
Master Thesis

Object Tracking in Video with
TensorFlow

Developing a Model for VID Imagenet Challenge

Andrea Ferri

Supervised by

Jordi Torres

Xavier Giro ”I” Nieto

Final Project Report for the

Master in Innovation and Research in Informatics

BSC Computer Science Department

Universidad Politecnica de Catalunia

Catalunya, Spain

October 2016

Object Tracking in Video with TensorFlow
Developing a Model for VID Imagenet Challenge Andrea Ferri

Supervised by:

Jordi Torres
BSC Department of Computer Science

Xavi Giro ”I” Nieto
UPC Department of Image Processing

Abstract
This Thesis[13] was born as collaboration between the BSC Computer Science De-
partment [5] and the UPC Image Processing Group [23], with the purpose to develop
an hybrid thesis on Deep Learning.

Nowadays, the interest around Machine Learning, is one of the fastest growing.
So far from the side of the BSC Computer Science Department [5], that mainly
uses his computational power for data mining and modelling analysis, the main
purpose was to verify the difficulty to adapt his infrastructure “asterix”, from the
GPU Center of Excellence at BSC/UPC [4], the to Deep Learning. Instead, from
the side of UPC IPG, there was the interest to test the environment developing a
model for Object Tracking in Video that was suitable for the ILSVRC VID challenge
[43]. To achieve the first goal and analyze the workload on the machine, I started
to become an active user of the TensorFlow [21] community, learning from posts
and blogs and I decided to implement a Virtual Environment that, led us to use
different dependencies and different versions of the library software, depending on
the model and purpose to reach. Till now, from the computer science point of view,
this environment was the best choice and the most useful experience to work with,
showing the easiness of use and implementation. I had some problems only with
third part libraries, specifics for the Visual Recognition area, like OpenCV.

To develop the model for VID challenge, I began learning the basic knowledge
for Deep Learning concepts, through on-line courses as the one of Stanford. Then
I passed to the deepest and complex knowledge regarding the Visual Recognition
topic, reading papers and understanding the main strategies and models that would
be useful to me later, during the development. The discovery of many new concepts
gave me enthusiasm and scared me at the same time, theory and practice were
complementary, but it wasn’t easy to pass from the first to the second one.

These latter were the most difficult part of the project, because it wasn’t enough
adapting my previous knowledge and programming skills to the new ones and mainly
to the TensorFlow Environment. The Python library due to its recent birth hasn’t
developed many models or components yet, as for others environments like Caffe [3]
or Theano[50], but the community interest is growing so fast that, luckily, I didn’t
had to start from scratch. I used some available models directly from Google [1]
and some GitHub Project, like TensorBox[44] from a Stanford Phd Student[45] and
tested others, like YOLO TF version[16].

3

The main components were some of the GitHub project I found, but none of
them left me withouth problems.

Due to the time constraints, I started trying to extend OverFeat (TensorBox
Project) [44] from single to multi class, spending efforts and many time trying to
make the difference, increasing the quality of the model, on which I made also some
important contribution, solving some of the main code pitfalls. At the end, the big
reverse engineering work I realized with the help of the author, it didn’t give the
expected results. So I had to change the main architecture composition, using other
strategies and introducing other redundant components to achieve a theoretically
still image detection model. I had to introduce a time and space analysis to correlate
results between frames and be more consistent in the detection and tracking of the
objects themselves. Starting form the modular architecture proposed by K. Kang et
al.[32], I decided to use the single class OverFeat implementation as General Object
detector, training it on the whole class set and followed it with other components.

After the General Detector, I implemented a Tracker & Smoother to be more
consistent in shape and motion during time and space on the whole frames set, using
the knowledge of Slow and Steady features analysis explained by Dinesh Jayaraman
and Kristen Grauman [31].

Inception component, the final one, is the most redundant module, because it’s
at the base of OverFeat architecture; but its use was the faster and only solution to
label easily each objects. Thanks to the available model [20] implemented by Google
[1], that it was trained on the ILSVRC Classification task, I had only to retrain it
on a really smaller class set, thirty instead of one hundred, a workload sustainable
by any personal computer available on the market. The complete architecture was
composed by three main components in the following order of connection: General
Detector, Tracker and Smoother, Inception.

Finally, I reached a working Environment and Model, that led me to submit
results for the challenge, evaluate the workload for the “asterix” infrastructure,
from GPU Center of Excellence at BSC/UPC, and prove how a Department can
adapt and develop a working Deep Learning Research and Development area in few
months.

The methodology I used could be defined Fast Learning and Fast Developing.
Since I had to start everything from scratch, first of all, the necessary basic theory
knowledge, after, the most complex and specific one and finally implement them in
the short time interval possible, wasn’t easy at all. These reasons according with the
time constraints, pushed me to learn and develop in the fastest possible way, using
tricks and tips and available components, saving time for the error solving. This
latter is a consistent part of my work, solving run and project problems, which took
me sometimes hours, sometimes entire days and once caused me a system-crash of
”asterix” infrastructure, suffering ten days of black out during August, due to the
summer period.

The model reached the last position in the VID ILSVRC competition, because
of its low mAP results. As I will explain, the source of these results is the first
component, that afterwards hasn’t modules able to boost its accuracy; at the same
time I will highlight how a different order of components and better implementa-
tion of them, for example a trainable Tracker plus Smoother, can be the starting
improvements for this first draft work. Moreover, some other precautions can be
taken on the Dataset for the train of single components, boosting their accuracy; I

only trained the provided Train database, without using tricks and tips on it.
The thesis goals were fully reached in the best way I could, solving and walking

through a path full of pitfalls and problems, which made my project harder to end.

Dedication

I dedicate this Thesis to all the people I have met in my life.
The good ones, that always believe in me and push me to never giving up in the

worst moment of my life; thanks to all of you I’ve reached a lot.
Most important, I wanna thank, the ones I loose and left, you taught me a lot.

Now I know who I want to be and what I want in my life.
Dedicate to my roots, I will never forget you. Thanks to all the people who joined
me in this amazing experience of my life.

6

Acknowledgements

I want to thank, Professor Jordi Torres and Professor Xavier Giró-”I”-Nieto, for
believing in me and give me the opportunity to develop this thesis, I learned a
lot from it, but more from both of you; to BSC Computer Science department for
the server infrastructure and more to ”Marc”, Marc Jordà, of the BSC Technical
Support, I owe you a lot, you save me many times.

I want to thank all the Students and Researchers I met at BSC Computer Science
department and UPC Image Processing Group, you let me feel at home and this
was unique.

Finally thanks to all the People I have met this year in Barcelona, you are
amazing and It’s also because of you if I reached this goal.

To all the people I met in this two years that live around the world, I wanna
thank you so much to be part of my life and story, I’m sure that life will always
keep us in contact.
To all the people I met in my year at Politecnico: Grazie di cuore a tutti voi,
compagni di Lezione, di Studio, in questo momento elencarvi tutti e ringraziarvi
uno ad uno risulta emotivamente complicato, ma siete stati importanti, desidero
che lo sappiate.

Vorrei ringraziare i miei coinquilini, che mi hanno sopportato nel bene e nel male.
Alla fine del percorso insieme, siamo cresciuti, divenendo adulti come non avremmo
potuto credere. Siete stati importanti, non ve l’ho mai dimostrato abbastanza.

Infine non meno importante, vorrei ringraziare la famiglia di J.E.To.P, per avermi
accolto, cresciuto e spinto nel movimento delle Junior Enterprise non solo a livello
italiano ma europeo; abbiamo condiviso momenti belli e brutti, tensioni difficili, ma
importanti, ”Always one step forward” rimarremo sempre connessi, nessuno può
insegnare tanto professionalmente, se non una famiglia come voi.
To my Italian Friends: Grazie! L’amicizia per me è sempre stata un importante tas-
sello di vita; vi ringrazio di non aver mai dubitato di me, di essere cresciuti assieme,
di avermi accettato per quello che sono, di avermi reso consapevole della vita, dei
suoi valori, di come non vada mai sprecato ogni suo singolo istante. Imparerò ad
essere più connesso e presente nelle vostre vite, grazie di tutto quello che avete fatto
per me, di aver compreso i miei momenti e di avermi sempre, anche a distanza, fatto
sentire il vostro calore umano.
To my Family: Non c’è nessuno che vi superi, in ogni circostanza; questi due anni
sono stati difficili per tutti, siamo maturati tanto e nella distanza abbiamo trovato
la voglia di stare più vicini e di essere più sinceri l’un l’altro.

