
Volumetric data compression based on Xavier GirÓ i Nieto
Cube-Splitting and Embedded Block
Coding by Optimized Truncation

 1

VRIJE UNIVERSITEIT BRUSSEL
FACULTY OF APPLIED SCIENCES

DEPARTMENT OF ELECTRONICS AND INFORMATION
PROCESSING

Volumetric Data Compression
based on Cube-Splitting and
Embedded Block Coding by

Optimized Truncation

Xavier Giro

Brussels, 2000

Supervisor : Ir. Peter Schelkens
Promoters: Prof. Jan Cornelis

Prof. Philippe Salembier (UPC)

Thesis submitted to the faculty of Applied Sciences of the Vrije
Universiteit Brussel to obtain the degree of

Telecommunication Engineer from the UPC

Volumetric data compression based on Xavier GirÓ i Nieto
Cube-Splitting and Embedded Block
Coding by Optimized Truncation

 2

Preface

 The work presented in this document was performed in the context of the European
Erasmus/Socrates program to which both the Escola Tecnica Superior d’Enginyers de
Telecomunicacio de Barcelona (ETSETB) of the Universitat Politecnica de Catalunya(UPC)
and the Department of Electronics and Information Processing (ETRO) at the Vrije
Universiteit of Brussels (VUB) participate. The thesis was conducted by ir. Peter Schelkens
and promoted by Professor Jan Cornelis, both members of the ETRO department, and
supervised by Mr. Philippe Salembier from the UPC.
 Especially, I would like to thank Mr. Schelkens for his patience, his support and
flexibility during these last eight months, as well as the VUB for giving me the opportunity to
work at the ETRO department.
 But life is not only numbers, computers and work; many people have been of great
aid to me. Some of them were very close, like Sylvie, Bea, Marc, Ieia and the whole Erasmus
community. Others came to visit me, like Mar, Marta, Ramon, papa, mama, Eva, Albert and
Mireia. Others chose to keep electronic contact like Edu, Marti, Neus, Meritxell and half of my
family. And some others, like my grandparents and the other half of my family, who have
thought a lot about me.
 I would like to thank all the people I have mentioned – including those whom I might
have forgotten - for giving me the chance to write this document.

Volumetric data compression based on Xavier GirÓ i Nieto
Cube-Splitting and Embedded Block
Coding by Optimized Truncation

 3

0. Introduction... 5

1. Technical proposal ... 6

11..11 TThhrreeee ddiimmeennssiioonnaall wwaavveelleett ttrraannssffoorrmm.. 66

1.1.1 Wavelet transforms ...6

11..22 CCSS--EEBBCCOOTT .. 1111

1.2.1 Code-block partitioning of the wavelet volume................................11

1.2.2 EBCOT T1 ..13

1.2.3 EBCOT T2 ..27

2. Technical description... 33

22..11 SSttrruuccttuurree ooff tthhee pprrooggrraamm.. 3333

2.1.1 Encoder...33

2.1.2 Decoder ..46

22..22.. DDaattaa ssttrruuccttss .. 5566

2.2.1 EBCOT structures...56

2.2.2 Arithmetic coder structures ...60

22..33.. IInnppuutt ppaarraammeetteerrss .. 6611

2.3.1 Encoder...61

2.3.2 Decoder ..61

3. Tests... 62

33..00 TTeesstt eennvviirroonnmmeenntt .. 6622

3.0.1 Set of images used for testing...62

3.0.2 Set of wavelet filters used in the tests...63

Volumetric data compression based on Xavier GirÓ i Nieto
Cube-Splitting and Embedded Block
Coding by Optimized Truncation

 4

33..11 EEvvaalluuaattiioonn ooff tthhee iimmpplleemmeenntteedd iinntteeggeerr wwaavveelleett ffiilltteerr ffoorr lloosssslleessss
ccoommpprreessssiioonn.. 6644

33..22 EEvvaalluuaattiioonn ooff tthhee iimmpplleemmeenntteedd iinntteeggeerr wwaavveelleett ffiilltteerrss ffoorr lloossssyy
ccoommpprreessssiioonn.. 6666

33..33 OOppttiimmiissaattiioonn ooff tthhee ccoonntteexxtt ccllaassssiiffiiccaattiioonn aanndd ssttaarrttiinngg pprroobbaabbiilliittiieess
.. 7722

33..44 CCooddiinngg wwiitthh 22DD JJPPEEGG22000000 ((VVMM 77..00)).. 8822

3.4.1 2D JPEG2000 slice by slice ..82

3.4.2 slices as components..84

33..55 SSccaannnniinngg ppaatttteerrnn.. 8866

33..66 CCoommppaarraattiivvee ssttuuddyy ooff CCSS--EEBBCCOOTT aanndd ootthheerr tthhrreeee--ddiimmeennssiioonnaall
iimmaaggee ccooddeerrss.. 9900

Conclusions.. 104

Bibliography ... 105

Volumetric data compression based on Xavier GirÓ i Nieto
Cube-Splitting and Embedded Block
Coding by Optimized Truncation

 5

0. Introduction

Nowadays, many medical data acquisition devices or multispectral imaging techniques

produce three-dimensional image data. These images must be stored in limited space
devices or transmitted through limited bandwidth channels. Compression techniques are an
extremely valuable tool to reduce the expensive resource requirements.

However, compression techniques have already been developed for the more
popular two-dimensional images. Splitting the volumetric image in slices and applying a two-
dimensional coding technique to each slice is the philosophy followed by the classical
approach for 3D compression. This is clearly inefficient, because 2D techniques only exploit
the image correlation in the X and Y axis. In volumetric images a new Z-axis appears, whose
correlation must be also exploited to achieve the best results.

The basis for all current image and video compression standards is DCT-based
coding. For these techniques the computation is based on splitting of the image into NxN
blocks and transforming it from the spatial domain into the DCT domain. Typical examples are
first generation coders, like JPEG, which produce a non-structured, unique bit-stream. This
technique could easily be adapted to three-dimensional by splitting the volume into NxNxN
blocks and applying a 3D DCT. However, one encounters two problems. First, the DCT
transform is a lossy, and medical practice cannot tolerate any distortion that could lead to an
faulty diagnose. Secondly, contemporary transmission techniques make use of concepts like
rate-scalability, quality and resolution scalability, features that are not fully supportable by
DCT techniques.

Coders using a wavelet transform as front-end are good candidates to overcome
these problems. They scan each bit-planes one by one to generate a structured bit-stream.
This bit-stream can be truncated to give more or less quality or resolution, and they are
classified second-generation coders. A typical example of 3D wavelet coding is the octave
zero-tree based coding [Bil99, Xio99, Kim99, Kim00, Sch00a], which currently tends to deliver
the best compression performance. However, it is difficult to control the bit-stream structure
since it is dependent on the coder’s data flow.

The new image compression standard JPEG2000 uses a third generation technique,
called EBCOT ,incorporating an abstract interface to enable reordering of the generated code
packages. In this way a fully controllable bit-stream structure is achieved. For example, the
bit-stream can be equipped so that resolution or quality scalability are supported. The current
verification model (VM7.0) of JPEG2000 however, does not include three-dimensional coding.
The only support that is given for multidimensional and/or multi-spectral images is the
possibility to execute a wavelet transform along the component axis. Unfortunately, the code
supporting this feature was still buggy at the time this document was written

Adapting this third-generation coding technique to a three-dimensional environment was
the aim of this thesis. The input volume is transformed into the wavelet transform with the 3D
Wavelet front-end described and implemented by Schelkens et al. [Sch00a] and Barbarien
[Joeri’s thesis]. Later it is coded by an hybrid technique of Cube-Splitting and an JPEG2000’s
EBCOT module, modified to support the third dimension. The Cube-Splitting module codes
big zero-volumes very efficiently, while the EBCOT coder is responsible for the coding of the
(sub)volumes containing significant samples. Hence, the implemented coder is called CS-
EBCOT.

Volumetric data compression based on Xavier GirÓ i Nieto
Cube-Splitting and Embedded Block
Coding by Optimized Truncation

 6

COMPRESSED
FILE

3D wavelet
 transform Tier 1 Tier 2

3D CS-EBCOT CODER

INPUT
IMAGE

WAVELET
COEFFICIENTS

...

CODEBLOCKS

EMBED.
STREAM

Figure 1: General scheme of the 3D CS-EBCOT coder

The main differences between the 2D JPEG200 and CS-EBCOT are:
• a 3D wavelet transform, which supports more kernels than the current JPEG2000

implementation
• the scanning pattern of the samples into the code-block has been modified to exploit

fully 3D relationships
• an extra CS pass has been included in the T1
• 3D contexts have been defined to exploit the correlations between neighbouring

voxels along the main spatial axes .
• instead of the MQ-encoder, an alternative adaptive arithmetic coder [10] has been

incorparated.
• the tag trees used in the T2 coder exploit the 3D packet structure

1. Technical proposal

11..11 TThhrreeee ddiimmeennssiioonnaall wwaavveelleett ttrraannssffoorrmm

The first block in any JPEG2000 coder is a wavelet transform. In our case, this transform
has had to be adapted to a 3D environment. Some basic principles about wavelets and the
filters implemented are given in this section.

1.1.1 Wavelet transforms

The wavelet transform is a popular and powerful mathematical tool, which is commonly

being used in contemporary image compression techniques.
Basically, the transforming of an image into the wavelet domain implies the projection of

the image onto a set of basis functions. The resulting coefficients, describing the contribution
of each of the basis functions, deliver a “decorrelated” image representation. Consequently,
most of the signal energy will be contained by the lower subband coefficients, allowing for
efficient lossy compression if the corresponding quantization levels are appropriately chosen.

Volumetric data compression based on Xavier GirÓ i Nieto
Cube-Splitting and Embedded Block
Coding by Optimized Truncation

 7

The wavelet transform can be implemented by use of perfect reconstruction finite impulse

response filter banks (Figure 2). Basically, the transforming process consists of successively
(1) filtering the input image with high-pass (H) and low-pass (L) analysis filters and (2) and a
dyadic downsampling of both filter outputs. The inverse transform is performed inverting the
scheme and applying the appropriate synthesis filters H’ and L’. These filters must satisfy
Equation 1 to enable perfect reconstruction.

L

H

2

2

L’

H’

2

2

x

d

s
X’

Figure 2: Wavelet transform and Inverse Wavelet transform

(1) CONDITION FOR PERFECT RECONSTRUCTING FILTERS WITH AN l SAMPLE
DELAY

 H(z)H’(z) + L(z)L’(z) = 2z-l
H(z)H’(-z) + L(z)L’(z) = 0

Applying the filtering and downsampling steps as many times as desired on the low-pass

filter data, realises a multiresolution decomposition as described by Mallat [Mal89]. Figure 3
shows a two-level Mallat decomposition of a one-dimensional sequence x:

L

H

2

2

L

H

2

2x

d1

d2

s2

s2 d2

Level 1 (Finest level)Level 2 (Coarsest level)

d1

Figure 3: Two-level Mallat decomposition of a one-dimensional sequence

Volumetric data compression based on Xavier GirÓ i Nieto
Cube-Splitting and Embedded Block
Coding by Optimized Truncation

 8

In case the input is a three-dimensional signal, the same filter has to be applied

successively in the three spatial directions. However, this is only possible if a separable filter
set is used. Otherwise explicit 3D filtering has to be performed. This results in a three-
dimensional transformed image that, in the case of a two-level Mallat decomposition, would
have the distribution shown in Figure 4.

HLL1 HHL1

HLL2 HHL2

LLL2 LHL2
LHL1

LLH1 LHH1

HHH1

LLH2 LHH2

Figure 4: Two-level Mallat decomposition of a three-dimensional signal. H is associated to

the high-pass band while L is associated to a low-pass band.

The wavelet transformed volume is thus partitioned into subbands.

Wavelet transforms can be implemented using either floating-point either integer
arithmetic. However, floating-point arithmetic does not results in perfect reconstructed image
coefficients after the inverse transform in case of a non-quantised wavelet domain. The latter
is basically also true for integer arithmetic. However, Wim Sweldens [Swe95] introduced the
lifting scheme (Figure 5) allowing to compute the discrete wavelet transform with a reduced
computational complexity and support for a lossless transform [Cal96]. Lossless techniques
are very important for medical images, because a distortion caused by a lossy coding could
drive to an erroneous diagnostic. To use this scheme the coefficients p(i)[k] and u(i)[k] must be
computed by use of factorisation of a polyphase matrix.

Volumetric data compression based on Xavier GirÓ i Nieto
Cube-Splitting and Embedded Block
Coding by Optimized Truncation

 9

z 2

p(1) u(1)

-

2

x

s(0)

d(0)

-

d(1)

s(1)

p(1) u(1)

-

-

d(M)

s(M)
1/k

k

s

d

Lazy wavelet
transform

Prediction Update Prediction Update

Normalization

Figure 5: The lifting scheme

This is the scheme is used in the software implementation of the wavelet transform.

Table 1 lists the lossless integer filters being supported by our wavelet transform module.

The notation x/y indicates that the underlying filter bank has low-pass and high-pass analysis
filters of lengths x and y, respectively.

Volumetric data compression based on Xavier GirÓ i Nieto
Cube-Splitting and Embedded Block
Coding by Optimized Truncation

 10

Table 1: Lossless integer lifting filters supported by the 3D WT module. The number of
vanishing moments is given as (N,Ñ), where N and Ñ specify the number of vanishing

moments of the analysis and the synthesis high-pass filters, respectively. The number of filter
taps - l and h - for the low-pass and high-pass analysis filters respectively, is given as lxh.

Filter
Name

Number of
Vanishing
Moments

Number
of Filter

Taps
Lifting Steps

5x3 1 (2,2) 5x3
[] [] [] []() 212222112 +++−+= nxnxnxnd

[] [] [] []() 211412 ++−+= ndndnxns

S 2 (1,1) 2x2
[] [] []nxnxnd 212 −+=

[] [] [] ndnxns 212 +=

9x7 1 (4,2) 9x7
[] [] [] []() [] []() 21422216122216912 +++−−++−+= nxnxnxnxnxnd

[] [] [] []() 211412 ++−+= ndndnxns

9x3 1 (2,4) 9x3
[] [] [] []() 212222112 +++−+= nxnxnxnd

[] [] [] []() [] []() 2112643164192 +++−−+−+= ndndndndnxns

13x111 (6,2) 13x11
[] [] [] []() [] []()

[] []() 







+++−+

++−−++
−+=

2162422563
42222562522212875

12
nxnx

nxnxnxnx
nxnd

[] [] [] []() 211412 ++−+= ndndnxns

5x11 1 (2+2,2) 5x11

[] [] [] []() 212222112)1(+++−+= nxnxnxnd

[] [] [] []() 211412)1()1(++−+= ndndnxns

[] [] [] [] [] []() 21211161)1(++−+++−−−= nsnsnsnsndnd

2x6 3 (1+1;1) 2x6

[] [] []nxnxnd 212)1(−+=

[] [] [] ndnxns)1(212 +=

[] [] [] []() 211141)1(++−−−= nsnsndnd

S+P 4 (2,4) 2x6

[] [] []nxnxnd 212)1(−+=

[] [] [] ndnxns)1(212 +=

[] [] [] []() [] []() [] 2118/218/318/2)1()1(++++−+−−+= ndnsnsnsnsndnd

13x7 5 (4,2) 13x7
[] [] [] []() [] []() 21422216122216912 +++−−++−+= nxnxnxnxnxnd

[] [] [] []() [] []() 2112256161256802 +++−−+−+= ndndndndnxns

1 Ali Bilgin, George Zweig, Michael Marcellin "Three-dimensional image compression with
integer wavelet transforms", Applied Optics, Vol.39, No.11, pp.1799-1814, 10 April 2000
2 E. H. Adelson, E. Simoncelli, and R. Hingorani, "Orthogonal pyramid transforms for image
coding," in Visual Communications and Image Processing II, T. R. Hsing, ed., Proc. SPIE
845, pp.50-58 (1987).
3 S. Dewitte and J. Cornelis, "Lossless integer wavelet transform," IEEE Signal Process. Lett.
4, 158-160 (1997).
4 A. Said and W. Pearlman, "An image multiresolution representation for lossless and lossy
compression," IEEE Trans. Image Process. 5, 1303-1310 (1996).
5 ISO/IEC JTC1/SC29/WG1 WG1N1684.

Volumetric data compression based on Xavier GirÓ i Nieto
Cube-Splitting and Embedded Block
Coding by Optimized Truncation

 11

11..22 CCSS--EEBBCCOOTT

The wavelet coeffcient volume is splitted into code-blocks. These code-blocks are

processed by an hybrid coder that uses two different coding techniques: a Cube-Splitting(CS)
front end and an Embedded Block Coding with Optimised Truncation(EBCOT). The EBCOT is
a two-tiered coder (Figure 6). The first tier (T1) is the responsible of the block coding. The
second tier (T2) organizes the encoded data into a full-featured bit-stream.

Tier 1
Embedded block coding

operates on block samples

Tier 2
Coding of block contributions

to each quality layer

operates on block summary info

embedded block
bit-streams

compressed
image

Figure 6: The EBCOT is a two-tiered coder

1.2.1 Code-block partitioning of the wavelet volume

The JPEG2000 standard partitions the wavelet domain into code-blocks, which are going
to be coded independently by the EBCOT coder (Figure 7).

Volumetric data compression based on Xavier GirÓ i Nieto
Cube-Splitting and Embedded Block
Coding by Optimized Truncation

 12

HLL HHL

HLL HHL

LLL LHL
LHL

LLH LHH

HHH

LLH LHH

Figure 7: Code-block partitioning of the wavelet volume

The code-block partition can be performed by several ways, so some criterions must be

set.

a) THE ORIGIN OF COORDINATES
Despite the JPEG2000 VM 6.0 uses a canvas and partitions the image with tiles,
these features have not been included in the described project. In this project, the
origin of coordinates is situated on the first sample of the input image, that is, the
coordinates (0, 0, 0) of the input image are also the starting point for the code-block
partitioning.

b) WHAT TO DO WITH THOSE CODE-BLOCKS WHICH OVERCOME THE IMAGE

BOUNDARIES
There is no need why the size of the code-blocks should fit perfectly in the image

dimension; in fact, the most probable case is that it doesn’t happen. A criterion must
be taken to fill in those code-block, which go further than the transformed image.

The criterion taken is to fill those code-blocks with zeros. This is especially
interesting because of the octree zero coder implemented in the EBCOT T1, which
codes very efficiently a big concentration of zeros.

These added zeros at the code-blocks are removed at the decoder because the
decoder knows the original size of the image.

c) HOW TO DEFINE SUBBANDS WHEN AN ODD SIZE MUST BE DIVIDED BY TWO

3D Wavelet transforms splits the transformed image into 8 subbands partitioning
every dimension by the half. Besides, this partition can be iterated in the LLL band as
many times as depth levels in the wavelet transform.

The criterion followed is that the middle sample of an odd dimension belongs to
the low band.

d) WHAT TO DO WITH THOSE CODE-BLOCKS WHICH CONTAIN SAMPLES FROM

DIFFERENT SUBBANDS
In some coding primitives used in the EBCOT T1, the subband of the block must

be known. As code-block dimension don’t have to fit in a unique wavelet subband, it
is possible (and probable) that they are going to include samples from different
subbands, despite every code-block can be associated to a unique subband.

Volumetric data compression based on Xavier GirÓ i Nieto
Cube-Splitting and Embedded Block
Coding by Optimized Truncation

 13

The criterion taken is that the code-block is going to belong to the same subband to which

the first sample of the code-block belongs to.

1.2.2 EBCOT T1

The EBCOT Tier 1 implementation consists of two parts: the Cube-Splitting front-end
and the Fractional bit-plane EBCOT coder (Figure 8).

Octree cube
spliting

Fractional
bit-plane
coding

FOR EACH BIT-PLANE

SIGNIFICANT
SUBBLOCK

EMBEDDED
BLOCK

STREAM

Figure 8: Tier 1

11..22..22..11 CCuubbee--SSpplliittttiinngg ((CCSS)) ffrroonntt--eenndd

The CS front-end (Qi[p]) is an extra pass not included in the current version of
JPEG2000. The 2D version of this coding procedure, called zero coding, was first included in
the standard, but was finally rejected because of IP claims by Teralogic Inc. [Chu99] and
experiments showed that the coding gain obtained by this coding step was marginal.
However, we improved the coding scheme and extended it to 3D [Sch00a], facilitating the
exploitation of potential, large area correlations.

The CS front-end is capable of coding large volumes of non-significant samples, which is

especially useful at the higher bit-planes where few samples are supposed to be significant.
The basic idea is to isolate non-significant bit-volumes with an iterative algorithm.

The CS front-end works on code-blocks. The algorithm is the following:

1) Obtain the code-block to be coded.
2) Check the significance of the current (sub-)block : this is evaluated by checking all the

samples in the (sub-)block against the current threshold. If (a) sample(s) is (are)
significant, encode the SGN symbol and go to step 3. If there is no significant sample for
the current threshold, a NSG symbol is encoded and step 2 is repeated for the next sub-
block at the same level until all sub-blocks are encoded. Then, the sub-blocks at the level
above are considered (if needed), otherwise coding is ended. Remark that this a depth-
first scanning approach.

Volumetric data compression based on Xavier GirÓ i Nieto
Cube-Splitting and Embedded Block
Coding by Optimized Truncation

 14

3) If the (sub-)block size is larger than the user-defined, minimal allowed sub-block size,

repartition the significant (sub-)blocks in 8 equally-sized sub-blocks and go back to step 2.

However, unlike the proposal in [Sch00a] no (context-based) arithmetic coding is issued.
Additionally, during encoding one is only refining the nodes that have been identified as non-
significant for previous thresholds.

A simple example, where the only significant sample is situated in the origin, is given in

Figure 9.

SGN

SGN
NS
NS
NS
NS
NS
NS
NS

SGN
NS
NS
NS
NS
NS
NS
NS

SGN = Significant
NS = Non-significant

Figure 9: Example of Cube-Splitting coding technique

Doing that and setting the minimum size to which the cube could be spliced to 1x1x1

would create a complete coding algorithm. Some techniques related to these principles are
discussed in [Sch99a-c].

As mentioned, the current implementation reuses the CS information coded in the higher
bit-planes for the encoding of the lower bit-planes since significant sub-blocks will be encoded
with the fractional bit-plane coder for all lower thresholds.

11..22..22..22 FFrraaccttiioonnaall bbiitt--ppllaannee ccooddiinngg

1.2.2.2.1 Outline

The fractional bit-plane coder encodes only the sub-blocks that have been identified as
significant by the Cube-Splitting coder. Three passes are defined per bit-plane: the forward
significance propagation pass, the magnitude refinement pass and the normalization pass.
They three coding passes are defined in ordered in such a way that most relevant data is
encoded first, consequently generating potential truncation points in the bit-stream.

Additionally, these coding pass use several coding operations (primitives), i.e. the zero
coding (ZC), sign coding (SC), magnitude refinement (MR) and run-length coding (RLC)
primitives. These primitives enable the selection of suitable context models for the
subsequent arithmetic coding or run-length coding stages.

Volumetric data compression based on Xavier GirÓ i Nieto
Cube-Splitting and Embedded Block
Coding by Optimized Truncation

 15

The state of each code-block sample is stored in four state variable arrays and consulted

and updated during the different coding passes en operations:
• The significance state variable array σi [m,n,o] identifying significant voxels (initialised

to 0)
• The visited state variable array ηi [m,n,o] identifying already encoded voxels for the

current bit-plane (initialised to 0 when the encoding of a new bit-plane starts)
• The refined state variables array δi[m,n,o] identifying voxels already refined with the

MR primitive in a previous bit-plane(initialised to 0)
• The sign state variables array χi[m,n,o] recording the sign of each significant voxel (0

for positive, 1 for negative)

1.2.2.2.2 Scanning pattern

 The scanning order of the coefficients in the code-block is not unimportant for the
coding performance. The arithmetic coder performs better when there are no big changes in
the statistical distribution of the data being coded. To achieve this, big jumps in the scanning
order of the coefficients must be avoided because data tends to be the more homogeneous
the closer they are.
 The CS-EBCOT software supports two scanning patterns.

1.2.2.2.2.1 Expansion of 2D JPEG2000 scanning pattern to a volumetric slice by slice
scanning pattern

 The first scanning pattern is identical to its 2D version for each slice, and extended in
a slice-by–slice manner. The samples are read in groups of four vertically aligned samples.
When a complete slice is stripe-wise processed, the subsequent slice is processed (in the z-
direction), as shown in Figure 10.

x

y
z

Figure 10: Expansion of 2D JPEG2000 scanning pattern

Volumetric data compression based on Xavier GirÓ i Nieto
Cube-Splitting and Embedded Block
Coding by Optimized Truncation

 16

1.2.2.2.2.2 Morton scanning pattern

A new scanning pattern has been included to exploit the third dimensional correlation.
It is a 3D extension of the well-known Morton space-filling curve [Mor66] and can be easily
generated with a binary counter by associating its bits to one of the three spatial coordinates
(see Table 2 and Figure 11).

Table 2: three-dimensional Morton scanning pattern

Binary counter Morton
coordinates

z2 y2 x2 z1 y1 x1 x y z
0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 1 0 0
0 0 0 0 1 0 0 1 0
0 0 0 0 1 1 1 1 0
0 0 0 1 0 0 0 0 1
0 0 0 1 0 1 1 0 1
0 0 0 1 1 0 0 1 1
0 0 0 1 1 1 1 1 1
0 0 1 0 0 0 2 0 0
0 0 1 0 0 1 3 0 0
0 0 1 0 1 0 2 1 0
0 0 1 0 1 1 3 1 0
0 0 1 1 0 0 2 0 1
0 0 1 1 0 1 3 0 1
0 0 1 1 1 0 2 1 1
0 0 1 1 1 1 3 1 1
0 1 0 0 0 0 0 2 0

2D Morton 3D Morton

Figure 11: 2D and 3D Morton Scanning pattern

Volumetric data compression based on Xavier GirÓ i Nieto
Cube-Splitting and Embedded Block
Coding by Optimized Truncation

 17

1.2.2.2.3 Coding passes

1.2.2.2.3.1 Significance propagation pass

As mentioned earlier three coding passes are executed for each bit-plane (except the
first one). To code a pixel with the significance propagation pass (Pi[p,1]), it must have been
classified as non-significant (σi [m,n,o] =0) and have at least one significant pixel in its
preferred neighbourhood (σi [m,n,o]=1). The preferred neighbourhood refers to the twenty-six
voxels around the voxel being coded. Next, the Zero Coding (ZC) primitive is activated and, if
a new significant pixel is identified, ZC primitive calls the Sign Coding (SC) primitive. It also
sets ηi [m,n,o] = 1 to mark that the sample has been coded for the current bit-plane to avoid
redundant information embedding (Figure 12).

New sample

Already
significant ?

Preferred
Neighbourhood ?

Activate ZC primitive
Update σi[m,n,o]
Set ηi[m,n,o]=1

Skip sample

Skip sample

YES

YES

NO

NO

SIGNIFICANCESIGNIFICANCE
PROPAGATIONPROPAGATION

PASSPASS

Figure 12: Significance propagation pass algorithm

1.2.2.2.3.2 Magnitude refinement pass

The magnitude refinement pass (Pi[p,2]) encodes only those samples that have been
marked significant in previous bit-planes (ηi [m,n,o] = 0 and σi [m,n,o] =1). It uses the MR
primitive to encode the refinement bits (Figure 13).

Volumetric data compression based on Xavier GirÓ i Nieto
Cube-Splitting and Embedded Block
Coding by Optimized Truncation

 18

New sample

Non
significant

or visited ?
Skip sample

YES

NO

MAGNITUDEMAGNITUDE
REFINEMENTREFINEMENT

PASSPASS

Activate MR primitive
Set δi[m,n,o] =1
Set ηi[m,n,o]=1

Figure 13: Magnitude refinement pass algorithm

1.2.2.2.3.3 Normalization pass

This normalization pass (Pi[p,3]) looks for the new significant pixels with considering
a preferred neighbourhood (i.e. significance as in the significance propagation pass is not
required from the surrounding samples). It visits only those samples with ηi [m,n,o] = 0 and σi
[m,n,o] =0 and uses the ZC, RLC and SC primitives. This pass can be understood as a
garbage collector, because it processes all these samples that had not been visited in any of
the previous passes (Figure 14).

At the end of this pass all ηi [m,n,o] are set to 0 as a preparation for the next step.

Volumetric data compression based on Xavier GirÓ i Nieto
Cube-Splitting and Embedded Block
Coding by Optimized Truncation

 19

New sample

Already significant
or visited ?

RLC
possible ?

