
Universitat Politècnica de Catalunya

Treball Final del Grau en Enginyeria Física

Reproducing and analyzing Adaptive
Computation Time in PyTorch and

TensorFlow

Author:
Daniel Fojo

Supervisors:
Víctor Campos

and Xavier Giró

Universitat Politècnica de Catalunya
Barcelona Supercomputing Center

January, 2018

https://www.upc.edu/en
https://www.upc.edu/en
https://www.bsc.es/

iii

UNIVERSITAT POLITÈCNICA DE CATALUNYA

Abstract
TelecomBCN

Signal Theory and Communications Department

Engineering Physics

Reproducing and analyzing Adaptive Computation Time in PyTorch and
TensorFlow

by Daniel Fojo

The complexity of solving a problem can differ greatly to the complexity of posing
that problem. Building a Neural Network capable of dynamically adapting to the
complexity of the inputs would be a great feat for the machine learning community.
One of the most promising approaches is Adaptive Computation Time for Recurrent
Neural Network (ACT) (Graves, 2016). In this thesis, we implement ACT in two of the
most used deep learning frameworks, PyTorch and TensorFlow. Both are open source
and publicly available. We use this implementations to evaluate the capability of ACT
to learn algorithms from examples. We compare ACT with a proposed baseline where
each input data sample of the sequence is read a fixed amount of times, learned as
a hyperparameter during training. Surprisingly, we do not observe any benefit from
ACT when compared with this baseline solution, which opens new and unexpected
directions for future research.

HTTPS://WWW.UPC.EDU/EN
https://etsetb.upc.edu/en

v

Acknowledgements
First, I would like to acknowledge my advisor Xavier Giró, for helping me with this
work, inviting me into his team, and showing me the world of research. I would also
like to acknowledge Víctor Campos for his help with this work and for helping me get
in the world of machine learning. I am very much looking forward to keep working
on research with both of them after this work.

vii

Contents

Abstract iii

Acknowledgements v

1 Introduction 1

2 Theoretical Background 3
2.1 Machine Learning Basics . 3

2.1.1 The task T . 3
2.1.2 The Performance Measure, P 4
2.1.3 The Experience, E . 4
2.1.4 Capacity, Overfitting and Underfitting 4
2.1.5 The No Free Lunch Theorem 5

2.2 Gradient-Based Optimization . 6
2.2.1 The loss function . 6
2.2.2 Gradient descent . 6
2.2.3 Stochastic Gradient Descent . 7
2.2.4 Momentum . 7

2.3 Deep Learning Basics . 7
2.3.1 Feedforward Neural Networks 8

Backpropagation . 8
2.3.2 Recurrent Neural Networks . 9

Long Short-Term Memory . 9

3 Related Work 11

4 ACT model 13
4.1 ACT model . 13
4.2 Limiting Computation Time . 15
4.3 Error gradients . 16

5 Implementing ACT 17
5.1 PyTorch . 17

5.1.1 HogWild! . 18
5.2 TensorFlow . 18

6 Experiments 19
6.1 A new baseline: Repeated inputs . 19
6.2 Tasks . 19

6.2.1 Parity . 20
6.2.2 Addition . 20

6.3 Training Parameters . 21
6.4 Results . 21

6.4.1 Parity . 22

viii

6.4.2 Addition . 23

7 Conclusions and Future Work 27

Bibliography 29

ix

List of Figures

2.1 Underfitting and overfitting . 5
2.2 Momentum . 8
2.3 Diagram of an LSTM cell . 10

3.1 S-ACT for ResNets . 11
3.2 LSTM-Jump . 12

4.1 RNN . 13
4.2 ACT . 15

6.1 Repeated inputs . 19
6.2 Parity task example . 20
6.3 Addition task example . 21
6.4 Parity task with ACT . 22
6.5 Parity task repeated inputs . 23
6.6 Addition task with ACT . 24
6.7 Addition task with repeated inputs . 25
6.8 Ponder distribution for the Addition task 26

xi

List of Tables

6.1 Performance of a simple RNN, an RNN with ACT and an RNN with
repetitions in the Parity task. Here we can see that our baseline with
repetitions can outperform ACT in this task. 23

6.2 Performance of a simple LSTM, an LSTM with ACT and an LSTM
with repetitions in the Addition task. Here we can see that our baselines
with repetitions outperforms ACT when choosing the right amount of
repetitions. 25

xiii

List of Abbreviations

SGD Stochastic Gradient Descent
MLP MultiLayer Perceptron
NN Neural Network
RNN Recurrent Neural Network
LSTM Long Short Term Memory
ACT Adaptive Computation Time
CPU Central Processing Unit
GPU Graphics Processing Unit

1

Chapter 1

Introduction

The amount of time required to pose a problem and the amount of computation
required to solve it are notoriously unrelated. A clear example of this is the Traveling
Salesman Problem: "Given a list of cities and the distances between each pair of cities,
what is the shortest possible route that visits each city and returns to the origin city?",
which is believed to be unsolvable in polynomial time (Cook, 2012). In general, we
expect the time necessary to solve a problem to increase with the complexity of the
task. However, in general, machine learning algorithms do not allocate resources based
on the complexity of the task.

Recurrent Neural Networks (RNNs) are a type of Neural Networks that have a
state or memory, and can naturally handle sequences of input samples of any length.
However, a vanilla RNN will treat all input samples and states the same way, indepen-
dently of their complexity or relevance for the machine learning problem to solve. For
example, a classical task solved by RNNs is character prediction for language model-
ing: given a sequence of characters, the following character must be predicted. This
task clearly requires different amount of computation because, for example, predicting
the character that will come after elephan is easy, it will most likely be just t. On
the other hand, predicting which character will come after elephant. is much harder,
and may require a more complex model. Dealing with a task of irregular complexity
with a static model is prone to problems: designing a model for the simple cases will
inevitably cause errors at the challenging inputs, while using a high capacity model
to be able to deal with the complex cases will result in an inefficient use of resources
when treating the simple states. A much better solution would be to use machine
learning models that may adjust their computational cost according to the data that
is being processed.

One of the most popular approaches to adjust the complexity of the model to the
data is Adaptive Computation Time (ACT) for RNNs (Graves, 2016). This model
is able to increase computation time by feeding each input sample to the network
more than once. For example, in the former case of predicting the character after
elephant., the dot character might be fed multiple times to the RNN to allow the
model more iterations before taking a decision. The basic assumption of ACT is that
it will learn how many times each input should be processed, giving more or less
computation time to each step as needed.

This bachelor thesis provides a detailed analysis of ACT and sheds some light
about its potentials and limitations. Our work can be summarized with the following
contributions:

1. implementation of ACT in the two most popular software frameworks for deep
learning, TensorFlow and PyTorch,

2 Chapter 1. Introduction

2. design and implementation of a novel baseline capable of solving the same tasks
as ACT, based on a fixed amount of repetitions set at training time as a new
hyperparameter,

3. comparison of ACT with the proposed baseline which, surprisingly, indicates
that ACT does not bring any gain and opening this way unexpected directions
for research that we plan to address in the future.

Further than the ACT algorithm itself, we also want to raise awareness about
current discussions about reproducibility in machine learning. This thesis has devoted
a very important amount of resources in implementing and reproducing the results
from (Graves, 2016), as its authors limited their publication to a preprint on arXiv,
with no accompanying source code. This has been a drawback when reproducing
the published results, and it is seen with concern by some part of the community.
For example, ICLR2018 (one of the most important machine learning conferences)
will host the Reproducibility Challenge, a workshop on reproducing important deep
learning papers1. In order to help the community in this sense, we have published our
implementation in the PyTorch and TensorFlow deep learning frameworks, and both
implementations are open and publicly available at https://imatge-upc.github.
io/danifojo-2017-tfg/.

