de-
tail in Section 3.2, while a qualitative comparison of the synthetic referring expression of SynthRef-
YouTube-VIS and the human-produced ones of Refer-YouTube-VOS for the same videos is illustrated
in Figure 3.4.

Figure 3.4: Comparison of human-collected referring expressions from Refer-YouTube-VOS [Seo20]
with synthetic ones generated with the proposed method.
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Figure 3.5: Histogram of object instances by each class in SynthRef-YouTube-VIS train and validation
sets.

The official training set of YouTube-VIS is used for the creation of SynthRef-YouTube-VIS, since
ground-truth annotations for all the frames are necessary in order to apply our proposed method. In
this way, SynthRef-YouTube-VIS consists of 2,238 videos with 3,374 annotated objects appearing in
them. The dataset is further split in a train and test set for the experiments having 1791 training and
447 testing videos. As seen in Figure 3.5, all classes appear both in the training and the test set, in
contrast to DAVIS-2017 [Pont17] where there exist object classes in the validation set that are never
seen during training (see Figure 4.2 in Section 4.3).

A statistical analysis and comparison between the proposed synthetic dataset and other referring
video object segmentation datasets, which have been described in detail in Section 2.2.2, is illustrated
in Table 3.1. J-HMDB [Jhua13] is not included in the analysis since its videos only contain one
annotated object and thus is not suited for multi-instance segmentation.

Dataset Videos Objects Classes RE Type REs REs/Object

A2D Sentences [Gavr18] 3,782 4,825 8 Human 6,656 1.4
DAVIS-2017 [Khor18] 150 386 78 Human 1,544 4.0
Refer-YouTube-VOS [Seo20] 3,975 7,451 94 Human 27,899 3.7
SynthRef-YouTube-VIS (Ours) 2,238 3,774 40 Synthetic 15,798 4.2

Table 3.1: Statistics of the proposed dataset and comparison to existing ones. The last column indicates
the average number of unique referring expressions (REs) per object.

As depicted in Table 3.1, the proposed synthetic dataset includes a total of 15,798 unique referring
expressions for all 3,774 objects of YouTube-VIS training set. This number is quite higher than the
respective number of A2DSentences [Gavr18] andDAVIS-2017 [Khor18]. Although it is smaller than
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Refer-YouTube-VOS [Seo20] in terms of videos and total number of expressions, SynthRef-YouTube-
VIS still has the highest average number of unique referring expressions per annotated object, which is
4.2. Finally, the average number of words of the synthetic referring expressions of SynthRef-YouTube-
VIS is 4.4, which is smaller than the respective of the other datasets. This is reasonable as the goal
of the proposed method is to generate simple and efficient synthetic referring expressions, using only
the previously described cues (object class, relative size/location and attributes).
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Chapter 4

Experimental Results

4.1 Training Details

The experiments of the present work intend to assess the benefits of training a model for the task
of referring video object segmentation using the synthetic referring expressions generated with the
proposed method. The model used in the experiments is RefVOS [Bell20], which is described in
detail in Section 2.2. Two types of experiments are conducted:

1. The first experiment consists of using the generated synthetic dataset, SynthRef-YouTube-VIS,
as an extra dataset for training a model which is already pre-trained with real (i.e. human-
produced) referring expressions and evaluating its performance on DAVIS-2017 [Khor18] and
A2D Sentences [Gavr18].

2. In the second experiment, the model is trained using only the proposed synthetic data and is
evaluated on the real referring expressions of Refer-YouTube-VOS [Seo20] in order to compare
the performance of training on the human versus the synthetic referring expressions, on the same
dataset.

Finally, an ablation study of different settings while pre-training with the synthetic referring ex-
pressions is also presented as well as an analysis of the impact of the information included in the
referring expressions on the segmentation accuracy.

4.1.1 Pre-training

Pre-training a deep neural network on a large dataset before fine-tuning it on a smaller one is a
common technique used in deep learning. As explained in the previous chapters, the present work
assesses how human and synthetic referring expressions can be used together or interchangeably for
pre-training a model for the task of referring video object segmentation. The two datasets used in
the experiments for pre-training are RefCOCO [Kaze14] and SynthRef-YouTube-VIS, which is the
synthetic dataset generated with the proposed method.