Skip sample

Apply RLC

YES

NO

YES

NO

NORMALIZATIONNORMALIZATION
PASSPASS

Activate ZC primitive
Update σi[m,n,o]
Set ηi[m,n,o]=1

Figure 14: Normalization pass algorithm

1.2.2.2.3.4 Order of the coding passes

A defined order of the three coding passes is followed in each bit-plane. Firstly the

Significance Pass, then the Magnitude Refinement Pass and finally the Normalization Pass.
The main philosophy of this order is refine first the already identified spatial structures in the
image by adding extra points to it, before introducing new isolated structures (edges).
Basically, we follow a morphological approach. An example for a two-dimensional image is
shown in the next Figure 15.

x

y

ON A 2D IMAGE

Significance pass
Magnitude refinement pass
Normalization pass
not processed in the present bit-plane

bit-plane

Figure 15: Coding passes on a two-dimensional image

On the first bit-plane the Significance and Magnitude Refinement passes are skipped,
as there are no significant samples marked from previous planes. In that case, the first pass
performed is the Normalization pass.

Volumetric data compression based on Xavier GirÓ i Nieto
Cube-Splitting and Embedded Block
Coding by Optimized Truncation

 20

1.2.2.2.4 Coding operations

Four primitives are defined to support the encoding process in the different coding
passes. Each coding primitive has got its own look-up table to identify the probability model
that has to be issued by the arithmetic coder for a given context situation.

The context situation is identified based on the condition of the neighbouring
samples. The neighbouring samples can be classified depending on the distance to the
sample being processed. While nine samples were taken into account in the 2D
implementation, the 3D version considers twenty-six neighbours (Figure 16). This is the
biggest difference between the 2D JPEG2000 and CS-EBCOT. This explains why more
contexts have been defined

x

y

z

H H

V

V

C

C
D2yz

D2yz

D2yz

D2yz

D2xy

D2xy

D2xy

D2xy

D2xz

D2xz

D2xz

D2xz

D3

D3

D3

D3

D3

D3

D3

C

Figure 16: Indexing of neighbouring samples

The context is also influenced by the subband, the considered wavelet coefficient is

belonging to. Knowing to what subband belongs the sample being coded is important for the
coder, because it can give some important information for the arithmetic coder. For example,
in the LLL subband, a sample which is between two significant samples, is more probable to
be significant than if we have got the same situation in the HHH subband. The 3D JPEG2000
coder makes use of this information to achieve a better behaviour of the arithmetic coder.

 The four coding operations are:

• ZERO CODING (ZC)
This primitive codes, dependent on the significance states of the surrounding pixels, the
significance state for the specified voxel bit in the examined bit-plane.

If A = {all immediate neighbours nodes}, X = {(x,y,z) ∈ A | y=z=0}, Y= {(x,y,z) ∈ A |
x=z=0} and Z = {(x,y,z) ∈ A | x=y=0} s (all three passing through the origin node = voxel to
be encoded) then the following sets can be identified (Figure 16).

• H = A ∩ X
• V = A ∩ Y
• C = A ∩ Z
• D2xy = {(x,y,z) ∈ A | abs(x)=abs(y) and z=0}
• D2xz = {(x,y,z) ∈ A | abs(x)=abs(z) and y=0}
• D2yz = {(x,y,z) ∈ A | abs(y)=abs(z) and x=0}
• D3 = {(x,y,z) ∈ A | abs(x)=abs(y)=abs(z)}

Volumetric data compression based on Xavier GirÓ i Nieto
Cube-Splitting and Embedded Block
Coding by Optimized Truncation

 21

To build the context look-up tables (Tables 3, 4, 5 and 6) the three spatial direction x,

y and z were understood as high or low pass band directions. The context assignment
depends on the significance of the neighbouring samples, not for the relative XYZ
position to the sample being coded but for the low or high band filtering performed on
each direction. For example, it is more probable to have two consecutive samples on the
X direction than in Y or Z if the sample is located in the LHH subband. This was already
the criterion followed in the 2D implementation of JPEG2000.

Table 3: Look-up table for LLL subband in ZC

LLL subband
H+V+C D2xy+D2xz+D2yx D3 context
≥4 x x 15
3 x x 14
2 ≥1 x 13
2 0 ≥1 12
2 0 0 11
1 ≥2 x 10
1 1 ≥1 9
1 1 0 8
1 0 ≥1 7
1 0 0 6
0 ≥2 ≥1 5
0 ≥2 0 4
0 1 ≥1 3
0 1 0 2
0 0 ≥1 1
0 0 0 0

Table 4: : Look-up table for LHL subband in ZC

LHL subband
H + C V D2xy D2xy + D2yz D3 context
≥2 x X x x 15
1 ≥1 X x x 14
1 0 ≥1 x x 13
1 0 0 ≥1 x 12
1 0 0 0 ≥1 11
1 0 0 0 0 10
0 2 X x x 9
0 1 X x x 8
0 0 ≥2 x x 7
0 0 1 ≥1 x 6
0 0 1 0 ≥1 5
0 0 1 0 0 4
0 0 0 ≥1 ≥1 3
0 0 0 ≥1 0 2
0 0 0 0 1 1
0 0 0 0 0 0

(also valid for HLL and LLH subbands)

Volumetric data compression based on Xavier GirÓ i Nieto
Cube-Splitting and Embedded Block
Coding by Optimized Truncation

 22

Table 5: : Look-up table for HLH subband in ZC

HLH subband
H + C V D2xz D2xy + D2xz xyz context

x 2 x x x 15
x x ≥3 x x 14
≥1 1 2 x x 13
0 1 2 x x 12
0 1 1 x x 11
≥1 1 1 x x 10
≥1 1 0 x x 9
0 1 0 x x 8
≥1 0 ≥2 x x 7
≥1 0 1 x x 6
0 0 ≥1 x x 5
≥2 0 0 x x 4
1 0 0 ≥1 x 3
1 0 0 0 x 2
0 0 0 0 ≥1 1
0 0 0 0 0 0

(also valid for HHL and LHH subbands)

Table 6: : Look-up table for HHH subband in ZC

HHH subband

H + V + C D2xy + D2xz + D2yz D3 context
≥4 X x 15
3 X x 14
2 ≥1 x 13
2 0 ≥1 12
2 0 0 11
1 ≥2 x 10
1 1 ≥1 9
1 1 0 8
1 0 ≥1 7
1 0 0 6
0 ≥2 ≥1 5
0 ≥2 0 4
0 1 ≥1 3
0 1 0 2
0 0 ≥1 1
0 0 0 0

(is the same that for the LLL)

• SIGN CODING (SC)
When a new sample becomes significant the sign is coded using the context that is
identified by the average signs of the H, V and C sets. Additionally, a predictor is defined
based on the sign information of those sets. If the predicted sign is the same as the real
one, a 0 symbol is coded, a 1 otherwise.
 The prediction of signs is done following the next table, which has been modified from
the 2D implementation. To do that, an array χi[m,n,o] saves the sign information of all
coded samples, having a 0 for positive samples and 1 for negative samples.

 The meaning of the figures of Table 8 can be found in Table 7:

Volumetric data compression based on Xavier GirÓ i Nieto
Cube-Splitting and Embedded Block
Coding by Optimized Truncation

 23

Table 7: Meaning of figures in SC context look-up table

1 - both neighbours are significant and positive
0 - both neighbours are insignificant

- both neighbours are significant but have opposite sign
-1 - one or both neighbours are significant and negative

χ̂ is the sign predictor

 The context table was generated starting from the following principles:

- 0 values don’t give any information about the sign
- 1 values are ‘stronger’ than –1 values
- 1 values are associated to positive samples while –1 values are associated to

negative samples

Table 8: : Look-up table for ZC

H V C χ̂ context
1 1 1 0 5
1 1 0 0 4
1 1 -1 0 3
1 0 1 0 4
1 0 0 0 1
1 0 -1 0 2
1 -1 1 0 3
1 -1 0 0 2
1 -1 -1 1 3
0 1 1 0 4
0 1 0 0 1
0 1 -1 0 2
0 0 1 0 1
0 0 0 0 0
0 0 -1 1 1
0 -1 1 0 2
0 -1 0 1 1
0 -1 -1 1 4
-1 1 1 0 3
-1 1 0 0 2
-1 1 -1 1 3
-1 0 1 0 2
-1 0 0 1 1
-1 0 -1 1 4
-1 -1 1 1 3
-1 -1 0 1 4
-1 -1 -1 1 5

Volumetric data compression based on Xavier GirÓ i Nieto
Cube-Splitting and Embedded Block
Coding by Optimized Truncation

 24

• MAGNITUDE REFINEMENT (MR)
This primitive codes the bit value in the present bit plane of an already significant sample.
It consults the δi[m,n,o] state array. It identifies whether the magnitude refinement
primitive has already been applied to the sample in a previous bit-plane. No new contexts
have been defined compared to the original EBCOT implementation (Table 9).

Table 9: : Look-up table for MR

δi[m,n] H + V + C context

1 x 2
0 ≥1 1
0 0 0

• RUN-LENGTH CODING (RLC)

The RLC primitive (Figure 17) is applied in conjunction with the ZC primitive to reduce the
average number of binary symbols, which must be encoded during the normalization pass.
The primitive is invoked in place of the ZC primitive if and only if the following three conditions
are fulfilled:

a) 4 consecutive samples must have zero state variable σi[m,n,o] = 0.
b) all four samples must have identically non-significant neighbourhoods.
c) the group of samples must be aligned on a four-sample boundary within the scan,

because there is a fixed scanning pattern at each pass of four samples. That means that
the group of four samples must be exactly a column of the column-based stripe-scanning
pattern.

When a group of four symbols satisfying the above conditions is encountered, a single
symbol is encoded to identify whether any sample in the group is becoming significant in
the current bit plane (1 if so, 0 otherwise). This symbol is coded using a single arithmetic
coding context state.

 If any of the four symbols becomes significant, the zero-based index of the first
significant sample in the group is sent as a two-bit quantity. The most significant bit is
sent first followed by the least significant bit. Both are sent using MQ coder’s UNIFORM
context, whose associated probability model is intended to reflect a uniform distribution.

Volumetric data compression based on Xavier GirÓ i Nieto
Cube-Splitting and Embedded Block
Coding by Optimized Truncation

 25

New sample

First of a
four-sample
Y stripe ?

Any already
significant in
the stripe ?

Any new
significant in

stripe ?

Emit 1 symbol
Code position of first
significant with 2 bits

Marked visited samples
Abort RLC

Emit 0 symbol

RLC not possible

NO

YES

YES

YES

NO

NO
RUN LENGTHRUN LENGTH

CODINGCODING
OPERATIONOPERATION

RLC not possible

Any already
significant in

stripe
neighbours ?

YES

RLC not possible

Figure 17: Run Length Coding Operation

1.2.2.2.5 Efficient distortion estimation for R-D optimal truncation

In EBCOT’s second tier (T2), the information is coded in quality layers. The process
that identifies the different quality levels for each code-block is based on a rate-distortion
estimation, which is computed for and associated to every pass during the T1 coding.
 The candidate truncation points for the embedded bit-stream of each code-block are
recorded at the conclusion of each coding pass. During compression, the number of bytes Ri

n,

required to represent all coded symbols up to each truncation point n, as well as the distortion
Di

n, incurred by truncating the bit-stream at each point, n, is assessed.
 Truncating the bit-stream by only coding the most significant bits (higher bit-planes) is
often referred to as implicit quantization. The quantization step-size i∆ is than attributed a

value equal to p2 , where p is the index of the last available bit-plane.

1.2.2.2.5.1 Non-Reversible Transforms

 The rate-distortion optimisation algorithm, based on Lagrangian rate-allocation (LRA)
[Vm_60], depends only on the amount by which each coding pass reduces distortion.
Specifically, if Di

0 denotes the distortion incurred by skipping the complete code-block, then
we need only to compute the differences Di

q - Di
q-1, for q=1, 2, 3…(q indicating the different

truncation points). This computation can be performed with the aid of two small lookup tables,
which do not depend upon the coding pass, bit-plane or subband involved. This can be
demonstrated as follows:

i∆ : quantization step size in block Bi

],,[onmvi : magnitude representation of the sample.
2
ii∆ω : contribution to the distortion in the reconstructed image which would result

from an error of exactly one step size in a single sample from code-block Bi

iω : positive weight which is computed from the L2 norm of the relevant subband’s
wavelet synthesis and may, additionally, be modified to reflect visual weighting or other
criteria.

],,[onmv p
i : normalized difference between the magnitude of sample si[m,n,o] and

the largest quantization threshold in the previous bit-plane which was not larger than the
magnitude.

Volumetric data compression based on Xavier GirÓ i Nieto
Cube-Splitting and Embedded Block
Coding by Optimized Truncation

 26









−=

−
−

2
],,[22],,[2],,[onmvonmvonmv i

p

i
pp

i

When a single sample first becomes significant in a given bit-plane p, we must have
p

i onmv 2],,[≥ and hence 1],,[≥onmv p
i and the reduction in distortion is expressed in

Equation 2.

(2) REDUCTION IN DISTORTION WHEN A SINGLE SAMPLE FIRST BECOMES
SIGNIFICANT

() () ()],,[25.1],,[],,[2 222222 onmvfonmvonmv
p
isii

pp
i

p
iii

p ⋅∆=




 −−∆ ωω

Provided that of course the representation levels used during inverse quantization are

midway between the quantization thresholds, which is the case in our implementation. Also,
the reduction in distortion, which may be attributed to magnitude refinement of a sample in the
bit-plane p, it is expressed in Equation 3.

(3) REDUCTION IN DISTORTION WHEN MAGNITUDE REFINEMENT

() () ()],,[25.0],,[1],,[2 222222 onmvfmonmvonmv
p
iii

pp
i

p
iii

p ⋅∆=




 −−−∆ ωω

 Thus, the reduction of distortion incurred during a single coding pass may be
computed by summing the outputs of one of the two different function ()⋅sf or ()⋅mf ,
depending on the coding pass, and then scaling the result at the end of the coding pass by a
constant value which is easily computed from the bit-plane index and the value of 2

ii∆ω .

1.2.2.2.5.2 Reversible Transforms

 In general, the process for distortion estimation is the same for non-reversible and
reversible transforms, but there are two subtle differences that must be pointed out here.

The equations showed in the previous section are based upon the assumption that
the inverse quantisation will represent each coefficient with the mid-point of the relevant
quantization interval. This is the most likely behaviour for the quantisation most of the time,
except for the least significant bit-plane in the reversible mode. In this case there is no
quantization error and midpoint reconstruction has no sense.

In this case, the previous Equations (2) and (3) should be by Equations (4) and (5).

(4) REDUCTION IN DISTORTION WHEN A SINGLE SAMPLE FIRST BECOMES
SIGNIFICANT WHEN CODING THE LEAST SIGNIFICANT BIT

() ()],,['2],,[2 22222 onmvfonmv
p
isii

pp
iii

p ⋅∆=∆ ωω

(5) REDUCTION IN DISTORTION WHEN MAGNITUDE REFINEMENT WHEN CODING THE
LEAST SIGNIFICANT BIT

() 




⋅∆=





 −∆],,['21],,[2 22222 onmvfonmv

p
imii

pp
iii

p ωω

1.2.2.2.5.3 Software implementation

 The software implementation to compute the reduction in distortion uses two small
lookup tables that are created at the beginning of the T1 Coding.

Volumetric data compression based on Xavier GirÓ i Nieto
Cube-Splitting and Embedded Block
Coding by Optimized Truncation

 27

 The argument to theses functions,],,[onmv
p
i , has a binary representation of the

form v.xxxxx, where v, the only bit before the binary point, is simply the value of the
magnitude bit p. In the present implementation, exactly 6 extra bits beyond the binary point
are used to index a 7-bit lookup table for ()⋅mf and a 6-bit lookup table for ()⋅sf . Each entry

of these lookup tables holds a 16-bit fixed point representation of ()⋅sf132 or ()⋅mf
132

1.2.3 EBCOT T2

For each subblock Bi, a separate bit-stream has been generated without using any

information from the other blocks. Moreover, the bit-stream has the property that it can be
truncated in several potential truncation points. The Tier 2 part of EBCOT is taking care of the
truncation of the bit-streams to reach the desired bit-rate while minimizing the introduced
distortion.

O[pmax] +
P[pmax,3] P[pmax-1,1] P[pmax-1,2] O[pmax-1] +

P[pmax-1,3]
O[pmax-1] +
P[pmax-1,3]P[0,2]P[0,1]

rate

distortion

O[pmax] +
P[pmax,3] P[pmax-1,1] P[pmax-1,2] O[pmax-1] +

P[pmax-1,3]
O[pmax-1] +
P[pmax-1,3]P[0,2]P[0,1]

Where to truncate ?

one stream for
each code block

Figure 18: Multiple truncation points in each bit-stream with an associated distortion

Figure 18 shows that the end of each coding pass is a potential truncation point for

each bit-stream generated from a code-block. The graph states that truncating the bit-stream
at a high bit-plane introduces more distortion than doing it at a lower bit-plane. Besides, the
distortion associated to each coding pass is different from code-block to code-block. Hence,
choosing the appropriate truncation point for each code-block bit-stream is not an easy
decision and requires some simulation or computation.

11..22..33..11 TTaagg ttrreeeess

Before discussing what information needs to be added in the T2, a simple tree structure is

going to be introduced. The ‘tag tree’ is a particular type of tree structure, which provides the
framework for efficiently exploit the redundancy between different code-blocks from the same
subband and between different bit-stream layers.

The basic idea of the tag tree concept is to build a tree whose leaves correspond to code-
blocks. The quantities to be encoded are associated with every leaf. The coding process is
driven from the leaves to the root by grouping leaves in blocks of 2x2x2. The information

Volumetric data compression based on Xavier GirÓ i Nieto
Cube-Splitting and Embedded Block
Coding by Optimized Truncation

 28

associated with every non-leaf node is a minimal set mutual to all descendent nodes. The
process is repeated until the root node is reached.

1.2.3.1.1 Tag tree algorithm T(m,n,o,t)

Let q1[m,n,o] denote a three-dimensional array of quantities which we would like to
represent via the tag tree. Let q2[m,n,o] denote the nodes at the next level of the oct-tree
structure. Each of these nodes is associated to a 2x2x2 code-block structure, expect those
which are at the boundaries. Let denote the root node as qk[0,0,0]
 The purpose of the tag tree algorithm s to encode the minimum amount of information
necessary to identify whether or not q1[m,n,o]≥ t. More precisely, we express the tag tree
algorithm as a procedure T(m,n,o,t) which encodes the minimal amount of information
required to indicate whether or not q1[m,n,o]≥ t’ for each t’ in the range 1 ≤ t’ ≤ t. This is
exactly what we need to code and decode the packets in the T2.
 To assist in the encoding process two extra variables are going to be used:

• tk[m,n,o] ⇒ represents the information which has currently been encoded concerning
the value of qk[m,n,o]. During the coding process tk[m,n,o] increases monotonically. It
is initialised to zero. qk[m,n,o] is completely identified once tk[m,n,o] > qk[m,n,o].

• tmin ⇒ it is used to propagate knowledge from ancestor nodes to their descendants. It
is the greatest lower bound on the most recent ancestor’s q value.

The algorithm invoked is as follows (Figure 19):
1. set k = K, i.e. start at the root node; we will take a linear path from the root toward the
leaf node identified by the indices m, n and o.
2. set tmin = 0.
3. set mk =  m / 2k-1  ,  n / 2k-1  and  o / 2k-1 , so that [mk, nk, ok] is the location of the
leaf node’s ancestor in level k.
4. if tk[mk,nk,ok] < tmin then the state variable tk[m,n,o] is out of date; set tk[mk,nk,ok] = tmin.

5. if t ≤ tk[mk,nk,ok]
• if k = 1, we have reached the leaf and tk[mk,nk,ok] = t1[m,n,o]. By definition of our

state variable, sufficient information must have been encoded to identify whether
or not q1[m,n,o]≥ t for each t’ ≤ t1[m,n,o] and t ≤ t1[m,n,o], so the algorithm is
finished.

• Otherwise
• Update the value of tmin in preparation of moving to the next lower level in the

tree; recall that tmin is interpreted as the greatest lower bound on the most
recent ancestor’s q value which can be deduced from what has been
encoded. The current node is the most recent ancestor for the node we will
visit in the next level, so set tmin = min { tk[mk,nk,ok], qk[mk,nk,ok] }.

• Set k = k – 1 and go to step 3.

6. Otherwise, i.e. if t > tk[mk,nk,ok], then send enough information to increment tk[mk,nk,ok],
Specifically,

• if qk[mk,nk,ok] > tk[mk,nk,ok], emit a ‘0’ bit.
• Else, if qk[mk,nk,ok] = tk[mk,nk,ok], emit a ‘1’ bit.
• Set tk[mk,nk,ok] = tk[mk,nk,ok] + 1
• Go to step 5.

Volumetric data compression based on Xavier GirÓ i Nieto
Cube-Splitting and Embedded Block
Coding by Optimized Truncation

 29

k = K
tmin = 0

tk[mk, nk, ok] < tmin

End of algorithm

YES

TAG TREETAG TREE
ALGORITHMALGORITHM

[mk, nk, ok] =
[ m / 2k-1 ,  n / 2k-1 ,  o / 2k-1 ]

tk[mk, nk, ok] = tmin

t ≤ tk[mk, nk, ok]
NO

k =1

YES

YES

tmin =
min { tk[mk,nk,ok], qk[mk,nk,ok] }

k = k -1

NO

NO

qk[mk, nk, ok]
> tk[mk, nk, ok]

emit a “0” bit

emit a “1” bitNO

YES

tk[mk, nk, ok] = tk[mk, nk, ok] + 1

Figure 19: Tag tree algorithm

11..22..33..22 GGeenneerraall cchhaarraacctteerriissttiiccss ooff EEBBCCOOTT TT22

The bit stream is organised in quality layers, labelled λ = 1, 2, … Λ, which can be scaled
with respect to resolution and number of image components.

Each layer contains a separate packet for each resolution level (l = 0, 1, .. L) and each
image component. Kλ

l,c contains the new information from subbands in resolution level l, for
image component c, which is being introduced in the bit stream layer λ. In our
implementation, only one component is supported.

Ae packet is associated to each resolution level at each quality layer. Each packet
contains a header and a body. The header contains information related to the code-blocks
whose compressed stream is included in the body of the packet.

HEADER

• code-block inclusion information for bit-stream layer λ.
• the maximum bit-depth for all code-blocks being included in the bit-stream for the first

time.
• the number of new coding passes which are being included for each included code-

block
• the number of new code bytes which are being included from the embedded code-

block streams.
BODY

• code-block bytes by themselves

The packets are always byte aligned, but explicit markers do not align a packet’s head

and body. No arithmetic coder is used when coding the headers of the packets.

The packets are written following a progressive by SNR criteria. This means that all the
packets of the lowest bit-stream layer are sent first, later the ones from a higher layer. In
every bit-stream layer level we can find different packets for each resolution, ordered from
lower to higher resolutions. For one given resolution, the order of appearance of the
subbands must be established. We start with the lowest resolution bands. For a given
resolution, first the LLL band is transmitted, followed by the HLL, LHL, HHL, LLH, HLH, LHH
and HHH subbands (Figure 20).

Volumetric data compression based on Xavier GirÓ i Nieto
Cube-Splitting and Embedded Block
Coding by Optimized Truncation

 30

layer 1 layer 2 layer Λ -1 layer Λ

resolution L resolution L-1 resolution 1 resolution 0

LLL HLL LHL HHL LLH HLH LHH HHH

header code bytes

inclusion layer insignificant msbs number of passes number of bytes

block 0 block 1 block 2 block N

Figure 20: Data distribution in compressed file

Another option would have been progressive by resolution. All the packets of the lowest

resolution are then sent first, and later the ones from a higher resolution. Hence, in every
resolution level we can find the different packets ordered by quality. This capability is not
implemented in the current version of the codec.

11..22..33..33 AAnnaattoommyy ooff tthhee ppaacckkeett hheeaaddeerr

1.2.3.3.1 Inclusion information

A tag tree is used to efficiently represent the bit-stream layer in which a code-block is

included for the first time.
The quantities at the leaves of the tag tree are set to the index of the bit-stream layer in

which the code-block is first included minus 1.
For any given code-block, the inclusion information is represented in one of two different

ways, depending whether or not the block has been included in a previous bit-stream layer.
a) IF IT HAS BEEN INCLUDED IN PREVIOUS BIT-STREAM LAYER (λ[m,n,o] < λ)

We simply send a single bit to identify whether or not any new information for the
code-block is included at the current bit layer (1 if new info is included, 0 otherwise)

b) IF IT HAS NOT YET BEEN INCLUDED IN ANY PREVIOUS BIT-STREAM LAYER
We invoke tag tree coding procedure T(m,n,o, λ).

In practice, we can and do exploit the fact that the quantities associated with nodes in

the tag tree can be updated after the coding has started, provided the update satisfies the
conditions necessary for a tag tree encoding. This means that we do not need to determine
the value of λ[m,n,o] for all code-blocks in the subband ahead of time. Instead we initialise the
values stored at each node to infinity (or a suitable large integer).

When we determine that a code-block should be first included in the layer based
upon the available rate-distortion information, then we just set the relevant quantity q1[m,n,o]
= λ[m,n,o] –1 to the tag tree lave.

Volumetric data compression based on Xavier GirÓ i Nieto
Cube-Splitting and Embedded Block
Coding by Optimized Truncation

 31

1.2.3.3.2 Maximum bit-depth information

 Let pmax[m,n,o] denote the index of the most significant bit-plane with respect to which
any sample in the code-block B[m,n,o] is significant. The number of magnitude bit-planes
available for the relevant subband is given by Mb so that 0 ≤ pmax[m,n,o] < Mb . The value of
pmax[m,n,o] must be identified in the first packet which include B[m,n,o].

 We use a second tag tree to efficiently represent pmax[m,n,o] via the number of
missing most significant planes (Equation 6).

(6) NUMBER OF MISSING MOST SIGNIFICANT PLANES

q1[m,n,o] = Mb - 1 -pmax[m,n,o]

 To send the relevant information, we simply invoke the tag tree coding procedure
T(m,n,o,t) repeatedly for t = 1, 2, …, until t > q1[m,n,o].
 pmax[m,n,o] values do not depend upon incremental execution of the post
compression rate-distortion algorithm, so there is no need to update its contents as we go.

1.2.3.3.3 Number of coding passes

 For every code-block we must identify the new truncation points in terms of the total
number of coding passes which will be available for decoding once the new information in this
packet has been received.
 Let ni

min denote the lower bound on the new truncation point index (i.e. a lower bound
on the number of coding passes which can be available once this packet is received).

a) IF THE CODE-BLOCK HAS ALREADY BEEN INCLUDED IN A PREVIOUS BIT-
STREAM LAYER

ni
min is simply one more than the number of coding passes which were available after the

previous layer.

b) IF THIS IS THE FIRST TIME THE CODE-BLOCK IS BEING INCLUDED IN THE BIT
STREAM

ni
min might simply be 0, i.e., the first non-trivial truncation point.

For each code-block which is to be included in the bit-stream, we must identify the
difference between the new truncation point and its minimum value, i.e. ni - ni

min. We send this
difference by means of the following simple variable length code:

• If ni - ni
min = 0, we send a single ‘0’ bit

• If ni - ni
min = 1, we send a ‘10’

• 2 ≤ ni - ni
min ≤ 4, we send ‘11’ + two bit representation of ni - ni

min – 2
• 5 ≤ ni - ni

min ≤ 35, we send ‘1111’ + five bit representation of ni - ni
min – 5

• 36 ≤ ni - ni
min, we send ‘111111111’ + seven bit representation of ni - ni

min – 5

This allows for ni - ni
min values up to a maximum of 163, which allows for values of Mb as

large as 55, which should be more than sufficient for any foreseeable practical application.

Volumetric data compression based on Xavier GirÓ i Nieto
Cube-Splitting and Embedded Block
Coding by Optimized Truncation

 32

1.2.3.3.4 Length information

In this section we describe the technique used to identify the number of new bytes
being sent for each code-block included in the packet.

 Two steps are performed to include this information:

a) the number of bits necessary to code the length information:
As many “1” symbols are written to the stream as number of bits are

necessary to binary code the length information. A “0” symbol puts an end to the
counting.
b) length information:

The binary representation of the length information is written.

Volumetric data compression based on Xavier GirÓ i Nieto
Cube-Splitting and Embedded Block
Coding by Optimized Truncation

 33

2. Technical description

In our implementation we tried to respect as much as possible the structure of the
original verification model software of the 2D encoder. However, several adaptations where
required to transfer the 2D coding principles to a 3D system.

The described implementation of the CS- EBCOT ENCODER has been written in C
language using Microsoft Visual C++ 6.0 and has been debugged using Rational Purify and
Rational Visual Quantify.