Papà, Mamma, grazie di tutti i sacrifici che avete fatto, per farmi rincorrere
i miei sogni, grazie di avermi dato la fiducia per cadere e rialzarmi; è solo grazie
a voi se ci riesco tutte le volte. Avete fatto tutto questo col sorriso più naturale
possibile. Non sarò mai abbastanza bravo come figlio per ripagarvi di tutto quello

7

che continuate a darmi e trasmettermi.
Sorellina, ti ho sempre detto che avrei voluto un fratello e non una sorella, ma

in cuor mio non avrei mai potuto sperare di meglio; sei una ragazza speciale e
talentuosa, farai sicuramente più strada di me. Sono orgoglioso di te; so quanto hai
sofferto e quanto sei diventata forte in questi anni; ormai sono io che devo imparare
da te. Continua cos̀ı e ricordati che per quanto possa essere distante e distratto, sei
e sarai sempre al centro del mio cuore.

Zii, Cugini, parenti, elencarvi diventerebbe lungo, ma non posso non ringraziarvi.
Ognuno di voi mi insegna giorno dopo giorno; è un pensiero che mi dà forza, mi fa
sentire vivo. Porto parte di ognuno di voi dentro e vi voglio un bene profondo.
Scusate la mia imperfezione, cercherò di essere migliore e di continuare su questa
strada, non solo per me stesso, ma anche per voi.

Ultimi non per importanza, Nonni, se ho potuto scrivere tutto questo devo
ringraziare voi che siete stata un’onda in mezzo al mare, che superando scogli e
maree, ha portato alla luce una famiglia stupenda, eterogenea, stravagante, ma che
si ama davvero, anche se a volte se lo scorda; siamo belli cos̀ı. Siete molto importanti
per me, a dir poco fondamentali, quello che avete significato e quello che siete stati,
nei vostri pregi e difetti, sarà sempre parte di me; vi dedicherò tempo per dirvelo e
dimostrarvelo.

Nonno, a te vanno un saluto e un ringraziamento speciale, perchè sei l̀ı a guardarmi
sbagliare e rialzarmi e, nonostante non possa leggere queste parole fisicamente, quel
giorno sarò cos̀ı felice e griderò cos̀ı forte, che non solo vedrai la mia luce da lassù,
ma sentirai il mio saluto; allora saprai che ”anche a stò giro te l’ho fatta”. Grazie
di avermi insegnato che la perfezione si trova solo nell’imperfezione stessa.

Contents

1 Introduction, Motivations and Goals 21
1.1 Thesis and Project . 21
1.2 Requirements: Tensorflow and ImageNet 22

1.2.1 Tensorflow . 22
1.2.2 ImageNet . 22

1.3 The infrastructure: Asterix . 23

2 State of the Art 26
2.1 Still Image Processing . 26

2.1.1 Classification . 26
2.1.2 Localization . 29
2.1.3 Detection . 31

2.2 In Space and Time Image Processing 34
2.2.1 Principals Concepts . 34
2.2.2 Models . 36

3 Methodology 39
3.1 Fast Learning and Fast Developing 39
3.2 Community and Environment Magnitude 41

4 Development of the Work 42
4.1 The Project Architecture . 42

4.1.1 TensorBox . 43
4.1.2 In time and Space Strategies 46
4.1.3 Inception . 48

4.2 Code Specifications . 49
4.3 Dataset Processing . 56
4.4 Training Specifications . 59

4.4.1 TensorBox Training . 59
4.4.2 Inception Training . 60

5 Evaluation of the Work 63
5.1 ImageNet Challenge Results . 63
5.2 Computational Evaluation . 66
5.3 Model Evaluation . 66

6 Conclusion 69
6.1 Overall Conclusions . 69
6.2 Personal Considerations . 70

9

A Appendix 72
A.1 Basics History Information about ILSVRC 72

A.1.1 The competition . 72
A.1.2 The ImageNET Dataset . 73

A.2 Basics Knowledge of Deep Learning 75
A.2.1 Definition and Basics Laws . 75
A.2.2 Principal History Milestone 76
A.2.3 Nowadays Environment . 76

A.3 Basics Knowledge about Tensorflow 78
A.3.1 The TensorFlow Environments 78
A.3.2 The community . 79
A.3.3 Computational Evaluation . 80

List of Figures

1.1 TensorFlow Logo. 22

1.2 ImageNET Logo. 22

1.3 Asterix Topology schema. 23

1.4 Terminal Output of the nvidia-smi command on the server. 24

2.1 Inception model v3 examples of Image Classification (Recognition). . 27

2.2 Architecture Representation of the Inception model v3 [48] developed
by Google . 28

2.3 Legend of the different layers color, corresponding to the ones in the
architecture representation of the Inception model v3. 28

2.4 Best Localization results, from the winners University of Amsterdam
[2] & Trento [51], of ILSRVC LOC 2011[27]. 30

2.5 Localization overlapping error examples, from the winners University
of Amsterdam [2] & Trento [51], of ILSRVC LOC 2011[27]. 31

2.6 Schema of the best Classification model, from the winners of ILSRVC
CLC 2012 [33]. 33

2.7 Schema of the ConvNet inherit advantages at run time. 34

2.8 Concept Schema of a smoother unit for functions. 35

2.9 Concept Schema of a smoother applied to a Video. 35

2.10 Concept Schema of the Seq-NMS, bounding boxes sequence are firstly
selected and re-scored (from Left to Right), then suppressed (from
Center to Left) and this loop is repeated until any sequence remains
selectable. 37

2.11 Concept Schema of the T-CNN, composed by four main parts with
relative internal sub-modules. 37

2.12 Qualitative Results of the T-CNN model. 38

3.1 Stanford, CS231n: Convolutional Neural Networks for Visual Recog-
nition website screen. 40

4.1 General Architecture of the model I developed. As we can see, frames
are processed firstly by the general detector, then detections are im-
proved with a post processor tracker and finally each bounding boxes
sequence is labeled from the classifier. 42

4.2 Screen of the GitHub Repository of the TensorBox [44]project I’m
describing in this paragraph. 43

4.3 Full TensorBox graph, taken from TensorBoard. 44

4.4 Right Zoom of the TensorBox graph, taken from TensorBoard. 44

12

4.5 Center Zoom of the TensorBox graph, taken from TensorBoard; In
the picture the reverse pyramidal graph is the main core of the com-
putation for Overfeat. 44

4.6 Left Zoom of the TensorBox graph, taken from TensorBoard; In the
picture is presented the Auxiliary part, that are the nodes defined
and then used in the main graph. 45

4.7 Results taken from the output of the GitHub project, TensorBox [44]. 45

4.8 Illustration of the model process respect to the output of the first
component. On the right side, we can see the Frames marked with
Bounding Boxes Detections, which are a batch of rectangle that in
space and in shape don’t have too much sense right now. 46

4.9 The first picture (a) show that the algorithm finds good results for
multiple objects, which aren’t so much overlapped; Instead the second
(b) confirm that we are loosing the ones that are really overlapped, in
this case is useful to note that the algorithm choose the most visible
for the color, so the cat and not the monkey. 47

4.10 Inside process overview of the Object Tracker unit, we can see that in
the first frame, the NMS output box is selected and the motion flux
is followed into the further ones. The blue line shows the time line
direction. 48

4.11 Example of cropped frames taken from a run of the thesis model,
from Left to Right in order: airplane, dog, cat. 49

4.12 Inception v3 graph, taken from TensorBoard, the singles node are
inside composed as showed in the state of the art chapter. 50

4.13 Whole model process that starting from the video, took one frame,
computed object proposal, cropped the rectangles and finally chose
the best ones and tracked them on the frame. 51