For pre-training the RefVOS model [Bell20], a batch size of eight video frames is used, which are
resized and then cropped/padded to a final resolution of 480x480. The large crop size is necessary for
the visual encoder (DeepLabv3 [Chen17b]), so that atrous convolutions (see Section 2.2 for details)
with large rates are effective. Otherwise, the filter weights with a large atrous rate are mostly applied to
the padded zero region of the image or frame. The loss function employed is the binary cross-entropy
loss since the model predicts two classes, one for the foreground which corresponds to the target
object and one for the background. The optimizer employed is stochastic gradient descent (SGD)
with a momentum of 0.9.

The learning rate values and schedule depend on the dataset and the training step, i.e. if the model
is already trained on other data or not. When pre-training from scratch on RefCOCO or SynthRef-
YouTube-VIS, an initial learning rate is set to 0.01 and is decreased by 4e−4 at every epoch for a
total of 24 epochs. For training on SynthRef-YouTube-VIS after a first pre-training on RefCOCO, a
smaller learning rate of 1e−4 is used, which is linearly decreased by 4e−6 after every epoch for 20
epochs.
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4.1.2 Fine-tuning on the Evaluation Datasets

After the pre-training phase and before evaluating the model on a target dataset, it is a common
practice to also train the model on the target dataset, a process which is called fine-tuning. The exper-
iments conducted assess the model’s performance both when fine-tuning or not on the target dataset
before the evaluation. The batch size, optimizer and loss function are the same as the ones used in the
pre-training phase of the model and only the learning rate policy is adjusted to the target dataset.

For the evaluation of the proposed method and dataset three benchmarks on video object segmen-
tation are used, which have been further extended with referring expressions from previous works.
Two of these benchmarks are used for the first experiment where RefVOS (the model used) is pre-
trained either on RefCOCO [Kaze14] or SynthRef-YouTube-VIS or both of them. The first dataset is
DAVIS-2017 [Khor18] and the second is A2D Sentences [Gavr18]. For fine-tuning on DAVIS-2017
the learning rate starts from 1e−5 and is decreased to 1e−6 after 10 epochs, training for a total of 15
epochs. For A2D Sentences, the learning rate is set to 1e−4 and is linearly decreased by 4e−6 after
every epoch, for 20 epochs in total. The third dataset is Refer-YouTube-VOS [Seo20] and it is used
for the second experiment as described above. Since in this experiment the model is not pre-trained on
RefCOCO, the same learning rate policy as when pre-training with SynthRef-YouTube-VIS is used,
which is, starting the learning rate from 0.01 and decreasing it by 4e−4 at every epoch for a total of
24 epochs.

4.2 Quantitative Evaluation Metrics

In the task of object segmentation, given a ground truth mask G and a predicted segmentation mask
M, the typical evaluation process includes two measures, as proposed by Perazzi et al. [Pera16]:

1. Region Similarity J : The similarity of the ground truth and predicted segmentation regions is
measured using the Jaccard Index J defined as the Intersection-over-Union (IoU) of the two
regions i.e.:

J =
|M ∩ G|
|M ∪ G|

2. Contour accuracy F : The predicted segmentation maskM can be interpreted as a set of closed
contours c(M) delimiting the spatial extent of the mask. Then, the contour-based precision and
Pc and recall Rc between the contour points of c(M) and c(G) can be computed via a bipartite
graph matching, which is approximated via morphology operators for efficiency [Pera16]. The
final accuracy is the typical F -measure (or F1 score) defined as:

F =
2PcRc

Pc +Rc

Based on the above measures, the following metrics are being used in the following tables for the
evaluation of the proposed method and the comparison to existing approaches:

• Precision@X : Given a threshold X in the range [0.5,0.9], a predicted mask for an object is
counted as true positive if its J is larger than X, and as false positive otherwise. Then, Preci-
sion@X is computed as the ratio between the number of true positives and the total number of
instances.

• Overall J (IoU) : Total intersection area of all objects divided by the total union area.

• Mean J (IoU): Average of the J measure (IoU) of all objects so that large and small regions
are treated equally.

• J&F : The average of the mean region based similarity (Mean J and the mean contour accu-
racy (Mean F).
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The evaluation metrics in each experiment are selected according to the target dataset, so that a
comparison with previous works is possible.