22..11 SSttrruuccttuurree ooff tthhee pprrooggrraamm

2.1.1 Encoder

The encoder reads from an input image written by raw data, with the most significant bit
(MSB) of every pixel first (big endian), and compresses it into an output file. bit-stream. The
encoder takes care of the bit-stream truncation, based on the desired bit-rate.

A general view of the encoding system is shown in the Figure 1.

The encoder is described in the following C files:

Name of the file Description
coder.c
arithm.c
io.c
mem.c
primitiv.c
stream.c
t1_coder.c
t2_coder.c
wave_cod.c

includes the main function
arithmetic coder
reading and writing of files
memory allocation and initialisation
primitives used in the T1 coder
manipulation of the generated stream
core of the T1 coder
core of the T2 coder
set of 3D wavelet transforms

22..11..11..11 ccooddeerr..cc

void main(int argc, char* argv[])
Main module of the coder from which the main parts are launched.
First of all, the input parameters are read from the command line to initialise the coder with
the InitializeEbcot function. After that, the input image is read from the referenced file with the
appropriate ReadImageFromFile function, depending on the number of bits per pixel of the
input image. When this is done, a 3D wavelet transform is applied on the image stored in
memory. Then the Tier 1 and 2 of the CS-EBCOT algorithm are applied to generate the
compressed stream. Finally, the achieved bit-rate is appended to a bitrates.txt file and a
results file is generated including all the information related to the coding process.

22..11..11..22 aarriitthhmm..cc

The core functionality of the arithmetic coder has been written by Amir Said
(amir@densis.fee.unicamp.br), member of the Faculty of Electrical Engineering of the
University of Campinas (UNICAMP) in Brazil, and William A.Pearlman
(pearlman@ecse.rpi.edu), affiliated with the Department of Electrical, Computer and Systems
Engineering of the Rensselaer Polytechnic Institute, in the United States of America.
 Nevertheless, some modifications have been included to make enable a statistical
analysis of the symbol probabilities for each context and the proper use of the data structures
controlled by the T1 coder.
 The arithmetic coder has got a maximum accuracy of 1/4095 for the probability
estimation. As soon as that accuracy is reached, the arithmetic coder is set to a lower

Volumetric data compression based on Xavier GirÓ i Nieto
Cube-Splitting and Embedded Block
Coding by Optimized Truncation

 34

accuracy of 2/4096 = 1/2048 and it is increased again after each coded symbol. This process
must be done to avoid overflowing in the arithmetic coder.
 Only the new or modified functions of the arithmetic encoder will be commented in
this document.

extern void Save_Model(Adaptive *m, Adaptive_Model *m_save)
This function saves all the information of the context models in another array by adding the
values field by field.

extern void Recover_Models(Adaptive_Model* M)
Initialises the Adaptive_Model array with the values defined in the init_model[] array defined in
the arithm.h file. These values have been determined with empiric experiments (see
described).

extern void Generate_Models_File(Adaptive_Model *, char *path)
Generates a file with all the information of the context models array used by the arithmetic
coder.

static void Output_Byte(Encoder *E)
This function has been modified to insert a new byte into the bit-stream structure associated
with the code-block currently being processed.

11..11..33 iioo..cc

void GenerateTestData(int* wave)
Function used to generate test data for debugging purposes.

void WriteTextImage(char *path, int *wave)
Writes the content of an array of integers into a text file. Used only for debugging purposes.

void WriteTextStream(char *path, int *wave)
Writes the content of a bit-stream structure into a text file. Used for debugging purposes.

void WriteImageToFile_X(char *path, int *image) (X = 8, 16, 32)
Writes the content of an integer array, which contains the values of the voxels of the
volumetric image data to an output file. The Least Significant Byte (LSB) is written first.

void ConvertIntToChars(int integer, unsigned char *output)
Splits a 16-bit representation of an integer into two 8-bit characters.

void ConvertLongToChars(long long_num, unsigned char *bytes)
Splits a 32-bit representation of an integer into four 8-bit characters.

void WriteByteToTxt(FILE *fitxer, unsigned char num)
Writes a byte into a binary format to a text file. For debugging purposes only.

void WriteBytesToTxt(FILE *fitxer, unsigned char num, int num_bytes)
Writes the desired number of bytes in a binary format to a text file. For debugging purposes
only.

void WriteT1ToFile(char *path, struct ebot_encoder *ebcot)
Generates an output file with the information generated for each code-block in the T1 coder.
For debugging purposes only.

Volumetric data compression based on Xavier GirÓ i Nieto
Cube-Splitting and Embedded Block
Coding by Optimized Truncation

 35

void WriteResultsFile(char originalfile, char *compressedfile, char *path, clock_t start, clock_t
finish)
Generates a text file with the results of the compression process, including all information
related to the settings of the coder.

int ReadParameter(int argc, char *argv[], char Symbol, int Default_Value)
Reads the input command line and returns the value associated to a parameter. If the
parameter is not specified in the command line then the "Default_Value" is returned.

void ReadImageFromFile_X(char *path, int *wave, unsigned int num_pixels) (X=32, 16, 8)
Reads the content of a file and copies it into a memory array of 32 bits per position. 8, 16 or
32 bits per memory position are transferred. The Least Significant Byte (LSB) is read first.

void AppendResults(char *comp_name, char *rep_name)
Appends the bit-rate of the compressed file at the end of a report file, including information
about the wavelet kernel and number of decomposition levels used. It has been especially
useful for massive tests on the coder.

void FindDifferences(char file1, char file2, char*rep_name, int bpp)
Compares two files and checks for any difference between them. This function was used
during debugging, to check the correctness of the lossless encoder.

void WriteBytesToFile(struct iobuf *data_file, long value, int num_bytes)
Writes to a file the indicated number of bytes saved in the 32 bits of value. num_bytes cannot
be larger than 4.

void WriteHeaderToFile(struct iobuf* datafile)
Based on the original JPEG2000 standard. Generates the main header of the compressed file
where all settings used by the coder are written so that the decoder can initialise them
properly.

SSttrruuccttuurree ooff tthhee mmaaiinn hheeaaddeerr

 Apart from the markers defined in the JPEG2000 VM 6.0, some new markers have
been added to support some extra capabilities included in the CS-EBCOT coder. Basically,
the structure of the main header consists of predefined markers, which control
synchronization followed by the values of the parameters necessary for the decoding process.

The structure of the main header is shown in Table 10.

Volumetric data compression based on Xavier GirÓ i Nieto
Cube-Splitting and Embedded Block
Coding by Optimized Truncation

 36

Table 10: Structure of the main header in CS-EBCOT compressed files

Name Value Number of bytes Type Description
SOC 0xFF4F 2 Marker Start of codestream
SIZ 0xFF51 2 Marker Input volume size
Xsiz 4 Data Input volume size in X
Ysiz 4 Data Input volume size in Y
Zsiz 4 Data Input volume size in Z
COD 0xFF52 2 Marker Coding style default
Xlev 1 Data Wavelet levels in X
Ylev 1 Data Wavelet levels in Y
Zlev 1 Data Wavelet levels in Z
Lcod 2 Data Number of quality layers
Xcod 1 Data Code-block size in X
Ycod 1 Data Code-block size in Y
Zcod 1 Data Code-block size in Z
Xmin 1 Data Minimum subblock size in X
Ymin 1 Data Minimum subblock size in Y
Zmin 1 Data Minimum subblock size in Z
Xker 1 Data Wavelet kernel in X
Yker 1 Data Wavelet kernel in Y
Zker 1 Data Wavelet kernel in Z
Ibpp 1 Data Bit-rate of input volume
Pres 1 Data Decimal figures in floating point
Scan 1 Data Scanning pattern
Arit 1 Data Arithmetic coder mode
SOD 0xFF93 2 Marker Start of data

void WriteDataToFile(struct _iobuf* fitxer, struct stream* s)
Appends the content of a stream data structure to a file already opened.

void WriteStreamToFile(char *path)
This function opens the file where the compressed stream is going to be written to. First, the
main header is written, and later the data stream generated by the EBCOT encoder.

22..11..11..44 mmeemm

int is_power_of_2(int val) [original from BARBARIAN coder]
Return 1 if val is a power of 2.

int GetPower2(int num)
Returns the next lower power of 2 from num

void AllocateBlock(strut ebcot_block_info *block, struct ebcot_blok_info *tables)
Sets all the positions of the arrays pointed by tables to 0 and modifies some pointers from the
block structure to point to these tables arrays. Doing that reduces the memory requirements.

void DeleteBlock(struct ebcot_block_info* block)
Frees the memory allocated where some pointers of the block structure are referring to

void EstimateRoomInLevels(int *boundary, int lev_idx)
Calculates how many code-blocks fit in each subband. If the lowest resolution level has not
been reached and the size of the code-blocks is small enough to decompose further, the LLL
band of the present resolution level is decomposed again to generate a new resolution level.
The same EstimateRoomInLevels is called recurrently.

Volumetric data compression based on Xavier GirÓ i Nieto
Cube-Splitting and Embedded Block
Coding by Optimized Truncation

 37

void AllocateLevels(void)
Uses the information provided by the EstimateRoomInLevels function and allocates all
memory necessary for the T1 coder engine. This memory is allocated according to the
memory data structure explained later.

void DeleteLevels(void)
Frees the memory space allocated by the AllocateLevels function.

void initialize_MSE_luts(void) [Original JPEG2000 function]
Fills out the `ebcot_initial_MSE_lut' and `ebcot_refinement_MSE_lut' arrays and the lossless
versions of these arrays, to assist the computation of the change in MSE that can be
attributed to the new information, which is encoded in any block coding pass. Both LUT's
take MSE_LUT_BITS indices, where the most significant bit of the index corresponds to the
bit-plane for which the information is being coded. In the case of the `ebcot_initial_MSE_lut',
the most significant bit of the index must always be 1, because the sample has just been
found to be significant in the current bit-plane; thus, half the table is actually redundant, but
this regular organization improves the readability of the implementation of the block coding
algorithm.
 MSE changes are normalized so that a value of 2^13 corresponds to D^2, where D is the
step size associated with the relevant bit-plane (i.e. a change in the most significant bit of the
index supplied to the LUT).
 The lossless variants of the LUT's are to be used only when coding the least significant
bit of a lossless representation of the subband samples, i.e. in reversible systems. These
LUT's are a little different because the representation levels must be the quantizer thresholds
themselves here, rather than the midpoints between the thresholds.

void ReturnMortonCoords(int counter, int* coord) [Barabarin code]
Returns in Cartesian coordinates the position that is associated to the value given in counter
following a 3D Morton scanning pattern.

void initialize_morton_lut(void)
Initialises a look-up table for all the coordinates associated to each counter value. This look-
up table is used to speed up the coder by computing the Morton coordinates only once in the
initialisation stage.

void ebcot_initialize_global_luts(void)
Initialises the MSE and Morton look-up tables during the initialisation stage.

void InitializeEbot(int argc, char* argv[])
Initialises the basic parameters necessary to perform the coding process with the values
given in the command line, or if none is given with a default value.

22..11..11..55 pprriimmiittiivv..cc

In the functions described in this section, the neighbouring samples of the voxel being
encoded are indexed as Figure 21 shows.

Volumetric data compression based on Xavier GirÓ i Nieto
Cube-Splitting and Embedded Block
Coding by Optimized Truncation

 38

Figure 23: Indexing of neighbouring samples

char FormContextZC(int* buffer, int subband, int* coord)
Returns the context of the sample being coded in a Zero Coding primitive.

char FormContextLLL (char l, char ll, char lll)
Returns the context of the sample being coded in a Zero Coding primitive of the LLL subband
depending on the number of significant samples in each of the three neighbour zones defined
in the 3D mask. The context must be calculated by a function because a look-up table would
be too much memory consuming. This function is also used in the HHH subband with another
interpretation of the input parameters.

char FormContext_LHL(char l, char h, char ll, char hl, char lhl)
Returns the context of the sample being coded in a Zero Coding primitive of the LHL subband
depending on the number of significant samples in each of the five neighbour zones defined
in the 3D mask. The context must be calculated by a function because a look-up table would
be too much memory consuming. This function is also used in the HLL and LLH subbands
with another interpretation of the input parameters.

char FormContextHLH(char l, char h, char hh, char hl, char hhl)
Returns the context of the sample being coded in a Zero Coding primitive of the HLH subband
depending on the number of significant samples in each of the five neighbour zones defined
in the 3D mask. The context must be calculated by a function because a look-up table would
be too much memory consuming. This function is also used in the HHL and LHH subbands
with another interpretation of the input parameters.

char CheckRLC(struct ebcot_block_info *c, int x, int y, int z)
Checks if the Run Length Coding can be applied for the given coordinates.

void RunLengthCoding(struct ebcot_block_info block, int* coord, int position, int plane)
Applies the Run Length Coding primitive to a four-sample column that starts in coord.

char FormContextSC(int x, int y, int z)
Returns the context of the sample being coded in a Sign Coding primitive depending on the
sign and significance of the surrounding samples.

void SetSignInfo(struct ebcot_block_info block, int* coord, int position)
Codes the sign information of a sample that has been found as newly significant and modifies
the sign table that keeps the sign information of the significant samples.

Volumetric data compression based on Xavier GirÓ i Nieto
Cube-Splitting and Embedded Block
Coding by Optimized Truncation

 39

char FormContextMR (struct ebcot_block_info c, int* coord, int position)
Returns the context of the sample being coded in a Magnitude Refinement primitive
depending on the number of significant samples in each of the six closest neighbouring
samples defined in the 3D mask.

22..11..11..66 ssttrreeaamm..cc

char GetNextBit(struct stream *s)
Returns the next bit of the bit-stream data structure and sets the pointers to a new position.

void SetSignInfo(struct ebcot_block_info block, int* coord, int position)
Codes the sign information of a sample that has been found as newly significant and modifies
the sign table that keeps the sign information of the significant samples.

void SetLastBit(char bit, struct stream *s)
Sets the previous bit to the one pointed at that moment with the bitvalue. This is used in the
octree coding pass when modifying a bit that is used to mark a non-significant cube and that it
is set to significant in the present bit-plane.

void SetNextBit(char bit, struct stream* s)
Sets the next bit in the bit-stream with the value bit and moves the pointers to the next
position.

char GetNextByte (struct stream*s)
Returns the next byte from the bit-stream.

void SetNextByte(charnum, struct stream* s)
Sets the next byte of the bit-stream with the num value.

void SetNextBits(struct stream* s, long num, int num_bits)
Pushes an amount of num_bits least-significant bits of num to the bit-stream, starting from the
most significant of those bits.

void SetPointersToStart(struct stream *s)
Sets the pointers of a stream data struct to the 0 position.

void SetStreamToStart(strut stream *s)
Resets the stream data structure by setting the size and the pointers to zero.

22..11..11..77 tt11__ccooddeerr..cc

int DetermineLevel (int *coord, int *boundary, int lev_idx, int *band_idx)
Returns the resolution level and the subband of a code-block whose origin is in coord.

void GetChildOctant(struct subblock *b)
Fills the low_child field of the subblock data structure with the origin coordinates of the child
subblocks resulting from the decomposition of the subblock defined in b.

void AllocateCompleteMask(int *coord, int *buffer, int *contents)
Allocates the mask of 3x3 around the coord position in the buffer, inserting zeros if the mask
goes further than the block’s limits. Used in the Zero Coding primitive to calculate the context.

int CheckMask(int* buffer, struct subblock b)
Return 1 if there is any significant sample in the mask created around the sample that is being
processed.

Volumetric data compression based on Xavier GirÓ i Nieto
Cube-Splitting and Embedded Block
Coding by Optimized Truncation

 40

struct subblock CreateMask(int *coord, int *temphigh)
Return a subblock data structure centred in coord whose limits don’t overcome the temphigh
limits.

rd_slope_type convert_double_to_rd_slope_type(double slope) [Original 2D JPEG2000]
Converts a real-valued rate-distortion slope to the exponent-mantissa representation
associated with the `rd_slope_type' data-type. Excessively small or large slope values are
truncated to the minimum and maximum legal slopes, respectively.

void compute_rd_slopes(int num_points, double* cumulative_wmse_reduction,
 struct ebcot_pass_info* passes, int* rd_slope_rates) [Original 2D JPEG2000]
Computes the rate distortion slopes when coding of a code-block is finished.

int GetMSBPosition(int num)
Return the position of the Most Significant Bit in the 32-bit value num.

int ReadMSELut(struct ebot_block_info* block, int value)
Returns the appropriate index to read form the MSE table in order to perform the algorithm
that optimises the truncation points.

int GetFirstPlane (struct ebcot_block_info *block)
Return the highest bit-plane necessary to code all the samples contained in the code-block
being coded.

int CheckBlock(int* buffer, struct subblock b, int plane)
Returns 1 if the subblock defined by b contains at least one sample that is significant at the
given bit-plane.

void RefinementPass(struct ebcot_block_info *block, struct subblock b, int plane, int coord[3],
int position)
Coding pass that refines those samples that have become significant in previous bit-planes.

void SignificancePass(struct ebcot_block_info *block, struct subblok b, int plane, int coord[3],
int temphigh[3], int position)
Coding pass that codes at the present bit-plane all previous non-significant samples with a
preferred neighbourhood (at least one of its 26 neighbours is already significant).

void NormalizationPass(struct ebcot_block_info *blok, struct subblok b, int plane, int coord[3],
int position)
Coding pass that codes at the present bit-plane all the new significant samples in the present
bit-plane that were not coded in the significance.

void ScanningMorton(struct ebcot_block_info *block, struct subblock, int plane, int code)
Performs one coding pass with the 3D Morton scanning pattern -.

void Scanning2DJPEG2000(strut ebcot_block_info *block, struct subblok b, int plane, int
code)
Performs one coding pass with the classical 2D JPEG2000 (stripe-wise) slice-by-slice
scanning pattern code-block.

void InverseOctree (struct ebcot_blok_info *block, struct subblok b, int plane, int code)
Recovers the already coded octree information in order to code only the significant subblocks.

void CodeOctree(strut ebcot_block_info *block, struct subblok b, int plane)
Generates the octree coding information for the present bit-plane, by looking for new
significant subblocks in those that were non-significant.

Volumetric data compression based on Xavier GirÓ i Nieto
Cube-Splitting and Embedded Block
Coding by Optimized Truncation

 41

void CodePass(strut ebcot_block_info *block, struct subblock sb, int plane, int code_pass, int
pass_idx)
Performs one coding pass of the tier 1 by applying the appropriate coding pass to the
subblocks, which contains significant samples according to the octree coded stream.

void Code-block(struct ebcot_block_info block, struct ebcot_packet_band_info band)
Generates the coded bit-stream from a code-block defined in block.

void CodeT1(int wave, char* path)
Splits the wavelet transformed volumetric image into code-blocks and codes them using the
JPEG2000 principles.

22..11..11..88 tt22__ccooddeerr..cc

Void tag_tree__set_value(struct tag_tree_node *leaf, int value) [Original JPEG2000 function]
Sets the value of the supplied leaf node and propagates the information up the tree to higher-
level nodes, which hold the minimum of their descendant node values. Must be called
separately for each leaf node. It is not strictly necessary to set the value for all leaf nodes,
since the initial state of the tree (after reset) is such as to ensure that all nodes have the
maximum possible value. Generally speaking one must be careful about coding leaves
before setting values, however, the emitted code will be properly decodable provided any
encoding steps work with thresholds which are no larger than any new value which is later set
into a leaf node. This property of the tag tree is exploited in the generation of inclusion masks
for blocks within each subband.

void tag_tree__reset(struct tag_tree_node *tree)
Resets all values and lower bounds for the supplied tree.

void tag_tree__copy(struct tag_tree_node* src, struct tag_tree_node* dest)
[Original JPEG2000 function]
Copies values and bounds from the ‘src’ tree to the ‘dest’ tree.

static int tag_tree__encode(tag_tree_node_ptr leaf, int threshold, struct stream* tags)
[Original JPEG2000 function]
Encodes whether or not the ‘leaf’ node’s value is less than the supplied threshold. In the
process, values that are less than the threshold are explicitly coded. Returns 1 if the value is
less than the threshold and 0 otherwise. Encoded bits are pushed into the ‘target’ tag stream
manager, which collects the tag codes into bytes for outputting as a single block of tags later
on.

Volumetric data compression based on Xavier GirÓ i Nieto
Cube-Splitting and Embedded Block
Coding by Optimized Truncation

 42

long form_packet(int rd_threshold, int simulation, int layer_idx, struct stream* tags, int lev_idx)
This function forms a new layer in the bit-stream, composed of all coding passes from all
code-blocks which fall within the scope of the supplied packet, whose ‘rd_slope’ value is
greater than or equal to the ‘rd_threshold’ value, and which have not already been included in
a previous layer. From the perspective of the ‘stream’ object, the entity formed here is known
as a “packet”.
If ‘simulation’ is zero, the bit-stream formed in this way will be immediately pushed out to the
supplied ‘stream’ object. Otherwise, if ‘simulation’ is non-zero, nothing will be output, and the
packet formation process will be simulated. In either event, the ‘stream’ object is used to
determine the actual size of the packet
‘layer_idx’ identifies the layer within the bit-stream for which a packet is being formed here.
The first layer should always have a ‘layer_idx’ value of 0, which causes appropriate
initialization steps to be applied. Thereafter, the indices must increase consecutively. The
‘layer_idx’ value is used with each band-tile’s inclusion tag tree in an interesting and elegant
manner to implement an efficient coding of the point at which information from any given
block is first included in the bit-stream.
The ‘tags’ argument supplies a ‘tag_buffer’ object, which is used to manage the buffering of
tag bits for the packet head, during the packet formation process.
The function returns the actual number of bytes that are required to represent the packet,
regardless of whether the ‘simulation’ flag is zero or non-zero. Simulation by the ‘stream_out’
object is required to be accurate to the byte! Failure to achieve this may result in a cascade
of problems.

int optimize_bitstream _layer(int layer_idx, int max_rd_threshold, struct stream *tags, int
max_cumulative_bytes, int previous_cumulative_bytes) [Original JPEG2000 function]
This function implements the rate-distortion optimisation algorithm. It saves the state of any
previously generated quality layers and then invokes `form_bit-stream_layer' as often as
necessary to find the smallest rate-distortion threshold such that the total number of bytes
required to represent the layer does not exceed `max_cumulative_bytes' minus
`previous_cumulative_bytes'. It then restores the state of any previously generated bit-stream
layers and returns the threshold. The caller must invoke `form_packet' directly with this
threshold to actually generate the packets that constitute the new bit-stream layer. In the
extreme case, this function can be used to generate all bit-stream layers. Normally, however,
it will be used only to generate a small number of layers, which are of special interest, while
any intervening layer can be generated directly from some approximate threshold values.
The `stream' object must be supplied, because the actual size of a packet can only be reliably
computed with the aid of its interface functions, since additional error correction and/or
detection codes may be added at the bit-stream level.

int estimate_layer_threshold(int target_bytes, int* rd_slope_rates, ebcot_layer_info*
last_layer) [Original JPEG2000 function]
This function attempts to estimate a rate-distortion threshold that will achieve a target number
of code bytes close to the supplied `target_bytes' value. It uses information of two types in
order to do this. First, the `rd_slope_rates' array contains summary information collected
while encoding the code-blocks (see definition of `ebcot_encoder' in "ebcot_encoder.h" for
more information on this). Secondly, the `last_layer' structure contains the rate-distortion
threshold and the actual number of bytes written to the bit-stream up to and including the last
generated bit-stream layer.

tag_tree_node_ptr ebcot_create_tag_tree(int x_leaf, int y_leaf, int z_leaf)
Creates a tag-tree with an array of `x_leaf'*`y_leaf'*'z_leaf' leaf nodes, returning a pointer to
the top-left hand corner leaf node (the leaf nodes appear at the head of the returned array, in
scan-line order).

The implementations of the tag tree encoder and decoder are quite similar to their 2D
versions.

A tag tree structure is defined for every subband structure. Thus, every subband structure
includes as many pointers to tag tree structures as necessary.

Volumetric data compression based on Xavier GirÓ i Nieto
Cube-Splitting and Embedded Block
Coding by Optimized Truncation

 43

It must be taken into account that during the packet size optimisation in the T2 coder, the
tag tree structure is modified because of a simulation process. This enforces the addition of
extra pointers to the tag trees to enable backup copies of the whole structures

EEssttiimmaattiioonn ooff tthhee mmeemmoorryy rreeqquuiirreemmeennttss

 The subband data structure includes all the required information to allocate the
necessary memory .
 Every subband data structure includes the sub band’s dimension in code-block units.
As each tag tree node is associated to a code-block, the amount of leaf nodes can be
calculated dividing each dimension size by the size of the code-block in that dimension and
multiplying the respective results. To calculate the amount of nodes at the level above, the
obtained result has to be divided by eight (dyadic reduction of the number of nodes in each
direction). The process is repeated until the root node is reached (tag tree root). The sum of
the number of nodes for each tag tree level determines the total amount of memory needed to
store the whole tag tree structure. The process results into a memory organisation as shown
in Figure 22.

 x x/2 x/4 x/8

Figure 22: Memory organization of tag tree nodes

Figure 4: Memory organisation of tag tree structures

PPooiinntteerrss bbeettwweeeenn ppaarreennttss aanndd cchhiillddrreenn

 Each node structure includes a pointer to its child node (if the current nod is not a leaf
node) and another one to his parent node (if the current node is not a root node). The end
leaves nodes will have their child node pointers set to a NULL value and the root node is
going to have its parent pointer set to a NULL value.
 Exploiting this relation and taking into account the special characteristics of the root
and the leaves, it is possible to move through the tag tree.

void CodeT2(char* path)
Manipulates the different bit-streams, generated for each code-block in the Tier 1, to create
an output file defined in path, finding the optimal truncation points to minimize the distortion in
the decompressed image.

22..11..11..99 wwaavvee__ccoodd..cc

 These functions implement the three-dimensional wavelet transform of a volumetric
image. It is based on a set of simple wavelet kernels that transform a one-dimensional array
of samples. The three dimensional transform is achieved by calling one of these kernels for a
each of the three dimensions.
 Basically, these functions have been written by earlier at the ETRO department, so
they are not part of this thesis. Only small modifications have been necessary to include them
in front-end of our coder.

void OneDimWaveletFilter(int *InputBuffer, int *OutputBuffer, int Boundary, int Kernel)
This function performs a one-dimensional wavelet transform using kernel Kernel, while
foreseeing a buffer boundary Boundary to handle the image edges and takes as data I/O
InputBuffer and Outputbuffer.

Volumetric data compression based on Xavier GirÓ i Nieto
Cube-Splitting and Embedded Block
Coding by Optimized Truncation

 44

void OneDimIntegerKernel5_3(int *InputBuffer, int *OutputBuffer, int Boundary)
Implementation of the 1D wavelet kernel resulting from the work of Ali Bilgin, George Zweig,
Michael Marcellin "Three-dimensional image compression with integer wavelet transforms",
Applied Optics, Vol.39, No.11, pp.1799-1814, 10 April 2000

void OneDimIntegerKernel_Haar(int *InputBuffer, int *OutputBuffer, int Boundary)
Implementation of the 1D wavelet kernel resulting from the work of E. H. Adelson, E.
Simoncelli, and R. Hingorani, "Orthogonal pyramid transforms for image coding," in Visual
Communications and Image Processing II, T. R. Hsing, ed., Proc. SPIE 845, pp.50-58 (1987).

void OneDimIntegerKernel9_7(int *InputBuffer, int *OutputBuffer, int Boundary)
Implementation of the 1D wavelet kernel resulting from the work of Ali Bilgin, George Zweig,
Michael Marcellin "Three-dimensional image compression with integer wavelet transforms",
Applied Optics, Vol.39, No.11, pp.1799-1814, 10 April 2000

void OneDimIntegerKernel9_3(int *InputBuffer, int *OutputBuffer, int Boundary)
Implementation of the 1D wavelet kernel resulting from the work of Ali Bilgin, George Zweig,
Michael Marcellin "Three-dimensional image compression with integer wavelet transforms",
Applied Optics, Vol.39, No.11, pp.1799-1814, 10 April 2000

void OneDimIntegerKernel13_11(int *InputBuffer, int *OutputBuffer, int Boundary)
Implementation of the 1D wavelet kernel resulting from the work of Ali Bilgin, George Zweig,
Michael Marcellin "Three-dimensional image compression with integer wavelet transforms",
Applied Optics, Vol.39, No.11, pp.1799-1814, 10 April 2000

void OneDimIntegerKernel15_11(int *InputBuffer, int *OutputBuffer, int Boundary)
Implementation of the 1D wavelet kernel resulting from the work of Ali Bilgin, George Zweig,
Michael Marcellin "Three-dimensional image compression with integer wavelet transforms",
Applied Optics, Vol.39, No.11, pp.1799-1814, 10 April 2000

void OneDimIntegerKernel2_6(int *InputBuffer, int *OutputBuffer, int Boundary)
Implementation of the 1D wavelet kernel resulting from the work of S. Dewitte and J. Cornelis,
"Lossless integer wavelet transform," IEEE Signal Process. Lett. 4, 158-160 (1997).

void OneDimIntegerKernel_SplusP(int *InputBuffer, int *OutputBuffer, int Boundary)
Implementation of the 1D wavelet kernel resulting from the work of A. Said and W. Pearlman,
"An image multiresolution representation for lossless and lossy compression," IEEE Trans.
Image Process. 5, 1303-1310 (1996).

void OneDimIntegerKernel_CRF13_7(int *InputBuffer, int *OutputBuffer, int Boundary)
Implementation of the 1D wavelet kernel defined in the norm ISO/IEC JTC1/SC29/WG1
WG1N1684.

void OneDimFloatingKernel9_7(int *InputBuffer, int *OutputBuffer, int Boundary)
Implementation of the 1D floating-point wavelet kernel.

void OneLevelWaveletTransform(int BoundaryX, int BoundaryY, int BoundaryZ, int KernelX,
int KernelY, int KernelZ)
Performs a one level wavelet transform in each of the three spatial dimensions using the
specified kernels for each spatial orientation.

void HigherPrecision(int Precision)
Shifts up all samples of the image Precision positions to perform a floating point transform.

void LowerPrecision(int Precision)
Shifts down all samples of the image Precision positions after performing a floating-point
inverse transform.