4.14 UML diagram of the basic classes implemented into the project. . . . 52

4.15 UML diagram of the utils classes implemented into the project. . . . 53

4.16 UML diagram of the interface classes implemented into the project. . 54

4.17 Event training graphs, extrapolated from TensorBox 60

4.18 Training weights graphs, extrapolated from TensorBox 60

4.19 Event training graphs, extrapolated from TensorBox 61

4.20 Test Image extrapolated from TensorBox 61

4.21 Graphs of Accuracy and Cross Entropy cost function, taken from
TensorBoard. 62

4.22 Standard Deviation graphs of Biases and Weights values of the model,
extrapolated from TensorBox. 62

4.23 Graphs of Accuracy and Cross Entropy cost function, taken from
TensorBoard. 62

4.24 Standard Deviation graphs of Biases and Weights values of the model,
extrapolated from TensorBox. 62

5.1 CPU usage of the TensorBox component of the model. 66

5.2 GPU usage of the TensorBox component of the model. 67

A.1 ILSVRC competition Logo. 72

A.2 Hierarchical organization of Worldnet Database of the English language. 73

A.3 Neural Network schema, on the edges are stored the weights of the
model. This features values are the one updated through the Back
Propagation algorithm. 75

A.4 Architecture schema of the YOLO model. 76
A.5 Results on artwork dataset, from You Only Look Once model, looks

pretty accurate if wasn’t for some wrong classes detection. 77
A.6 Tensorflow GitHub community page. 79
A.7 Example of Tensorboard control pannel. 80

List of Tables

2.1 Comparison of the five top classification models on test set of ILSVRC. 27

2.2 Accuracy evolution of the inception model of Google from the first
version, GoogleNet[47], to the third one [20] on test datset of ILSVRC
2012. 29

2.3 Comparison of the main detection models, please pay attention to the
different test database used and the implementation year. 32

2.4 R-CNN median results, from the 2007 to the 2012 VOC dataset;
the last column shows the mAP of the model on the ILSVRC 2013
dataset, this last result is more significant for my purposes. 32

2.5 The Faster R-CNN model considered is the version with the VGG-16
as Visual Recognition base model. The training and test data belong
to PASCAL VOC competition. 33

2.6 Architecture specification of the fast model used by the team during
the ILSVRC CLC, LOC and DET 2013 competition 33

2.7 Architecture specification of the deeper model used by the team dur-
ing the post ILSVRC CLC, LOC and DET 2013 competitions to reach
the upper-cited result. 33

2.8 Accuracy of the listed models. 36

4.1 Number of snippets in each dataset[40] provided for the ILSVRC VID
competition. 58

4.2 The Training dataset has median of 116 positive snippets per synset
and 180 frames per snippet; the Validation dataset has a median of
17 snippets per category and 232 frames per snippet; the Test dataset
information aren’t released. 58

5.1 Object detection from video with provided training data, Results from
ILSVRC 2016. 63

5.2 Object detection from video with additional training data, Results
from ILSVRC 2016. 64

5.3 Extra Training Data information refered to the previous table of re-
sults from ILSVRC 2016. 64

5.4 Winner of the Object detection/tracking from video with provided
training data of ILSVRC 2016, the second place was taken from
NUIST Team, that was the winner of all the others category. 64

5.5 Winner of the Object detection/tracking from video with additional
training data of ILSVRC 2016. 64

5.6 Object detection from video with provided training data, Results from
ILSVRC 2015. 65

16

5.7 Object detection from video with additional training data, Results
from ILSVRC 2015. 65

5.8 Extra Training Data information refered to the previous table of re-
sults from ILSVRC 2015. 65

5.9 Per-Class validation routine results. 67

List of Contributions

• Fixed a threading problem into Overfeat TensorBox Repository [8] [9];

• Added the model Graph of Overfeat to Tensorboard [11];

• Fixed some errors in the visualization of images in the TensorBoard summary
[12];

• Fixed some errors into Google Inception TensorFlow Repository [10].

19

Chapter 1

Introduction, Motivations and
Goals

In this chapter I will introduce firstly the Thesis architecture and with which meth-
ods I developed the Project, than I will introduce the two main Requirements of the
Thesis.

1.1 Thesis and Project

The thesis [13] focus is to implement a Deep Learning Environment in a computa-
tional and modelling infrastructure, that must be dynamic and error prone. From
this point,I implemented a model for one of the ImageNet Large Scale Visual Recog-
nition Competition challenges[43].

A Dynamic Environment means that it must be easy to adapt and update to
the needs, because the Deep Learning topic is a continuous Research and Develop,
where it comes really hard to let working everything and be always up to date.

Due to the time constraints, less than 4 month, I decided not to start from
the scratch but from some yet implemented community models. My goal was not
to achieve the best results, but a working model, whose output was making sense.
Starting from implemented models was not an error prone; through reverse engineer-
ing, I had to understand the code, adapt it and when needed, make contributions.
This takes me more effort then expected, but at the end I achieved the goal to
submit results to the challenge.

As we will see, one of the strong hidden dependencies in Deep Learning are
Datasets, which are almost always provided and checked by the challenge hosts but,
downloading and managing them, checking their effective accuracy was not so easy
as everybody can think.

I will initially explain Visual Recognition State of the Arts, then the methodol-
ogy I used for achieving this goal in a really high time constrain, how I reached a
working model in TensorFlow [21]and finally I’ll show the Results Evaluations and
Conclusion. It’s possible to find some basic knowledge on ILSVRC [43]and Deep
Learning in the Appendix, in which the last chapter is a deeper explanation on the
method and decisions I made to build up the Environment.

21

1.2 Requirements: Tensorflow and ImageNet

The requirements of this Thesis were chosen from each Department I’m working
with. TensorFlow was chosen from BSC [5] Computer Architecture Department
and ImageNET Large Scale Visual Recognition Challenge VID challenge [43] from
UPC Image Processing Group[23]. I will highlight the main motivations on these
two decisions.

1.2.1 Tensorflow

Figure 1.1: TensorFlow Logo.

Released on the 15th of November 2015 by Google[1], TensorFlow [21] is the
newest open source library written in Python for numerical computation.

It has immediately a great success in the Machine Learning community and in
less than one year it also had a lot of support and development by Google [1] itself,
more over by many community projects, developed in any area of Deep Learning.

The peculiarity of TensorFlow is its work flux, made by data flow graphs. Where
Nodes represent mathematical operations, edges represent the multidimensional
data arrays communicated between them; the latter can be considered, as in elec-
tronics, a Tensor, from here its name. In May 2016, Google [53] has revealed that
it has used TensorFlow in AlphaGo project, with a special hardware dedicated to
boost library’s performances.

To reach rapidly this goals, Google dedicated a special attention to the user
experience of TensorFlow[21], which arrives with a great basic support and a well-
grown GitHub community [22], the key of this quick improvement.

All these are the peculiarities that pushed us to choose TensorFlow [21], over
more developed and bigger communities. The irruption made in the Deep Learning
environment, shows up its great future potentialities, that are rolling out day by
day.

1.2.2 ImageNet

Figure 1.2: ImageNET Logo.

In its 7th edition, The ImageNet Large Scale Visual Recognition Competition
(ILSVRC)[43] was a worldwide competition , where one of the 5 main challenges was
VID. This has the aim of Tracking Object in Video, identifying eventually multiple-
objects, classifying them and more over giving a track number for each of them, if
it’s possible.

All the datasets (Training, Validation and Tests) are retrieved on the ImageNET
Database, a collection of annotated pictures of different classes of objects. In the
further chapter, I will explain in detail.

Developing a deep learning model in any area means to learn from the community
and using, adapting, merging, writing code from it. So it was very difficult to reach
the goal. TensorFlow community [22] has a fast growth, but the complexity of the
models for the Object Tracking in Video are pretty far from the ones present in
the nowadays community. Starting from the great idea of a model, composed by
different parts proposed by K. Kang et al [32], which achieves the State of the Art
in one of the categories of the last year competition, I used, composed and adapted
some available models to reach the one I was looking for.

1.3 The infrastructure: Asterix

The Asterix server is part of the BSC-UPC NVIDIA GPU Center of Excellence. To
better understand the infrastructure I used, I will explain a little its architecture
and show its schema:

Figure 1.3: Asterix Topology schema.