Figure 4.1: Visual explanation of the Intersection-over-Union (IoU) or Jaccard Index (J)

4.3 Quantitative Results

Quantitative results, which are organized according to the target dataset, are presented below.
The DAVIS-2017 [Khor18] and A2D Sentences [Gavr18] datasets correspond to the first experiment
whereas Refer-YouTube-VOS [Seo20] corresponds to the second.

DAVIS-2017 Validation

Results obtained in DAVIS-2017 validation set are compared with previous works from Khoreva
et al. [Khor18], Seo et al. [Seo20] and Bellver et al. [Bell20] in Table 4.1. Previous works follow
a standard approach, that is, pre-training a model on RefCOCO [Kaze14] and then fine-tuning on
DAVIS-2017. Performance is also assessed when the model is not fine-tuned on the target dataset but
only pre-trained either with human or both human and synthetic referring expressions.

By adding the synthetic referring expressions of SynthRef-YouTube-VIS in the pre-training phase
and without fine-tuning on DAVIS-2017, a significant gain of 4% is observed from the respective
model of [Bell20] (40.8) which is pretrained only on RefCOCO. The obtained J&F of 44.8 also
outperforms the best models provided by Khoreva et al. [Khor18] (39.3) and Seo et al. [Seo20] when
their model is pretrained on RefCOCO (44.1). It should be underlined that both previous models
have been fine-tuned on DAVIS-2017 in contrast to the proposed one. When the proposed pre-trained
model is also fine-tuned on DAVIS-2017 performance slightly increases from 44.8 to 45.3 thanks to
the use of the generated synthetic referring expressions.

Pretrain +Pretrain
Model RefCOCO SynthRef-YouTube-VIS +Ft DAVIS J&F

RefVOS [Bell20] ✓ 40.8
RefVOS (Ours) ✓ ✓ 44.8

Khoreva et al. [Khor18] ✓ ✓ 39.3
URVOS [Seo20] ✓ ✓ 44.1
RefVOS [Bell20] ✓ ✓ 45.1
RefVOS (Ours) ✓ ✓ ✓ 45.3

Table 4.1: Quantitative results when pre-training with our synthetic referring expressions and evalu-
ating on DAVIS-2017 validation set.
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Figure 4.2: Venn diagram of the object classes in DAVIS-2017 training and validation sets.

DAVIS-2017 Training & Validation

Since the validation set of DAVIS-2017 consists of only 30 videos with 21 object classes, an
evaluation on the 120 videos of the whole DAVIS-2017 (training plus validation sets) was also per-
formed, for the models which were not fine-tuned on this dataset. As illustrated in the Venn diagram
of Figure 4.2, DAVIS-2017 training set has 30 object classes that do not appear in the validation set.
By evaluating on both training and validation splits of DAVIS-2017, a total of 51 object classes are
included.

The results of this experiment are summarized in Table 4.2 confirming that pre-training with the
generated synthetic dataset helps the model generalize better in a new set of data, as J&F increases
5 points, from 33.6 to 38.6. The performance when the model is pre-trained only on the synthetic
referring expressions of SynthRef-YouTube-VIS is also assessed in the second row of Table 4.2. It is
observed that the performance (27.0) is lower than when pretraining on RefCOCO (33.6), i.e. on real
data, but it is still comparable, if one takes into account the annotation cost of the two datasets, which
in this case (i.e. using only generated synthetic referring expressions) is equal to zero.

Pretraining J&F

RefCOCO 33.6
SynthRef-YouTube-VIS 27.0
RefCOCO+SynthRef-YouTube-VIS 38.6

Table 4.2: Results on the training+validation sets of DAVIS-2017, without fine-tuning.