Volumetric data compression based on Xavier GirÓ i Nieto
Cube-Splitting and Embedded Block
Coding by Optimized Truncation

 45

void MultiLevelWaveletTransform(int* Levels, char* Kernel, int Precision)
Performs a multilevel wavelet transform on a volumetric image.

Volumetric data compression based on Xavier GirÓ i Nieto
Cube-Splitting and Embedded Block
Coding by Optimized Truncation

 46

2.1.2 Decoder

The decoder reads the compressed file generated by the coder and decompresses it, to

reconstruct a lossy or lossless version of the original image.
The data flow in the decoder is the inverse of the encoder’s data flow shown in Figure .1

Name of the file Description
decoder.c
arithm.c
io.c
mem.c
primitiv.c
stream.c
t1_decod.c
t2_decod.c
wave_cod.c

includes the main function
arithmetic decoder
file reading and writing
memory allocation and initialisation
primitives used in the T1 decoder
manipulation of the generated stream
core of the T1 decoder
core of the T2 decoder
set of 3D inverse wavelet transforms

22..11..22..11 ddeeccooddeerr..cc

void main(int argc, char* argv[])
Main decoder module from which the other modules are launched.
First of all, the decoding parameters are read from the header of the compressed file. With
this information, the data structures can be allocated in memory. The Tier 2 reads from the
compressed file the compressed streams for each code-block. In the Tier 1, each code-block
is decoded separately to recover a lossy or lossless version of the wavelet transformed
volumetric image. Finally, a three-dimensional inverse wavelet transform is performed to
generate a volumetric image. This resulting image is written to the output file, and a report file
is generated comparing the input and output images.

22..11..22..22 aarriitthhmm..cc

The core functionality of the arithmetic coder has been written by Amir Said
(amir@densis.fee.unicamp.br), member of the Faculty of Electrical Engineering of the
University of Campinas (UNICAMP) in Brazil, and William A.Pearlman
(pearlman@ecse.rpi.edu), affiliated with the Department of Electrical, Computer and Systems
Engineering of the Rensselaer Polytechnic Institute, in the United States of America.
 Nevertheless, some modifications have been included to make enable a statistical
analysis of the symbol probabilities for each context and the proper use of the data structures
controlled by the T1 coder.
 The arithmetic coder has got a maximum accuracy of 1/4095 for the probability
estimation. As soon as that accuracy is reached, the arithmetic coder is set to a lower
accuracy of 2/4096 = 1/2048 and it is increased again after each coded symbol. This process
must be done to avoid overflowing in the arithmetic coder.
 Only the new or modified functions of the arithmetic encoder will be commented in
this document.

extern void Recover_Models(Adaptive_Model* M)
Initialises the array of Adaptive_Model with the values defined in the init_model[] array in the
arithm.h file. These values have been set based on heuristic experiments described later.

static void Input_Byte(Encoder *E)
This function has been modified to read the new byte from a bit-stream structure associated
to the code-block currently being processed.

Volumetric data compression based on Xavier GirÓ i Nieto
Cube-Splitting and Embedded Block
Coding by Optimized Truncation

 47

22..11..22..33 iioo..cc

void WriteTextImage(char *path, int *wave)
Writes the contents of an array of integers into a text file. Used only for debugging purposes.

void ReadStreamFromFile(struct iobuf* datafile, struct stream* s)
Reads the content of a stream file from path. Used only for debugging purposes.

void ReadImageFromFile_X(char *path, int *wave, unsigned int num_pixels) (X=32, 16, 8)
Reads the content of a file and copies it into a memory array of 32 bits per position. 8, 16 or
32 bits per memory position are transferred.

void WriteImageToFile_X(char *path, int *image) (X = 8, 16, 32)
Writes the contents of an integer array that contains the values of the voxels of the volumetric
image data to an output file. The Least Significant Byte (LSB) is written first.

long ConvertCharsToLongInt(unsigned char *length_bytes)
Merges four 8-bit characters into a 32-bit representation of a long integer.

void ConvertLongIntToChars(long_num, unsigned char *length_bytes)
Splits a 32-bit representation of an integer into four 8-bit characters.

void ConvertIntToChars(int integer, unsigned char *output)
Splits a 16-bit representation of an integer into two 8-bit characters.

void WriteByteToTxt(FILE *fitxer, unsigned char num)
Writes a byte into a binary format to a text file. For debugging purposes only.

void FindDifferences(char file1, char file2, char*rep_name, int bpp)
Compares two files and checks for differences. This function was used during debugging, to
check the correctness of the lossless coder.

void AppendResults(char *comp_name, char *rep_name)
Appends the bit-rate of the compressed file at the end of a report file, including information
about the wavelet kernel and the number of decomposition levels. It has been especially
useful for extensive coder testing.

void GenerateReport (char orig_name, char comp_name, char* recons_name, char
*rep_name, int bpp)
Generates a report file that compares the original and reconstructed images giving the
resulting PSNR. It also includes all information related to the coding and decoding processes
and the achieved bit-rate.

void CalculateCR(char* originalfile, char* compressedfile, char* reportpath)
Generates a report file, which includes the compression ratio achieved in the coding process.

long ReadBytesFromFile(struct iobuf *data_file, int num_bytes)
Reads num_bytes bytes (a maximum of eight) from the data_file and returns them in a long
integer in the same order as they were written in the file and filling the MSB first.

void CheckMarker(struct _iobuf *data_file, int model)
Checks that the next two bytes of a file are the ones defined in model.

void ReadMainHeader (struct iobuf* data_file)
Based on the original JPEG2000 2D standard, reads the main header of the compressed file
extracting all the parameters necessary for the decoder.

Volumetric data compression based on Xavier GirÓ i Nieto
Cube-Splitting and Embedded Block
Coding by Optimized Truncation

 48

22..11..22..44 mmeemm

int is_power_of_2(int val) [original from BARBARIAN coder]
Return 1 if val is a power of 2.

int GetPower2(int num)
Returns the next lower power of 2 from num

void EstimateRoomInLevels(int *boundary, int lev_idx)
Calculates how many code-blocks fit in each subband. If the lowest resolution level has not
been reached and the size of the code-blocks is small enough to decompose further, the LLL
band of the present resolution level is decomposed again to generate a new resolution level.
The same EstimateRoomInLevels is called recurrently.

void AllocateLevels(void)
Using the information provided by the EstimateRoomInLevels function, allocates all memory
necessary for the T1 coder engine. This memory is allocated following the memory data
structure explained later.

void AllocateBlock(strut ebcot_block_info *block, struct ebcot_blok_info *tables)
Sets all the positions of the arrays pointed by tables to 0, and modifies the some pointers from
the block structure to point to these tables arrays. Doing that, a large amount of memory is
saved.

void DeleteBlock(struct ebcot_block_info* block)
Frees the memory referenced by some pointers of the block structure.

void initialize_mse_luts(void) [Original JPEG2000 function]
Fills out the `ebcot_initial_mse_lut' and `ebcot_refinement_mse_lut' arrays and the lossless
versions of these arrays, to assist in computing the change in MSE that may be attributed to
new information, which is encoded in any block-coding pass. Both LUT's take
MSE_LUT_BITS indices, where the most significant bit of the index corresponds to the bit-
plane for which the information is being coded. In the case of the `ebcot_initial_mse_lut', the
most significant bit of the index must always be 1, because the sample has just been found to
be significant in the current bit-plane; thus, half the table is actually redundant, but this
regular organization improves the readability of the implementation of the block coding
algorithm.
 MSE changes are normalized so that a value of 2^13 corresponds to D^2, where D is the
step size associated with the relevant bit-plane (i.e. a change in the most significant bit of the
index supplied to the LUT).
 The lossless variants of the LUT's are to be used only when coding the least significant
bit of a lossless representation of the subband samples, i.e. in reversible systems. These
LUT's are a little different because the representation levels must be the quantizer thresholds
themselves here, rather than the midpoints between the thresholds.

void ReturnMortonCoords(int counter, int* coord) [Joeri Barabarien’s code]
Returns the position in Cartesian coordinates, which is associated to the value given in
counter following a 3D Morton scanning pattern.

void initialize_morton_lut(void)
Initialises a look-up table with all the coordinates associated to each counter value. This look-
up table is used to speed up the coder as all the computation necessary to generate the
Morton coordinates are only done once in the initialisation stage.

void ebcot_initialize_global_luts(void)
Initialises the MSE and Morton look-up tables during the initialisation stage.

Volumetric data compression based on Xavier GirÓ i Nieto
Cube-Splitting and Embedded Block
Coding by Optimized Truncation

 49

void InitializeEbot(int argc, char* argv[])
Initialises some basic parameters and tables necessary to perform the decoding process.

22..11..22..55 pprriimmiittiivv..cc

char FormContextZC(int* buffer, int subband, int* coord)
Returns the context of the sample being coded in a Zero Coding primitive.

char FormContextLLL (char l, char ll, char lll)
Returns the context of the sample being coded in a Zero Coding primitive of the LLL subband
depending on the number of significant samples in each of the three neighbour zones defined
in the 3D mask. The context must be calculated by a function because a look-up table would
be too much memory consuming. This function is also used in the HHH subband with another
interpretation of the input parameters.

char FormContext_LHL(char l, char h, char ll, char hl, char lhl)
Returns the context of the sample being coded in a Zero Coding primitive of the LHL subband
depending on the number of significant samples in each of the five neighbour zones defined
in the 3D mask. The context must be calculated by a function because a look-up table would
be too much memory consuming. This function is also used in the HLL and LLH subbands
with another interpretation of the input parameters.

char FormContextHLH(char l, char h, char hh, char hl, char hhl)
Returns the context of the sample being coded in a Inverse Zero Coding primitive of the HLH
subband depending on the number of significant samples in each of the five neighbour zones
defined in the 3D mask. The context must be calculated by a function because a look-up table
would be too much memory consuming. This function is also used in the HHL and LHH
subbands with another interpretation of the input parameters.

char CheckRLC(struct ebcot_block_info *c, int x, int y, int z)
Checks if the Inverse Run-Length Coding can be applied from the given coordinates.

void RunLengthDecoding(struct ebcot_block_info block, int* coord, int position, int plane)
Applies the Inverse Run-Length Coding primitive to a four-sample column that starts in coord.

char FormContextSC(int x, int y, int z)
Returns the context of the sample being coded in a Sign Coding primitive depending on the
sign and significance of the samples around.

void GetSignInfo(struct ebcot_block_info block, int* coord, int position)
Decodes the sign information of a sample that has been found as new significant and
modifies the sign table, which keeps the sign information of the significant samples.

char FormContextMR (struct ebcot_block_info c, int* coord, int position)
Returns the context of the sample being coded in a Magnitude Refinement primitive
depending on the number of significant samples in each of the six closest neighbouring
samples defined in the 3D mask.

22..11..22..66 ssttrreeaamm..cc

void SetNextBitToStream(char bit, struct stream* s)
Sets the next bit in the bit-stream with the value bit and it moves the pointers to the next
position.

void SetLastBitToStream(char bit, struct stream *s)
Sets the previous bit to the one pointed at that moment with the bit value.

Volumetric data compression based on Xavier GirÓ i Nieto
Cube-Splitting and Embedded Block
Coding by Optimized Truncation

 50

char GetNextBitFromFile(struct buffer *b)
Returns the next bit of the buffer data structure, which is loaded with the last byte read from a
file, and sets the pointers to a new position.

Volumetric data compression based on Xavier GirÓ i Nieto
Cube-Splitting and Embedded Block
Coding by Optimized Truncation

 51

long GetNextBitsFromFile(struct buffer *b, int num_bits)
This function retrieves `num_bits' bits from the tag buffer and returns them as the least
significant bits of the returned 32-bit word. The least significant bit of the returned word is the
last of the `num_bits' retrieved. The `num_bits' value must not exceed 32.

char GetNextBitFromStream(struct stream *s)
Return the next bit of the stream data structure and sets the pointers to the next position.

char GetNextByteFromStream(struct stream *s)
Return the next byte of the stream data structure and sets the pointers to the next position.

void SetNextByteToStream(char num, struct stream* s)
Sets the next byte in the bit-stream with the value num and moves the pointers to the next
position.

void SetPointersToStart(struct stream *s)
Sets the pointers of a stream data structure to the 0 position.

void SetStreamToStart(strut stream *s)
Resets the stream data structure by setting the size and the pointers to zero.

22..11..22..77 tt11__ddeeccoodd..cc

int DetermineLevel (int *coord, int *boundary, int lev_idx, int *band_idx)
Returns the resolution level and the subband of a code-block whose origin is in coord.

void GetChildOctant(struct subblock *b)
Fills the low_child field of the subblock data structure with the origin coordinates of the child
subblocks resulting from the decomposition of the subblock defined in b.

void AllocateCompleteMask(int *coord, int *buffer, int *contents)
Allocates the mask of 3x3 around the coord position in the buffer, inserting zeros if the mask
goes further than the block’s limits. Used in the Zero Coding primitive to calculate the context.

int CheckMask(int* buffer, struct subblock b)
Returns 1 if there is any significant sample in the mask created around the sample that is
being processed.

struct subblock CreateMask(int *coord, int *temphigh)
Returns a subblock data structure centred in coord whose limits don’t overcome the temphigh
limits.

int DecodeFirstPlane (int insignificant_msbs)
Returns the highest bit-plane necessary to decode all the samples contained by processed
code-block.

void InverseRefinementPass(struct ebcot_block_info *block, struct subblock b, int plane, int
coord[3], int position)
Decoding pass that refines those samples, which have become significant in previous bit-
planes.

void InverseSignificancePass(struct ebcot_block_info *block, struct subblok b, int plane, int
coord[3], int temphigh[3], int position)
Decoding pass that decodes, at the present bit-plane, all previous non-significant samples
with a preferred neighbourhood (at least one of its 26 neighbours is already significant).

Volumetric data compression based on Xavier GirÓ i Nieto
Cube-Splitting and Embedded Block
Coding by Optimized Truncation

 52

void InverseNormalizationPass(struct ebcot_block_info *block, struct subblok b, int plane, int
coord[3], int position)
Decoding pass that decodes, at the present bit-plane, all the new significant samples in the
present bit-plane, which were not coded in the significance pass.

void ScanningMorton(struct ebcot_block_info *block, struct subblock, int plane, int code)
Performs one decoding pass following the 3D Morton scanning pattern through the code-
block.

void Scanning2DJPEG2000(strut ebcot_block_info *block, struct subblok b, int plane, int
code)
Performs one decoding pass following the classical 2D scanning pattern slice by slice through
the code-block.

void InverseOctree (struct ebcot_blok_info *block, struct subblock b, int plane, int code)
Recovers the already coded cube-splitting information in order to decode only the significant
subblocks at the present bit-plane.

void RecoverOctree(strut ebcot_block_info *block, struct subblock b)
Generates the cube-splitting coding information for the present bit-plane looking for new
significant subblocks in those that were non-significant.

void CodePass(strut ebcot_block_info *block, struct subblock sb, int plane, int code_pass, int
pass_idx)
Performs one coding pass of the tier 1 by applying the appropriate coding pass to the
subblocks which contain significant samples according to the CS coded stream.

void DeCode-block(struct ebcot_block_info block)
Reconstructs a lossless or lossy version of the code-block from the compressed bit-stream
associated to it.

void DecodeT1(int* wave)
Splits the wavelet transformed volumetric image into code-blocks and decodes them using
the JPEG2000 principles.

22..11..22..88 tt22__ddeeccoodd..cc

void tag_tree__reset(struct tag_tree_node *tree)
Resets all values and lower bounds for the supplied tree.

static int tag_tree__decode(struct tag_tree_node *leaf, int threshold)
[Original JPEG2000 function]
Retrieves and decodes sufficient tag bits to determine whether or not the `leaf' node's value is
less than the supplied threshold. In the process, values that are less than the threshold are
completely decoded and may be retrieved later by directly accessing the `value' field of `leaf'.
Values that are greater than or equal to the threshold remain unknown. The function returns
1 if the leaf's value is less than the threshold and 0 otherwise.

void recover_packet_head(int lev_idx, int layer_idx)
This function does quite a bit of the work of the function `ebcot_get_packet_head_and_body'.
It recovers the header information for the packet, filling in the `new_passes' field of each
relevant block, as well as the relevant entries in the `passes' array for the corresponding
blocks. The caller should use this information to update the `num_passes', and `total_bytes'
fields for all affected blocks and to recover the code bytes themselves. Upon entry, the initial
bit of the header has already been read to determine whether or not the packet contains any
information.

Volumetric data compression based on Xavier GirÓ i Nieto
Cube-Splitting and Embedded Block
Coding by Optimized Truncation

 53

void ebcot_get_packet_head_and_body(int layer_idx, int lev_idx)
Reads all packets associated to a layer and a resolution level. This function redistributes
portions of compressed stream read among the appropiate code-blocks.

void DecodeT2(void)
This function is responsible for reading the compressed file in an ordered manner to fill in the
data structures associated to each code-block. With the information recovered from Tier 2,
the Tier 1 will be able to decompressed the compressed stream.

tag_tree_node_ptr ebcot_create_tag_tree(int x_leaf, int y_leaf, int z_leaf)
Creates a tag-tree with an array of `x_leaf'*`y_leaf'*'z_leaf' leaf nodes, returning a pointer to
the top-left hand corner leaf node (the leaf nodes appear at the head of the returned array, in
scan-line order).

22..11..22..99 wwaavvee__ddeecc..cc

These functions implement the three-dimensional wavelet inverse transform of a

volumetric image. It is based on a set of simple wavelet kernels, which transform a one-
dimensional array of samples. The three dimensional inverse transform is achieved by calling
one of these kernels successively for a each of the three dimensions.
 Basically, these functions have been written by earlier at the ETRO department, so
they are not part of this thesis. Only small modifications have been necessary to include them
in front-end of our coder.
void OneDimInverseWaveletFilter(int *InputBuffer, int *OutputBuffer, int Boundary, int Kernel)
Choses among the set of available wavelet kernels to transform a set of samples contained in
InptBuffer.

void OneDimIntegerInverseKernel5_3(int *InputBuffer, int *OutputBuffer, int Boundary)
Implementation of the 1D wavelet kernel resulting from the work of Ali Bilgin, George Zweig,
Michael Marcellin "Three-dimensional image compression with integer wavelet transforms",
Applied Optics, Vol.39, No.11, pp.1799-1814, 10 April 2000

void OneDimIntegerInverseKernel_Haar(int *InputBuffer, int *OutputBuffer, int Boundary)
Implementation of the 1D wavelet kernel resulting from the work of E. H. Adelson, E.
Simoncelli, and R. Hingorani, "Orthogonal pyramid transforms for image coding," in Visual
Communications and Image Processing II, T. R. Hsing, ed., Proc. SPIE 845, pp.50-58 (1987).

void OneDimIntegerInverseKernel9_7(int *InputBuffer, int *OutputBuffer, int Boundary)
Implementation of the 1D wavelet kernel resulting from the work of Ali Bilgin, George Zweig,
Michael Marcellin "Three-dimensional image compression with integer wavelet transforms",
Applied Optics, Vol.39, No.11, pp.1799-1814, 10 April 2000

void OneDimIntegerInverseKernel9_3(int *InputBuffer, int *OutputBuffer, int Boundary)
Implementation of the 1D wavelet kernel resulting from the work of Ali Bilgin, George Zweig,
Michael Marcellin "Three-dimensional image compression with integer wavelet transforms",
Applied Optics, Vol.39, No.11, pp.1799-1814, 10 April 2000

void OneDimIntegerInverseKernel13_11(int *InputBuffer, int *OutputBuffer, int Boundary)
Implementation of the 1D wavelet kernel resulting from the work of Ali Bilgin, George Zweig,
Michael Marcellin "Three-dimensional image compression with integer wavelet transforms",
Applied Optics, Vol.39, No.11, pp.1799-1814, 10 April 2000

void OneDimIntegerInverseKernel15_11(int *InputBuffer, int *OutputBuffer, int Boundary)
Implementation of the 1D wavelet kernel resulting from the work of Ali Bilgin, George Zweig,
Michael Marcellin "Three-dimensional image compression with integer wavelet transforms",
Applied Optics, Vol.39, No.11, pp.1799-1814, 10 April 2000

Volumetric data compression based on Xavier GirÓ i Nieto
Cube-Splitting and Embedded Block
Coding by Optimized Truncation

 54

void OneDimIntegerInverseKernel2_6(int *InputBuffer, int *OutputBuffer, int Boundary)
Implementation of the 1D wavelet kernel resulting from the work of S. Dewitte and J. Cornelis,
"Lossless integer wavelet transform," IEEE Signal Process. Lett. 4, 158-160 (1997).

Volumetric data compression based on Xavier GirÓ i Nieto
Cube-Splitting and Embedded Block
Coding by Optimized Truncation

 55

void OneDimIntegerInverseKernel_SplusP(int *InputBuffer, int *OutputBuffer, int Boundary)
Implementation of the 1D wavelet kernel resulting from the work of A. Said and W. Pearlman,
"An image multiresolution representation for lossless and lossy compression," IEEE Trans.
Image Process. 5, 1303-1310 (1996).

void OneDimIntegerInverseKernel_CRF13_7(int *InputBuffer, int *OutputBuffer, int Boundary)
Implementation of the 1D wavelet kernel defined in the ISO/IEC JTC1/SC29/WG1
WG1N1684.

void OneDimFloatingInverseKernel9_7(int *InputBuffer, int *OutputBuffer, int Boundary)
Implementation of the floating-point wavelet kernel.

void OneLevelInverseWaveletTransform(int BoundaryX, int BoundaryY, int BoundaryZ, int
KernelX, int KernelY, int KernelZ)
Performs a one-level inverse wavelet transform in each of the three spatial dimensions using
the specified kernels.

void HigherPrecision(int Precision)
Shifts up all samples of the image Precision positions to perform a floating point transform.

void LowerPrecision(int Precision)
Shifts down all samples of the image Precision positions after performing a floating point
inverse transform.

void MultiLevelInverseWaveletTransform(int* Levels, char* Kernel, int Precision)
Performs a multilevel wavelet transform on a volumetric image.

Volumetric data compression based on Xavier GirÓ i Nieto
Cube-Splitting and Embedded Block
Coding by Optimized Truncation

 56

22..22.. DDaattaa ssttrruuccttss

 One of the major issues was to define a hierarchical and well-designed memory
structure. Identifying the links between all the data structures was critical when designing the
program.

2.2.1 EBCOT structures

 The general EBCOT encoder data structure and the hierarchy of the separate
building components (i.e. structures) are outlined in Figure 23. . The data structure of the
decoder is similar, though a reduced version of the encoder’s one. Hence, it is not going to
be commented here.

EBCOT encoder

layer info level_info

packet_band_info

block_info tag tree_node_ptr

stream pass_info

rd_slopefinal byte

rd_threshold
...

...

...

......

Figure 23: Main data structures

Volumetric data compression based on Xavier GirÓ i Nieto
Cube-Splitting and Embedded Block
Coding by Optimized Truncation

 57

EEbbccoott__eennccooddeerr

This structure represents the encoder object itself. It is accessible from all the program
functions and acts as the root of the whole tree of data structures.

field of the data structure description
long size_image[3] size of the original image in the 3 dimensions
char size_block[3] size of the code-block in the 3 dimensions
char size_min[3] minimum size of decomposition in CS coding
char kernel[3] code of the wavelet kernel in the 3 dimensions
int levels_wave[3] number of levels in the wavelet transforms in the 3D
int max_level_wave maximum level of wavelet decomposition
char precision number of bits shifted when working with floating-

point wavelet kernels
char input_bpp bit-range of the input image
int output_bpp Desired bit-range of the output image
int num_layers desired number of quality layers
struct stream s Compressed bit-stream
int* rd_slope_rates array which contains the rate distortion slope rates
struct ebcot_layer_info* layer_info information related to every quality layer
struct ebcot_level_info* lev info for every resolution level
int max_lev, min_lev maximum and minimum levels with info
int num_resol number of resolution levels
struct _iobuf* fitxer pointer to the compressed image file
struct _iobuf* bug_file
struct _iobuf* file_t1

pointes to a bug_files (for debugging purposes only)

struct _iobuf* file_mod pointer to a model states file for the arithmetic
encoder

long symbol_count counts the number of symbols coded
Encoder arith structure holding the arithmetic encoder parameters
int arith_mode flag set to 0 when starting probability 0.5, or 1 when

reading probabilities from arithm.h file
int take_sample flag to indicate whether a new sample for arithmetic is

needed when studying context models
int num_blocks number of coded blocks
int* image; array containing the original image and wavelet image
int coded_bytes number of bytes generated by arithmetic coder

EEbbccoott__llaayyeerr__iinnffoo

 An instance of this data structure is defined for each quality layer. It includes the
status and information necessary to determine which compressed data is going to be
included.

field of the data structure description
long max_cumulative_bytes Maximum allowable number of bytes included in this quality

layer
long actual_cumulative_bytes number of bytes that have already been included in this

quality layer
int optimize flag indicating what function must be used to determine the

rate distortion threshold
short rd_threshold rate-distortion threshold determining the passes to be

included in this quality layer

Volumetric data compression based on Xavier GirÓ i Nieto
Cube-Splitting and Embedded Block
Coding by Optimized Truncation

 58

EEbbccoott__lleevveell__iinnffoo

 For each resolution level an instance of this data structure is defined.
field of the data structure description
struct ebcot_packet_band_info bands[8] Information related to each of the 8 subbands

included in a resolution level
int room_for_blocks Number of code-blocks that fit in this resolution

level.
int min_band First subband that includes code-blocks. (0=LLL,

7=HHH)
int max_band Last subband that includes code-blocks. (0=LLL,

7=HHH)

EEbbccoott__ppaacckkeett__bbaanndd__iinnffoo

 For each of the eight subbands in a resolution level, an instance of this data structure
is included.

field of the data structure description
int nr_blocks_x, nr_blocks_y,
nr_blocks_z

Size of the subband counted in code-blocks in the
X, Y and Z dimensions

int room_for_blocks Number of code-blocks that fit in this subband
struct ebcot_block_info *blocks Array of structs which includes all the information

related to the code-blocks in the considered
subband

tag_tree_node_ptr inclusion_tree Tag tree structure that keeps the information
related to the first inclusion layer

tag_tree_node_ptr
insignificant_msbs_tree

Tag tree structure that keeps the information
related to the msbs.

tag_tree_node_ptr inclusion_tree_copy Copy of the tag tree structure that keeps the
information related to the first inclusion layer

tag_tree_node_ptr
insignificant_msbs_tree_copy

Copy of the tag tree structure that keeps the
information related to the msbs.

SSuubbbblloocckk

 Data structure that defines a subunit of a code-block.

field of the data structure description
int low[3] Upper left closest coordinates of the subblock (x, y,

z)
int low_child[24] Upper left closest coordinates of the children (x, y,

z)
int size[3] Size of the subblock.