The machine has a total of 24Gb of local computational power inter-node, divided
into to two NUMA (Non-uniform memory access) Nodes. This design architecture
is specific for multiprocessing work, where the inter-node memory is used to boost
performance. In the two nodes there are 16 CPUs, divided in four core for node,
each of them is a Intel(R) Xeon(R) E5620 @2.4 GHz; Each CPUs has three different
level of Cache Memory, L3 of 12Mb, L2 of 256Kb and the first level is split into
L1i and L1d, both 32Kb. Each NUMA node is supported by four graphic cards,
in the figure card from 1 to 4. All of them as visible into the below picture are
NVidia Tesla K40c of 12Gb of memory. The ”c” version of the K40 version is the

one with an active fan sink that the card uses to cold down itself. This lets the card
be suitable for many more purposes than other versions.

Figure 1.4: Terminal Output of the nvidia-smi command on the server.

In total to the 24Gb CPU memory are accompanied 48Gb of graphics card. These
latter are important and fundamental for the Deep Learning topic. Because they
are the ones that architecturally support naturally the mathematical computation.

The time constraints and the many problems and errors I encountered obliged
me to learn, use and implement all the knowledge I needed for the topic in the fastest
possible way. At the end of the Thesis[13], I will be able to respond to the question:
can TensorFlow [21] be the fastest adaptable environment for Machine Learning, for
implementing Research and Development, into a different infrastructure architecture
with a great improvement perspective?

Chapter 2

State of the Art

In this section, I will talk about the basics State of the Art for Visual Recognition.
The concepts will be divided in the so called ”Still Image Processing”, because Time
and Space properties of the analyzed photos are not considered and ”In Space and
Time Image Processing”, where those parameters are considered and learned from
the model.

2.1 Still Image Processing

The Still Image Processing is the area that focuses the learning in three different
specific goals: Classification of objects in images, their Localization and finally their
Detection.

As anticipated, all these tasks are learned by the model without considering
Space and Time properties, because the starting hypothesis is that sequential photos
are not correlated in time.

2.1.1 Classification

The Classification task is intended as the Visual Recognition of all the possible
subjects inside the picture in the descending order of confidence, see Figure 2.1 for
examples.

This task is at the base of all the others, because it recognizes if there are objects
or not and which classes belong to. This is the starting point of the human visual
focus on scene. Respect to the state of the art and the ILSVRC [43] challenges, in
2011 Classification was coupled with localization in a separate challenge and then
from 2013 replaced by it, because the improvement rate was flat.

In the classification topic, we can cite many different models in a quality ascend-
ing order, that corresponds also to the incremental evolution of them:

• AlexNet (ImageNet Classification with Deep Convolutional Neural Networks,
2012) [33].

• VGG-Net (Very Deep Convolutional Networks for Large-Scale Visual Recog-
nition, 2015) [42];

• GoogLeNet (2015) [47];

26

• Batch Normalization, Google (Batch Normalization: Accelerating Deep Net-
work Training by Reducing Internal Covariate Shift) [30];

• Deep Residual Learning, Microsoft (Deep Residual Learning for Image Recog-
nition)[25];

• PReLu/Weight Initialization, Microsoft (Delving Deep into Rectifiers: Sur-
passing Human-Level Performance on ImageNet Classification)[26];

As we can extrapolate from the paper of Kaiming He et al.[26], a comparison of the
five top methods, evaluated on the test set, is of the following order of magnitude:

Method Top 5-err (test)
ResNet (ILSVRC ’15) [25] 3.57
BN-Inception [30] 4.82
PReLU-ne [26] 4.94
GoogleNet (ILSVRC ’14) [47] 6.66
VGG (ILSVRC ’14) [42] 7.32

Table 2.1: Comparison of the five top classification models on test set of ILSVRC.

Figure 2.1: Inception model v3 examples of Image Classification (Recognition).

Due to the selected environment and its more available support, I chose the
Inception model [20], that is now at the third version and it is fully implemented
and supported by TensorFlow authors themselves [21]. This was one of the first
decisions I made during the development of the work, sacrificing accuracy in order
to respect time constraints and saving time to solve all the possible problems.

This model as we will see, is an evolution of the BN-Inception, that tries to max-
imize the accuracy minimizing the workload effort. Due to convolutional networks
that are at the base of most of the art models’ states, there is a lose of computational
efficiency which could still be gained with factorized convolutions and aggressive reg-
ularization to work on mobile vision scenarios. The structure of the Inception Model
and the concepts behind it are based on four simple design principles, which improve
the model computation efficiency and accuracy, as the paper from Christian Szegedy
et al. [48], shows:

• Avoid early bottlenecks in the model, let the acyclic graph be easily represented
with a feed forward model from input to the regressor or classifier. More

important, avoid dropping big dimensions, and do it gradually from input to
output, ensure not to loose useful correlations values for the task.

• We can obtain a faster train by the use of high dimensions representations and
by the activations per tile’s increase in the convolutional network.

• To boost accuracy, it’s better to reduce dimensions before parameters aggre-
gations; this due to the high correlation between adjacent units.

• More the model is balanced and more the learning is consistent. So it’s impor-
tant to raise in parallel width and depth of the network adding filters where
needed.

This concepts applied to the original BN-Inception from Sergey Ioffe and Chris-
tian Szegedy [30], that was itself an evolution of GoogLeNet by Christian Szegedy
et al. [47], results in the following model structure:

Figure 2.2: Architecture Representation of the Inception model v3 [48] developed
by Google .

Figure 2.3: Legend of the different layers color, corresponding to the ones in the
architecture representation of the Inception model v3.

As we can see from the figure 2.2, the graph is balanced in width and depth. It’s
mostly composed by Convolutional Layers (the Figure 2.3, shows the layer colours
legend), that make computation and extract features arrays of the images, then
at the end of each architectural tier, they are averaged and concatenated with the
following tier. It’s only at the two outputs of the model where Dropout and Fully-
Connected tiers are used, linking layers, minimizing bottlenecks and sharing infor-
mation between them and finally fading in Softmax layer to wonder the class. In
term of evaluation of the models, in order to better understand the improvement
rate we can look at the table below:

At the end, the starting decision I took brought me not to suffer in accuracy
and save a lot of time instead of develop a basic component useful for detection and
localization. I had only a nominal worst accuracy of 0.01 for Inception v3 respect

Method Top 5-err (test)
Inception v3 (’15) [48] 3.58
BN-Inception [30] 4.9
GoogleNet (ILSVRC ’14) [47] 6.67

Table 2.2: Accuracy evolution of the inception model of Google from the first version,
GoogleNet[47], to the third one [20] on test datset of ILSVRC 2012.

to the 3.57 of the ResNet. But the highest quality version of Inception, reaches
21,2% , top-1 and 5,6% top-5 error for single crop evaluation on the ILSVRC 2012
classification [28], setting the new state of the art. I think this is more than an
acceptable and a great partial result of the project.

2.1.2 Localization

Localization and Detection sound really similar and most of the community gets
confused sometimes from the slightly difference. Both aim to detect from the input
image to an output made of the presence/or not of objects. If they are present,they
have to output an equivalent number of bounding boxes that highlight the objects
in the picture.

But, the first one works with 1000 classes, still and moving objects, outputting
the top 5-error labels it detects. Instead the second one works with only 200 moving
objects typology and it outputs only the best one.

In few words, the difference is the typology of the objects, moving and still
objects for Localization and only moving ones for the Detection.

Now that the difference is clear, I think it’s easier to understand why classifi-
cation task was the principal starting challenge, from which they added a parallel
Localization one, which they were merged in 2013 and in the same year a different
task with less classes, Detection, and more other complex scenes and video challenges
were added.

It is interesting to understand why I won’t go through models in this section but
only with some other considerations, that will explain better the evolution of the
challenges and of the topic itself.

In 2011 results [27] of the Classification plus Localization challenge there were
only two brave participants, University of Amsterdam [2] & University of Trento
and ISI lab. [51] of the University of Tokyo [51]. The winners of that year, Univer-
sity of Amsterdam and Trento, were the first which implemented a selective search
with some constraints, combined with an hierarchical grouping of adjacent regions
of colour/text achieve a flat error of 0.425mAP score. This score is only 0.08mAP
higher than the Classification result of the same participants for the only Classifica-
tion category. 8% of increase is good but not so surprising. Above the best results
from the winners model.