1http://www.cs.mcgill.ca/~jpineau/ICLR2018-ReproducibilityChallenge.html

https://imatge-upc.github.io/danifojo-2017-tfg/
https://imatge-upc.github.io/danifojo-2017-tfg/
http://www.cs.mcgill.ca/~jpineau/ICLR2018-ReproducibilityChallenge.html

3

Chapter 2

Theoretical Background

2.1 Machine Learning Basics

Deep learning is a specific kind of machine learning. To understand deep learning
well, one must also have a solid understanding of machine learning. Machine learning
is a form of applied statistics with an increased emphasis on the use of computers
to statistically estimate complicated functions and a decreased emphasis on proving
confidence intervals around these functions.

Tom Mitchell (Mitchell, 1997) describes a machine learning a task as follows: "A
computer program is said to learn from experience E with respect to some class of
tasks T and performance measure P , if its performance at tasks in T , as measured by
P , improves with experience E."

2.1.1 The task T

In this definition of "task", the process of learning itself is not the task. For example,
if we want a program to learn to distinguish dogs and cats, then distinguishing dogs
and cats is the task.

Machine learning tasks are usually described in terms of how the system should
process an example. An example is a collection of features from some object or event
that we want the algorithm to process. We typically represent an example as a vector
x ∈ Rn where each entry xi of the vector is a feature. For example, the features of
an image are usually the values of the pixels in the image. Some typical examples of
tasks are:

• Classification: Classification tasks ask the computer program to specify to
which category does one input vector belong. Formally, this is equivalent to
approximate a function f : Rn 7→ {1, 2, . . . , k}.

• Regression: In this type of task, the computer program is asked to predict a
numerical value given some input. This consists in approximating a function
f : Rn 7→ R.

• Transcription: In this type of task, the machine learning system is asked to
observe an unstructured representation of some kind of data and transcribe the
information into text. For example, in optical character recognition (OCR), the
computer program is shown an image containing text and is asked to return this
text in the form of a sequence of characters.

• Denoising: In this type of task, the machine learning algorithm is given an
input a corrupted example x̃ ∈ Rn obtained by an unknown corruption process
from a clean example x ∈ Rn.

4 Chapter 2. Theoretical Background

2.1.2 The Performance Measure, P

To evaluate how good our machine learning algorithm is, we must design quantitative
measures of its performance. For tasks such as classification, we often measure the
accuracy of the model, which is just the proportion of examples for which the algorithm
gives the correct output. Similarly, the error rate is the proportion of examples for
which the algorithm gives an incorrect output.

2.1.3 The Experience, E

Machine learning algorithms can be understood as being allowed to experience an
entire dataset. A dataset is a collection of many examples.

Generally, machine learning algorithms can be categorized as supervised or unsu-
pervised

• Unsupervised: The algorithm experiences a dataset containing features and
has to learn some structure or pattern from it.

• Supervised: The algorithm experiences a dataset containing features, but each
example is also associated with a label or target. We will generally refer to the
examples as x and to the targets as y. When we talk about a specific example
and target, we will use superindexes: x(i) and y(i).

Throughout this work, we will focus mainly on supervised learning, i.e. each example
x(i) has a corresponding target y(i).

Some machine learning algorithms do not just experience a dataset. For example,
reinforcement learning (Williams, 1992) algorithms interact with a environment, so
there is a feedback loop between the algorithm and its experiences. An example of
reinforcement learnings algorithm is AlphaGo Zero (Silver et al., 2017), an algorithm
that learned to play the game of go from scratch better than any human.

2.1.4 Capacity, Overfitting and Underfitting

The central challenge of machine learning is that our algorithm must perform well on
unseen examples. This is called generalization. Generally, we do not have access to
the set of all possible inputs, and for this reason, our network will only learn from a
specific subset which will be an estimation of the complete set. Note that this problem
comes from the fact that usually we can only train with a subset of the possible input
data, which is an estimate of the real distribution. This is not always the case. For
example, when working with synthetic tasks (as the ones in Chapter 6), we sometimes
have access to the real distribution, because we are artificially generating it. This
means that generalization will not be a problem, since our data will not be biased to
a subset.

Typically, when training a machine learning model, we compute some error mea-
sure over our training set, called training error. This is simply an optimization prob-
lem. In machine learning, we want the test error, computed over a test set which the
algorithm has never seen to be low as well. The test error will always be greater or
equal than the training error.

The factors to determine how well a machine learning algorithm will perform are
its ability to make the training error small, and to make the gap between the training
error and the test (generalization gap) error small. These two factors correspond to
underfitting (when the training error is too high) and overfitting (when the general-
ization gap is too high). Whether a model is going to underfit or overfit depends on

2.1. Machine Learning Basics 5

(a) Underfitting (b) Appropriate capacity (c) Overfitting

Figure 2.1: Here we have three examples of a regression. The train-
ing data was generated synthetically, by randomly sampling x values
and choosing y deterministically by evaluating a quadratic function.
(A) A linear function cannot capture the curvature and underfits the
data. (B) A quadratic function fits to the data and generalizes well
to unseen points. It does not suffer from overfitting or underfitting.
(C) A polynomial of degree 9 overfits the data and does not generalize

well to unseen points (Goodfellow, Bengio, and Courville, 2016).

its capacity, which corresponds to the capability of a model to approximate a wide
variety of functions. If the model capacity is not enough, it will not be able to properly
fit the training set. If the model capacity is too high, it will overfit the training set
and the generalization gap will be large.

Regularization is a technique to avoid overfitting, and thus reduce the generaliza-
tion gap. For example, in figure 2.1, we could "penalize" our algorithm for having
large parameters. This would reduce the algorithm capacity (it would increase the
training error), but it would help avoid overfitting (decreasing the generalization gap).
There are many ways to regularize, and which is the correct way depends on the task
we want our algorithm to solve.

2.1.5 The No Free Lunch Theorem

The no free lunch theorem (Wolpert, 1996) says that, averaged over all possible data,
every classification algorithm has the same error rate when classifying previously un-
observed points. This means that no machine learning algorithm is better than any
other in all possible tasks.

Fortunately, this results only holds when we average over all data-generating dis-
tributions. This means that if we make assumptions about the distributions that
we will find in the real world, we can design an algorithm that does well in these
distributions.

The no free lunch theorem implies that we must design our algorithm to work well
only on a single task. This is done by assuming hypothesis into the algorithm. For
example, a linear regression will work well if the outputs come from a linear function
applied to the inputs, but will not work if the data is of the form y = sin(x).

6 Chapter 2. Theoretical Background

2.2 Gradient-Based Optimization

Many machine learning algorithms and nearly all deep learning algorithms use Stochas-
tic Gradient Descent (SGD), which is an extension from the classical Gradient Descent.

2.2.1 The loss function

Generally, for an algorithm to learn a task it must optimize some objective function
or loss function. In general, this function will be a measure of the error, and we will
want to minimize it with respect the parameters of our algorithm. Some of the most
common loss functions are:

• Mean Squared Error: usually used in regressions. For each example, the loss
is:

L(x, y) =

n∑
i=1

(xi − yi)2 (2.1)

• Binary Cross Entropy: usually used in binary classification. Here, y can
be either 1 or 0, and x is the probability of that input of belonging to class 1
(usually obtained by applying a sigmoid function). For each example, the loss
is:

L(x, y) = y log(x) + (1− y) log(1− x) (2.2)

• Categorical Cross Entropy: usually used in multiclass classification. Here,
y is a one-hot encoding (a vector with all zeros except a 1 in the position it
encodes), and x are the probabilities of belonging to each class of that input
(usually obtained by applying a softmax function). For each example, the loss
is:

L(x, y) =
n∑

i=1

yi log(xi) (2.3)

There are many more loss functions, e.g. L1, Noise Contrastive Estimation (Gut-
mann and Hyvärinen, 2010) or triplet loss (Schroff, Kalenichenko, and Philbin, 2015).
The choice of an appropriate loss function is fundamental for the machine learning
algorithm to be able to learn.