Volumetric data compression based on Xavier GirÓ i Nieto
Cube-Splitting and Embedded Block
Coding by Optimized Truncation

 59

EEbbccoott__bblloocckk__iinnffoo

 Includes all the information related to one code-block. .

field of the data structure description
struct stream s Bit-stream containing the encoded information
int max passes Number of coding passes applied to this code-

block.
int new_passes Number of passes included in the quality level

being created
int old_passes Number of coding passes already included in

previous quality layers
int new_bytes Number of new bytes included in the quality layer

being processed.
struct ebcot_pass_info
passes[MAX_PASSES]

Structure containing all the information related to
the coding passes applied to the code-block.

int insignificant_msbs Number of insignificant biplanes starting at bitplane
32 and ending at the first significant bit-plane.

int *buffer Buffer with the code-block’s voxels included in this.
int *sigma Buffer pointing to the significant samples of the

code-block.
int *sign Buffer keeping the sign information of all samples

of the code-block
int *mu Buffer pointing to the samples already visited for

the present bit-plane.
double delta_MSE Increment in the MSE.
double cumulative_wmse
[MAX_PASSES]

Array keeping the weighted MSEs at the end of
each coding pass.

short *initial__lut Look-up table that helps computing the MSE in the
significance and normalization passes.

short *refinement_MSE_lut Look-up table that helps computing the MSE in the
refinement pas.

struct stream octree CS bit-stream associated to the code-block.
int subband Subband of the code-block

EEbbccoott__ppaassss__iinnffoo

This structure manages the information related to the code size and the rate-
distortion slope at the end of any given block coding pass.

field of the data structure description
int final_byte Pointer to the last bit of the coded bit-stream

belonging to this coding pass.
int rd_slope Rate-distortion slope associated to this coding

pass.

Volumetric data compression based on Xavier GirÓ i Nieto
Cube-Splitting and Embedded Block
Coding by Optimized Truncation

 60

SSttrreeaamm

This structure manages the bit-stream.

field of the data structure description
int *data Coded bit-stream
long size_byte Size in bytes of the bit-stream.
long num_word Number of complete 32-bit words in the bit-stream.
int size_bit Number of bits filled in the word which is presently

being filled.
long point_word Pointer to the word that is currently being read.
long point_byte Pointer to the byte that is currently being read.
int point_bit Pointer to the bit that is currently being read in the

present word.

2.2.2 Arithmetic coder structures

 The program uses a context-based adaptive arithmetic coder. Consequently, a data
structure array exists containing as many first-level entries as models for the context are
defined. The data structure array created to manage the contexts is shown in the following
Table 11.

Table 11: Data structure array of defined contexts

MODEL CONTEXT CODE CODING OPERATION

0 0 AG Models used to code whether Run Length Coding is
possible.

1 0
2 1
3 2
4 3
5 4
6 5
7 6
8 7
9 8

10 9
11 10
12 11
13 12
14 13
15 14
16 15

ZC Models used in the Zero Coding Operation

17 0
18 1
19 2

MAG Models used in the Magnitude Refinement Coding
Operation.

20 0
21 1
22 2
23 3
24 4
25 5

SC Models used in the Sign Coding Operation.

26 0 UNI Model used when some information is supposed to
follow a uniform distribution

27 0 OCT CS coding

Volumetric data compression based on Xavier GirÓ i Nieto
Cube-Splitting and Embedded Block
Coding by Optimized Truncation

 61

22..33.. IInnppuutt ppaarraammeetteerrss

2.3.1 Encoder

 The program is command line based. For each non-specified parameter a default
value is defined.
 In the current implementation, 3 parameters are necessary to execute the program,
the others can be omitted (in that case the default values will be taken):

CCoommmmaanndd

coder [source_image] [compressed_stream] [directory for results] [-w, -h, -d, -e, -f,
…(complete list of flags shown in Table 12)]

Table 12: Flags accepted in the command line

 DESCRIPTION Default value

w Size of input image in the x direction 64
h Size of input image in the y direction 64
d Size of input image in the z direction 64
e Size of code-blocks in the x direction 32
f Size of code-blocks in the y direction 32
g Size of code-blocks in the z direction 32
m Smallest code-block decomposition on the x direction 16
n Smallest code-block decomposition on the y direction 16
o Smallest code-block decomposition on the z direction 16
X wavelet kernel used in the X direction

1 (5x3), 2 (Haar), 3 (9x7), 4 (9x3), 5 (13x11), 6 (5x11), 7
(2x6), 8 (S+P), 9 (13x7), 100 (Floating 9x7)
(more detail in Table 1)

1

Y wavelet kernel used in the Y direction 1
Z wavelet kernel used in the Z direction 1
x decomposition levels of wavelet transform in X direction 5
y decomposition levels of wavelet transform in Y direction 5
z decomposition levels of wavelet transform in Z direction 5
p Shift applied to samples when working with floating-point

kernels
0

b bits per voxel in the input image 8
B maximum bit-rate of the compressed image * 10000 b
l number of quality layers 4
c arithmetic coder mode: 0 for starting 0.5, 1 for loading file 0
s scanning pattern (0: 2D JPEG200 slice, 1: Morton scan) 0

2.3.2 Decoder

 The decoder does not need so much information, since everything is stored in the
header of the compressed file. In the decoder case, the command line should be:

CCoommmmaanndd

decoder [compressed_file] [target_file]

Volumetric data compression based on Xavier GirÓ i Nieto
Cube-Splitting and Embedded Block
Coding by Optimized Truncation

 62

3. Tests

Several tests have been performed to tune the coder and compare to other state-of-art
three-dimensional image coders.

33..00 TTeesstt eennvviirroonnmmeenntt

3.0.1 Set of images used for testing

 A set of five volumetric medical images has been used to check the performance of
the coder and its best parameters configuration. These files included only raw data with the
Least Significant Byte(LSB) first. The images used are described in Table 13:

Table 13: Set of test images used during experiments

Code

File
Size of
the file

(kb)

Bits
per

pixel

Size
(WxHxD)

File
bytes
per

sample

Imaging device Details

1 3DEcho 16,385 15 128x128x39 2 Ultrasound (US) Prostate

2 3DPET 1,248 8 256x256x256 1
Positron Emission

Tomogrpahy
(PET)

Brain

3 Axial
CT# 51,200 12 512x512x100 2

Computer-
assisted

Tomography (CT)

Axial scan of
female

cadaver brain
(slice 100-199

of the HVP
set)

4 CT
Chest## 22,528 12 512x512x44 2

Computer-
assisted

Tomography (CT)

Helical scan of
normal chest

an
mediastinum

5 MRI
Brain## 25,600 12 256x256x200 2

Magnetic
Resonance

Imaging (MRI)

T1 weighted
field echo 3D

volume scan of
normal brain

Visible Human Project data set (http://www.nlm.nih.gov/research/visible/)
DICOM test set

Volumetric data compression based on Xavier GirÓ i Nieto
Cube-Splitting and Embedded Block
Coding by Optimized Truncation

 63

3.0.2 Set of wavelet filters used in the tests

The wavelet filters used in the experiments have been identified in the tables and graphs

with the code shown in Table 14:

Table 14: Lossless integer lifting filters supported by the 3D WT module. The number of filter

taps - l and h - for the low-pass and high-pass analysis filters respectively, is given as lxh.

Filter
Name Code Number of

Filter Taps Lifting Steps

5x3 1 1 5x3
[] [] [] []() 212222112 +++−+= nxnxnxnd

[] [] [] []() 211412 ++−+= ndndnxns

S 2

(Haar) 2 2x2
[] [] []nxnxnd 212 −+=

[] [] [] ndnxns 212 +=

9x7 1 3 9x7
[] [] [] []() [] []() 21422216122216912 +++−−++−+= nxnxnxnxnxnd

[] [] [] []() 211412 ++−+= ndndnxns

9x3 1 4 9x3
[] [] [] []() 212222112 +++−+= nxnxnxnd

[] [] [] []() [] []() 2112643164192 +++−−+−+= ndndndndnxns

13x11
1 5 13x11

[] [] [] []() [] []()
[] []() 








+++−+

++−−++
−+=

2162422563
42222562522212875

12
nxnx

nxnxnxnx
nxnd

[] [] [] []() 211412 ++−+= ndndnxns

5x11 1 6 5x11
[] [] [] []() 212222112)1(+++−+= nxnxnxnd

[] [] [] []() 211412)1()1(++−+= ndndnxns

[] [] [] [] [] []() 21211161)1(++−+++−−−= nsnsnsnsndnd

2x6 3 7 2x6
[] [] []nxnxnd 212)1(−+=

[] [] [] ndnxns)1(212 +=

[] [] [] []() 211141)1(++−−−= nsnsndnd

S+P 4 8 2x6
[] [] []nxnxnd 212)1(−+=

[] [] [] ndnxns)1(212 +=

[] [] [] []() [] []() [] 2118/218/318/2)1()1(++++−+−−+= ndnsnsnsnsndnd

13x7 5 9 13x7
[] [] [] []() [] []() 21422216122216912 +++−−++−+= nxnxnxnxnxnd

[] [] [] []() [] []() 2112256161256802 +++−−+−+= ndndndndnxns

Volumetric data compression based on Xavier GirÓ i Nieto
Cube-Splitting and Embedded Block
Coding by Optimized Truncation

 64

33..11 EEvvaalluuaattiioonn ooff tthhee iimmpplleemmeenntteedd iinntteeggeerr wwaavveelleett ffiilltteerr ffoorr lloosssslleessss
ccoommpprreessssiioonn

TARGET
Determine the performance of the integer wavelet filters implemented in the coder for a
lossless compression.

Not all possible amounts of decomposition levels have been tested, as some previous
tests with these images had already been reported by Schelkens and Barbarien [Sch00a]. In
most of the cases it was clear that the optimal number of decomposition levels was five. In
other cases, the resolution of images limited the choice of testing on four decomposition
levels (E.g. CT).
 In the first tests, the kernels for the X an Y direction were identical, but we
experimented with alternitive kernels in the Z direction. This was done because medical
imagery usually does not produce data with the same precision in the Z direction as in the X-
Y directions. However, the results showed that kernels performing optimal along the X- and –
Y-axes, tended to be the optimal to for the Z-axis.Hence, it was decided to work with identical
kernels in the three spatial directions.

SSEETTTTIINNGGSS FFOORR TTHHEE CCOODDEERR
Block size (32,32,32)
Subblock minimum size (16,16,16)
Shifting in floating point 0
Number of layers 4
Arithmetic coder mode 0

RESULTS
Although it is clear that the results are data and filter kernel dependent, it is possible to draw
some general conclusions. In order of performance, we can state that the 13x11, 9x7, 5x11,
13x7 and S+P give the best results, closely followed by the second group, i.e. the 5x3 and
9x3 kernels. Only the Haar kernel performed poorly.

Table 15: Best coding transform for lossless coding for a 5-level wavelet decomposition

Filter Bitrate

XY Z 3DEcho 3D PET Axial CT CT Chest
MRI

Brain
1 1 3.716886 8.611165 3.806308 4.980506 3.954777
2 2 4.095304 9.561987 4.327164 5.30925 4.453807
3 3 3.655986 8.15764 3.647849 4.954887 3.775734
4 4 3.740604 8.648663 3.84171 5.011718 3.982697
5 5 3.657062 7.965294 3.611909 4.970834 3.718029
6 6 3.66708 8.130972 3.658911 4.956915 3.790333
7 7 3.769114 8.703062 3.889699 5.064234 4.02103
8 8 3.683502 8.352614 3.710161 4.961909 3.827486
9 9 3.659272 8.178836 3.664898 4.968798 3.79532

Wavelet Levels 5 4 5 4 5

Volumetric data compression based on Xavier GirÓ i Nieto
Cube-Splitting and Embedded Block
Coding by Optimized Truncation

 65

0

1

2

3

4

5

6

7

8

9

10

B
itr

at
e

(b
pp

)

1 2 3 4 5

Image

Lossless coding

Figure 24: Best coding transform for lossless coding

Volumetric data compression based on Xavier GirÓ i Nieto
Cube-Splitting and Embedded Block
Coding by Optimized Truncation

 66

33..22 EEvvaalluuaattiioonn ooff tthhee iimmpplleemmeenntteedd iinntteeggeerr wwaavveelleett ffiilltteerrss ffoorr lloossssyy
ccoommpprreessssiioonn

TARGET
Determine the performance of the integer wavelet filters implemented in the coder for a lossy
compression.

 The compression and decompression algorithms have been applied to each image
for the whole set of lossless filters and for different desired bit rates. After that, a special
program written in C for these tests was responsible for calculating the PSNR between the
original image and the reconstructed one.
 The MSE and PSNR are defined in Equations 7 and 8.

(7) MSE
(Mean Square Error)

[] []()∑ −=
n

nynxMSE 2

(8) PSNR (Peak Signal to
Noise Rate)














⋅=

volume
MSE
bppPSNR

2

log10 (dB)

where bpp is the bit-range for the input image.

PSNR measurements were done at six different bit-rates: 2, 1, 0.5, 0.25, 0.125 and
0.0625 bits-per-pixel (bpp). However, an important consideration has to be made: the
EBCOT-principles define that only some points in the coded bit-stream for each block are
valid for truncation. This restriction makes it impossible to reach the desired bit-rate with an
exact precision. The rate-distortion optimisation algorithm identifies the best truncation
points, being as close as possible to the desired bit-rate

RESULTS
Although it is clear that the results are data and filter kernel dependent, it is possible to draw
some general conclusions. At low bit rates we notice that especially the 9x3, 5x11, 9x7 and
5x3 kernels are performing well, closely followed by the 13x7 and 13x11 kernels. At higher
bit-rates the 9x3, 13x11 and 5x11 filters are moving towards the other ones, which is logic
since they were among the best filters for lossless coding. Notice also that the 5x11 kernel
seems to be the most stable one, delivering an excellent performance over the complete
lossy-to-lossless range.

Volumetric data compression based on Xavier GirÓ i Nieto
Cube-Splitting and Embedded Block
Coding by Optimized Truncation

 67

3D Echo

Table 16: Best coding transform for lossy coding

 PSNR(dB)

Filter Levels 2 bpp 1 bpp 0,5 bpp 0,25 bpp 0,125 bpp 0,0625 bpp
1 5 40,32 35,81 31,60 27,61 25,90 22,06
2 5 35,43 30,58 27,22 24,42 23,62 20,47
3 5 39,46 34,95 30,89 26,90 25,18 24,70
4 5 40,63 35,87 31,62 27,56 25,82 21,95
5 5 38,96 34,46 30,60 26,56 24,69 24,27
6 5 40,17 35,48 31,28 27,16 25,62 21,53
7 5 37,34 32,05 28,31 26,35 23,42 22,95
8 5 37,15 31,8 28,22 25,95 23,22 22,73
9 5 39,58 34,72 30,52 26,65 25,14 24,67

PSNR for 3DEcho

20,00

25,00

30,00

35,00

40,00

45,00

1 2 3 4 5 6

Bitrate

PS
N

R

1

2

3

4

5

6

7

8

9

Figure 25: Best coding transform for lossy coding

Volumetric data compression based on Xavier GirÓ i Nieto
Cube-Splitting and Embedded Block
Coding by Optimized Truncation

 68

3D PET

Table 17: Best coding transform for lossy coding

 PSNR(dB)
Filter Levels 2 bpp 1 bpp 0,5 bpp 0,25 bpp 0,125 bpp 0,0625 bpp

1 5 56,53 49,55 45,43 42,67 40,38 38,86
2 5 50,00 45,31 41,33 39,37 36,15 35,62
3 5 57,39 50,44 46,03 42,94 41,25 39,06
4 5 56,52 49,81 45,56 42,77 40,81 39,18
5 5 57,60 50,39 46,24 43,45 41,34 39,04
6 5 57,97 50,34 46,10 43,03 40,91 39,41
7 5 53,64 46,65 43,93 42,11 40,21 38,32
8 5 55,91 47,24 44,94 42,54 40,65 38,45
9 5 57,43 50,43 46,38 43,24 40,99 39,44

PSNR for 3DPET

35,00

40,00

45,00

50,00

55,00

60,00

1 2 3 4 5 6

Bitrate

PS
N

R

1

2

3

4

5

6

7

8

9

Figure 26: Best coding transform for lossy coding

Volumetric data compression based on Xavier GirÓ i Nieto
Cube-Splitting and Embedded Block
Coding by Optimized Truncation

 69

Axial CT

Table 18: Best coding transform for lossy coding

 PSNR(dB)
Filter Levels 2 bpp 1 bpp 0,5 bpp 0,25 bpp 0,125 bpp 0,0625 bpp

1 5 65,57 58,90 53,93 49,76 45,44 41,14
2 5 60,98 53,86 48,41 39,73 32,86 28,58
3 5 66,35 60,03 54,79 50,51 46,16 41,59
4 5 65,62 59,11 54,16 49,21 45,44 41,28
5 5 66,57 60,27 54,91 50,31 46,22 39,56
6 5 66,43 60,04 54,59 50,49 46,40 41,67
7 5 64,26 56,95 51,92 46,86 41,56 36,83
8 5 65,34 58,91 53,70 47,10 41,51 36,66
9 5 66,43 60,18 54,82 50,33 46,37 41,30

PSNR for Axial CT

25,00

30,00

35,00

40,00

45,00

50,00

55,00

60,00

65,00

70,00

1 2 3 4 5 6

Bitrate

PS
N

R

1

2

3

4

5

6

7

8

9

Figure 27: Best coding transform for lossy coding

Volumetric data compression based on Xavier GirÓ i Nieto
Cube-Splitting and Embedded Block
Coding by Optimized Truncation

 70

CT Chest

Table 19: Best coding transform for lossy coding

 PSNR(dB)
Filter Levels 2 bpp 1 bpp 0,5 bpp 0,25 bpp 0,125 bpp 0,0625 bpp

1 5 56,36 50,28 46,89 43,08 39,02 34,50
2 5 52,99 46,48 42,23 37,69 33,31 28,24
3 5 56,37 50,05 46,38 42,66 38,40 33,90
4 5 56,40 50,24 46,75 43,07 39,09 34,54
5 5 56,38 49,92 46,27 42,40 38,14 33,72
6 5 56,51 50,25 46,59 42,95 38,90 34,43
7 5 54,96 48,20 44,37 40,15 36,03 31,85
8 5 54,59 48,23 44,09 40,08 35,81 32,19
9 5 56,41 49,97 46,44 42,61 38,25 33,72

PSNR for CT Chest

25,00

30,00

35,00

40,00

45,00

50,00

55,00

60,00

1 2 3 4 5 6

Bitrate

PS
N

R

1

2

3

4

5

6

7

8

9

Figure 28: Best coding transform for lossy coding

Volumetric data compression based on Xavier GirÓ i Nieto
Cube-Splitting and Embedded Block
Coding by Optimized Truncation

 71

MRI Brain

Table 20: Best coding transform for lossy coding

 PSNR(dB)
Filter Levels 2 bpp 1 bpp 0,5 bpp 0,25 bpp 0,125 bpp 0,0625 bpp

1 5 63,66 58,35 53,44 49,47 46,83 43,76
2 5 56,81 50,41 44,28 39,95 39,02 35,36
3 5 63,97 58,51 54,27 49,41 47,28 44,05
4 5 63,88 58,13 53,66 49,77 45,85 43,95
5 5 63,86 58,55 54,50 50,68 47,19 43,92
6 5 64,48 58,82 53,80 49,97 47,11 43,99
7 5 59,65 53,61 48,90 43,54 42,25 38,58
8 5 62,26 54,02 51,47 46,72 42,33 38,64
9 5 64,13 58,09 53,56 49,53 44,95 40,74

PSNR for MRI Brain

35,00

40,00

45,00

50,00

55,00

60,00

65,00

1 2 3 4 5 6

Bitrate

PS
N

R

1

2

3

4

5

6

7

8

9

Figure 29: Best coding transform for lossy coding

Volumetric data compression based on Xavier GirÓ i Nieto
Cube-Splitting and Embedded Block
Coding by Optimized Truncation

 72

33..33 OOppttiimmiissaattiioonn ooff tthhee ccoonntteexxtt ccllaassssiiffiiccaattiioonn aanndd ssttaarrttiinngg pprroobbaabbiilliittiieess

TARGET
Study the behaviour of the models designed for the context-based adaptive arithmetic coder,
in order to set a starting probability to each model. Check if there is any gain by doing this.

The arithmetic coder used in this implementation is adaptive and context-based. It is reset
at the beginning of the coding of every new code block. In order to optimise its performance,
several tests have been performed to find the best context definition and starting probabilities
for images types for which this software is designed.

Based on the contexts defined for the JPEG2000 VM, a new set of contexts was defined
for the 3D case. For the first test all probabilities were set to 0.5. As the arithmetic coder is
adaptive, it will automatically adjust the initial model probabilities to more appropriate values
while the image is being encoded.

As the used arithmetic coder is context-based, a different model for every context is
defined. For each model separately the best starting probability has to be identified.

a) data retrieved for each image

Three properties are evaluated in every experiment:
After each coded symbol

• the probability evolution of the 0 symbol for each model during the first 1000
symbols of each pass (prob0_x, where x is the model code)

After each coding pass

• number of calls to every model (calls.txt)
• probability of the 0 symbol for each model (prob0.txt)

It must be taken into account that this data was taken for each code-block, so all the data

had to be averaged to have a typical response for the complete image.
This study was performed over the whole set of images and was later averaged.

The starting probability was 0.5 .
The results are commented in Table 21.

Volumetric data compression based on Xavier GirÓ i Nieto
Cube-Splitting and Embedded Block
Coding by Optimized Truncation

 73

Table 21: Comments on behaviour of different context models defined

MODEL CODE CODING OPERATION

0 AG

Prob(0) is very high, which means that the RLC primitive, which is mainly
called in the higher bit-planes, is not able to code four bits with only one
symbol. However, there is some gain with it. At lower high-planes, there

are less calls to the RLC with a lower chance of success.
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

ZC

The Prob(0) decreases as we move to higher contexts, which is correct as
they are linked with the samples with many significant neighbouring

samples. The most-called model is by far the first one, where there are no
neighbouring significant samples. Most of the calls to these models are in
the second or third bit-planes, where most of the samples jump from not
significant to significant. At lower bit-planes there are fewer calls, so the
bias shown in these bit-planes is probably due to the small amount of

samples.

17
18

19
MAG

The first model is massively called first, then most of the refined samples
jump to the second model and finally, most of the samples are refined by

the third model which correspond to the case, where a sample has already
been called. This is the most called model, whose Prob(0) moves around

0,5 as we are already refining samples.
20
21
22
23
24
25

SC

The Prob(0) of this group move quite close to the 0,5 probability, so no
significant gain is obtained with this model. Calls to these models are only

performed in the Normalization and especially Significance passes,. As
these models are called every time a new sample becomes significant, we

know that the significance pass is much more successful than the
Normalization pass when finding new significant samples. This is because
new significant samples are usually next to a previous significant sample.

26 UNI As it is a uniform model, Prob(0) really moves around the 0,5 value

27 OCT

The octree Prob(0) probability moves close to 0,56. The biggest number of
calls to this model is in the first pass, when the first octree structure is

created. After that, only information to refresh the octree stream is
encoded, so there are not so many calls any more.

Volumetric data compression based on Xavier GirÓ i Nieto
Cube-Splitting and Embedded Block
Coding by Optimized Truncation

 74

Model 0

0

500

1000

1500

2000

2500

3000

3500

4000

4500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

Pass

N
um

be
r o

f c
al

ls

0.9855

0.986

0.9865

0.987

0.9875

0.988

0.9885

0.989

0.9895

Pr
ob

(0
)

Model 1

0

500

1000

1500

2000

2500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

Pass

N
um

be
r o

f c
al

ls

0.96

0.962

0.964

0.966

0.968

0.97

0.972

0.974

0.976

0.978

Pr
ob

(0
)

Model 2

0

100

200

300

400

500

600

700

800

900

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

Pass

N
um

be
r o

f c
al

ls

0.905

0.91

0.915

0.92

0.925

0.93

0.935

0.94

0.945

0.95

Pr
ob

(0
)

Model 3

0

50

100

150

200

250

300

350

400

450

500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

Pass

N
um

be
r o

f c
al

ls

0.885

0.89

0.895

0.9

0.905

0.91

0.915

0.92

0.925

Pr
ob

(0
)

Model 4

0

100

200

300

400

500

600

700

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

Pass

N
um

be
r o

f c
al

ls

0.83

0.84

0.85

0.86

0.87

0.88

0.89

0.9

0.91

Pr
ob

(0
)

Model 5

0

50

100

150

200

250

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37

Pass

N
um

be
r o

f c
al

ls

0.83

0.84

0.85

0.86

0.87

0.88

0.89

0.9

Pr
ob

(0
)

Model 6

0

100

200

300

400

500

600

700

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

Pass

N
um

be
r o

f c
al

ls

0.85

0.855

0.86

0.865

0.87

0.875

0.88

0.885

Pr
ob

(0
)

Model 7

0

100

200

300

400

500

600

700

800

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

Pass

N
um

be
r o

f c
al

ls

0.72

0.73

0.74

0.75

0.76

0.77

0.78

0.79

0.8

0.81

0.82
Pr

ob
(0

)

Model 8

0

100

200

300

400

500

600

700

800

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

Pass

N
um

be
r o

f c
al

ls

0.73

0.74

0.75

0.76

0.77

0.78

0.79

0.8

0.81

0.82

Pr
ob

(0
)

Model 9

0

100

200

300

400

500

600

700

800

900

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

Pass

N
um

be
r o

f c
al

ls

0.75

0.755

0.76

0.765

0.77

0.775

0.78

0.785

0.79

Pr
ob

(0
)

Volumetric data compression based on Xavier GirÓ i Nieto
Cube-Splitting and Embedded Block
Coding by Optimized Truncation

 75

Model 10

0

50

100

150

200

250

300

350

400

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

Pass

N
um

be
r o

f c
al

ls

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Pr
ob

(0
)

Model 11

0

100

200

300

400

500

600

700

800

900

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

Pass

N
um

be
r o

f c
al

ls

0.62

0.64

0.66

0.68

0.7

0.72

0.74

0.76

0.78

Pr
ob

(0
)

Model 12

0

50

100

150

200

250

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

Pass

N
um

be
r o

f c
al

ls

0.75

0.755

0.76

0.765

0.77

0.775

Pr
ob

(0
)

Model 13

0

50

100

150

200

250

300

350

400

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

Pass

N
um

be
r o

f c
al

ls

0.735

0.74

0.745

0.75

0.755

0.76

0.765

0.77

0.775

Pr
ob

(0
)

Model 14

0

200

400

600

800

1000

1200

1400

1600

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

Pass

N
um

be
r o

f c
al

ls

0.665

0.67

0.675

0.68

0.685

0.69

0.695

0.7

0.705

Pr
ob

(0
)

Model 15

0

200

400

600

800

1000

1200

1400

1600

1800

2000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

Pass

N
um

be
r o

f c
al

ls

0.53

0.535

0.54

0.545

0.55

0.555

0.56

0.565

0.57

Pr
ob

(0
)

Model 16

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

Pass

N
um

be
r o

f c
al

ls

0.476

0.478

0.48

0.482

0.484

0.486

0.488

0.49

Pr
ob

(0
)

Model 17

0

100

200

300

400

500

600

700

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

Pass

N
um

be
r o

f c
al

ls

0.785

0.787

0.789

0.791

0.793

0.795

0.797

0.799

Pr
ob

(0
)

Model 18

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

Pass

N
um

be
r o

f c
al

ls

0.58

0.582

0.584

0.586

0.588

0.59

Pr
ob

(0
)

Model 19

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

Pass

N
um

be
r o

f c
al

ls

0.51

0.52

0.53

0.54

0.55

0.56

0.57

0.58

0.59

Pr
ob

(0
)

Volumetric data compression based on Xavier GirÓ i Nieto
Cube-Splitting and Embedded Block
Coding by Optimized Truncation

 76

Model 20

0

100

200

300

400

500

600

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

Pass

N
um

be
r o

f c
al

ls

0.502

0.504

0.506

0.508

0.51

0.512

0.514

0.516

0.518

0.52

0.522

Pr
ob

(0
)

Model 21

0

200

400

600

800

1000

1200

1400

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

Pass

N
um

be
r o

f c
al

ls

0.425

0.43

0.435

0.44

0.445

0.45

0.455

0.46

Pr
ob

(0
)

Model 22

0

100

200

300

400

500

600

700

800

900

1000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

Pass

N
um

be
r o

f c
al

ls

0.502

0.504

0.506

0.508

0.51

0.512

0.514

0.516

Pr
ob

(0
)

Model 23

0

100

200

300

400

500

600

700

800

900

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

Pass

N
um

be
r o

f c
al

ls

0.46

0.465

0.47

0.475

0.48

0.485

0.49

Pr
ob

(0
)

Model 24

0

100

200

300

400

500

600

700

800

900

1000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

Pass

N
um

be
r o

f c
al

ls

0.4

0.405

0.41

0.415

0.42

0.425

0.43

0.435

0.44

0.445

Pr
ob

(0
)

Model 25

0

50

100

150

200

250

300

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

Pass

N
um

be
r o

f c
al

ls

0.36

0.37

0.38

0.39

0.4

0.41

0.42

0.43

Pr
ob

(0
)

Model 26

0

20

40

60

80

100

120

140

160

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

Pass

N
um

be
r o

f c
al

ls

0.47

0.475

0.48

0.485

0.49

0.495

0.5

0.505

0.51

Pr
ob

(0
)

Model 27

0

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

Pass

N
um

be
r o

f c
al

ls

0.52

0.53

0.54

0.55

0.56

0.57

0.58

0.59

Pr
ob

(0
)

Figure 30: Numbers of calls and prob(0) evolution of each context model

b) data processing

 A little program in C called process.c was written to perform a data analysis of the
data retrieved.
 With the data retrieved from each image, the three passes with the higher number of
calls for each model were identified. Doing that we focus only on the passes with a higher
weight on each model. This data can be found on the file context.txt.