A2D Sentences

The same experiment is also conducted on the A2D Sentences dataset [Gavr18]. At first, the
same model which was tested on DAVIS-2017, that is only pre-trained on RefCOCO [Kaze14] and
SynthRef-YouTube-VIS, is evaluated on the A2D Sentences test set, without fine-tuning. Then, in
a second setup, this model is also fine-tuned on A2D Sentences training set. Precision at several
thresholds and the Overall and Mean IoU (J) are reported in order to be able to compare the obtained
results with previous works.
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Results are reported in Table 4.3. The first two rows represent the performance without fine-
tuning on the target dataset (A2D Sentences). In this case it is observed that a second pre-training
of the model using the proposed synthetic dataset increases the Mean IoU by 12 points (from 25.6 to
37.6), the Overall IoU by 8 points (from 41.4 to 49.4) as well as the Precision for all thresholds. This
result confirms that the synthetic data generatedwith the proposedmethod help themodel to generalize
in a new dataset. This can be very important in a scenario where training data is not available for the
target dataset due to money or time constraints, as an extra pre-training with the proposed synthetic
dataset could give a significant increase to the segmentation accuracy.

The last two rows of Table 4.3 show the results obtained when further fine-tuning on the target
dataset. It is noticed that the performance is increased when fine-tuning on the target dataset, both
when synthetic data are used for pre-training or not (a result obtained by Bellver et al. [Bell20]). How-
ever, in contrast with DAVIS-2017 (Table 4.1), on A2D Sentences the synthetic data do not increase
the performance when fine-tuning on the target dataset. This can be explained from the nature of
A2D Sentences dataset and the type of its referring expressions. As already mentioned in Subsection
2.2.2, this dataset was created with the purpose of action description/recognition rather than object
identification, thus its expressions are quite different than the respective of RefCOCO and SynthRef-
YouTube-VIS, including mostly verbs and less attributes.

Training Prec Prec Prec Prec Prec Overall Mean
@0.5 @0.6 @0.7 @0.8 @0.9 J J

RefCOCO [Bell20] 27.9 24.1 19.7 12.6 3.4 41.4 25.6
RefCOCO + SynthRef-YouTube-VIS 42.8 36.0 27.0 15.8 3.5 49.4 37.6

RefCOCO + ft. A2D [Bell20] 57.8 53.1 45.6 31.0 9.3 67.2 49.7
RefCOCO + SynthRef-YouTube-VIS + ft. A2D 54.0 47.8 37.9 22.9 5.0 64.1 45.4

Table 4.3: Results on A2D Sentences dataset confirm the advantage of pre-training with synthetic
data when fine-tuning on the target dataset is not applicable.

Refer-YouTube-VOS

The second experiment focuses on comparing the generated synthetic referring expressions against
the human-produced ones for the same videos. This comparison is achieved by using Refer-YouTube-
VOS [Seo20] whose videos overlap with the respective ones from the proposed synthetic dataset,
namely SynthRef-YouTube-VIS.

By using the subset of Refer-YouTube-VOS that corresponds to SynthRef-YouTube-VIS, two
different models are trained: one model is trained using the human referring expressions of Refer-
YouTube-VOS, whereas a second model is trained using only the generated synthetic expressions of
SynthRef-YouTube-VIS. The evaluation is done on the test split of SynthRef-YouTube-VIS but using
the human-produced expressions of Refer-YouTube-VOS for both models in order to achieve a fair
comparison. Since both human and synthetic referring expressions are available for the same videos,
this result can be a measure of the domain gap between real and synthetic data for training.

Prec@ Prec@ Prec@ Prec@ Prec@ Overall Mean
Referring Expressions 0.5 0.6 0.7 0.8 0.9 IoU IoU

Synthetic 32.27 24.05 16.30 8.48 1.82 40.12 35.02
Human 38.61 31.69 24.54 16.71 6.87 41.73 39.46

Table 4.4: Comparison of the performance on the subset of Refer-YouTube-VOS corresponding to
SynthRef-YouTube-VIS, when training with synthetic and human referring expressions.
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Results from this experiment are reported in Table 4.4. The results indicate that, even though the
model trained on human referring expressions outperforms the model trained on synthetic ones, the
drop in accuracy is not that big to prevent the use of the proposed synthetic data for training. On
the contrary, the obtained numbers show that the synthetic referring expressions generated with the
proposed method can be used interchangeably with the human ones when the latter are hard to acquire
because of time or money constraints.

(a) Pretrained on RefCOCO (b) Pretrained on RefCOCO+SynthRef-YouTube-VIS

Figure 4.3: Qualitative results on DAVIS-2017. Subfigure 4.3a (left) shows results when the model
is pre-trained only on RefCOCO, while Subfigure 4.3b (right) when it is also trained on the proposed
synthetic dataset.