2.2.2 Gradient descent

It is well known that the gradient of a function gives the direction of maximum ascend,
so, for small enough ε, f(x− ε∇f(x)) will be smaller than f(x). We can iterate this
process, which will reduce f(x) at each step. This technique is called gradient descent
(Cauchy, 1847).

In machine learning, the ε parameter is called learning rate, as it symbolizes the
speed at which the algorithm learns. Choosing the right learning rate is crucial, since
a learning rate too low will make the algorithm learn too slowly, and a learning rate
to high will make the gradient descent diverge and not find a minimum.

If L is the loss function that we want to minimize with respect to some parameters
θ, and x and y are the examples with their corresponding labels, and f is the function
that we are approximating, the update rule will be:

θt+1 ← θt − ε∇θL (f(x;θt),y) (2.4)

2.3. Deep Learning Basics 7

2.2.3 Stochastic Gradient Descent

A problem in machine learning is that large datasets give better results, but they are
algo computationally expensive.

Usually, the loss function in a machine learning algorithm decomposes in the sum
of some per-example loss function:

Ltotal (f(x;θ),y) =
1

m

m∑
i=1

L
(
f(x(i);θ),y(i)

)
(2.5)

If the training examples grows to billions, the cost to make a single gradient step
becomes too large.

The idea behind SGD is that the gradient is just an expected value of the largest
descent direction, and it can be estimated with a small set of examples. On each step
we can sample a minibatch of examples B = {x(1),x(2), . . . ,x(m′)} from the whole
dataset, and estimate ∇f(x) using only these examples. The idea is that m′ is fixed
even though the size of the dataset can grow.

∇θLtotal (f(x;θ),y) ≈ ∇θ
1

m′

m′∑
i=1

L
(
f(x(i);θ),y(i)

)
(2.6)

2.2.4 Momentum

Even though SGD works well, it can sometimes be slow. The method of momentum
is designed to accelerate learning, especially in the face of high curvature, small but
consistent gradients or noisy gradients.

The momentum algorithm introduces a variable v that plays the role of velocity.
The name momentum derives from the physical analogy. The new update rule is given
by:

v ← αv − ε∇θ
1

m′

m′∑
i=1

L
(
f(x(i);θ),y(i)

)
(2.7)

θ ← θ + v (2.8)

Here, α determines how quickly the contribution from previous gradients decays.
There are many other more sophisticated optimizers based on SGD apart from

momentum. Some of the more popular ones are RMSprop (Tieleman and Hinton,
2012) and Adam (which we will use for our experiments) (Kingma and Ba, 2014)

2.3 Deep Learning Basics

Deep learning is the family of machine learning algorithms that use Neural Networks
to approximate the target function, and learn using some form of gradient descent
via backpropagation. Neural Networks are called networks because the are made by
composing many non-linear functions: f(x) = f (m)

(
...f (2)

(
f (1)

(
f (0) (x)

)))
. These

allows the network to capture non-linearities, as supposed to simple linear regressions.
Each of the functions is called layer, and the amount of layers is called the depth of
the network. Usually, each layer of the network is vector-valued. The dimension of
each layer is called width. Another way of thinking about these layers is to think of
them as many units, each of them representing a vector-to-scalar function.

8 Chapter 2. Theoretical Background

Figure 2.2: Here we can see that the steps (in red) that the momen-
tum takes go in the direction of the minimum, while the gradient (in
black) points in other directions (Goodfellow, Bengio, and Courville,

2016).

2.3.1 Feedforward Neural Networks

Feedforward Neural Networks, also called Multilayer Perceptrons (MLP) are the most
classical example of Deep Learning. Their goal is to approximate a function f(x).
They are called feedforward because information (x) only goes forward in the network.
A neural network in which there are feedback connections is called Recurrent Neural
Network.

In the case of Feedforward Neural Networks, each of the layers is composed of an
affine transformation φ(x) = Wx + b and a non-linear function, such as a Gaussian(
h(x) = exp

(
−x2

))
or a sigmoid

(
σ(x) = 1

1+e−x

)
. The non-linear function is called

the activation. Then, each layer is of the form:

f (i)(x) = h
(
W (i)x+ b(i)

)
(2.9)

The activation functions allow the network to capture non-linearities. Without the
non-linearities we would have a composition of linear functions, which is basically a
single linear function. Here, the learnable parameters are the weights of the affine
transformation at each layer.

Backpropagation

Gradient-based learning in deep learning requires calculating the gradients for quite
complicated functions. Numerical approximations for the gradient are slow and can
give numerical errors. The main method for calculating the gradients is called back-
propagation, and it’s based on recursively applying the chain rule from calculus.

For example, given a network in which: x = f(w), y = g(x), z = h(y), to compute
∂z
∂w we would calculate:

2.3. Deep Learning Basics 9

∂z

∂w
=
∂z

∂y

∂y

∂x

∂x

∂w
(2.10)

= h′(y)g′(x)f ′(w) (2.11)
= h′(g(f(w)))g′(f(w))f ′(w) (2.12)

The reason because this algorithm is called back propagation is because it is similar
to propagation an input through a network, but backwards and with the derivatives
of the activations in the right places.

2.3.2 Recurrent Neural Networks

Recurrent Neural Networks or RNN (Rumelhart, Hinton, and Williams, 1986), are a
family of networks specialized in processing sequential data (x(1), x(2), . . . , x(T)). Most
RNN can also process sequences of variable length. We will refer to RNN acting on a
sequence of vectors xt with t going from 1 to T .

To understand RNN, consider a classical dynamical system driven by an external
signal x(t), in which the state at each timestep is s(t):

s(t) = f
(
s(t−1), x(t); θ

)
(2.13)

RNN generally take the same form as 2.13, where the state contains information
for the past sequence. The state is generally referred as the hidden state.

The most simple example of an RNN would be:

s(t) = h
(
Wxx

(t) +Wss
(t−1) + b

)
(2.14)

A typical choice for the activation function is h(x) = tanh(x).
A very well known problem with RNNs is vanishing or exploding gradients (Ben-

gio, Simard, and Frasconi, 1994) when calculating them through very long sequences
in time, since the gradient a each time step depends on the prior one. A great im-
provement over the typical RNN that helps with these problems are Long Short-Term
Memory RNNs.

Long Short-Term Memory

The most effective sequence models used in Deep Learning are called gated RNNs.
One of the most important gated RNNs is Long Short-Term Memory or LSTM.

The equations for the LSTM gates are:
The forget gate f (t):

f (t) = σ
(
W f

s h
(t−1) +W f

x x
(t) + bf

)
(2.15)

The external input gate g(t):

g(t) = σ
(
W g

s h
(t−1) +W g

xx
(t) + bg

)
(2.16)

The output gate q(t):

q(t) = σ
(
W q

s h
(t−1) +W q

xx
(t) + bq

)
(2.17)

10 Chapter 2. Theoretical Background

With these gates, the state unit s(t) depends on the last output h(t−1) and the
current external input x(t), which are controlled by the forget gate f (t) and the external
input gate g(t):

s(t) = f (t)s(t−1) + g(t)σ
(
Wsh

(t−1) +Wxx
(t) + b

)
(2.18)

The output h(t) is also controlled by the the output gate q(t):

h(t) = tanh
(
s(t)
)
q(t) (2.19)

Note that it is also common to denote the state unit s(t) as c(t).
This formulation allows the gradients to propagate through time without vanishing

or exploding, thanks to the gated self-loop of 2.18. A block diagram is shown in 2.3

Figure 2.3: Block diagram of an LSTM cell. The black square in-
dicates a delay of a single step. (Goodfellow, Bengio, and Courville,

2016)

Our work will focus mainly on RNNs, and 2 of the 3 experiments will use LSTMs.