What is really clear from 2011 ILSVRC competition [43] is that Localization
task could improve the accuracy of the classification, but it depends completely from
the latter accuracy. This means that, the better is the Visual Classification of the
image, understanding each ground, color and light level, with the scope to merge and
combine those representations in the best way to achieve the highest ”human-level”
knowledge, the better and easier will be the localization of the objects themselves.

Figure 2.4: Best Localization results, from the winners University of Amsterdam [2]
& Trento [51], of ILSRVC LOC 2011[27].

The winners score gives a 50% overlapping error and a really higher accuracy
depending on the classes. Comparing per-classes results of the classification and
localization tasks, the paring was natural and a confirmation of the above concept.
In Figure 2.5 some example of the overlapping error, related to images, where the
subject is not thus evident.

So, it results clear that to boost accuracy is important to classify the image with
different manipulations, size, crops etc. Obviously, this must be done in parallel
with the growth of the length of the network, helping the algorithm to understand,
also when it’s difficult for the picture, if which and where subjects are present in
the picture.

This is not only a matter of algorithm but also, of the network experience,
meaning a good train session, avoiding over-fitting, using the best datasets possible.
These latter are the ones that define the quality source of the learning experience
and it’s a concept never to underestimate.

From here forward, I will not differentiate between localization and detection
again, because from my thesis point of view, results to be the same. To observe
which dataset I was provided with, please read the Development of the Work Chap-
ter. Then for a deeper knowledge about ImageNET datasets [40] and ILSVRC
[43]competition, please, go to the Appendix 1.

Figure 2.5: Localization overlapping error examples, from the winners University of
Amsterdam [2] & Trento [51], of ILSRVC LOC 2011[27].

2.1.3 Detection

Detection, as discussed above, is the task to verify the presence of objects and if
positive, highlight them with a bounding box. Previously, I talked about a selective
search with hierarchical grouping of adjacent regions of colours. This was one of the
first approach to solve that task, but now, I will, like for Classification, give a brief
overview on the topic and than explain a little more in deep the one I choose.

Here are the main models for the detection topic:

• Fast R-CNN, Microsoft Research (Ross Girshick)[14];

• Faster R-CNN, Microsoft Research (Faster R-CNN: Towards Real-Time Ob-
ject Detection with Region Proposal, 2015)[39];

• YOLO (You Only Look Once: Unified, Real-Time Object Detection, 2015)[38];

• OverFeat, NYU (OverFeat: Integrated Recognition, Localization and Detec-
tion using Convolutional Networks, 2014)[41].

This list of models touches all the types of basics strategies for the object detection.
One of them the Faster R-CNN [39]could be also considered in the next paragraph,
due to its naturally adaptation to the video task. But I will explain others models,
more focused on achieving an In Time and Space learning model.

Here below a comparison of the models, to better understand the magnitude
order relation: Fast [14] and Faster [39] R-CNN, are based on the R-CNN model

Method Test Dataset mAP%
Fast R-CNN, [14] 2014 VOC 07+12 68.4
Faster R-CNN (RPN + VGG, shared), [39] 2014 VOC 07+12 70.4
You Only Look Once, [38] 2015 VOC 07+12 64.3
YOLO and Faster R-CNN, [38]2015 VOC 07+12 75.0
Overfeat, [41] 2013 ILSVRC2013 24.3

Table 2.3: Comparison of the main detection models, please pay attention to the
different test database used and the implementation year.

from Ross B. Girshick et al. [15]. The Region Convolutional Neural Network, is
a base architecture that analyzes the image at different level of convolutional and
max pooling layers to produce a feature maps. Each output proposal goes through a
Region Of Interest pooling layer that extracts fixed-length feature vectors. All this
are faded into a Fully connected layer that outputs into two different softmax tier.
The first one outputs the K object probabilities classes plus a catch-all “background”
class. The latter returns four real values for each of the K item types, corresponding
to the bounding boxes coordinates.

This model is no longer maintained, due to its successors, but in PASCAL VOC
2012 it was a state of the art, in which the authors used a variation with a bounding
box regressor to boost performance to 53,3%mAP reaching a new limit. Here below
a brief table resuming its historical results: In the following reference links, we can

Method VOC 2007 VOC 2010 VOC 2012 ILSVRC2013
R-CNN 54.2% mAP 50.2% mAP 49.6% mAP -
R-CNN bbox reg 58.5% mAP 53.7% mAP 53.3%mAP 31.4% mAP

Table 2.4: R-CNN median results, from the 2007 to the 2012 VOC dataset; the last
column shows the mAP of the model on the ILSVRC 2013 dataset, this last result
is more significant for my purposes.

see some per-class results, VOC 2007[15], VOC 2010[54] and VOC 2012[55]. The
base R-CNN model is pretty slow to execute but also the Fast version that has
some improvements. It’s the Faster version, introducing a smart tip, that can reach
almost real time executions. This strategy is the Region Proposal Network, which
used in parallel with the Fast R-CNN [39], can output cost-free region proposals,
sharing the full-image convolutional features detection layers between both systems.
Faster R-CNN [39] runs between 5-17fps and 58-59,9% mAP that are near the last
year, state of the art value 62,4% mAP by MSRA[25].

Here some results of the Faster R-CNN on the PASCAL VOC dataset, that
can help to understand why it’s considered as a milestone for models in the Vi-
sual Recognition history and why it’s at the base of the state of the art detector,
written by the same authors Kaiming He et al. The one that I chose, due to a
yet semi-working project I found, is Overfeat[41]. Which is An integrated system
for Recognition, Localization and Detection based on Convolutional Layers. The
authors, Pierre Sermanet et al, starting from the winners model of 2012 [33], inte-
grating sliding windows, multiscale classification, a Regressor and combining their
predictions achieve a fifth place with a 13,6% top 5-error rate in 2013 post compe-
tition. Where they replaced part of the model with a deeper model respect the one

Model Training Data Test Data mAP ms/fig
Faster RCNN 2007 trainval 2007 test 69.9% 198ms
Faster RCNN 2007 trainval + 2012 trainval 2007 test 73.2% 198ms
Faster RCNN 2012 trainval 2012 test 67.0% 198ms
Faster RCNN 2007 trainval&test + 2012 trainval 2012 test 70.4% 198ms

Table 2.5: The Faster R-CNN model considered is the version with the VGG-16
as Visual Recognition base model. The training and test data belong to PASCAL
VOC competition.

of the competition.

Figure 2.6: Schema of the best Classification model, from the winners of ILSRVC
CLC 2012 [33].

Layer 1 2 3 4 5 6 7 Output 8
Stage conv + max conv + max conv conv conv + max full full full
channels 96 256 512 1024 1024 3072 4096 1000
Filter size 11x11 5x5 3x3 3x3 3x3 - - -
Conv. stride 4x4 1x1 1x1 1x1 1x1 - - -
Pooling size 2x2 2x2 - - 2x2 - - -
Pooling stride 2x2 2x2 - - 2x2 - - -
Zero-Padding size - - 1x1x1x1 1x1x1x1 1x1x1x1 - - -
Spatial input size 231x231 24x24 12x12 12x12 12x12 6x6 1x1 1x1

Table 2.6: Architecture specification of the fast model used by the team during the
ILSVRC CLC, LOC and DET 2013 competition

Layer 1 2 3 4 5 6 7 8 Output 9
Stage conv + max conv + max conv conv conv conv + max full full full
channels 96 256 512 512 1024 1024 4096 4096 1000
Filter size 7x7 7x7 3x3 3x3 3x3 3x3 - - -
Conv. stride 2x2 1x1 1x1 1x1 1x1 1x1 - - -
Pooling size 3x3 2x2 - - - 3x3 - - -
Pooling stride 3x3 2x2 - - - 3x3 - - -
Zero-Padding size - - 1x1x1x1 1x1x1x1 1x1x1x1 1x1x1x1 - - -
Spatial input size 221x221 36x36 15x15 15x15 15x15 15x15 5x5 1x1 1x1

Table 2.7: Architecture specification of the deeper model used by the team during
the post ILSVRC CLC, LOC and DET 2013 competitions to reach the upper-cited
result.