(a) Pretrained on RefCOCO (b) Pretrained on RefCOCO+SynthRef-YouTube-VIS

Figure 4.4: Qualitative results on A2D Sentences. The model in the left subfigure is pre-trained
only on RefCOCO, while the model in the right subfigure is also trained with the generated synthetic
referring expressions.
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4.4 Qualitative Results

Qualitative results from DAVIS-2017 validation set [Khor18] are illustrated in Figure 4.3. These
images are outputs of the experiment which corresponds to the first two rows of Table 4.1. The im-
provement of the segmentation masks for the referred objects is significant as is depicted in Subfigure
4.3b where the model is also pre-trained using the synthetic referring expressions. This is reflected
both in the ability of the model to identify the referred instance (first and last row) but also in correctly
segmenting the contour of the target object (second row).

Similar results for the A2D Sentences [Gavr18] dataset are depicted in Figure 4.4. The illustrated
video frames correspond to the experiments reported on the first two rows of Table 4.3, where the
model is either pre-trained only on RefCOCO [Kaze14], or it is also pre-trained with the proposed
synthetic dataset. It can be easily observed that the segmentation results of the latter setup (Subfigure
4.4b) are superior compared to the the former.

4.5 Ablation Study

Synthetic Referring Expressions Analysis

In order to evaluate the effect of the information included on the synthetic referring expressions,
experiments with different amount of information were conducted, starting from a baseline where the
synthetic referring expressions consists of just the object class e.g. saying “a dog”. Then in the next
experiments, more cues from the ones that were explained in Section 4.1 are added to end up to phrases
including all the available cues. Results in Table 4.5 indicate that the performance gradually increases
with the amount of information provided in the synthetic referring expressions. This is explained
because of the fact that in cases where multiple object of the same class are present in a video, bigger
amount of information is necessary in order to unambiguously identify a specific object.

Referring Expression Information J&F

Obj. Class 39.8
+ Relative Size + Relative Location 43.5
+ Attributes 45.3

Table 4.5: Effect of the information included in the synthetic referring expressions on the final per-
formance on DAVIS-2017 validation set.

Freezing the language branch

A common approach when fine-tuning a model to a target dataset after first pre-training on another
one, is to freeze some of the layers in order to avoid overfitting to the target data. This is also done
for reducing the amount of time and memory a model needs to train, since by freezing some of the
layers, less parameters need to be calculated.

In the present work, a freezing of the language encoder layers (i.e. BERT model [Devl19]) is as-
sessed with the hypothesis that this way the model could avoid overfitting to the synthetic referring
expressions when it is already pre-trained on RefCOCO [Kaze14] (human-produced referring expres-
sions). More specifically, the same configurations corresponding to the first type of experiment (as
explained in Section 4.1) were repeated with freezing the language branch and fine-tuning only the
visual one as well as the final layers after the multi-modal embedding is obtained.

However, results on DAVIS-2017 [Khor18] and A2D Sentences [Gavr18] datasets have shown
that the effect on the segmentation accuracy is negligible. The results are summarized in Table 4.6.
In DAVIS-2017, fine-tuning BERT while pre-training with the proposed synthetic data yields slightly
better results, both when fine-tuning (the whole model) on the target dataset or not. On the contrary,
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in A2D Sentences the segmentation accuracy is slightly better when the language encoder layers are
frozen during the pre-training using the synthetic referring expressions, regardless of whether the
model is fine-tuned on A2D Sentences or not. The different behaviour than DAVIS-2017, as previ-
ously explained, can be justified from the fact that the proposed synthetic referring expressions are
more similar to the ones of DAVIS-2017 than those of A2D Sentences, whose phrases intend to de-
scribe actions, containing a lot of verbs and less attributes. Nevertheless, similarly to DAVIS-2017,
freezing or not freezing the language encoder when pre-training with synthetic expressions brings
minor changes to the final segmentation accuracy (nearly 0.5%).

DAVIS-2017 Val DAVIS-2017 Train+Val A2D Sentences
No Ft. Ft. No Ft. No Ft. Ft.