11

Chapter 3

Related Work

ACT is not the only deep learning architecture that can dynamically adapt compu-
tation to the inputs. Bengio, 2013 presents conditional computation, which allows to
increase model capacity without a proportional increase in computational cost by eval-
uating only certain computation paths for each input. Denil et al., 2013 demonstrates
that there is significant redundancy in the weights of several deep learning models.
This can be exploited by only using a part of the network for each inputs. An example
of this are Adaptive Early Exit Networks (Bolukbasi et al., 2017), which adapt to the
inputs by allowing them to exit the network prematurely if no more computation is
needed. Bengio, Léonard, and Courville, 2013 explore the idea of having stochastic
neurons with hard non-linearities for conditional computation.

Another approach to conditional computation is the use of REINFORCE (Williams,
1992) to adjust the number of computation steps using discrete latent variables. For
example, choosing the amount of patches in an image to process (Li et al., 2017), or
dropping a subset of neurons in a fully connected layer (Bengio et al., 2015).

For the case of RNNs, an example of conditional computation are LSTMs whose
number of layers depends on the input data, and each layer decides whether or not to
activate the next one (Chung, Ahn, and Bengio, 2016). Some works do time-dependent
computation in RNNs by only updating a fraction of the hidden state depending on
the input (Jernite et al., 2016). There is also Spatially-ACT for Residual Networks
(Figurnov et al., 2016), which uses halting units like ACT, but unlike ACT, they are
not used to look at an input more than once, they are used to decide when to stop
propagating the input through a residual block (He et al., 2015), so each input goes
through an adaptive amount of layers.

Figure 3.1: Example of a block of residual units from Spatially Adap-
tive Computation Time for Residual Networks. The network propa-
gates the input until the cumulative halting score reaches 1, and then

it stops. Taken from (Figurnov et al., 2016).

12 Chapter 3. Related Work

Skipping samples of a sequence in an RNN can be seen as a form of conditional
computation. For each sample, the network adaptively decides whether it requires
computation or not. With the goal of decreasing computation, LSTM-jump (Yu, Lee,
and Le, 2017) decides how many steps to "jump" between RNN updates by using
REINFORCE. More recently, without the need of reinforcement learning, Skip RNN
(Campos et al., 2017) decides how many samples to "skip" depending only on the
input and the hidden state at each time step.

Figure 3.2: Example of LSTM-Jump processing a text document.
At each timestep, a softmax classification decides how many steps to

"jump". Taken from (Yu, Lee, and Le, 2017).

13

Chapter 4

ACT model

This Chapter provides an overview of the Adaptive Computation Time (ACT) model
proposed in (Graves, 2016). This thesis is structured around this proposal by Dr. Alex
Graves, one of the most influential researchers in the field of machine learning nowa-
days. Dr. Graves is currently a research scientist at Google DeepMind, one of the
leading research centers in artificial intelligence. He previously obtained his PhD
under the supervision of Dr. Jürgen Schmidhuber at IDSIA, where he introduced con-
nectionist temporal classification (CTC) for LSTMs, a key contribution that allows
speech recognition on mobile devices. Before joining Google DeepMind, Dr. Graves
was a postdoc at the University of Toronto under the supervision of Dr. Geoffrey
Hinton. Both Dr. Schmidhuber and Dr. Hinton are considered two of the fathers of
deep learning.

4.1 ACT model

Consider a simple RNN with input sequence x = (x1, x2, . . . , xT), hidden states s =
(s1, s2, . . . , sT) and outputs y = (y1, y2, . . . , yT). Its equations would be:

st = S (st−1, xt) (4.1)
yt =Wsst + bs (4.2)

Figure 4.1: Computation graph of a simple RNN unrolled over two
time steps. (Graves, 2016).

ACT modifies these equations to allow the network to process each input a variable
number of times. The modified equations are:

14 Chapter 4. ACT model

snt =

{
S(st−1, x1t) if n = 1

S(sn−1t , xnt) if n > 1
(4.3)

ynt =Wss
n
t + bs (4.4)

where xnt = (δ1,n, xt) is the original input augmented with a binary flag at the begin-
ning of the input that indicates whether its the first time the network sees the input.
Note that the same state function is used for state transitions (for repeated inputs or
otherwise), and the weights and bias are also shared.

To determine how many times each input is repeated, an additional halting unit
is added:

hnt = σ (Whs
n
t + bh) (4.5)

Then, the amount of computation steps N(t) is defined as:

N(t) = min

{
n′ :

n′∑
k=1

hkt > 1− ε

}
(4.6)

where ε is a small constant whose purpose is to allow the network to do only one
computation step if needed, since the output from a sigmoid is always smaller than 1.
In our experiments, we set ε = 0.01.

From the activation of the halting units hnt , we define the halting probabilities as:

pnt =

{
hnt if n < N(t)

R(t) if n = N(t)
(4.7)

Where the residual R(t) is defined as:

R(t) = 1−
N(t)−1∑
k=1

hkt (4.8)

With this definition, the halting probabilities add up to 1, so they are a valid
probability distribution.

From here, we define the state and the output of our network as:

st =

N(t)∑
k=1

pkt s
k
t (4.9)

yt =

N(t)∑
k=1

pkt y
k
t (4.10)

Note that 4.4 and 4.10 can be rewritten as:

yt =Wyst + by (4.11)

which we will use in our implementation.

4.2. Limiting Computation Time 15

Figure 4.2: Computation graph of ACT unrolled over two time steps
(Graves, 2016).

4.2 Limiting Computation Time

Without limiting the computation steps the network can take, it could look at each
sample indefinitely. To avoid this, we add a ponder cost term to the loss. We define
the ponder at each time step as:

ρt = N(t) +R(t) (4.12)

And the total ponder cost for a sequence x as:

P(x) = 1

N(t)

N(t)∑
k=1

ρt (4.13)

Then, we modify the loss function of the network as:

L̂(x,y) = L(x,y) + τP(x) (4.14)

where τ is the a time penalty hyperparameter (a non-learnable parameter that has to
be manually set).

The authors of ACT claim that this term minimizes the amount of pondering at
each step, although this statement is not explicitly explored in their work. We observed
that, since N(t) is constant almost everywhere, we are just minimizing R(t), which
in equation 4.8 we see that it has a constant part (1), and the negative sum of the
halting probabilities. This means that minimizing P(x) is equivalent to maximizing
the halting probabilities, which makes the network stop earlier.

The network may process each sample for an arbitrarily large number of times at
the beginning of training due to the random initialization of the weights. It is possible
to limit such behavior by imposing an upper bound on N(t):

N(t) = min

{
M,min

{
n′ :

n′∑
k=1

hkt > 1− ε

}}
(4.15)

16 Chapter 4. ACT model

here, M is the maximum computation for each step.

4.3 Error gradients

The ponder cost P(x) is not differentiable everywhere. The term N(t) of each step is
not differentiable whenever the halting probabilities change such that N(t) changes.
But, since N(t) is constant almost everywhere (in the mathematical sense), this is just
ignored.