Volumetric data compression based on Xavier GirÓ i Nieto
Cube-Splitting and Embedded Block
Coding by Optimized Truncation

 77

 The passes with more calls for each model were the following:

Table 22: Passes where the context models have been most called

Model Most called
pass

Total number
of calls

Model Most called
pass

Total number
of calls

0 3 21166 14 7 7007
1 6 9852 15 10 8936
2 4 4022 16 13 22150
3 6 2279 17 8 3213
4 7 2896 18 17 21874
5 7 978 19 29 89187
6 4 3225 20 7 2462
7 7 3511 21 10 6494
8 7 3530 22 10 4631
9 7 4067 23 10 4038

10 7 1845 24 10 4625
11 7 3972 25 13 1342
12 7 1154 26 3 735
13 7 1834 27 0 43

c) adapt starting probabilities

 The three first decimal figures of the results were taken into account to fill the table
included in arithm.h with the starting probabilities of each model. By doing that, the initial
probabilities for the Most Probable Symbol (MPS) of each model were set to the average
value of the probability of the MPS at the end of the heaviest pass:

Table 23: Probability of 0 symbol at the end of the pass with the highest number of calls for
each model

Model Start
prob(MPS)

Model Start
prob(MPS)

Model Start
prob(MPS)

Model Start
prob(MPS)

0 0.986 7 0.751 14 0.677 21 0.561
1 0.966 8 0.757 15 0.548 22 0.508
2 0.921 9 0.764 16 0.517 23 0.524
3 0.898 10 0.629 17 0.799 24 0.585
4 0.855 11 0.679 18 0.584 25 0.611
5 0.858 12 0.759 19 0.542 26 0.506
6 0.863 13 0.764 20 0.517 27 0.547

Volumetric data compression based on Xavier GirÓ i Nieto
Cube-Splitting and Embedded Block
Coding by Optimized Truncation

 78

 The lossless and lossy tests were repeated again to test if this context optimisation
was useful. The results were the following for filter number 5 and 5 decomposition levels:

Table 23b: Performance of chosen probabilities against the 0.5 probability case

 lossless (bit-rate) 2 bpp (PSNR) 0.25 bpp (PSNR)
 start 0.5 optimised start 0.5 optimised start 0.5 optimised

3DEcho 3.657 3.665 38.96 38.93 26.56 26.53
3DPET 7.966 7.976 57.60 53.44 43.45 42.45
AxialCT 3.612 3.625 66.57 66.45 50.31 50.22
CTChest 4.971 4.985 56.38 52.93 42.40 41.37
MRIBrain 3.718 3.733 63.86 63.82 50.68 50.64

 0.125 bpp (PSNR) 0.0625 bpp (PSNR)
 start 0.5 optimised start 0.5 optimised

3DEcho 24.69 24.68 24.27 24.27
3DPET 41.34 39.74 39.04 38.62
AxialCT 46.22 46.17 39.56 39.48
CTChest 38.14 37.06 33.72 32.29
MRIBrain 47.19 47.18 43.92 43.92

0.000

1.000

2.000

3.000

4.000

5.000

6.000

7.000

8.000

Bitrate

3DEcho 3DPET AxialCT CTChest MRIBrain

Starting probabilities (lossless)

start 0.5

optimised

Figure 31: Performance of chosen probabilities against the 0.5 probability case

Volumetric data compression based on Xavier GirÓ i Nieto
Cube-Splitting and Embedded Block
Coding by Optimized Truncation

 79

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

PSN R (d B)

3DEcho 3DPET AxialCT CTChest M RIBrain

Starting probabilities (2 bpp)

start 0.5
optimised

Figure 32: Performance of chosen probabilities against the 0.5 probability case

0.00

10.00

20.00

30.00

40.00

50.00

60.00

PSNR (dB)

3DEcho 3DPET AxialCT CTChest MRIBrain

Starting probabilities (0.25 bpp)

start 0.5

optimised

Figure 33: Performance of chosen probabilities against the 0.5 probability case

Volumetric data compression based on Xavier GirÓ i Nieto
Cube-Splitting and Embedded Block
Coding by Optimized Truncation

 80

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

50.00

PSNR (dB)

3DEcho 3DPET AxialCT CTChest MRIBrain

Starting probabilities (0.125 bpp)

start 0.5

optimised

Figure 34: Performance of chosen probabilities against the 0.5 probability case

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

PSNR (dB)

3DEcho 3DPET AxialCT CTChest MRIBrain

Starting probabilities (0.0625 bpp)

start 0.5

optimised

Figure 35: Performance of chosen probabilities against the 0.5 probability case

Volumetric data compression based on Xavier GirÓ i Nieto
Cube-Splitting and Embedded Block
Coding by Optimized Truncation

 81

RESULTS
There is no gain by using these starting probabilities for lossless and lossy coding, in fact
there is a slight loss. This is because we have chosen the probabilities of the heaviest pass,
causing a sub-optimal performance. We propose a future experiment selecting the
probabilities of the first pass that codes a significant amount of pixels.

Volumetric data compression based on Xavier GirÓ i Nieto
Cube-Splitting and Embedded Block
Coding by Optimized Truncation

 82

33..44 CCooddiinngg wwiitthh 22DD JJPPEEGG22000000 ((VVMM 77..00))

TARGET
Evaluate the gain obtained with the CS-EBCOT coder compared to the 2D JPEG 2000.

 In order to evaluate the gain of the 3D coder to the 2D implementation of the
JPEG2000 coder, the test images were spliced into slices with the C program split.c to be
coded independently. After decompressing the images with the 2D decoder, the resulting
slices were merged again with the C program merge.c. The final volume was analysed and
compared to the one obtained with the 3D coder.

 The Verification Model 7.0 the integer wavelet kernel (5,3) as basis for a reversible
transforms (identified by code 1 in the CS-EBCOT coder).

3.4.1 2D JPEG2000 slice by slice

 The original test volumes were spliced and transformed to the PGX format in order to
be understood by the VM7.0 coder. The VM7.0 coder generated a separate (compressed) file
for each slice of the volume.

PGX format

The PGX format just attaches a single text header line of the form “PG <byte order>
[+|-]<bit-depth><cols><rows>”, with the binary data appearing immediately after the new line
character packed into 1, 2 or 4 bytes per sample, depending upon the value of <bit-depth>.
The <byte order> field must be on of the fixed strings “LM” (LSB’s first) or “ML” (MSB’s first)
while the optional ‘+’(default) or ‘-‘ character preceding the <bit-depth> field indicates whether
the data is signed or not. Any bit-depth from 1 to 32 is acceptable.

 The results obtained and compared to the CS-EBCOT coder are the following:

Table 24: 2D JPEG2000 slice by slice against CS-EBCOT coder. Data for lossless coding
refers to output bit-rate in bpp, data for lossy coding refers to the PSNR expressed in dB

 3D Echo 3D PET Axial CT
 VM 7.0 CS-EBCOT VM 7.0 CS-EBCOT VM 7.0 CS-EBCOT
lossless 4,287040 3,716886 10,215908 8,611403 4,082576 3,806308
2 bpp 41,75 40,32 51,98 56,53 66,83 65,57
1 bpp 35,99 35,81 46,01 49,55 59,51 58,90
0,5 bpp 31,99 31,60 42,48 45,43 54,10 53,93
0,25 bpp 29,48 27,61 40,06 42,67 48,74 49,76
0,125 bpp 27,31 25,90 38,38 40,38 43,65 45,44
0,0625bpp 25,82 22,06 38,38 38,86 38,68 41,14
 CT DICOM MRI DICOM
 VM 7.0 CS-EBCOT VM 7.0 CS-EBCOT
lossless 5,169318 4,980332 4,735544 3,954777
2 59,48 56,36 62,95 63,66
1 53,08 50,28 56,42 58,35
0,5 49,17 46,89 51,70 53,44
0,25 45,70 43,08 47,81 49,47
0,125 41,65 39,02 44,56 46,83
0,0625 38,14 34,50 41,45 43,76

Volumetric data compression based on Xavier GirÓ i Nieto
Cube-Splitting and Embedded Block
Coding by Optimized Truncation

 83

Figure 36: Verification Model 7.0 slice by slice against CS-EBCOT for lossless coding

Figure 37: Verification Model 7.0 slice by slice against CS-EBCOT for lossy coding

 We were not able to retrieve all data for the 0,0625 bit-rate, since for small images
this bit-rate could not be reached by the VM 7.0 (it was so low that even not the header fitted
at this bit-rate). At the other hand, VM 7.0 is giving a heavier weight to the wavelet
coefficients situated in the lower subbands (related to the normalization policy), a feature
which is not included in the present CS-EBCOT implementation.

Lossy with VM 7.0 slice by slice

20.00

25.00

30.00

35.00

40.00

45.00

50.00

55.00

60.00

65.00

70.00

1 2 3 4 5 6

Bitrate (bpp)

PS
N

R
 (d

B
)

3D Echo 3D Echo 3D PET 3D PET Axial CT Axial CT CT DICOM

CT DICOM MRI DICOM MRI DICOM

Lossless with VM 7.0 slice by slice

0

2

4

6

8

10

12

VM 7.0 CS-EBCOT VM 7.0 CS-EBCOT VM 7.0 CS-EBCOT VM 7.0 CS-EBCOT VM 7.0 CS-EBCOT

3D Echo 3D PET Axial CT CT DICOM MRI DICOM

B
itr

at
e

(b
pp

)

Volumetric data compression based on Xavier GirÓ i Nieto
Cube-Splitting and Embedded Block
Coding by Optimized Truncation

 84

RESULTS
 The 3D version is clearly better than the 2D for the lossless coding.
 The result is not the same for the lossy tests. This is probably because non-normalized
transforms have been used, delivering worse performance at low bit-rates. This is caused by
the fact that wrong weights are given at the different subbands, resulting in an
overemphasizing of the HF information. The way our coder works even magnifies this
problem.
 At the other hand, a new compressed file has been generated for each slice, so the VM 7.0
files contained a lot of redundancy because of the multiple headers with the same
information.

3.4.2 slices as components

 The Verification Model 7.0 is able to deal with multi-component images and
performing the wavelet transform in the component dimension. This is exactly what the CS-
EBCOT coder does. Hence, evaluating this feature could give interesting information.
Unfortunately, some bugs were found in the Verification Model 7.0 when trying to deal with
multiple components slices were identified as components)Currently, we are trying to locate
the problem in collaboration with the editor of the VM software

However, some of the tests could be performed with the following results.

Table 25: Verification Model 7.0 slice as components against CS-EBCOT

 3D Echo 3D PET
 VM 7.0 C-EBCOT VM 7.0 CS-EBCOT

lossless 4,278407 3,716886 10,182129 8,611403
2 40,32 52,69 56,53
1 35,81 46,65 49,55

0,5 31,60 43,05 45,43
0,25 27,61 40,65 42,67

0,125 25,90 39,19 40,38
0,0625 22,06 37,88 38,86

Lossless with VM 7.0 component

0

2

4

6

8

10

12

VM 7.0 3D JPEG2000 VM 7.0 3D JPEG2000 VM 7.0 3D JPEG2000 VM 7.0 3D JPEG2000 VM 7.0 3D JPEG2000

3D Echo 3D PET Axial CT CT DICOM MRI DICOM

B
itr

at
e

Figure 38: Verification Model 7.0 slice as components against CS-EBCOT for lossless coding

Volumetric data compression based on Xavier GirÓ i Nieto
Cube-Splitting and Embedded Block
Coding by Optimized Truncation

 85

Lossy with VM 7.0 components

20,00

25,00

30,00

35,00

40,00

45,00

50,00

55,00

60,00

65,00

70,00

1 2 3 4 5 6

Bitrate

PS
N

R
 (d

B
)

3D PET

3D PET

Figure 39: Verification Model 7.0 slice as components against CS-EBCOT for lossy coding

RESULTS
In this case, a single compressed file was generated and the results obtained were slightly
better than when as many compressed files as slices were generated. This was due that
some data (headers, markers), which were repeated in every separate file in the previous
experiment a), appeared only once in this unique generated file.

Volumetric data compression based on Xavier GirÓ i Nieto
Cube-Splitting and Embedded Block
Coding by Optimized Truncation

 86

33..55 SSccaannnniinngg ppaatttteerrnn

TARGET
Determine which scanning pattern works best.

Two scanning patterns have been implemented in the codec: a traditional 2D

JPEG2000 scanning working slice-by-slice and a Morton curve.
The traditional 2D JPEG2000 scanning pattern reads the volume image slice-by-slice

and scans each slice by following four sample stripes in the Y direction. After each stripe, the
pointer moves to the next one in the increasing direction of X. When a row is finished, a four
sample shift is applied in the Y direction. This pattern is repeated till the end of the slice.
Next, the procedure is repeated for the succeeding slice.

The Morton Scanning pattern tries to group neighbouring samples as much as
possible. This could be an advantage, because by doing this, the big jump from the end of
one slice to the beginning of a new one would be avoided, and the arithmetic coder state
wouldn’t change so quickly.
 All tests have been performed with five decomposition levels.

Table 26: Traditional 2D JPEG200 Scanning pattern against 3D Morton Scanning pattern

 filter lossless (bit-rate) 2 bpp (PSNR) 0.25 bpp (PSNR)
 2D JPEG Morton 2D JPEG Morton 2D JPEG Morton
3DEcho 3 3.656 3.658 39.46 39.45 26.90 26.90
3DPET 5 7.966 7.966 57.60 53.48 43.45 42.46
AxialCT 5 3.612 3.615 66.57 66.54 50.31 50.32
CTChest 3 4.955 4.957 56.37 54.52 42.66 41.91
MRIBrain 5 3.718 3.721 63.86 63.84 50.68 50.67

 filter 0.125 bpp (PSNR) 0.0625 bpp (PSNR)
 2D JPEG Morton 2D JPEG Morton
3DEcho 3 25.18 25.11 24.70 24.69
3DPET 5 41.34 39.70 39.04 38.55
AxialCT 5 46.22 46.21 39.56 39.52
CTChest 3 38.40 37.55 33.90 32.65
MRIBrain 5 47.19 47.25 43.92 43.91

Volumetric data compression based on Xavier GirÓ i Nieto
Cube-Splitting and Embedded Block
Coding by Optimized Truncation

 87

0.000

1.000

2.000

3.000

4.000

5.000

6.000

7.000

8.000

Bitrate

3DEcho 3DPET AxialCT CTChest MRIBrain

Scanning pattern (lossless)

2D JPEG

Morton

Figure 40: 2D JPEG scanning pattern against 3D Morton scanning pattern for lossless coding

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

PSNR (dB)

3DEcho 3DPET AxialCT CTChest MRIBrain

Scanning pattern (2 bpp)

2D JPEG

Morton

Figure 41: 2D JPEG scanning pattern against 3D Morton scanning pattern for lossy coding

Volumetric data compression based on Xavier GirÓ i Nieto
Cube-Splitting and Embedded Block
Coding by Optimized Truncation

 88

0.00

10.00

20.00

30.00

40.00

50.00

60.00

PSNR (dB)

3DEcho 3DPET AxialCT CTChest MRIBrain

Scanning pattern (0.25 bpp)

2D JPEG

Morton

Figure 42: 2D JPEG scanning pattern against 3D Morton scanning pattern for lossy coding

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

50.00

PSNR (dB)

3DEcho 3DPET AxialCT CTChest MRIBrain

Scanning pattern (0.125 bpp)

2D JPEG

Morton

Figure 43: 2D JPEG scanning pattern against 3D Morton scanning pattern for lossy coding

Volumetric data compression based on Xavier GirÓ i Nieto
Cube-Splitting and Embedded Block
Coding by Optimized Truncation

 89

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

PSNR (dB)

3DEcho 3DPET AxialCT CTChest MRIBrain

Scanning pattern (0.0625 bpp)

2D JPEG

Morton

Figure 44: 2D JPEG scanning pattern against 3D Morton scanning pattern for lossy coding

RESULTS
No significance gain has been reached with the Morton scanning.

Volumetric data compression based on Xavier GirÓ i Nieto
Cube-Splitting and Embedded Block
Coding by Optimized Truncation

 90

33..66 CCoommppaarraattiivvee ssttuuddyy ooff CCSS--EEBBCCOOTT aanndd ootthheerr tthhrreeee--ddiimmeennssiioonnaall
iimmaaggee ccooddeerrss

 This experiment was published by Peter Schelkens, Xavier Giro, Joeri Barbarien,
Adrian Munteanu, Jan Cornelis and can be found in the bibliography under reference
[Sch00b].
 It must be stated that in the document the CS-EBCOT coder is referred as 3D
JPEG2000 coder.

INTRODUCTION

The increasing use of three-dimensional imaging modalities, like Magnetic Resonance
Imaging (MRI), Computer-assisted Tomography (CT), Ultrasound (US), Single Photon
Emission Computed Tomography (SPECT) and Positron Emission Tomography (PET),
triggers the need for efficient techniques to transport and store the related volumetric data. In
a classical approach, the image volume is then considered as composed of multiple slices.
These slices are then successively compressed and broadcasted. Contemporary
transmission techniques make use of concepts like rate scalability, quality- and resolution
scalability. In a 2D world this results in an image being encoded in different quality and/or
resolution layers. Also, for volumetric sets the scalability paradigm causes the introduction of
multiplexing mechanisms to select from each slice the correct layer(s) to support the actually
required QoS layer. However, a disadvantage of the slice-by-slice mechanism is that
potential 3D correlations are neglected.

In recent past, 3D DCT based techniques have been proposed, but the weakness of
such systems is that they hardly meet the requirements imposed by the scalability paradigm
and additionally do not support lossless coding. The latter is extremely important for medical
data since it allows to avoid liability problems, and to guarantee the integrity of the medical
diagnosis. Hence, we have been looking for other methods that give better support for the
above-mentioned requirements. Good candidates are techniques based on wavelet
compression. A typical example of 3D wavelet coding is the octave zero-tree based coding
[Bil99, Xio99, Kim99, Kim00], which currently tends to deliver the best compression
performance. In this report we will present two new approaches for volumetric wavelet coding
- Cube-Splitting [Sch00a, Sch00b] and a 3D version of the JPEG 2000 VM - and compare it
against an implementation of 3D SPIHT [Kim99, Kim00] and a classical 3D JPEG-based
approach for different medical imaging modalities. Furthermore, we evaluate the
performance of a selected set of lossless integer lifting kernels.

Cube-Splitting

The proposed coding engine exists out of three main components: a 3D wavelet
transform (WT) module, the actual Cube-Splitting module and a context-based arithmetic
encoder (CAE). The technique we propose is derived from a 2D square partitioning coder
(SQP) [Mun99], which delivers for 2D medical images equivalent lossy coding results as Set
Partitioning in Hierarchical Trees (SPIHT) [Sai96b], while it outperforms SPIHT for lossless
coding. The coding principle is based on Successive Approximation Quantization (SAQ), with
each bit-plane being encoded in the two classical stages: a significance pass and a
refinement pass.

Volumetric data compression based on Xavier GirÓ i Nieto
Cube-Splitting and Embedded Block
Coding by Optimized Truncation

 91

During the first significance pass the wavelet coefficients, newly identified as

significant, are registered using a recursive tree structure of cubes (
Figure .a-c.). If a cube, having initially the size of the original data volume, contains a

significant coefficient, it is spliced in eight sub-cubes. The descendent “significant” cube (or
cubes) is then further spliced until the significant coefficients (=pixel nodes) are isolated. The
result is an eight-tree structure (

Figure .d). As might be noticed, equal importance weights are given to all the
branches. When a significant coefficient is isolated, also its sign - for which two code symbols
are preserved - is immediately encoded. At that point, the refinement pass is initiated for the
next bit-plane, refining all coefficients marked as significant in the eight-tree. Next, the
significance pass is restarted to update the eight-tree by identifying the new significant
coefficients for the current bit-plane. During this stage, only the non-significant nodes are re-
encoded, and the significant ones are ignored since the decoder already received this
information. The complete significance procedure can thus actually be seen as a tree
growing process. The described procedure is repeated, until the desired bit-rate is obtained.

SGN

NS
SGN
NS

NS
NS

NS
NS

NS

NS
SGN
NS

NS
NS

NS
NS

NS

(a) (b) (c)

(d)

Figure 45 - When a significant wavelet coefficient is encountered, the cube (a) is
spliced in eight sub-cubes (b), and further on (c) up to the pixel resolution. The result is an

eight-tree structure (d) (SGN = significant node; NS = non-significant node). In the next
significance pass, the non-significant nodes are further refined.

To encode the generated coding symbols efficiently, we make use of a simple

context-based arithmetic encoder (CAE). The chosen adaptive arithmetic encoder is based
on an implementation of the algorithm proposed by I.H. Witten et al. [Wit87]. The context
model is extremely simple. For the dominant pass we distinguish four contexts, namely one
for the symbols generated for the intermediate cube nodes, one for the pixel nodes having
non-significant neighbors for the previous threshold in the SAQ process, one for the pixel
nodes having at least one significant neighbor for the previous threshold and finally one for
encoding the sign of the isolated significant pixel nodes. Only two contexts are used for the
refinement pass: one for the pixel nodes having non-significant neighbors for the previous
threshold, one for the pixel nodes having at least one significant neighbor for the previous
threshold.

Volumetric data compression based on Xavier GirÓ i Nieto
Cube-Splitting and Embedded Block
Coding by Optimized Truncation

 92

3D SPIHT

The 3D SPIHT encoder [Kim00] (an early version of the latter has already proven to
beat the performance of a context-based zero-tree coder [Xio99]) was equipped with the
same wavelet transform front-end as the Cube-Splitting coder, as well as the same arithmetic
encoding back-end [Wit87]. The SPIHT implementation in this study uses balanced 3D
orientation trees, i.e. the same amount of recursive wavelet decompositions is required for all
spatial orientations (x, y and z). If this is not respected, several tree nodes will not refer to or
be linked with the same spatial location, consequently destroying the correlation between
different tree-nodes and reducing the compression performance. Solutions have been
proposed utilizing unbalanced spatio-temporal orientation trees in the context of video coding
[Kim98], though the introduction of it increases the implementation complexity and/or reduces
the flexibility of the coding engine. Additionally, context-based arithmetic coding was applied
for the significance pass using a lot of different context-models for the tree nodes (each tree
node representing 2x2x2 pixels). The context identification is based on the significance
behavior of the eight node pixels and their descendents (as in [Xio99]).

3D JPEG

The 3D JPEG-based coder is composed of a discrete cosine transform (DCT)
followed by a scalar quantization stage and finally a combination of run-length coding and
adaptive arithmetic encoding. The principle is simple: the volume is divided in cubes of 8x8x8
pixels and each cube is separately DCT-transformed; as it is the case for a classical JPEG-
coder. The DCT-coefficients are then uniformly quantized as a consequence of the
application of a scaling factor, called the quality factor. Next, the quantized DCT-coefficients
are scanned using a 3D space-filling curve, i.e. a 3D instantiation of the 2D Morton-curve
[Mor66], to allow for the grouping of zero-valued coefficient and hence to improve the
performance of the run-length coding. We opted for this curve due to its simplicity compared
to that of 3D zig-zag curves [Lee97]. The non-zero coefficients are encoded using the same
classification system as for JPEG. The coefficient values are grouped in 16 main magnitude
classes (ranges), which are subsequently encoded with an arithmetic encoder [Wit87].
Finally, the remaining bits to refine the coefficients within one range are added without further
entropy coding.

Experiments

In the experiments the coders are evaluated making use of five medical data sets:
one reconstructed ultrasound sequence, one PET volume, two CT scans and one MRI scan
(see Table 27).

Table 27 – Medical test data sets

Name Size
(WxHxD)

Bit-range
(bpp)

Resolution
(wxhxd in
mm)

Imaging
Device Details

US 256x256x256 8 1 x 1 x 1 Ultrasound Prostate
PET 128x128x128 15 1 x 1 x 1 PET Brain

CT 1 # 512x512x100 12 1 x 1 x 1 CT
Axial scan of female
cadaver brain (slice 100-
199 of the HVP set)

CT 2 ## 512x512x44 12 0.66 x 0.66
x 5-10 CT Helical scan of normal

chest and mediastinum

MRI ## 256x256x200 12 0.86 x 0.86
x 0.80 MRI

T1 weighted field echo
3D volume scan of
normal brain

Visible Human Project data set (http://www.nlm.nih.gov/research/visible/), ## DICOM test set

Lossless coding performance was evaluated for the Cube-Splitting, the 3D SPIHT
and the 3D JPEG2000 methodologies. We did not include the 3D JPEG coder in the test due

Volumetric data compression based on Xavier GirÓ i Nieto
Cube-Splitting and Embedded Block
Coding by Optimized Truncation

 93

to the lossy character of its DCT front-end. For all the tests performed for lossless coding (as
well as for lossy coding), we applied a 4-level wavelet transform (instead of a 5-level one) in
all spatial directions on the PET and the CT 2 images, since both images have a limited size
in the direction of the z-axis. Hence, we preferred to reduce in that case also the amount of
the decompositions in the x- and y-directions to avoid the destruction of the correlations within
the spatial orientation trees of the 3D SPIHT coder, due to the unbalanced character of the
latter. It is evident that the Cube-Splitting and the 3D JPEG2000 coders are not limited by
such drawbacks, but to ensure a fair comparison, we applied the same restriction for them
too. The other images, US, CT1 and MRI, were processed with a 5-level wavelet transform.
Table 28 displays the lossless coding results. Out of this table we generated two extra tables
to enable an easier evaluation. Table 29 shows for each test volume and for each coding
technique, the increase of the bit-rate in terms of percentage for the utilized wavelet kernel
compared to the optimal kernel. Although it is clear that the results are data and filter kernel
dependent, it is possible to draw some general conclusions. In order of performance, we can
state that the 13x11, 9x7, 5x11, 13x7 and S+P give the best results, closely followed by a
second group, i.e. the 5x3 and 9x3 kernels. Only the S-kernel was performing poorly. From
Table 30 showing for each test volume and for each wavelet kernel, the increase of the bit-
rate in terms of percentage for the applied coding technique in comparison to the optimal
coder, we can conclude that the 3D JPEG2000 is always outperforming the Cube-Splitting
coder and the 3D SPIHT coding engine. While the Cube-Splitting technique is usually
compared to 3D SPIHT, although we have to note too that the differences are rather small.

For lossy coding the story becomes more complicated. In this evaluation also the 3D
JPEG coder is included, and similar tables are generated (see Table 31-48). However, the
latter are now made up for PSNR measurements at six different bit-rates: 2, 1, 0.5, 0.25,
0.125 and 0.0625 bits-per-pixel (bpp). At low bit-rates we notice that especially the 9x3, 5x11,
9x7 and 5x3 kernels are performing well, closely followed by the 13x7 and 13x11 kernels. At
higher bit-rates the latter are moving towards the other ones, which is logic since they were
among the best filters for lossless coding. Notice also that the 5x11 kernel seems to be the
most stable one, delivering an excellent performance over the complete lossy-to-lossless
range. These results coincide largely with the outcome of [Bil99, Ada00]. Concerning the
performance of the three coders we observe at high bit-rates (1-2 bpp) the best performance
for the 3D JPEG encoder, followed by the 3D JPEG2000, 3D SPIHT and the Cube-Splitting
coder. At intermediate bit-rates (0.5 – 0.25 bpp) the performance of the 3D JPEG coder is
decreasing fast, and 3D SPIHT, together with 3D JPEG2000, are taking over the lead. And
finally, figures for the lowest bit-rates (0.125 – 0.0625 bpp) illustrate a tendency slightly in the
advantage of the 3D JPEG2000 and Cube-Splitting coders. Figure and

Figure illustrate the visual performance of the different techniques, while using a 4-
level decomposition with a 9x3 kernel, at three different bit-rates. Although, it is difficult to
distinguish the difference in performance between the Cube-Splitting and the 3D SPIHT
wavelet coders, the 3D JPEG2000 images depict less blurring and sharper edges at lower bit-
rates. The poorer performance of the 3D JPEG coder is clear at high compression rates.