As we can see from the tables 2.6 and 2.7, both versions are well balanced in
depth and height and follow mainly the rules described in the previous section 2.1.1
for Inception v3.

The ConvNet when applied with a sliding fashion approach are inherit efficient
as the author [41] underlines; because at test time, the higher workload, caused by
bigger images, is confined to a small region and it becomes more computational
useful when resources are limited.

Figure 2.7: Schema of the ConvNet inherit advantages at run time.

The ConvNet use gives an hidden advantage to Overfeat[41], which is more
computational aware of the resources to use; this is not to underestimate at all. In
the Appendix 1 I will cite the YOLO[38] model I listed above, underling how its
approach is one of the more innovative on the field; re-designing the main approach
with a single neural network, instead of a deeper architecture.

2.2 In Space and Time Image Processing

All the previous described task for Still Image Processing, can be combined with
Time and Space constraints for video analysis. Single frames get correlated each
others and the will to share information between them becomes immediate.

We are going to see the principals concepts behind these strategies and than
some models that implement them, with more or less complex graph.

2.2.1 Principals Concepts

The principal concept behind the In time and space analysis is the Slow and Steady
Feature Analysis reported last year by the paper of Dinesh Jayaraman and Kristen
Grauman [31]. This two analysis are based on the concept that, features, which are
strictly correlated in time, have smooth changes. For a better comprehension look

at the Figure 2.8 that shows the schema of an optimizer, which has learned, how to
plain changes in time and works as a smoother for functions in input.

Figure 2.8: Concept Schema of a smoother unit for functions.

The use of this type of analysis at different levels of image features, lets the
algorithm operate in time, smoothing changes between strictly correlated in time
frames, but it also understands what is happening in the space dimension. This
means that we have to work, not only with the first order of temporal coherence
but also, with the higher ones. The best way to do it, is from the first frame to
the last frame, following the entire scene, understanding all objects time and space’s
properties. Here a schema showing the concept.

Figure 2.9: Concept Schema of a smoother applied to a Video.

The primary signals are represented under the picture on the left; instead on its
Right, the high level representations of the smoothed extracted features show what
the network is learning.

Using these concepts to develop an optimizer algorithm for the smoothing task
an extracting from lower to higher levels features, it gives us the knowledge that:
”In the video there is a monkey that in the time and space dimension disappears
from the scene”.

2.2.2 Models

At this point, it’s time to analyze some of the main models for object tracking in
video, that are defining nowadays, the State of the Art for this task:

• T-CNN (Tubelets with Convolutional Neural Networks for Object Detection
from Videos, 2015)[32];

• Seq-NMS (Sequential - Non Maximum Suppression, 2015)[24];

The first one is the winner of the ILSVRC 2015 VID challenge, the latter finished
third. The second model overcomes the single frame detection, sharing informa-

Method mAP%
T-CNN 67,8
Seq-NMS 48,7

Table 2.8: Accuracy of the listed models.

tion at the Non Maximum Suppression algorithm level. The NMS part of many
common models like Fast R-CNN, doesn’t always choose the best Intersection Over
Union bounding box. The idea behind Seq-NMS is to re-rank boxes sharing the
temporal information between frames, ensuring the higher possible consistency of
the detection.

The core of the model is a loop composed by three subroutines: Sequence Selec-
tion, Sequence Re-scoring and Sequence Suppression. Firstly, a Sequence of bound-
ing boxes between frames is selected by linking results of two adjacent frames, then
it’s re-ranked respect to a Function F (average or maximum), finally it’s suppressed
and the steps, repeated until no sequences, are selectable.

Here the diagram of the process:
The most complex model which inspired me is the Tublenet Convolutional Neural

Network developed by K. Kang et al [32], its the last year State of the Art model for
ILSVRC VID competition. Starting from the below general architecture schema, I
will explain the principal concepts behind this model and gives some visual results
from it:

The model is composed by four main components: Still-Image Detection, Multi-
context Suppression and Motion-guided Propagation, Tublenet Re-scoring and Model
Combination. The still image detector returns detections for all the frames of
the video, that are separately threatened by the two following components. The
Tublenet re-scoring uses a tracker algorithm to obtain sequence of bounding boxes,
that are than clustered in positive and negative according to the statistics of their
detections.

The other parallel component uses, in first instance, the Multi-context Sup-
pression that orders the classes score confidence detections in a descending order
and maps them in high confidence and low confidence, reducing the false negative

Figure 2.10: Concept Schema of the Seq-NMS, bounding boxes sequence are firstly
selected and re-scored (from Left to Right), then suppressed (from Center to Left)
and this loop is repeated until any sequence remains selectable.

Figure 2.11: Concept Schema of the T-CNN, composed by four main parts with
relative internal sub-modules.

possibilities by suppressing the ones mapped as low. The second sub-component,
Motion-guided Propagation, shares the missed boxes between adjacent frames, using
motion information such as optical flow.
The final component combines the previous two outputs, mapping to [0, 1] each
min-max, combined by an Non Maximum Suppression process with an Intersection
Over Union threshold of 0.5 obtaining the final results.

The Model structure lets the possibility to switch sub-components of the main
parts and also of the principal modules themselves. In this way it’s possible to test
performances and accuracy of the different combinations. At the same time we can
add extra components with agility, due to their independence relationship.

This underlines the dynamicity and the powerful of this approach, but more over
why I choose to use it to achieve a model for the VID challenge. Here below some
example images of the results from the T-CNN model: As we can see, the bounding
boxes in the Figure are really tight to objects and no false negative are represented.
It’s really interesting to look carefully the last scene where, also when objects are

Figure 2.12: Qualitative Results of the T-CNN model.

hidden or bad caught, the algorithm works perfectly.

Chapter 3

Methodology

This chapter goes through the methodology I used, to achieve the goal of the thesis
in a short time constraint. I will highlight how I used the instrument of the Digital
Era and my previous programming and mathematical knowledge to learn fast and
apply faster, to respect the deadline of the results submission.

3.1 Fast Learning and Fast Developing

In order to understand my methodology, it is important to know the starting point
and my previous knowledge of the Deep Learning topic.

My experience is pretty various and heterogeneous. In Italy, at Università di
Ferrara, I studied the bachelor of Information Engineering, with the deep basics
of Programming, Math, Electronics; then I began my master degree at Politecnico
di Torino, in the topic of Software Engineering and Digital Systems. It is only
in this later year, here in Barcelona at the UPC FIB, where I approached more
Research topics as: Complex Social Network, Supercomputing Architectures and
Cloud Computing.

I’ve always loved challenges, but more in deep the ones that ask me to adapt, as
fast as I can, my knowledge to achieve a goal. So I took all the nearest knowledge
to the Deep Learning topic I had and adapted them. The most useful were Data
Mining, Complex Social Network, Math, Signals, and Software Engineering.

All the topics were helpful to understand the papers and the knowledge I had
to learn in the faster possible way. However, the Deep Learning is a new hot topic,
with many various different areas and cross applications; even with the hints of the
Image Processing Group, entering in the topic was hard. The reason was that I had
to find my own way to go inside the topic and understand it, before making any
further decision.

To do this, I used the best instrument of the Digital Era the online communities,
in which any user can learn from other errors and questions avoiding problems and
facing only the minimum ones. The power of the communities as I will explain
better in the next paragraph, is really not to underestimate.

So I searched people that had my same problems: learn fast a basic knowledge
of Deep Learning to understand the topic. Here with some IPG hints I found
the Stanford course of Convolutional Layers [Citation]and before I learned basics
concepts around the web, as the one I illustrated in the Appendix 1, that are at the
base of the Machine Learning and Artificial Intelligence topic; with these, follow the

39

Figure 3.1: Stanford, CS231n: Convolutional Neural Networks for Visual Recogni-
tion website screen.

course was easy and really clear.

At that point my knowledge was sufficient to let me search and understand
efficiently any information I could find not only in the web, but also from external
hints.

Not to underestimate the ILSVRC competition, on which I hadn’t any clue; I
started to search and learn information about its history, its evolution, its partici-
pants and hosts. This information is really useful when you can’t loose your time
and you want to be effective in the searching useful papers and knowledge. Some of
the basics information I retrieved and I used to understand several concepts are in
the Appendix 1.