Then, the gradients of the ponder costs with respect the halting activations hnt are
just:

∂P(x)
∂hnt

=

{
−1 if n < N(t)

0 if n = N(t)
(4.16)

The halting activations hnt only influence the original loss L(x,y) via their effect
on the halting probabilities pnt :

∂L(x,y)
∂hnt

=

N(t)∑
k=1

∂L(x,y)
∂pkt

∂pkt
∂hnt

(4.17)

Since the halting probabilities only influence L in their states and outputs from
equations 4.9 and 4.10 it follows:

∂L(x,y)
∂pnt

=
∂L(x,y)
∂yt

ynt +
∂L(x,y)
∂st

snt (4.18)

while, from equations 4.7 and 4.8 we have:

∂pit
∂hit

=

δi,j if i, j < N(t)

−1 if i = N(t), j < N(t)

0 if j = N(t)

(4.19)

Combining equations 4.16, 4.18 and 4.19 we have:

∂L̂(x,y)
∂hnt

=
∂L(x,y)
∂yt

(
ynt − y

N(t)
t

)
+
∂L(x,y)
∂st

(
snt − s

N(t)
t

)
+
(
1− δn,N(t)

)
τ (4.20)

note that this equation becomes ∂L̂(x,y)
∂hn

t
= 0 for n = N(t).

Here we have seen that the network can be differentiated as usual, via backprop-
agation through time.

17

Chapter 5

Implementing ACT

Due to the lack of an official repository with code, we had to write our own implemen-
tation of ACT. We used Python programming language, which has many frameworks
specialized in Deep Learning (e.g. Theano, Caffe, TensorFlow and PyTorch). The
main problem with implementing Adaptive Computation Time is its adaptive feature.
Most Deep Learning frameworks are static (also called lazy execution). This means
that a computation graph is firstly defined, then it is executed, and it is difficult to
modify this graph during execution. This is why we our first decision was to use
PyTorch, which is a new dynamic Deep Learning framework. After testing our Py-
Torch implementation, we run into problems with its training speed, so we ended up
implementing it also on TensorFlow, which we used to run our experiments.

We ran our experiments in both CPU and GPU. The main advantage of GPUs is
that they allow to speed up computation by doing many calculation at the same time
in parallel. Our source code is open and publicly available at https://imatge-upc.
github.io/danifojo-2017-tfg/.

5.1 PyTorch

PyTorch1 is a Deep Learning framework that, at the time of this work, was one of
the only frameworks that generates the computation graph dynamically (also called
eager execution). This means that having an adaptive architecture is much easier
and natural. On the other hand, the main drawback of PyTorch is that it is quite
recent (as of the time of this work, it was in beta 0.2 version), and many parts of the
documentation were missing.

We started with a very naive implementation using CPU, which was too slow, so
we decided to implement it for GPUs. For a GPU to work well, it has to be able to
run many operations in parallel, so they generally work in batches. This means that
they do the same operations for many different input sequences at the same time.
This works well with the SGD, since the loss is only computed for a batch of inputs
before making a step, as we explained in section 2.2.3.

The main problem with this approach is that we are working with a dynamic
network, so each element of the batch may need a different amount of computation.
We solved this by making the computation for all the elements of the batch, but
keeping track of which elements had already stopped and only update the ones that
continued. This was done by multiplying the outputs with a binary mask made of 0s
in the position of the inputs that had stop and 1s for the inputs that needed more
computation.

Even though using GPUs accelerated computation, this was still too slow. We
thought that the main reason for this could be the fact that we were doing many

1www.pytorch.org

https://imatge-upc.github.io/danifojo-2017-tfg/
https://imatge-upc.github.io/danifojo-2017-tfg/
www.pytorch.org

18 Chapter 5. Implementing ACT

small operations in CPU (native Python operations like the while loop for the ACT
layer) interchanged with the GPU tensor operations. This created a lot of overhead,
which slowed down our computation.

Our next approach was to return using CPUs, but implementing parallel computa-
tion using the HogWild! algorithm. This allows to train the network asynchronously
using multiple CPU threads, which could speed up the training without adding the
overhead of making operations in GPU.

5.1.1 HogWild!

To increase the speed of the training, we used the HogWild! algorithm (Niu et al.,
2011). This algorithm allows the network to do multiple SGD steps in parallel asyn-
chronously. The main idea of HogWild! is to have multiple processes, all of them
doing SGD steps asynchronously with batches of different data, with shared memory
storing the model parameters. This allows to speed up computation in multi-core
machines, by having each of these processes in a different core.

We used 16 threads to train our networks. This was the faster approach, but it was
still slow (it would take up to 20 days to 40 to train a single task). We suspected that
the overhead for native Python operations and PyTorch operations was still present,
and was slowing the network too much. We also found that we were not the only ones
with this issue, as many people have reported similar problems when implementing
custom RNN is PyTorch on the official PyTorch forums and other Machine Learning
communities.2 3 4

5.2 TensorFlow

Since asynchronous training was still too slow, we decided to change the framework to
TensorFlow5, a deep learning framework developed by Google. TensorFlow is a static
framework, but it is a much more mature than PyTorch (we used version 1.4 for this
work). Since TensorFlow is static it does not have the problem of the overhead we
had with PyTorch, because all the computation graph is sent at once to the GPU.

Even though getting our implementation to work was more difficult, the training
speed was much faster than the one from our PyTorch implementation. We went
back to using GPUs, with batch computation. TensorFlow was finally fast enough,
and training processes that took 40 days in PyTorch, were reduced to only one day
in TensorFlow.

2https://discuss.pytorch.org/t/how-to-speed-up-for-loop-in-customized-rnn/1012
3https://discuss.pytorch.org/t/gpu-slower-than-cpu-on-a-simple-rnn-test-code/1306
4https://www.reddit.com/r/MachineLearning/comments/5weeom/discussion_why_are_rnns_

so_slow_in_pytorch/
5www.tensorflow.org

https://discuss.pytorch.org/t/how-to-speed-up-for-loop-in-customized-rnn/1012
https://discuss.pytorch.org/t/gpu-slower-than-cpu-on-a-simple-rnn-test-code/1306
https://www.reddit.com/r/MachineLearning/comments/5weeom/discussion_why_are_rnns_so_slow_in_pytorch/
https://www.reddit.com/r/MachineLearning/comments/5weeom/discussion_why_are_rnns_so_slow_in_pytorch/
www.tensorflow.org

19

Chapter 6

Experiments

This chapter includes the experimentation details obtained thanks to the implemen-
tation described in Chapter 5 of the ACT model presented in Chapter 4. We propose
a new baseline that is compared with ACT in three tasks solvable with an RNN.

6.1 A new baseline: Repeated inputs

One of the limitations of the original ACT paper (Graves, 2016) is its lack of proper
baselines. In that work, ACT is only compared to a basic RNN or LSTM. We consider
that these baselines should be improved because they read each input sample only
once, while ACT can read each input sample more times. A more appropriate baseline
would be an RNN that reads the same number of input samples as ACT. To do this,
we propose a new baseline configuration where each input sample is processed a fixed
amount of iterations. The number of times that each input is repeated is a new
hyperparameter, which we refer as ρ.

We also added the same binary flag as in the original ACT (equation 4.3) paper
to the the inputs to allow the network to differentiate sequences with more that one
equal input and our artificially repeated input.

We took as output from our network the hidden state from the last repetition
of each sample. An example of an input sequence and the modified sequence with
repetitions is shown in 6.1.

1 2 3 3 4
1 1 1 2 2
1 0 0 1 0

2 3 3 3 3
0 1 0 0 1

3 3 4 4 4
0 0 1 0 0

Figure 6.1: An input sequence (left) and corresponding modification
with 3 repetitions (right). In the modified sequence, the first row
consists of the inputs repeated 3 times each and the second row the
binary flags that indicate to the network whether it is seeing a new

input (with a 1) or the same repeated input (with a 0).