Acknowledgements

This research was funded by the Institute for the Promotion of Innovation by Science and
Technology in Flanders, Belgium (IWT) within the Information Technology Action II
Programme (project: “Image Processing for Integrated and Immersive Visualization”; Project
number: IWT-980302).
The authors would also like to thank William Pearlman for his support in relation to the 3D
SPIHT coder.

References

[Ada00] M.D. Adams, F. Kossentini, “Reversible integer-to-integer wavelet transforms for
image compression: performance evaluation and analysis”, IEEE Trans. on Image
Processing, Vol. 9, No.6, pp.1010-1024, June 2000.
[Ade87] E.H. Adelson, E. Simoncelli, R. Hingorani, “Orthogonal pyramid transforms for image
coding”, Proc. SPIE Visual Communications and Image Processing II, Vol. 845, pp.50-58,
1987.

Volumetric data compression based on Xavier GirÓ i Nieto
Cube-Splitting and Embedded Block
Coding by Optimized Truncation

 94

[Bil00] A. Bilgin, G. Zweig, M.W. Marcelin, “Three-dimensional compression with integer
wavelet transforms”, Applied Optics, Vol. 39, No. 11, pp.1799-1814, April 2000.
[Cal98] A.R. Calderbank, I. Daubechies, W. Sweldens, B.-L. Yeo, “Wavelet transforms that
map integers to integers”, J. Appl. Computa. Harmonics Anal., Vol. 5, pp.332-369, 1998.
[Dew97] S. Dewitte, J. Cornelis, “Lossless integer wavelet transform”, IEEE Signal
Processing Letters, Vol. 4, No.6, pp.158-160, June 1997.
[Jpg00] “JPEG2000 Verification Model VM7 – Technical Description”, ISO/IEC
JTC1/SC29/WG1, WG1N1684, April 2000.
[Kim00] Y.S. Kim, W.A. Pearlman, "Stripe-Based SPIHT Lossy Compression of Volumetric
Medical Images for Low Memory Usage and Uniform Reconstruction Quality," Proc. of IEEE
Int. Conf. on Acoustics, Speech and Signal Processing (ICASSP 2000), Istanbul, Turkey,
June 2000.
[Kim98] B.-J. Kim, W.A. Pearlman, “Low-delay embedded 3-D wavelet color video coding with
SPIHT”, Proc. SPIE, Vol. 3309, pp. 955-964, 1998.
[Kim99] Y. Kim, W.A. Pearlman, “Lossless volumetric medical image compression”, Proc.
SPIE Conference on Applications of Digital Image Processing XXII, Vol.3808, pp. 305-312,
July 1999.
[Lee98] M.C. Lee, R.K.W. Chan, D.A. Adjeroh, “Quantization of 3D-DCT coefficients and scan
order for video compression”, Journal of Visual Communications and Image Representation,
Vol. 8, No.4, pp.405-422, 1997.
[Mor66] G.M. Morton, "A computer oriented geodetic data base and a new technique in file
sequencing", IBM Ltd., Ottawa, Canada, 1966.
[Mun99] A. Munteanu, J. Cornelis, G. Van der Auwera, P. Cristea, “Wavelet-based
lossless compression scheme with progressive transmission capability”, International Journal
of Imaging Systems and Technology, Vol. 10, No. 1, pp. 76-85, January 1999.
[Sai96a] A. Said, W. Pearlman, “An image multiresolution representation for lossless
and lossy compression”, IEEE Trans. on Image Processing, Vol. 5, pp.1303-1310, 1996.
[Sai96b] A. Said and W. Pearlman, “ A new fast and efficient image codec based on
set partitioning in hierarchical trees”, IEEE Trans. on Circuits and Systems, Vol.6, pp. 243-
250, March 1996.
[Sch00a] P. Schelkens, J.Barbarien, J. Cornelis, “Volumetric data compression based
on cube-splitting”, Proc. of 21st Symposium on Information Technology in the Benelux, Vol.21,
pp.93-100, May 2000.
[Sch00b] P. Schelkens, J. Barbarien, J. Cornelis, “Compression of Volumetric Medical
Data based on cube-splitting”, Proc. SPIE Conference on Applications of Digital Image
Processing XXIII, Vol.4115, July 2000.
[Wit87] I.H. Witten, R.M. Neal, J.G. Cleary, “Arithmetic coding for data compression”,
Communications of the ACM, Vol. 30, No.6, pp. 520-540, June 1987.
[Xio98] Z. Xiong, K. Ramchandran, M.T. Orchard, “Wavelet packet image coding using
space-frequency quantization”, IEEE Trans. on Image Processing, Vol. 7, pp. 892-898, June
1998.
[Xio99] Z. Xiong, X. Wu, D.Y. Yun, W.A. Pearlman, “Progressive coding of medical volumetric
data using three-dimensional integer wavelet packet transform”, Proc. SPIE Conference on
Visual Communications, Vol. 3653, pp. 327-335, January 1999.

Volumetric data compression based on Xavier GirÓ i Nieto
Cube-Splitting and Embedded Block
Coding by Optimized Truncation

 95

Table 28 – Lossless compression results for a 4-level (PET, CT2) and a 5-level (US, CT1,
MRI) wavelet decomposition.

US PET CT 1 CT 2 MRI US PET CT 1 CT 2 MRI US PET CT 1 CT 2 MRI
5x3 3.7649 8.7558 3.8612 5.0331 4.0296 3.7735 9.1558 3.9286 5.1951 4.0529 3.7169 8.6112 3.8063 4.9805 3.9548
S 4.1916 9.7236 4.4230 5.4135 4.5652 4.1789 9.8688 4.3971 5.3699 4.5358 4.0953 9.5620 4.3272 5.3093 4.4538
9x7 3.7096 8.3188 3.7137 5.0169 3.8757 3.7182 8.9805 3.8087 5.2796 3.9080 3.6560 8.1576 3.6478 4.9549 3.7757
9x3 3.7886 8.7929 3.8955 5.0648 4.0587 3.8031 9.3013 3.9786 5.2716 4.0885 3.7406 8.6487 3.8417 5.0117 3.9827
13x11 3.7097 8.9191 3.7889 5.3491 3.8622 3.7204 8.1429 3.6813 5.3491 3.8265 3.6571 7.9653 3.6119 4.9708 3.7180
5x11 3.7163 8.2948 3.7226 5.0170 3.8819 3.7296 8.9656 3.8285 5.3065 3.9181 3.6671 8.1310 3.6589 4.9569 3.7903
2x6 3.8354 9.2927 4.0455 5.3063 4.1605 3.8429 8.8791 3.9829 5.3063 4.1412 3.7691 8.7031 3.8897 5.0642 4.0210
S+P 3.7283 8.9292 3.8343 5.1845 3.9238 3.7376 8.5193 3.7663 5.1845 3.8955 3.6835 8.3526 3.7102 4.9619 3.8275
13x7 3.7138 8.3391 3.7337 5.0323 3.8989 3.7253 9.0940 3.8420 5.3468 3.9380 3.6593 8.1788 3.6649 4.9688 3.7953

3D JPEG2000
Lossless Coding Results (in bpp)

3D Cube -Splitting 3D SPIHT

Table 29 – Best performing transform per coding technique and per test image for lossless
coding for a 4-level (PET, CT2) and a 5-level (US, CT1, MRI) wavelet decomposition. The
figures depict the deviation in percent from the optimal transform.

US PET CT 1 CT 2 MRI US PET CT 1 CT 2 MRI US PET CT 1 CT 2 MRI AV
5x3 1.49 5.56 3.97 0.32 4.33 1.49 12.44 6.72 0.20 5.92 1.67 8.11 5.38 0.52 6.37 4.30
S 12.99 17.23 19.10 7.90 18.20 12.39 21.19 19.44 3.58 18.54 12.02 20.05 19.80 7.15 19.79 15.29
9x7 0.00 0.29 0.00 0.00 0.35 0.00 10.29 3.46 1.83 2.13 0.00 2.41 1.00 0.00 1.55 1.55
9x3 2.13 6.01 4.89 0.95 5.09 2.28 14.22 8.08 1.68 6.85 2.31 8.58 6.36 1.15 7.12 5.18
13x11 0.00 7.53 2.02 6.62 0.00 0.06 0.00 0.00 3.18 0.00 0.03 0.00 0.00 0.32 0.00 1.32
5x11 0.18 0.00 0.24 0.00 0.51 0.30 10.10 4.00 2.35 2.40 0.30 2.08 1.30 0.04 1.94 1.72
2x6 3.39 12.03 8.93 5.77 7.72 3.35 9.04 8.19 2.35 8.23 3.09 9.26 7.69 2.21 8.15 6.63
S+P 0.50 7.65 3.25 3.34 1.59 0.52 4.62 2.31 0.00 1.80 0.75 4.86 2.72 0.14 2.94 2.47
13x7 0.11 0.53 0.54 0.31 0.95 0.19 11.68 4.37 3.13 2.91 0.09 2.68 1.47 0.28 2.08 2.09

3D JPEG2000
Best Transform per Coding Technique (in %)

3D Cube -Splitting 3D SPIHT

Table 30 - Best performing coding technique per transform and per test image for lossless
coding for a 4-level (PET, CT2) and a 5-level (US, CT1, MRI) wavelet decomposition. The
figures depict the deviation in percent from the optimal coding technique.

US PET CT 1 CT 2 MRI US PET CT 1 CT 2 MRI US PET CT 1 CT 2 MRI
5x3 1.29 1.68 1.44 1.06 1.89 1.52 6.32 3.21 4.31 2.48 0.00 0.00 0.00 0.00 0.00
S 2.35 1.69 2.22 1.96 2.50 2.04 3.21 1.62 1.14 1.84 0.00 0.00 0.00 0.00 0.00
9x7 1.47 1.98 1.81 1.25 2.65 1.70 10.09 4.41 6.55 3.50 0.00 0.00 0.00 0.00 0.00
9x3 1.28 1.67 1.40 1.06 1.91 1.67 7.55 3.56 5.19 2.66 0.00 0.00 0.00 0.00 0.00
13x11 1.44 11.97 4.90 7.61 3.88 1.73 2.23 1.92 7.61 2.92 0.00 0.00 0.00 0.00 0.00
5x11 1.34 2.01 1.74 1.21 2.42 1.70 10.26 4.63 7.05 3.37 0.00 0.00 0.00 0.00 0.00
2x6 1.76 6.77 4.01 4.78 3.47 1.96 2.02 2.40 4.78 2.99 0.00 0.00 0.00 0.00 0.00
S+P 1.22 6.90 3.35 4.49 2.52 1.47 2.00 1.51 4.49 1.78 0.00 0.00 0.00 0.00 0.00
13x7 1.49 1.96 1.88 1.28 2.73 1.81 11.19 4.83 7.61 3.76 0.00 0.00 0.00 0.00 0.00
AV 1.52 4.07 2.53 2.74 2.66 1.73 6.10 3.12 5.41 2.81 0.00 0.00 0.00 0.00 0.00

3D JPEG2000
Best Coding Technique per Transform (in %)

3D Cube -Splitting 3D SPIHT

Volumetric data compression based on Xavier GirÓ i Nieto
Cube-Splitting and Embedded Block
Coding by Optimized Truncation

 96

(a) Cube-Splitting

Bit-rate=2bpp – PSNR=56.47dB

(b) 3D SPIHT

Bit-rate=2bpp – PSNR=57.22dB

(c) 3D JPEG2000

Bit-rate=2bpp – PSNR=56.40dB

(d) Cube-Splitting

Bit-rate=0.25 bpp –
PSNR=42.65dB

(e) 3D SPIHT

Bit-rate=0.25bpp –
PSNR=43.29dB

(f) 3D JPEG2000
Bit-rate=0.25bpp –

PSNR=43.07dB

(g) Cube-Splitting

Bit-rate=0.0625bpp –
PSNR=34.45dB

(h) 3D SPIHT

Bit-rate=0.0625bpp –
PSNR=34.14dB

(i) 3D JPEG2000
Bit-rate=0.0625bpp –

PSNR=34.54dB

Figure 46 – Visual compression results for CT 2. The results were obtained with a 9x3 filter
kernel and 4 levels of wavelet decomposition. The greyscale values in the interval [910,1604]
are visualized.

Volumetric data compression based on Xavier GirÓ i Nieto
Cube-Splitting and Embedded Block
Coding by Optimized Truncation

 97

(c) 3D JPEG2000

Bit-rate=2bpp
PSNR=56.40dB

(d) 3D JPEG
Bit-rate=2bpp

PSNR=56.74dB

(f) 3D JPEG2000
Bit-rate=0.25bpp
PSNR=43.07dB

(e) 3D JPEG

Bit-rate=0.25bpp
PSNR=40.55dB

(i) 3D JPEG2000

Bit-rate=0.0625bpp
PSNR=34.54dB

(f) 3D JPEG

Bit-rate=0.0625bpp
PSNR=30.85dB

Figure 47 – Visual compression results for CT 2. The results for 3D JPEG2000 were
obtained with a 9x3 filter kernel and 4 levels of wavelet decomposition. The greyscale values
in the interval [910,1604] are visualized.

Volumetric data compression based on Xavier GirÓ i Nieto
Cube-Splitting and Embedded Block
Coding by Optimized Truncation

 98

Table 31 - Lossy compression results (2 bpp) for a 4-level (PET, CT2) and a 5-level (US,
CT1, MRI) wavelet decomposition

US PET CT 1 CT 2 MRI US PET CT 1 CT 2 MRI US PET CT 1 CT 2 MRI
5x3 39.71 56.91 63.95 56.40 63.10 40.78 57.96 64.80 57.38 64.26 40.32 56.53 65.57 56.36 63.66
S 35.83 48.96 57.41 50.64 56.78 36.38 48.38 59.53 51.87 58.18 35.43 50.00 60.98 52.99 56.81
9x7 38.99 57.65 62.60 55.88 62.63 40.40 58.45 64.06 56.47 64.15 39.46 57.39 66.35 56.37 63.97
9x3 39.84 56.94 63.94 56.47 63.39 40.87 57.97 64.33 57.22 64.31 40.63 56.52 65.62 56.40 63.88
13x11 38.54 57.26 62.47 55.44 62.29 39.83 58.29 63.63 56.01 63.73 38.96 57.60 66.57 56.38 63.86
5x11 39.90 58.36 63.01 56.40 63.18 40.99 59.36 64.55 57.09 64.68 40.17 57.97 66.43 56.51 64.48
2x6 35.47 54.30 60.72 53.30 60.71 36.86 54.17 60.78 53.94 61.06 37.34 53.64 64.26 54.96 59.65
S+P 35.41 54.49 60.28 53.93 60.55 36.80 54.24 61.43 53.93 61.53 37.15 55.91 65.34 54.59 62.26
13x7 39.18 57.76 62.22 56.09 62.93 40.29 58.34 64.06 56.63 64.09 39.58 57.43 66.43 56.41 64.13
3D JPEG 43.26 58.46 65.49 56.74 65.51

3D JPEG2000
Lossy Coding Results for 2bpp (in dB)

3D Cube -Splitting 3D SPIHT

Table 32 - Lossy compression results (1 bpp) for a 4-level (PET, CT2) and a 5-level (US,
CT1, MRI) wavelet decomposition

US PET CT 1 CT 2 MRI US PET CT 1 CT 2 MRI US PET CT 1 CT 2 MRI
5x3 34.77 49.65 57.96 50.93 57.49 36.80 50.31 58.49 51.55 58.21 35.81 49.55 58.90 50.28 58.35
S 29.84 43.23 50.88 45.12 50.82 29.92 42.74 52.56 46.17 51.61 30.58 45.31 53.86 46.48 50.41
9x7 35.55 49.74 57.11 50.31 57.02 35.99 49.79 58.44 50.79 57.80 34.95 50.44 60.03 50.05 58.51
9x3 34.91 49.74 58.20 51.04 57.64 36.74 50.28 58.58 51.63 58.42 35.87 49.81 59.11 50.24 58.13
13x11 35.22 49.66 56.80 49.92 56.74 35.47 49.48 58.20 50.36 57.80 34.46 50.39 60.27 49.92 58.55
5x11 35.91 50.37 58.14 50.83 57.90 36.62 50.71 59.07 51.33 58.54 35.48 50.34 60.04 50.25 58.82
2x6 30.49 47.56 55.42 48.48 55.14 32.41 46.79 55.47 48.65 55.38 32.05 46.65 56.95 48.20 53.61
S+P 30.11 47.60 55.11 48.59 55.03 32.57 46.79 55.82 48.45 55.30 31.80 47.24 58.91 48.23 54.02
13x7 35.73 49.93 57.68 50.49 57.49 35.97 49.95 58.69 50.96 58.02 34.72 50.43 60.18 49.97 58.09
3D JPEG 37.02 50.24 57.94 50.26 58.49

3D JPEG2000
Lossy Coding Results for 1bpp (in dB)

3D Cube -Splitting 3D SPIHT

Table 33 - Lossy compression results (0.5 bpp) for a 4-level (PET, CT2) and a 5-level (US,
CT1, MRI) wavelet decomposition

US PET CT 1 CT 2 MRI US PET CT 1 CT 2 MRI US PET CT 1 CT 2 MRI
5x3 32.33 44.84 52.78 46.75 52.77 32.53 45.11 53.62 47.32 53.32 31.60 45.43 53.93 46.89 53.44
S 25.50 41.29 46.05 40.93 45.67 27.54 40.93 47.08 43.65 48.00 27.22 41.33 48.41 42.23 44.28
9x7 31.39 44.39 52.26 45.95 52.28 31.21 44.36 53.48 46.39 53.31 30.89 46.03 54.79 46.38 54.27
9x3 32.64 45.06 53.12 46.86 53.06 32.82 45.24 53.63 47.37 53.74 31.62 45.56 54.16 46.75 53.66
13x11 30.99 43.99 52.49 45.52 51.75 30.74 43.94 53.05 45.89 52.83 30.60 46.24 54.91 46.27 54.50
5x11 32.29 44.99 52.98 46.53 52.95 32.41 45.14 54.16 47.01 54.18 31.28 46.10 54.59 46.59 53.80
2x6 29.43 42.64 50.12 44.46 50.08 29.04 41.91 50.27 44.39 49.87 28.31 43.93 51.92 44.37 48.90
S+P 29.09 42.32 49.83 44.02 49.56 28.69 41.90 51.07 43.95 50.11 28.22 44.94 53.70 44.09 51.47
13x7 31.78 44.70 52.41 46.07 52.32 31.59 44.62 53.50 46.50 53.35 30.52 46.38 54.82 46.44 53.56
3D JPEG 32.58 44.62 52.05 45.82 52.73

3D JPEG2000
Lossy Coding Results for 0.5 bpp (in dB)

3D Cube -Splitting 3D SPIHT

Table 34 - Lossy compression results (0.25 bpp) for a 4-level (PET, CT2) and a 5-level (US,
CT1, MRI) wavelet decomposition

Volumetric data compression based on Xavier GirÓ i Nieto
Cube-Splitting and Embedded Block
Coding by Optimized Truncation

 99

US PET CT 1 CT 2 MRI US PET CT 1 CT 2 MRI US PET CT 1 CT 2 MRI
5x3 28.06 42.53 48.11 42.51 48.34 28.26 42.95 48.41 43.10 49.11 27.61 42.67 49.76 43.08 49.47
S 24.71 37.30 40.27 38.89 44.36 24.43 37.46 40.29 39.49 43.79 24.42 39.37 39.73 37.69 39.95
9x7 26.65 42.55 47.77 41.55 50.15 28.54 42.74 48.70 41.93 50.44 26.90 42.94 50.51 42.66 49.41
9x3 28.38 41.04 48.23 42.65 48.51 28.47 43.00 48.50 43.29 49.58 27.56 42.77 49.21 43.07 49.77
13x11 26.20 42.45 48.04 41.05 50.10 28.09 42.44 48.88 41.43 50.29 26.56 43.45 50.31 42.40 50.68
5x11 27.75 42.82 48.32 42.31 48.71 28.03 43.08 49.49 42.69 51.03 27.16 43.03 50.49 42.95 49.97
2x6 25.03 41.15 45.12 39.95 45.06 24.89 40.28 44.73 39.59 47.45 26.35 42.11 46.86 40.15 43.54
S+P 24.63 41.41 45.54 39.50 48.66 26.35 40.66 45.70 39.25 48.28 25.95 42.54 47.10 40.08 46.72
13x7 27.07 42.78 47.42 41.68 49.51 27.91 42.85 48.48 42.14 50.54 26.65 43.24 50.33 42.61 49.53
3D JPEG 28.58 41.10 45.68 40.55 48.18

3D JPEG20003D Cube -Splitting 3D SPIHT
Lossy Coding Results for 0.25 bpp (in dB)

Table 35 - Lossy compression results (0.125 bpp) for a 4-level (PET, CT2) and a 5-level (US,
CT1, MRI) wavelet decomposition

US PET CT 1 CT 2 MRI US PET CT 1 CT 2 MRI US PET CT 1 CT 2 MRI
5x3 27.38 39.83 43.17 37.96 46.85 27.02 39.88 43.12 38.59 47.00 25.90 40.38 45.44 39.02 46.83
S 24.28 36.74 34.10 34.83 40.02 23.89 36.95 34.99 34.91 37.27 23.62 36.15 32.86 33.31 39.02
9x7 26.25 39.17 42.59 37.61 46.38 25.85 38.96 43.29 37.84 46.00 25.18 41.25 46.16 38.40 47.28
9x3 27.63 40.10 43.26 38.19 46.89 27.34 40.11 43.27 38.67 47.16 25.82 40.81 45.44 39.09 45.85
13x11 25.85 38.83 42.55 37.14 45.94 25.40 38.52 43.60 37.34 45.59 24.69 41.34 46.22 38.14 47.19
5x11 27.18 39.78 43.25 37.70 47.02 26.79 39.78 44.20 38.67 47.14 25.62 40.91 46.40 38.90 47.11
2x6 24.79 37.41 39.55 35.08 44.19 24.19 37.32 39.49 34.49 43.54 23.42 40.21 41.56 36.03 42.25
S+P 24.49 37.22 40.02 35.68 43.67 23.98 39.17 40.53 34.42 43.17 23.22 40.65 41.51 35.81 42.33
13x7 26.63 39.28 42.13 37.70 46.44 26.27 39.22 43.22 38.14 46.21 25.14 40.99 46.37 38.25 44.95
3D JPEG 23.60 38.63 39.51 35.88 44.72

3D JPEG2000
Lossy Coding Results for 0.125 bpp (in dB)

3D Cube -Splitting 3D SPIHT

Table 36 - Lossy compression results (0.0625 bpp) for a 4-level (PET, CT2) and a 5-level
(US, CT1, MRI) wavelet decomposition

US PET CT 1 CT 2 MRI US PET CT 1 CT 2 MRI US PET CT 1 CT 2 MRI
5x3 23.91 38.84 36.86 34.34 43.06 25.85 39.09 38.26 34.49 41.59 22.06 38.86 41.14 34.50 43.76
S 21.12 32.90 29.80 30.71 39.52 20.60 35.03 30.29 29.32 36.95 20.47 35.62 28.58 28.24 35.36
9x7 25.29 38.49 36.24 35.27 42.23 25.02 38.29 38.22 32.95 39.98 24.70 39.06 41.59 33.90 44.05
9x3 23.77 38.99 37.05 34.45 43.25 25.87 39.12 38.21 34.14 41.91 21.95 39.18 41.28 34.54 43.95
13x11 25.07 38.20 35.94 34.98 41.69 24.60 37.90 38.67 32.40 42.89 24.27 39.04 39.56 33.72 43.92
5x11 23.59 38.80 36.74 35.81 43.00 25.66 38.95 38.87 33.83 41.38 21.53 39.41 41.67 34.43 43.99
2x6 24.26 37.18 33.77 33.67 39.76 23.65 36.97 34.18 32.08 37.31 22.95 38.32 36.83 31.85 38.58
S+P 24.20 37.06 38.00 33.60 42.69 23.49 36.83 37.29 28.79 42.23 22.73 38.45 36.66 32.19 38.64
13x7 25.50 38.53 36.52 35.35 42.32 25.36 38.56 37.70 32.89 40.45 24.67 39.44 41.30 33.72 40.74
3D JPEG 15.53 36.42 33.54 30.85 41.73

3D JPEG2000
Lossy Coding Results for 0.0625 bpp (in dB)

3D Cube -Splitting 3D SPIHT

Table 37 - Best performing transform per coding technique and per test image for lossy
coding (2 bpp) for a 4-level (PET, CT2) and a 5-level (US, CT1, MRI) wavelet decomposition.
The figures depict the deviation in percent from the optimal transform.

US PET CT 1 CT 2 MRI US PET CT 1 CT 2 MRI US PET CT 1 CT 2 MRI AV
5x3 -0.47 -2.49 0.00 -0.14 -0.46 -0.52 -2.36 0.00 0.00 -0.65 -0.76 -2.48 -1.51 -0.27 -1.27 -0.89
S -10.19 -16.11 -10.24 -10.34 -10.44 -11.27 -18.49 -8.14 -9.60 -10.05 -12.80 -13.75 -8.40 -6.23 -11.89 -11.20
9x7 -2.27 -1.21 -2.12 -1.05 -1.21 -1.46 -1.54 -1.14 -1.58 -0.82 -2.89 -1.01 -0.33 -0.24 -0.79 -1.31
9x3 -0.13 -2.43 -0.02 0.00 0.00 -0.30 -2.33 -0.74 -0.27 -0.57 0.00 -2.50 -1.43 -0.19 -0.93 -0.79
13x11 -3.40 -1.89 -2.31 -1.84 -1.74 -2.84 -1.80 -1.81 -2.38 -1.47 -4.12 -0.65 0.00 -0.23 -0.96 -1.83
5x11 0.00 0.00 -1.48 -0.13 -0.34 0.00 0.00 -0.39 -0.51 0.00 -1.15 0.00 -0.21 0.00 0.00 -0.28
2x6 -11.08 -6.97 -5.06 -5.63 -4.24 -10.08 -8.74 -6.21 -5.99 -5.59 -8.09 -7.47 -3.48 -2.73 -7.50 -6.59
S+P -11.23 -6.64 -5.74 -4.51 -4.48 -10.22 -8.63 -5.21 -6.01 -4.86 -8.56 -3.56 -1.84 -3.40 -3.44 -5.89
13x7 -1.80 -1.03 -2.72 -0.67 -0.73 -1.72 -1.72 -1.15 -1.30 -0.91 -2.59 -0.93 -0.21 -0.17 -0.55 -1.22

Lossy Coding Results for 2bpp (in %)
3D Cube -Splitting 3D SPIHT 3D JPEG2000

Volumetric data compression based on Xavier GirÓ i Nieto
Cube-Splitting and Embedded Block
Coding by Optimized Truncation

 100

Table 38 - Best performing transform per coding technique and per test image for lossy
coding (1 bpp) for a 4-level (PET, CT2) and a 5-level (US, CT1, MRI) wavelet decomposition.
The figures depict the deviation in percent from the optimal transform.

US PET CT 1 CT 2 MRI US PET CT 1 CT 2 MRI US PET CT 1 CT 2 MRI AV
5x3 -3.19 -1.43 -0.40 -0.21 -0.70 0.00 -0.79 -0.98 -0.15 -0.56 -0.18 -1.77 -2.27 0.00 -0.80 -0.89
S -16.91 -14.18 -12.58 -11.59 -12.21 -18.69 -15.72 -11.01 -10.58 -11.83 -14.76 -10.17 -10.62 -7.55 -14.30 -12.85
9x7 -1.02 -1.24 -1.87 -1.42 -1.51 -2.20 -1.81 -1.05 -1.63 -1.27 -2.56 0.00 -0.40 -0.45 -0.53 -1.26
9x3 -2.78 -1.24 0.00 0.00 -0.44 -0.16 -0.84 -0.83 0.00 -0.20 0.00 -1.26 -1.92 -0.08 -1.18 -0.73
13x11 -1.94 -1.41 -2.40 -2.19 -2.00 -3.60 -2.43 -1.47 -2.46 -1.26 -3.93 -0.10 0.00 -0.72 -0.47 -1.76
5x11 0.00 0.00 -0.10 -0.42 0.00 -0.49 0.00 0.00 -0.58 0.00 -1.07 -0.21 -0.37 -0.05 0.00 -0.22
2x6 -15.11 -5.58 -4.77 -5.01 -4.76 -11.91 -7.73 -6.09 -5.77 -5.40 -10.65 -7.51 -5.51 -4.14 -8.86 -7.25
S+P -16.17 -5.50 -5.31 -4.79 -4.95 -11.50 -7.73 -5.49 -6.16 -5.54 -11.34 -6.36 -2.26 -4.07 -8.16 -7.02
13x7 -0.52 -0.87 -0.89 -1.08 -0.71 -2.25 -1.50 -0.64 -1.29 -0.89 -3.19 -0.03 -0.14 -0.62 -1.24 -1.06

Lossy Coding Results for 1bpp (in %)
3D Cube -Splitting 3D SPIHT 3D JPEG2000

Table 39 - Best performing transform per coding technique and per test image for lossy
coding (0.5 bpp) for a 4-level (PET, CT2) and a 5-level (US, CT1, MRI) wavelet
decomposition. The figures depict the deviation in percent from the optimal transform.