At this point knowning the principal concepts, models, restriction and state of
the art of the competition, I had to find projects to use, because it was clear that it
was impossible to implement a model from scratch with my experience in the topic,
but more over with TensorFlow environment and the time constraints.

The GitHub community was the answer to my problems. Here I found a large
supported group of followers for many application areas, for example the Visual
Recognition. One of the main problem was understand the nowadays situation and
available resources, that thanks to some user projects [citation link to projects], I
had the answer ready to learn; and so I’ve done.

One of the main issue was the Requirement TensorFlow, that was so new that
finding rights projects and examples to use was really a mission. But fortunately,
the rest of the community had the answer ready for me, listing tutorials, examples,
most rated user projects.
Through users summaries projects on GitHub, I finally completed my overview of
the Requirements and I was ready to make good sensible decision, without loosing
precious time.

The knowledge needed was really wide and asked me to connect most of it with
mine, but this wasn’t enough to complete and achieve the goal. It was the time
to develop not only the environment but mainly the working model in the fastest
possible way.
Many of the participants to the ILSVRC competition, work on their model and re-
sults from and for many years; and mainly they are not alone during the elaboration
of all the parts of the architecture. Building a working model could takes months
as training it and improving it, but I had only four month to learn and develop it.

So I started to achieve a working Virtual Environment in TensorFlow, solving
problems and installing dependencies with the help of the Technical Support due
to the sensible operations. When this was reached, it was the time of the model.

Initially, I tested the environment with a YOLO Tf version project [16], that it
wasn’t working at all on the TensorFlow library (training wasn’t yet supported and
still not). Then I found the TensorBox project that was the one more suitable for
my purpose. Here the community was fundamental when problems were raising.
I’ve also made some contribution to the project solving some errors and warnings.

The difficulties and problems were still present, because due to some bugs in
the GitHub source, I had to re-adapt my project to a different model architecture
and introduce some redundancy to achieve a suitable structure to use in the VID
ILSVRC competition.

A special note goes to the TensorFlow community that even if it is very young,
it has a great banch of interested supporter and lots of yet projects.
Finally everything started working and it was ready for the results submission,
achieving the basic requirements of 0.1% mAP to participate to the competition.

3.2 Community and Environment Magnitude

This section is personally dedicated to the importance of the Community and En-
vironment, that played a key role in my work and experience; but mostly in the
Digital Era evolution.

As the reader can understand from the previous section, the community was
my best co-worker, it helped me, it solved my problems and it signed me the right
direction in order to reach my goal. This is not to underestimate, this is why
nowadays we hear about genius boys that born in their own room learning from the
community and without previous knowledge change our future.

The community,as I will explain in Appendix 3, is the key factor of the fast
growth of TensorFlow, because nowadays open-source and big companies support
are the secret ingredients with which the Digital Environment is changing directions,
choosing new topics.

This is a matter of User Experience, where some technological companies fail,
without giving the right support and experience to the technical users. These need
real-time support, an agora where they can share problems and questions, find other
users to collaborate with and from whose experience everybody can learn.

These necessities come from a fast evolving environment as the Digital Era one,
in which the time is too short to have deep knowledge in any area and it becomes
more important the capability of adaptation of experience and base knowledge. For
choosing a technology instead of others, it is significant to take care of these aspects,
because they will affect not only the present or the near future, but above all the
long term future, where solidity and tested support are fundamental for a long drive.

Moreover, it is important to not forget the goal and the scope of the research we
are working on, because these aspects will really affect our success. The high level
products of our Era are sensible not only to the ending user experience but also to
the support and developers, who had to be happy to work on them and must be a
stress-less environment, to engage an higher number of people with the minimum
effort.

Chapter 4

Development of the Work

This section goes through the development of the model I implemented to participate
to the VID ILSVRC challenge[29].

In the first part I will show the structure of the whole project, describing the
single components and the time and space strategies I used. Then in the second
section I will describe the Dataset I had to use, which were the main problems I
encountered and how I overcame them.

4.1 The Project Architecture

The Thesis project is available on the GitHub repository [13] I’ve made.
In this way I gave back to the community what they taught me, as well as this

project could be a starting point to develop and grow a collaboration team between
my two main University supporters (BSC Computer Science department[5] and UCP
Image Processing Group[23]), to participate to ILSVRC[43] in the further years.

Starting from the modular architecture proposed by K. Kang et al in the paper
[32], I decided to compose the model with three simple main modules: a General
Detector, a Post Processing Tracker and a Classifier. In this way I had the possibility
to modify separately all of them.

This is the general overview of the model: In the following paragraphs, I will

Figure 4.1: General Architecture of the model I developed. As we can see, frames
are processed firstly by the general detector, then detections are improved with a
post processor tracker and finally each bounding boxes sequence is labeled from the
classifier.

explain more deeply each component, respectively TensorBox[44] for the General
Object Detector, Inception[20] as Classifier and In time and space analysis; for the
tracker. Now, I would like to spend some more words on this general structure I
selected. The modular architecture wasn’t my first choice, but due to some problems
I encountered in the Overfeat detector project (TensorBox)[44], I had to fast adapt,
(end of July) the whole structure to be more flexible, so I could also make some

42

small changes and experiments without encounter big adaptation problems in the
fastest possible way.

Eventually, this forced choice shows to be the best one, not only for anyone
whose starts to work on the topic, but also for the ones that want to be as flexible
as they can and embed code and components to boost performances and accuracy.
For these reasons, with my modest knowledge, I suggest to consider to adapt your
own work code and model to a modular general structure, gaining in flexibility and
possibilities of further development.

4.1.1 TensorBox

TensorBox is a GitHub project [44], which aims to reproduce the Overfeat Model of
the paper from Pierre Sermanet et al [41]. The repository was created and is still
maintained, also thanks to the community, from a Stanford PhD Student [45]. In
the same project, the author, shares his personal developed model ReInspect, see its
related paper [46], that is an evolution of the Overfeat model, cited and implemented
before in the same repository, for Object Detection with high overlapping instances.

Figure 4.2: Screen of the GitHub Repository of the TensorBox [44]project I’m de-
scribing in this paragraph.

The project was a single class detector, but due to the fact that it was based on
Inception model v3 [20] distributed by Google [1], there was the possibility to adapt
the code of the model to be multi-class, easily. Then I opened an GitHub Issue
and talked with the PhD Student, we adapted the code from our own point of view.
After I Ended one million iterations of training on the VID dataset, which showed us
that the network wasn’t learning, detecting and wondering all the different classes
but only one, our changes didn’t work.

My main issue was that the hacked code of the inception model hadn’t been
wrote by Russell [45] himself, but by a friend of him. So any of us was really
aware about the problem source. To understand its origin, there was not only the
need of a strong reverse engineering work, but also of tries and tries on a field I
wasn’t comfortable with. My knowledge only had broken the outer shell of the Deep
Learning topic, to be agile at all in the development, it’s necessary to have years of
experience.

To better understand the situation look the figures 4.3, 4.4, 4.5, 4.6 representing
the model structure of the project, that with the principles I described into the
previous chapter 2.1.1, I can say that it’s not balanced at all and this is showed by

the run-time test. Instead if we look the Figures 4.7 depicting captions of results

Figure 4.3: Full TensorBox graph, taken from TensorBoard.

Figure 4.4: Right Zoom of the TensorBox graph, taken from TensorBoard.

Figure 4.5: Center Zoom of the TensorBox graph, taken from TensorBoard; In the
picture the reverse pyramidal graph is the main core of the computation for Overfeat.

given by the original project model, that in single-class gives great optical results on
human faces detection. The high accuracy and impossibility to modify the project
to be multiclass at all, pushed me to choose a modular configuration of the whole
architecture and sacrifice accuracy training of the TensorBox model to be a general
object detector.

The number of classes to detect is thirty for the VID challenge and not too high
to drop down to 0 the accuracy of the detection. At the same time, the accuracy
itself depends on the dataset it’s learning from but also on the test set. In fact for
clear snapped subjects the detection has always high confidence.

So I took the TensorBox project[44] and I trained it on the VID dataset[40].
Then I used the trained weights to fill them into the test model only to extrapolate

Figure 4.6: Left Zoom of the TensorBox graph, taken from TensorBoard; In the
picture is presented the Auxiliary part, that are the nodes defined and then used in
the main graph.