6.2 Tasks

Our implementation of ACT and the proposed baseline have been assessed and com-
pared when used to solve the same tasks as in the original ACT paper (Graves, 2016).
This section describes these tasks, while Section 6.4 provides the results of the exper-
iments.

20 Chapter 6. Experiments

6.2.1 Parity

The first task is not actually a sequence modeling task because the network has to
find the parity (or XOR) of a vector presented all at once, in a single timestep. This
task could be solved with a simple feedforward network, but it is also addressable
with a recurrent architecture like ACT or our baseline of repeated inputs.

The input vectors has 64 elements, of which a random number from 1 to 64 is set
to 1 or -1 and the rest are set to 0. The corresponding target is 1 if there is an odd
number of ones, and 0 if there is an even number of ones. Each training sequence
consists of a single input vector and a single target, which is a 1 or a 0.

The implemented network is single-layer RNN with 128 tanh units, and a single
sigmoidal output unit. The loss function is binary cross-entropy and the batch size is
128. The maximum ponder was set to 100 for this task. An example input and target
are shown in Figure 6.2.

1
-1
1
1
0
0
0
0

1

Figure 6.2: An example of the input sequence and target sequence
for the parity task. Here, the first 4 elements of the vector are 1’s and
-1’s and the rest are set to zero. The network has to be able to realize

there are and odd number of ones an output a 1 accordingly.

6.2.2 Addition

The addition task aims at summing the values of a sequence of five numbers, each
number represented by D digits, where D is drawn randomly from 1 to 5. Each
number is coded by a concatenation of D one-hot encodings of its composing digits,
being each digit value randomly chosen between 0 and 9. The length of these one-hot
encodings is 10, one position for each possible digit. In case that D is smaller than
five, the representation of the number is completed with zero vectors, so that the total
length of the representation per number is 50. The required output is the cumulative
sum of all inputs up to the current one, represented as a set of six simultaneous
classifications (for the 6 possible digits in the result of the sum). There is no target
for the first vector in the sequence, as no sums have yet been calculated. Because
the previous sum must be carried over by the network, this task again requires the
internal state of the network to remain coherent. Each classification is modeled by
a size 11 softmax, where the first 10 classes are the digits and the 11th is a special
marker used to indicate that the number is complete. An example input and target
are shown in Figure 6.3.

6.3. Training Parameters 21

The network was a single-layer LSTM with 512 hidden cells. The loss function
was the sum of the categorical cross-entropy of all 6 digits at each time-step (except
the first one) and the batch size was 32. The maximum ponder M was set to 20 for
this task, as (Graves, 2016) reports that some networks had very high ponder times
early in training.

1
2
3 0

5
4

9
8
7
6

5
1

*
*
3
7
5

*
2
6
3
7

*
7
7
3
7

* * *
0
0
0
0
1

7
7
3
7
1

*

Figure 6.3: An example of the input sequence and target sequence
for the addition task. Each column in the left represents an input,
and each column on the right represents the expected output for that
input. The special marker * indicates that the number has ended. The
first input has not an output target. The second input has as output
target the sum of the first and the second inputs (123+450=573). The
third input has as output target the cumulative sum of the first three
inputs (123+450+6789=7377) and so on for the fourth and fifth input.

6.3 Training Parameters

There exist some minor differences in the parameters used to optimize the model with
respect to the ones reported in (Graves, 2016). Our experiments are run with Adam
(Kingma and Ba, 2014) optimizer and learning rate of 10−3. The Adam optimizer
has also 3 extra parameters, which we fixed to β1 = 0.9, β2 = 0.999 and ε = 10−8.
Instead of using a learning rate of 10−4 as proposed in (Graves, 2016), we were able
to achieve better results and a faster convergence by increasing it to 10−3. Thanks
to the increase in learning rate, we found that running the experiments for 2 millions
steps was enough for the models to converge (instead of 16 millions in the original
paper). For the experiments with ACT, the value of ε from 4.6 was fixed to 0.01.

6.4 Results

This section presents the quantitative results of the ACT model and the repetition-
based baseline for the considered tasks. The presented plots were smoothed with
a Savitzky Golay filter (Savitzky and Golay, 1964) with a window of size 71 and
cubic polynomial. The images for the plots were generated with the Python library
Matplotlib. We will measure the accuracy (accuracy = correct examples

total examples) and the average
ponder cost, which is calculated by adding the residual plus the amount of computation
steps for each input, (equation 4.13). This means that we can know the amount of
computation steps that the network is doing by just looking at the integer part of the
ponder e.g. a ponder of 3.7 means that 3 computation steps are being done. In the

22 Chapter 6. Experiments

provided tables, we considered a task as being solved when the accuracy reached 98%
after being filtered (to avoid variance).

6.4.1 Parity

The accuracy and ponder cost of ACT for the parity task are represented in Figure
6.4, for different values of the the time penalty τ . We can see that the value of τ
directly influences the value of the ponder, and thus the amount of times the network
looks at the input. We can see that with smaller values of τ , the ponder gets larger
and the accuracy reaches 100% much faster.

0.5

0.6

0.7

0.8

0.9

1.0

Accuracy

0 250000 500000 750000 1000000 1250000 1500000 1750000 2000000

1

2

3

4

Ponder

Time penalty τ

Without ACT

1.0

0.5

0.1

0.05

0.01

0.005

0.001

Figure 6.4: Accuracy and Ponder plot for the Parity task with ACT.
Here we can see how if the ponder reaches 2 (so some inputs are being
repeated) the accuracy increases much faster. We can also see that the
value of the time penalty τ affects how much the ponder can grow, as
expected. It should be noted that an accuracy of 0.5 comes just from

random guessing, since we are trying to predict 0s or 1s.

Figure 6.5 shows the parity task with the proposed baseline solution based on
repetitions. Surprisingly, the results of setting the amount of repetitions manually are
very similar to those of ACT. We also see that, when doing too many repetitions, the
accuracy decreases. We also observe that when doing to many repetitions, the network
becomes unstable: even though it starts learning, the accuracy decreases in the late
stages. We believe that this is might be caused by exploding gradients, because the
sequence gets too long. Table 6.2 shows a comparison between a simple RNN, ACT
and our new baselines. We surprisingly see that our baselines with repeated inputs
performs even better than ACT when choosing the right amount of repetitions.

6.4. Results 23

0 250000 500000 750000 1000000 1250000 1500000 1750000 2000000

0.5

0.6

0.7

0.8

0.9

1.0

Accuracy

Amount of repetitions ρ

1

2

3

4

5

6

7

8

9

10

11

12

Figure 6.5: Accuracy plot for the Parity task with repeated inputs.
We see that with more repetitions we achieve a faster growth in accu-
racy, but there is a point (at about 8 repetitions) were we start seeing
instabilities. It should be noted that an accuracy of 0.5 comes just

from random guessing, since we are trying to predict 0’s and 1’s.

Model Task solved Updates until solved Mean repetitions

RNN No - 1

ACT-RNN, τ = 10−1 No - 1.000
ACT-RNN, τ = 10−2 Yes 53000 1.805

ACT-RNN, τ = 5 · 10−3 Yes 356000 2.027
ACT-RNN, τ = 10−3 Yes 55000 2.044

Repeat-RNN, ρ = 2 Yes 22000 2
Repeat-RNN, ρ = 3 Yes 49000 3
Repeat-RNN, ρ = 5 Yes 27000 5
Repeat-RNN, ρ = 8 Yes 26000 8

Table 6.1: Performance of a simple RNN, an RNN with ACT and
an RNN with repetitions in the Parity task. Here we can see that our

baseline with repetitions can outperform ACT in this task.