US PET CT 1 CT 2 MRI US PET CT 1 CT 2 MRI US PET CT 1 CT 2 MRI AV
5x3 -0.94 -0.48 -0.64 -0.24 -0.55 -0.87 -0.28 -1.00 -0.11 -1.59 -0.07 -2.04 -1.80 0.00 -1.95 -0.84
S -21.86 -8.37 -13.32 -12.64 -13.92 -16.10 -9.53 -13.07 -7.85 -11.40 -13.91 -10.89 -11.84 -9.94 -18.76 -12.89
9x7 -3.81 -1.49 -1.63 -1.94 -1.47 -4.89 -1.94 -1.25 -2.08 -1.61 -2.32 -0.74 -0.23 -1.09 -0.43 -1.80
9x3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.98 0.00 -0.80 0.00 -1.76 -1.38 -0.30 -1.55 -0.45
13x11 -5.04 -2.38 -1.20 -2.85 -2.46 -6.35 -2.86 -2.05 -3.12 -2.49 -3.22 -0.29 0.00 -1.33 0.00 -2.38
5x11 -1.06 -0.16 -0.26 -0.70 -0.20 -1.24 -0.21 0.00 -0.76 0.00 -1.07 -0.59 -0.59 -0.66 -1.29 -0.59
2x6 -9.83 -5.36 -5.66 -5.11 -5.62 -11.53 -7.35 -7.19 -6.30 -7.96 -10.48 -5.28 -5.45 -5.38 -10.29 -7.25
S+P -10.88 -6.08 -6.20 -6.06 -6.59 -12.57 -7.38 -5.71 -7.23 -7.51 -10.75 -3.10 -2.20 -5.99 -5.56 -6.92
13x7 -2.63 -0.81 -1.35 -1.67 -1.38 -3.75 -1.37 -1.22 -1.84 -1.52 -3.47 0.00 -0.18 -0.98 -1.72 -1.59

Lossy Coding Results for 0.5 bpp (in %)
3D Cube -Splitting 3D SPIHT 3D JPEG2000

Table 40 - Best performing transform per coding technique and per test image for lossy
coding (0.25 bpp) for a 4-level (PET, CT2) and a 5-level (US, CT1, MRI) wavelet
decomposition. The figures depict the deviation in percent from the optimal transform.

US PET CT 1 CT 2 MRI US PET CT 1 CT 2 MRI US PET CT 1 CT 2 MRI AV
5x3 -1.12 -0.67 -0.44 -0.33 -3.62 -0.97 -0.32 -2.19 -0.43 -3.75 0.00 -1.79 -1.49 0.00 -2.38 -1.30
S -12.92 -12.89 -16.66 -8.81 -11.55 -14.40 -13.06 -18.59 -8.78 -14.19 -11.57 -9.39 -21.34 -12.51 -21.17 -13.86
9x7 -6.07 -0.62 -1.15 -2.59 0.00 0.00 -0.80 -1.61 -3.15 -1.16 -2.59 -1.16 0.00 -0.99 -2.50 -1.63
9x3 0.00 -4.14 -0.19 0.00 -3.28 -0.26 -0.19 -2.01 0.00 -2.84 -0.18 -1.56 -2.58 -0.03 -1.80 -1.27
13x11 -7.65 -0.86 -0.59 -3.74 -0.12 -1.56 -1.49 -1.25 -4.30 -1.44 -3.82 0.00 -0.40 -1.58 0.00 -1.92
5x11 -2.19 0.00 0.00 -0.80 -2.87 -1.80 0.00 0.00 -1.39 0.00 -1.63 -0.96 -0.06 -0.31 -1.38 -0.89
2x6 -11.78 -3.90 -6.64 -6.32 -10.15 -12.78 -6.50 -9.61 -8.54 -7.01 -4.56 -3.08 -7.24 -6.81 -14.09 -7.93
S+P -13.20 -3.29 -5.76 -7.38 -2.99 -7.66 -5.62 -7.66 -9.33 -5.39 -6.04 -2.08 -6.77 -6.98 -7.80 -6.53
13x7 -4.62 -0.08 -1.87 -2.28 -1.28 -2.21 -0.54 -2.06 -2.65 -0.95 -3.48 -0.48 -0.36 -1.09 -2.26 -1.75

3D JPEG20003D Cube -Splitting 3D SPIHT
Lossy Coding Results for 0.25 bpp (in %)

Table 41 - Best performing transform per coding technique and per test image for lossy
coding (0.125 bpp) for a 4-level (PET, CT2) and a 5-level (US, CT1, MRI) wavelet
decomposition. The figures depict the deviation in percent from the optimal transform.

Volumetric data compression based on Xavier GirÓ i Nieto
Cube-Splitting and Embedded Block
Coding by Optimized Truncation

 101

US PET CT 1 CT 2 MRI US PET CT 1 CT 2 MRI US PET CT 1 CT 2 MRI AV
5x3 -0.91 -0.68 -0.21 -0.61 -0.37 -1.17 -0.57 -2.43 -0.21 -0.34 0.00 -2.32 -2.07 -0.16 -0.96 -0.87
S -12.15 -8.39 -21.17 -8.80 -14.90 -12.62 -7.89 -20.83 -9.74 -20.96 -8.79 -12.57 -29.19 -14.78 -17.47 -14.68
9x7 -5.02 -2.32 -1.55 -1.54 -1.38 -5.46 -2.86 -2.05 -2.16 -2.46 -2.76 -0.21 -0.51 -1.76 0.00 -2.14
9x3 0.00 0.00 0.00 0.00 -0.28 0.00 0.00 -2.11 -0.01 0.00 -0.30 -1.30 -2.08 0.00 -3.04 -0.61
13x11 -6.44 -3.18 -1.63 -2.74 -2.30 -7.09 -3.96 -1.35 -3.43 -3.33 -4.66 0.00 -0.39 -2.43 -0.19 -2.88
5x11 -1.63 -0.80 -0.04 -1.30 0.00 -2.03 -0.82 0.00 0.00 -0.05 -1.07 -1.04 0.00 -0.48 -0.37 -0.64
2x6 -10.28 -6.73 -8.58 -8.15 -6.02 -11.54 -6.95 -10.66 -10.82 -7.67 -9.56 -2.74 -10.44 -7.83 -10.64 -8.57
S+P -11.36 -7.19 -7.49 -6.58 -7.14 -12.28 -2.34 -8.31 -11.01 -8.46 -10.32 -1.68 -10.53 -8.38 -10.47 -8.24
13x7 -3.62 -2.06 -2.62 -1.29 -1.24 -3.91 -2.22 -2.21 -1.37 -2.02 -2.93 -0.86 -0.07 -2.15 -4.93 -2.23

3D JPEG2000
Lossy Coding Results for 0.125 bpp (in %)

3D Cube -Splitting 3D SPIHT

Table 42 - Best performing transform per coding technique and per test image for lossy
coding (0.0625 bpp) for a 4-level (PET, CT2) and a 5-level (US, CT1, MRI) wavelet
decomposition. The figures depict the deviation in percent from the optimal transform.

US PET CT 1 CT 2 MRI US PET CT 1 CT 2 MRI US PET CT 1 CT 2 MRI AV
5x3 -6.23 -0.40 -2.99 -4.10 -0.44 -0.07 -0.07 -1.58 0.00 -3.02 -10.66 -1.49 -1.28 -0.12 -0.66 -2.21
S -17.17 -15.61 -21.57 -14.25 -8.63 -20.38 -10.45 -22.09 -15.00 -13.83 -17.09 -9.69 -31.41 -18.25 -19.72 -17.01
9x7 -0.85 -1.30 -4.61 -1.52 -2.35 -3.28 -2.13 -1.67 -4.47 -6.78 0.00 -0.96 -0.21 -1.84 0.00 -2.13
9x3 -6.78 0.00 -2.48 -3.80 0.00 0.00 0.00 -1.71 -1.02 -2.28 -11.13 -0.68 -0.95 0.00 -0.22 -2.07
13x11 -1.71 -2.02 -5.41 -2.32 -3.62 -4.91 -3.11 -0.53 -6.07 0.00 -1.72 -1.01 -5.08 -2.38 -0.30 -2.68
5x11 -7.49 -0.49 -3.30 0.00 -0.59 -0.81 -0.43 0.00 -1.93 -3.52 -12.82 -0.09 0.00 -0.32 -0.13 -2.13
2x6 -4.89 -4.66 -11.13 -5.99 -8.07 -8.58 -5.49 -12.08 -6.99 -13.00 -7.05 -2.86 -11.61 -7.79 -12.42 -8.17
S+P -5.09 -4.96 0.00 -6.17 -1.29 -9.19 -5.85 -4.07 -16.54 -1.54 -7.97 -2.53 -12.03 -6.81 -12.28 -6.42
13x7 0.00 -1.18 -3.88 -1.28 -2.16 -1.95 -1.44 -3.02 -4.66 -5.68 -0.10 0.00 -0.89 -2.37 -7.51 -2.41

3D Cube -Splitting 3D SPIHT 3D JPEG2000
Lossy Coding Results for 0.0625 bpp (in %)

Table 43 - Best performing coding technique per transform and per test image for lossy
coding (25 bpp) for a 4-level (PET, CT2) and a 5-level (US, CT1, MRI) wavelet
decomposition. The figures depict the deviation in percent from the optimal coding technique.

US PET CT 1 CT 2 MRI US PET CT 1 CT 2 MRI US PET CT 1 CT 2 MRI
5x3 -2.63 -1.81 -2.46 -1.71 -1.80 0.00 0.00 -1.16 0.00 0.00 -1.12 -2.46 0.00 -1.78 -0.92
S -1.49 -2.08 -5.86 -4.44 -2.41 0.00 -3.23 -2.38 -2.11 0.00 -2.59 0.00 0.00 0.00 -2.35
9x7 -3.48 -1.35 -5.66 -1.04 -2.37 0.00 0.00 -3.45 0.00 0.00 -2.33 -1.81 0.00 -0.17 -0.27
9x3 -2.51 -1.78 -2.56 -1.31 -1.43 0.00 0.00 -1.97 0.00 0.00 -0.58 -2.51 0.00 -1.44 -0.67
13x11 -3.23 -1.78 -6.16 -1.67 -2.46 0.00 0.00 -4.42 -0.65 -0.21 -2.19 -1.19 0.00 0.00 0.00
5x11 -2.68 -1.68 -5.15 -1.19 -2.33 0.00 0.00 -2.83 0.00 0.00 -2.02 -2.34 0.00 -1.01 -0.31
2x6 -5.01 0.00 -5.51 -3.03 -0.58 -1.29 -0.23 -5.42 -1.87 0.00 0.00 -1.20 0.00 0.00 -2.32
S+P -4.68 -2.54 -7.74 -1.21 -2.75 -0.94 -2.99 -6.00 -1.21 -1.17 0.00 0.00 0.00 0.00 0.00
13x7 -2.76 -0.99 -6.34 -0.95 -1.87 0.00 0.00 -3.57 0.00 -0.06 -1.76 -1.56 0.00 -0.39 0.00
AV -3.16 -1.56 -5.27 -1.84 -2.00 -0.25 -0.72 -3.47 -0.65 -0.16 -1.40 -1.45 0.00 -0.53 -0.76

Lossy Coding Results for 2bpp (in %)
3D Cube -Splitting 3D SPIHT 3D JPEG2000

Table 44 - Best performing coding technique per transform and per test image for lossy
coding (1 bpp) for a 4-level (PET, CT2) and a 5-level (US, CT1, MRI) wavelet decomposition.
The figures depict the deviation in percent from the optimal coding technique.

US PET CT 1 CT 2 MRI US PET CT 1 CT 2 MRI US PET CT 1 CT 2 MRI
5x3 -5.51 -1.31 -1.59 -1.21 -1.48 0.00 0.00 -0.70 0.00 -0.24 -2.69 -1.50 0.00 -2.47 0.00
S -2.40 -4.60 -5.55 -2.92 -1.53 -2.15 -5.68 -2.42 -0.67 0.00 0.00 0.00 0.00 0.00 -2.34
9x7 -1.22 -1.38 -4.86 -0.93 -2.55 0.00 -1.29 -2.64 0.00 -1.23 -2.88 0.00 0.00 -1.44 0.00
9x3 -4.97 -1.07 -1.55 -1.14 -1.34 0.00 0.00 -0.91 0.00 0.00 -2.36 -0.94 0.00 -2.69 -0.50
13x11 -0.72 -1.45 -5.75 -0.87 -3.10 0.00 -1.81 -3.43 0.00 -1.28 -2.86 0.00 0.00 -0.88 0.00
5x11 -1.92 -0.67 -3.17 -0.98 -1.58 0.00 0.00 -1.63 0.00 -0.48 -3.09 -0.74 0.00 -2.09 0.00
2x6 -5.94 0.00 -2.68 -0.35 -0.43 0.00 -1.63 -2.60 0.00 0.00 -1.13 -1.91 0.00 -0.92 -3.20
S+P -7.56 0.00 -6.45 0.00 -0.48 0.00 -1.71 -5.23 -0.30 0.00 -2.35 -0.77 0.00 -0.75 -2.30
13x7 -0.68 -0.98 -4.16 -0.93 -1.05 0.00 -0.95 -2.49 0.00 -0.13 -3.46 0.00 0.00 -1.95 0.00
AV -3.44 -1.27 -3.97 -1.04 -1.50 -0.24 -1.45 -2.45 -0.11 -0.37 -2.31 -0.65 0.00 -1.47 -0.93

Lossy Coding Results for 1bpp (in %)
3D Cube -Splitting 3D SPIHT 3D JPEG2000

Volumetric data compression based on Xavier GirÓ i Nieto
Cube-Splitting and Embedded Block
Coding by Optimized Truncation

 102

Table 45 - Best performing coding technique per transform and per test image for lossy
coding (0.5 bpp) for a 4-level (PET, CT2) and a 5-level (US, CT1, MRI) wavelet
decomposition. The figures depict the deviation in percent from the optimal coding technique.

US PET CT 1 CT 2 MRI US PET CT 1 CT 2 MRI US PET CT 1 CT 2 MRI
5x3 -0.63 -1.29 -2.12 -1.21 -1.26 0.00 -0.71 -0.57 0.00 -0.23 -2.88 0.00 0.00 -0.90 0.00
S -7.38 -0.09 -4.89 -6.23 -4.86 0.00 -0.97 -2.75 0.00 0.00 -1.14 0.00 0.00 -3.25 -7.76
9x7 0.00 -3.58 -4.61 -0.94 -3.67 -0.57 -3.63 -2.38 0.00 -1.77 -1.62 0.00 0.00 -0.01 0.00
9x3 -0.56 -1.11 -1.91 -1.09 -1.28 0.00 -0.72 -0.97 0.00 0.00 -3.66 0.00 0.00 -1.31 -0.16
13x11 0.00 -4.88 -4.42 -1.62 -5.04 -0.82 -4.98 -3.39 -0.82 -3.07 -1.26 0.00 0.00 0.00 0.00
5x11 -0.38 -2.42 -2.94 -1.02 -2.27 0.00 -2.08 -0.79 0.00 0.00 -3.49 0.00 0.00 -0.90 -0.70
2x6 0.00 -2.92 -3.47 0.00 0.00 -1.33 -4.59 -3.18 -0.17 -0.42 -3.81 0.00 0.00 -0.20 -2.36
S+P 0.00 -5.83 -7.21 -0.15 -3.71 -1.35 -6.77 -4.91 -0.32 -2.65 -2.98 0.00 0.00 0.00 0.00
13x7 0.00 -3.63 -4.40 -0.92 -2.31 -0.60 -3.80 -2.41 0.00 -0.39 -3.96 0.00 0.00 -0.14 0.00
AV -0.99 -2.86 -4.00 -1.46 -2.71 -0.52 -3.14 -2.37 -0.15 -0.95 -2.75 0.00 0.00 -0.75 -1.22

Lossy Coding Results for 0.5 bpp (in %)
3D Cube -Splitting 3D SPIHT 3D JPEG2000

Table 46 - Best performing coding technique per transform and per test image for lossy
coding (0.25 bpp) for a 4-level (PET, CT2) and a 5-level (US, CT1, MRI) wavelet
decomposition. The figures depict the deviation in percent from the optimal coding technique.

US PET CT 1 CT 2 MRI US PET CT 1 CT 2 MRI US PET CT 1 CT 2 MRI
5x3 -0.73 -0.98 -3.32 -1.38 -2.29 0.00 0.00 -2.72 0.00 -0.72 -2.30 -0.65 0.00 -0.05 0.00
S 0.00 -5.25 -0.05 -1.51 0.00 -1.14 -4.85 0.00 0.00 -1.30 -1.19 0.00 -1.39 -4.54 -9.96
9x7 -6.61 -0.91 -5.44 -2.61 -0.56 0.00 -0.47 -3.60 -1.71 0.00 -5.76 0.00 0.00 0.00 -2.04
9x3 -0.32 -4.55 -1.99 -1.48 -2.53 0.00 0.00 -1.45 0.00 -0.37 -3.18 -0.55 0.00 -0.51 0.00
13x11 -6.72 -2.30 -4.52 -3.18 -1.15 0.00 -2.31 -2.85 -2.29 -0.76 -5.47 0.00 0.00 0.00 0.00
5x11 -0.97 -0.62 -4.28 -1.49 -4.53 0.00 0.00 -1.96 -0.61 0.00 -3.07 -0.13 0.00 0.00 -2.06
2x6 -5.01 -2.29 -3.71 -0.49 -5.03 -5.54 -4.33 -4.53 -1.39 0.00 0.00 0.00 0.00 0.00 -8.25
S+P -6.53 -2.66 -3.30 -1.43 0.00 0.00 -4.41 -2.96 -2.06 -0.78 -1.54 0.00 0.00 0.00 -3.98
13x7 -3.02 -1.05 -5.78 -2.19 -2.04 0.00 -0.89 -3.69 -1.11 0.00 -4.50 0.00 0.00 0.00 -2.00
AV -3.32 -2.29 -3.60 -1.75 -2.01 -0.74 -1.92 -2.64 -1.02 -0.44 -3.00 -0.15 -0.15 -0.57 -3.14

Lossy Coding Results for 0.25 bpp (in %)
3D Cube -Splitting 3D SPIHT 3D JPEG2000

Table 47 - Best performing coding technique per transform and per test image for lossy
coding (0.125 bpp) for a 4-level (PET, CT2) and a 5-level (US, CT1, MRI) wavelet
decomposition. The figures depict the deviation in percent from the optimal coding technique.

US PET CT 1 CT 2 MRI US PET CT 1 CT 2 MRI US PET CT 1 CT 2 MRI
5x3 0.00 -1.37 -4.99 -2.73 -0.32 -1.31 -1.24 -5.09 -1.11 0.00 -5.42 0.00 0.00 0.00 -0.37
S 0.00 -0.57 -2.54 -0.22 0.00 -1.59 0.00 0.00 0.00 -6.86 -2.70 -2.17 -6.10 -4.58 -2.49
9x7 0.00 -5.05 -7.74 -2.07 -1.92 -1.52 -5.56 -6.22 -1.46 -2.72 -4.06 0.00 0.00 0.00 0.00
9x3 0.00 -1.72 -4.79 -2.29 -0.57 -1.05 -1.71 -4.77 -1.07 0.00 -6.57 0.00 0.00 0.00 -2.78
13x11 0.00 -6.08 -7.93 -2.60 -2.64 -1.74 -6.82 -5.66 -2.08 -3.40 -4.50 0.00 0.00 0.00 0.00
5x11 0.00 -2.75 -6.80 -3.10 -0.24 -1.45 -2.76 -4.74 -0.59 0.00 -5.75 0.00 0.00 0.00 -0.06
2x6 0.00 -6.97 -4.84 -2.62 0.00 -2.45 -7.18 -4.98 -4.26 -1.46 -5.54 0.00 0.00 0.00 -4.38
S+P 0.00 -8.43 -3.59 -0.37 0.00 -2.08 -3.63 -2.38 -3.90 -1.13 -5.19 0.00 0.00 0.00 -3.06
13x7 0.00 -4.17 -9.14 -1.43 0.00 -1.35 -4.32 -6.78 -0.28 -0.50 -5.62 0.00 0.00 0.00 -3.21
AV 0.00 -4.12 -5.82 -1.94 -0.63 -1.61 -3.69 -4.51 -1.64 -1.79 -5.04 -0.24 -0.68 -0.51 -1.82

Lossy Coding Results for 0.125 bpp (in %)
3D Cube -Splitting 3D SPIHT 3D JPEG2000

Table 48 - Best performing coding technique per transform and per test image for lossy
coding (0.0625 bpp) for a 4-level (PET, CT2) and a 5-level (US, CT1, MRI) wavelet
decomposition. The figures depict the deviation in percent from the optimal coding technique.

Volumetric data compression based on Xavier GirÓ i Nieto
Cube-Splitting and Embedded Block
Coding by Optimized Truncation

 103

US PET CT 1 CT 2 MRI US PET CT 1 CT 2 MRI US PET CT 1 CT 2 MRI
5x3 -7.49 -0.66 -10.40 -0.45 -1.59 0.00 0.00 -6.99 -0.01 -4.95 -14.65 -0.61 0.00 0.00 0.00
S 0.00 -7.63 -1.62 0.00 0.00 -2.50 -1.66 0.00 -4.52 -6.49 -3.07 0.00 -5.64 -8.05 -10.51
9x7 0.00 -1.48 -12.85 0.00 -4.12 -1.05 -1.99 -8.08 -6.56 -9.24 -2.33 0.00 0.00 -3.87 0.00
9x3 -8.10 -0.47 -10.23 -0.25 -1.60 0.00 -0.14 -7.43 -1.15 -4.65 -15.16 0.00 0.00 0.00 0.00
13x11 0.00 -2.15 -9.14 0.00 -5.08 -1.87 -2.92 -2.25 -7.38 -2.35 -3.17 0.00 0.00 -3.62 0.00
5x11 -8.05 -1.54 -11.82 0.00 -2.26 0.00 -1.16 -6.71 -5.54 -5.95 -16.09 0.00 0.00 -3.87 0.00
2x6 0.00 -2.98 -8.32 0.00 0.00 -2.51 -3.51 -7.21 -4.71 -6.16 -5.36 0.00 0.00 -5.41 -2.97
S+P 0.00 -3.61 0.00 0.00 0.00 -2.95 -4.20 -1.85 -14.32 -1.10 -6.10 0.00 -3.53 -4.20 -9.49
13x7 0.00 -2.31 -11.57 0.00 0.00 -0.55 -2.25 -8.71 -6.98 -4.41 -3.25 0.00 0.00 -4.62 -3.73
AV -2.63 -2.54 -8.44 -0.08 -1.63 -1.27 -1.98 -5.47 -5.68 -5.03 -7.69 -0.07 -1.02 -3.74 -2.97

Lossy Coding Results for 0.0625 bpp (in %)
3D Cube -Splitting 3D SPIHT 3D JPEG2000

Volumetric data compression based on Xavier GirÓ i Nieto
Cube-Splitting and Embedded Block
Coding by Optimized Truncation

 104

Conclusions

 It is shown that the coding principles used for the new image compression standard
2D JPEG2000 and quad-tree techniques are also valid for three-dimensional coding. W-
based techniques, combined with an embedded bit-stream and an adaptive context-based
arithmetic coder have been combined to develop the CS-EBCOT coder.
 The experiments have shown that lossy and lossless performances are kernel
dependent. At high bit-rates 9x3, 13x11 and 5x11 wavelet kernels are excelling, while at low
bit-rates 9x3, 5x11, 9x7 and 5x3 kernels are the best options. As a conclusion, we can state
that the 5x11 kernel seems to be the most stable one, delivering an excellent performance
over the complete lossy-to-lossless range.

No gain has been achieved by our attempts to optimize the starting probabilities.
These probabilities were extracted from some empirical experiments on a set of test images,
choosing the coding pass with the highest number of calls. An elaborate study on strategies
to condition the probability models could be subject of further work.

When comparing the CS-EBCOT to other three-dimensional coder like Cube-
Splitting, 3D SPIHT and 3D JPEG, CS-EBCOT gave good results at any bit-rate, especially at
the lowest bit-rates. For lossless coding, which is a very important feature in medical image
compression, CS-EBCOT is outperforming the other coders.

 It has not been possible to compare the results of CS-EBCOT with the current
JPEG2000 Verification Model, though VM results would probably be better as non-normalized
transforms have been used in the CS-EBCOT coder. The inclusion of normalized transforms
could be also subject for future work.

To sum up, CS-EBCOT is a promising three-dimensional encoding technique that can
be considered as belonging to the state-of-the-art of contemporary multidimensional encoding
techniques.

The work of the author has been included in the publication referred as [Sch00b].

Volumetric data compression based on Xavier GirÓ i Nieto
Cube-Splitting and Embedded Block
Coding by Optimized Truncation

 105

Bibliography

[Ada00] M.D. Adams, F. Kossentini, “Reversible integer-to-integer wavelet transforms for
image compression: performance evaluation and analysis”, IEEE Trans. on Image
Processing, Vol. 9, No.6, pp.1010-1024, June 2000.
[Bil00] Bilgin, Ali; Zweig, george and Marcellin, Michael W. “Three-dimensional image
compression with integer wavelet transforms” Applied Optics, Vol. 39, No. 11, 10th April 2000
[Cal96] A. R. Calderbank, I. Daubechies, W. Sweldens, and B. Yeo, Wavelet transforms that
map integers to integers, Technical Report, Department of Mathematics, Princeton University,
1996.
[Kim00] Y.S.Kim, W.A. Pearlman, “Stripe-Based SPIHT Lossy Compression of Volumetric
Medical Images for Low Memory Usage and Uniform Reconstruction Quality”, Proc. of IEEE
Int. Conf. on Acoustics, Speech and Signal Processing (ICASSP 2000), Istanbul, Turkey,
June 2000
[Kim99] Y. Kim, W.A. Pearlman, “Lossless volumetric medical image compression”, Proc.
SPIE Conference on Application of Digital Image Processing XXII, Vol. 3808, pp. 305-312,
July 1999
[Mal89] S. Mallat, “A Theory for Multiresolution Signal Decomposition: The Wavelet
Representation”, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol.11,
No.7, pp. 674-693, 1989.
[Mor66] G.M. Morton, “A Computer Oriented Geodetic Data Base and a New Technique in
File Sequencing”, Internal Report IBM Ltd., Ottawa, Canada, 1966.
[Sch00a] P. Schelkens, J.Barbarien, J. Cornelis, “Volumetric data compression based on
cube-splitting”, Proc. of 21st Symposium on Information Technology in the Benelux, Vol.21,
pp.93-100, May 2000.
[Sch00b] P. Schelkens, X. Giro, J. Barbarien, A. Munteanu, J. Cornelis, “Compression of
Medical Volumetric Data”, JPEG2000 Meeting Arles, France, ISO/IEC JTC1/SC29/WG1
JPEG2000/N1712, July 3-7, 2000.
[Sch00c] P. Schelkens, J. Barbarien, J. Cornelis, “Compression of Volumetric Medical Data
based on cube-splitting”, Proc. SPIE Conference on Applications of Digital Image Processing
XXIII, Vol.4115, July 2000.
[Sch00d] P. Schelkens, X. Giro, J. Barbarien, J. Cornelis, “3D Compression of Medical Data
Based on Cube Splitting and Embedded Block Coding”, ProRISC 2000, Veldhoven, The
Netherlands, November 29-30, December 1, 2000 (submitted).
[Swe95] W. Sweldens, “The Lifting Scheme: A New Philosophy in Biorthogonal Wavelet
Constructions”, SPIE Conference 1995, Vol. 2569, pp.68-79, 1995.
[Vm_60] ISO/IEC JTC 1/SC 29/WG 1 WG1N1575, January 28th 2000
[Xio99] Z. Xiong, X. Wu, D.Y.Yun, W.A. Pearlman, “Progressive coding of medical volumetric
data using three-dimensional integer wavelet packet transform”, Proc. SPIE Conference on
Visual Communications, Vol. 3653, pp. 327-335,January 1999