BERT frozen 44.7 45.0 38.2 38.1 46.0
BERT fine-tuned 44.8 45.3 38.6 37.6 45.4

Table 4.6: Analysis of the performance when freezing the language branch while pre-training on the
proposed synthetic dataset. Results are split by target dataset and whether the model is fine-tuned on
it (Ft.) or not (No ft.). Note that when fine-tuning on the target dataset the language branch is also
fine-tuned. The reported metric for DAVIS-2017 is the J&F whereas for A2D Sentences it is the Mean
J.
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Chapter 5

Conclusions and Future Directions

This Master thesis proposes a simple yet effective method for automatically generating synthetic
referring expressions for an image or video frame and creates the first large-scale dataset with synthetic
referring expressions based onYouTube-VIS [Yang19], a dataset for video instance segmentation. Ad-
ditionally, the synthetic dataset is evaluated by using it in the pre-training of a deep neural network for
the task of referring video object segmentation. From the experiments presented in Chapter 4, several
conclusions can be drawn for the utility of the proposed synthetic dataset while future extensions of
this work are also suggested.

5.1 Conclusions

The first conclusion which can be derived is that the synthetic referring expressions generated with
the proposed method can be effectively used to improve the performance of a deep neural network
on the task of referring video object segmentation. The obtained results on different benchmarks for
referring video object segmentation show that pre-training a model using the generated synthetic refer-
ring expressions, when it is additionally trained with human-produced referring expressions, increases
its ability to generalize across different datasets.

Moreover, the experimental results show that the observed gains using the synthetic referring
expressions are higher when the model is not fine-tuned on the human-produced referring expressions
of the target dataset. What can be deduced from this finding is that, a large-scale dataset of synthetic
referring expressions can be more useful in scenarios where training data for the target dataset are not
available, which can be true for many real world applications where new data from different sources
are seen at test time. This ability of applying a model trained on one source domain (e.g. one dataset)
to another target domain (e.g. another dataset) is called domain adaptation and it is a field that has
attracted much attention in the last years.

On the other hand, when directly comparing training a model with human-produced referring
expressions versus training purely on synthetic referring expressions on the same videos, it is observed
that human annotations yield better results. However, it is important to note that the proposed method
requires no human annotation effort whereas human annotations can be unattainable in many cases
due to time or money constraints.

Finally, an ablation study concerning the information included in the synthetic referring expres-
sions, confirms that attributes of objects like color are important and can significantly improve the
segmentation accuracy in the task of referring video object segmentation. This conclusion about the
role of attributes in referring expressions is reported in previous works [Bell20] and the present work
confirms the importance of attributes also in synthetic referring expressions.

5.2 Future Directions

As already mentioned in the previous chapters, the formulation of the proposed method for gen-
erating synthetic referring expressions allows its application to any other existing object detection or
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segmentation dataset since only object classes and bounding boxes are required. Thus, a possible fu-
ture work would be to apply the proposed method to other datasets for pre-training the model, where
RefCOCO could be an option. Since the best results, presented in Chapter 4, were obtained by pre-
training the network on RefCOCO [Kaze14] (i.e. human-produced referring expressions) and then on
the proposed synthetic referring expression for the videos of YouTube-VIS [Yang19], one possible fu-
ture work could be to produce synthetic referring expressions for the images of the RefCOCO dataset.
This way an annotation cost-free pre-training could be made as well as a study of the trade-off be-
tween the annotation cost and segmentation performance by using a variable ratio of human-produced
to synthetic referring expressions.

Another possible direction would be to enhance the proposed method by adding more cues to
the existing ones. An idea would be to use scene-graph generation models [Xu17, Tang20] in order
to predict relationships between the annotated objects. Scene graph generation aims at understand-
ing a visual scene through the detection of objects and the relationships between them by generat-
ing a visually-grounded scene graph where nodes represent objects and edges relationships between
them. Thus, in the same way that the proposed method predicts a set of attributes for the target ob-
jects, such a model could also detect relationships between objects, which could allow the creation
of better synthetic referring expressions by including the predicted relationships in them. An alter-
native which could also enrich the generated synthetic referring expressions could be to train the
attribute detector network on a different dataset with a bigger set of annotated attributes. For exam-
ple, the GQA dataset [Huds19] has a much bigger set of 501 attributes compared to the 201 of Visual
Genome [Kris17] which was used for training the attribute detector network of the proposed method.
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