6.4.2 Addition

The results obtained with the Addition task are similar to those from the Parity task.
Figure 6.6 confirms that the value of τ directly influences the ponder, but in this
case we also see that the choice of this value is not trivial. For very large values, the
network does not repeat inputs and no improvement is measured. For small values,
the ponder cost and the amount of repetitions grow too much and we see the same
phenomenon on instability that we saw in the Parity task with repeated inputs. We
suspect again that this is due to dealing with sequences that are too long.

24 Chapter 6. Experiments

0.0

0.2

0.4

0.6

0.8

1.0

Accuracy

0 250000 500000 750000 1000000 1250000 1500000 1750000 2000000

2.5

5.0

7.5

10.0

12.5

15.0

Ponder

Time penalty τ

Without ACT

1.0

0.5

0.1

0.05

0.01

0.005

0.001

Figure 6.6: Accuracy and Ponder plot for the Addition task with
ACT. We see that adding ACT to the network and choosing the right
value for the time penalty τ allows it to learn to solve the task, going
from about 40% to 100%. We also see instabilities for values of τ too
small, which give values of ponder (and amount of repetitions) too

large.

Figure 6.7 shows how the more repetitions of the baseline model, the faster the
model converges. There is also a limit: with too many repetitions we see the same
problem as before, the networks shows instabilities with excessively long sequences.
We also see again that we can get a performance as good or even better than ACT by
just repeating inputs. Table 6.2 shows a comparison between our baseline and ACT.
We can see again a surprising better performance from repeating the inputs than from
ACT.

6.4. Results 25

0 250000 500000 750000 1000000 1250000 1500000 1750000 2000000

0.0

0.2

0.4

0.6

0.8

1.0

Accuracy

Amount of repetitions ρ

1

2

3

4

5

6

7

8

9

10

11

12

Figure 6.7: Accuracy plot for the Addition task with repeated inputs.
We see that repeating the inputs in the sequence greatly improves the
learning speed and the maximum accuracy achieved (going from about
40% to 100%). We also see instabilities when doing 9 repetitions or

more.

Model Task solved Updates until solved Mean repetitions

LSTM No - 1

ACT-LSTM, τ = 10−1 No - 1.012
ACT-LSTM, τ = 10−2 Yes 899000 5.079

ACT-LSTM, τ = 5 · 10−3 Yes 988000 6.736
ACT-LSTM, τ = 10−3 No - 11.907

Repeat-LSTM, ρ = 2 No - 2
Repeat-LSTM, ρ = 3 Yes 997000 3
Repeat-LSTM, ρ = 5 Yes 514000 5
Repeat-LSTM, ρ = 8 Yes 576000 8

Table 6.2: Performance of a simple LSTM, an LSTM with ACT and
an LSTM with repetitions in the Addition task. Here we can see that
our baselines with repetitions outperforms ACT when choosing the

right amount of repetitions.

We were also curious to measure the distribution of the ponder throughout the
sequence. Figure 6.8 shows a boxplot of the distribution of ponder for τ = 0.01 after
reaching accuracy of 98%. We see that the networks ponders much less the first input
than the rest, which decrease at each timestep. This could be caused by the lack of
a hidden state at the beginning of the sequence (in the first timestep a the we used
a hidden state initialized to all zeros). Another possible explanation for this could be
the lack of a target for the first input, which means that the network might not need
to ponder this input as much.

26 Chapter 6. Experiments

1 2 3 4 5

2

3

4

5

6

7

Ponder

Figure 6.8: Boxplot of the distribution of the ponder throughout the
sequence for the Addition task. We observe that the first element of
the sequence has a ponder value much smaller than the rest, so the
networks looks at it much less (2 times in this case) than the following

ones.

27

Chapter 7

Conclusions and Future Work

In this work we have reproduced Adaptive Computation Time (ACT) for RNNs
(Graves, 2016), a well known paper from a well regarded deep learning researcher
at Google Deepmind. The model has been implemented from scratch with two of the
most popular deep learning frameworks, and the source code has been released under
a free software license for other researchers to use.

We have tested this architecture in two different tasks, tweaked some hyperpa-
rameters from the original paper which improved overall performance, and tested a
new baseline that we considered fairer. With this new baseline, we found some very
interesting and surprising results, showing that by just repeating inputs we can im-
prove the performance of an RNN and speed up the training time. Repeating inputs
requires fixing a new hyperparameter, the amount of repetitions, which is task de-
pendent. This tuning can be compared to the hyperparameter that must be fixed
in ACT (the time penalty τ), which is also task dependent and arguably much less
intuitive. It should be noted that an equal amount of repetitions between ACT and
our new baseline does not mean an equal amount of computation, since ACT requires
many more extra calculations to determine the amount of repetitions and generate
the output and ponder loss term.

As a result of this research work, we have identified different aspects from ACT
that could be improved. Firstly, the ponder loss term is not differentiable and, even
though this should not be a problem, it is not intuitive that this term minimizes the
amount of times the networks ponders each input. For this reason, setting the required
hyperparameter τ is not intuitive either. Another shortcoming is the fact that the
output of an ACT layer is made of a weighted average of the output at each step. This
is not common in neural networks, where the output usually comes just from the last
time step. Moreover, the weights of this weighted average are the halting probability,
which is also not natural.

Another possible future work is to think of variable computation from another
perspective. Because of the surprisingly good performance of repeating the inputs
of a sequence, we could try to repeat the inputs of a sequence, and then skip them
adaptively, using the Skip RNN model (Campos et al., 2017) developed at UPC/BSC.
We believe that this could be a way of achieving a good-performing adaptive RNN.

29

Bibliography

Bengio, E. et al. (2015). “Conditional Computation in Neural Networks for faster
models”. In: ArXiv e-prints. arXiv: 1511.06297 [cs.LG].

Bengio, Y. (2013). “Deep Learning of Representations: Looking Forward”. In: ArXiv
e-prints. arXiv: 1305.0445 [cs.LG].

Bengio, Y., N. Léonard, and A. Courville (2013). “Estimating or Propagating Gra-
dients Through Stochastic Neurons for Conditional Computation”. In: ArXiv e-
prints. arXiv: 1308.3432 [cs.LG].

Bengio, Y., P. Simard, and P. Frasconi (1994). “Learning long-term dependencies
with gradient descent is difficult”. In: IEEE Transactions on Neural Networks 5.2,
pp. 157–166. issn: 1045-9227. doi: 10.1109/72.279181.

Bolukbasi, Tolga et al. (2017). “Adaptive Neural Networks for Efficient Inference”.
In: Proceedings of the 34th International Conference on Machine Learning. Ed.
by Doina Precup and Yee Whye Teh. Vol. 70. Proceedings of Machine Learning
Research. International Convention Centre, Sydney, Australia: PMLR, pp. 527–
536. url: http://proceedings.mlr.press/v70/bolukbasi17a.html.

Campos, V. et al. (2017). “Skip RNN: Learning to Skip State Updates in Recurrent
Neural Networks”. In: ArXiv e-prints. arXiv: 1708.06834 [cs.AI].

Cauchy, Augustin (1847). “Méthode générale pour la résolution des systemes d’équations
simultanées”. In:

Chung, J., S. Ahn, and Y. Bengio (2016). “Hierarchical Multiscale Recurrent Neural
Networks”. In: ArXiv e-prints. arXiv: 1609.01704 [cs.LG].

Cook, William J. (2012). In Pursuit of the Traveling Salesman: Mathematics at the
Limits of Computation. Princeton University Press. isbn: 9780691152707. url:
http://www.jstor.org/stable/j.ctt7t8kc.

Denil, M. et al. (2013). “Predicting Parameters in Deep Learning”. In: ArXiv e-prints.
arXiv: 1306.0543 [cs.LG].

Figurnov, M. et al. (2016). “Spatially Adaptive Computation Time for Residual Net-
works”. In: ArXiv e-prints. arXiv: 1612.02297 [cs.CV].

Goodfellow, Ian, Yoshua Bengio, and Aaron Courville (2016). Deep Learning. http:
//www.deeplearningbook.org. MIT Press.

Graves, A. (2016). “Adaptive Computation Time for Recurrent Neural Networks”. In:
ArXiv e-prints. arXiv: 1603.08983.

Gutmann, Michael and Aapo Hyvärinen (2010). “Noise-contrastive estimation: A new
estimation principle for unnormalized statistical models”. In: Proceedings of the
Thirteenth International Conference on Artificial Intelligence and Statistics. Ed.
by Yee Whye Teh and Mike Titterington. Vol. 9. Proceedings of Machine Learning
Research. Chia Laguna Resort, Sardinia, Italy: PMLR, pp. 297–304. url: http:
//proceedings.mlr.press/v9/gutmann10a.html.

He, K. et al. (2015). “Deep Residual Learning for Image Recognition”. In: ArXiv e-
prints. arXiv: 1512.03385 [cs.CV].

Jernite, Y. et al. (2016). “Variable Computation in Recurrent Neural Networks”. In:
ArXiv e-prints. arXiv: 1611.06188 [stat.ML].

http://arxiv.org/abs/1511.06297
http://arxiv.org/abs/1305.0445
http://arxiv.org/abs/1308.3432
http://dx.doi.org/10.1109/72.279181
http://proceedings.mlr.press/v70/bolukbasi17a.html
http://arxiv.org/abs/1708.06834
http://arxiv.org/abs/1609.01704
http://www.jstor.org/stable/j.ctt7t8kc
http://arxiv.org/abs/1306.0543
http://arxiv.org/abs/1612.02297
http://www.deeplearningbook.org
http://www.deeplearningbook.org
http://arxiv.org/abs/1603.08983
http://proceedings.mlr.press/v9/gutmann10a.html
http://proceedings.mlr.press/v9/gutmann10a.html
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1611.06188

30 BIBLIOGRAPHY

Kingma, D. P. and J. Ba (2014). “Adam: A Method for Stochastic Optimization”. In:
ArXiv e-prints. arXiv: 1412.6980 [cs.LG].

LeCun, Y. (1989). “Generalization and Network Design Strategies”. In: Connectionism
in Perspective. Ed. by R. Pfeifer et al. an extended version was published as a
technical report of the University of Toronto. Zurich, Switzerland: Elsevier.

Li, Z. et al. (2017). “Dynamic Computational Time for Visual Attention”. In: ArXiv
e-prints. arXiv: 1703.10332 [cs.CV].

Mitchell, Tom (1997). Machine Learning.
Niu, F. et al. (2011). “HOGWILD!: A Lock-Free Approach to Parallelizing Stochastic

Gradient Descent”. In: ArXiv e-prints. arXiv: 1106.5730 [math.OC].
Rumelhart, David E., Geoffrey E. Hinton, and Ronald J. Williams (1986). “Learning

representations by back-propagating errors”. In: Nature 323, 533 EP –. url: http:
//dx.doi.org/10.1038/323533a0.

Savitzky, Abraham. and M. J. E. Golay (1964). “Smoothing and Differentiation of
Data by Simplified Least Squares Procedures.” In: Analytical Chemistry 36.8,
pp. 1627–1639. doi: 10.1021/ac60214a047. eprint: http://dx.doi.org/10.
1021/ac60214a047. url: http://dx.doi.org/10.1021/ac60214a047.

Schroff, F., D. Kalenichenko, and J. Philbin (2015). “FaceNet: A Unified Embed-
ding for Face Recognition and Clustering”. In: ArXiv e-prints. arXiv: 1503.03832
[cs.CV].

Silver, David et al. (2017). “Mastering the game of Go without human knowledge”.
In: Nature 550.7676, pp. 354–359. issn: 0028-0836. doi: 10.1038/nature24270.
url: http:https://doi.org/10.1038/nature24270.

Tieleman, T. and G. Hinton (2012). Lecture 6.5—RmsProp: Divide the gradient by a
running average of its recent magnitude. COURSERA: Neural Networks for Ma-
chine Learning.

Williams, Ronald J. (1992). “Simple statistical gradient-following algorithms for con-
nectionist reinforcement learning”. In: Machine Learning 8.3, pp. 229–256. issn:
1573-0565. doi: 10 . 1007 / BF00992696. url: https : / / doi . org / 10 . 1007 /
BF00992696.

Wolpert, David H. (1996). “The Lack of A Priori Distinctions Between Learning Al-
gorithms”. In: Neural Computation 8.7, pp. 1341–1390. doi: 10.1162/neco.1996.
8.7.1341. eprint: https://doi.org/10.1162/neco.1996.8.7.1341. url:
https://doi.org/10.1162/neco.1996.8.7.1341.

Xu, K. et al. (2015). “Show, Attend and Tell: Neural Image Caption Generation with
Visual Attention”. In: ArXiv e-prints. arXiv: 1502.03044 [cs.LG].

Yu, A. W., H. Lee, and Q. V. Le (2017). “Learning to Skim Text”. In: ArXiv e-prints.
arXiv: 1704.06877 [cs.CL].

Zhou, Y. T. et al. (1988). “Image restoration using a neural network”. In: IEEE Trans-
actions on Acoustics, Speech, and Signal Processing 36.7, pp. 1141–1151. issn:
0096-3518. doi: 10.1109/29.1641.

http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1703.10332
http://arxiv.org/abs/1106.5730
http://dx.doi.org/10.1038/323533a0
http://dx.doi.org/10.1038/323533a0
http://dx.doi.org/10.1021/ac60214a047
http://dx.doi.org/10.1021/ac60214a047
http://dx.doi.org/10.1021/ac60214a047
http://dx.doi.org/10.1021/ac60214a047
http://arxiv.org/abs/1503.03832
http://arxiv.org/abs/1503.03832
http://dx.doi.org/10.1038/nature24270
http:https://doi.org/10.1038/nature24270
http://dx.doi.org/10.1007/BF00992696
https://doi.org/10.1007/BF00992696
https://doi.org/10.1007/BF00992696
http://dx.doi.org/10.1162/neco.1996.8.7.1341
http://dx.doi.org/10.1162/neco.1996.8.7.1341
https://doi.org/10.1162/neco.1996.8.7.1341
https://doi.org/10.1162/neco.1996.8.7.1341
http://arxiv.org/abs/1502.03044
http://arxiv.org/abs/1704.06877
http://dx.doi.org/10.1109/29.1641

	Abstract
	Acknowledgements
	Introduction
	Theoretical Background
	Machine Learning Basics
	The task T
	The Performance Measure, P
	The Experience, E
	Capacity, Overfitting and Underfitting
	The No Free Lunch Theorem

	Gradient-Based Optimization
	The loss function
	Gradient descent
	Stochastic Gradient Descent
	Momentum

	Deep Learning Basics
	Feedforward Neural Networks
	Backpropagation

	Recurrent Neural Networks
	Long Short-Term Memory

	Related Work
	ACT model
	ACT model
	Limiting Computation Time
	Error gradients

	Implementing ACT
	PyTorch
	HogWild!

	TensorFlow

	Experiments
	A new baseline: Repeated inputs
	Tasks
	Parity
	Addition

	Training Parameters
	Results
	Parity
	Addition

	Conclusions and Future Work
	Bibliography