Figure 4.7: Results taken from the output of the GitHub project, TensorBox [44].

bounding boxes proposal for each frame, independently. I selected the bounding
boxes with a dynamic threshold depending on the highest detection in the frame
itself. Here I supposed that there was always a subject in any frame of the video.
This is a strong hypothesis, but time constraint was ending and I had to simplify
some concepts, scarifying accuracy.

I will describe deeply the choices I made on the dataset and on the train steps
in the dedicated further sections of this chapter.

For my purpose, to develop a working model whose output was making sense,
this was acceptable. The importance was not to use only the still image detections
to achieve the goal but start making some computations considering the time and

space dimensions, to reach better results.

Figure 4.8: Illustration of the model process respect to the output of the first com-
ponent. On the right side, we can see the Frames marked with Bounding Boxes
Detections, which are a batch of rectangle that in space and in shape don’t have too
much sense right now.

The green boxes in the Figure 4.8 in the picture are the ones returned by the
dynamic threshold selection. TensorBox [44] returns 300 bounding boxes for each
frame, most of them with a really low detection threshold, rising up the ones more
confident. The dynamic threshold takes all the bounding boxes that are in the
range highest value-0.15. This selection ensured me to have always at least one
BBox detection (fixed thresholds sometimes return zero detection, also when there
are visible objects), but more important to have a possibility to relate them between
frames and choose the most appropriate ones.

In the next section, I’m going to expose my choices on the time and space
analysis I made to perform a selection on the bounding boxes retrieved from the
General Object Detector unit.

4.1.2 In time and Space Strategies

The hardest part began at this point, in which I had to understand how to implement
and adapt to my project the slow and steady feature analysis, described by Dinesh
Jayaraman and Kristen Grauman [31], in the fastest possible way or at least adapt
some main concepts of the paper with a post-processing strategy.

In less than one month and half, I had to develop some sort of temporal and
space strategies, without the time to build and train a network to learn it. This
because building a network to learn ”slow and steady features analysis” is not the
only time consuming problem. Once built the model, the other difficulty was the
training time needed, that for sure it was the longest I was encountering in the
development. The time and space analysis wasn’t the only task that the models
had to apprehend, but also how to compensate the General Object Detector Errors,
which is far harder than learning only the slow and steady analysis.

So, I decided to develop many greedy algorithms to post process the detections
sequence of the frames, to smooth the object movements in time and space; then I
chose the most theoretically correct one to use for the results submission.

The base of all the algorithm accuracy was the complete trust of the detections
of the first two frames from which I started defining some different possible starting
points for the detection:

• One object in the video;

• Multiple objects in the video.

From which I define some different starting selection strategies, respectively:

• Select the bounding box with the highest confidence and follow it ;

• Use a Non Maximum Suppression algorithm to retrieve the most confident
rectangles and follow them.

The differences between the first two frames detections, were also defining:

• Shape changes deltas, due to objects rotation or movement on the backgrounds
line;

• Position changes deltas, due to object movement on its background space.

I followed both the starting points for the detection, but taking only one object for
video, was a too big restriction, with the lost many positive detection, useful for an
output that have to make sense.

I ended up choosing the Second starting point, considering the Non Maximus
Suppression output. It was also giving me the challenge and the chance, to give
a track number to each object in the first frame and use it to build sequence of
Rectangle in time; recognizing the different objects in the image that, at this point,
was always at least one.

After some tests, I found the best Non Maximum Suppression algorithm value
configuration, selecting the Overlapping Threshold in 0.3; in this way what I was
loosing where only the really overlapping objects (like the monkey in the Figure
4.9).

Figure 4.9: The first picture (a) show that the algorithm finds good results for
multiple objects, which aren’t so much overlapped; Instead the second (b) confirm
that we are loosing the ones that are really overlapped, in this case is useful to note
that the algorithm choose the most visible for the color, so the cat and not the
monkey.

This was an acceptable starting point, applying this process for the First frame
was giving me the possibility, to select in the second frame the most suitable rect-
angles between the ones proposed by the General Detector.

The second key point of the process was calculating and sharing deltas between
the first two frames among all the other in the sequence. Here, I defined some
different deltas, respect to the space I used the difference of the centers coordinates
and respect to the shape the areas ratio. In this way comparing from the first frames
detections to the last one I followed the trusted starting rectangles doing:

• Continue the object movement if not present, using center deltas to move the
one of the considered box in the right direction;

• Insert rectangle objects if not present, starting from the previous detection
and using the deltas difference to follow, as in the previous point, the right
direction;

• Re-size the rectangle according to the shape deltas, following the founded ratio.

All this computations were made iff the highest IoU rectangle extrapolated from the
detections doesn’t respect a 0.2 error attenuation. If not, It’s considered trustable
and all the deltas are updated according to it, following the natural detection of the
algorithm.

I tried to implement the basics for a smoother tracking object; the schema behind
the principal idea shows the relations between inputs (upper part) and outputs
(lower part):

Figure 4.10: Inside process overview of the Object Tracker unit, we can see that in
the first frame, the NMS output box is selected and the motion flux is followed into
the further ones. The blue line shows the time line direction.

The outputs of the second unit are finally suitable to low-down the computation
of useless information on the picture. So we are ready to label each sequence of
rectangles with the next model unit.

4.1.3 Inception

The last architectural unit is the Image Classification. It is the least component, so
it has only to compute the necessary runs to save time and computational power.

My first thought was to use a brute force approach, but due to the hypothesis I
made in the earlier part of the model, I decided to continue with them and save as
much time as possible.

The model I used for Inception v3 model [49] is directly provided by Google [1]
in the GitHub repository [20]. Some examples of basic[18] and advanced[19] use of
the model, given by Google, are also available, but is this developers tutorial[6], that
was fundamental to follow to implement the needed model.

This latter didn’t use the ImageNET dedicated training code available on the
official repository [20], which results to be more accurate when multiple objects
images are used to train the model.

To ensure that the lost accuracy in the training was compensated by something,
I thought to crop the tracker detections for each frame needing the objects labels
and use them as input for the classification. In this way I have almost always, a
single subject image to ensure to identify the right object class also in multi-class
images. I Classify the object only in the First two frames and select the highest

Figure 4.11: Example of cropped frames taken from a run of the thesis model, from
Left to Right in order: airplane, dog, cat.

class of the combined results and then I share it with all the others rectangles of the
same Track ID.

Differently from the TensorBox graph the one of Inception is consistent with
the one presented in the state of the art and respects the design laws described in
the Google paper; here below the representation taken from TensorBoard: The last
remaining pieces of the puzzle are the description of the code structure, the Dataset
I used and finally the training process I made.

In the Figure 4.13 we can see the schema that describes the whole process that
takes place in the model, from video to labeled frames.

4.2 Code Specifications

To develop the code in the most incremental way, I used my software engineering
knowledge to structure the project in the best way to save time and coding.

I folded in basic, utilities and interface classes to make the final script more
readable and slim. In the Figure 4.14 we can see the basic classes I implemented.
Starting from the base unit for the detection, that is the Rectangle, I took the one
implemented into TensorBox project [44] that was singleclass and extended it to
multiclass, making it suitable to store and be used with the ImageNet challenge. I did
this adding: all the label properties (label confidence, label, label chall, label code),
extended the setting and the getting functions to work with the added properties
and finally some useful functions to retrieve the string formats for the submission of
the results. The two outside class-scope functions, are the ones used to pop the best

Figure 4.12: Inception v3 graph, taken from TensorBoard, the singles node are inside
composed as showed in the state of the art chapter.

Figure 4.13: Whole model process that starting from the video, took one frame,
computed object proposal, cropped the rectangles and finally chose the best ones
and tracked them on the frame.

rectangle during the tracking (I used the IoU but I implemented also the Overlap
one).

The other really important developed class is the Class List stored into the
VID classes.py file. This one contains only four properties that are arrays storing
the main related information on: Class String Name, Class Code CLC, Class Code
VID and finally the colors to use for bounding boxes related to each Class. The
order of the arrays follows the VID Class Code (1 to 30) minus one, so from 0 to
29. In parallel, in the same file I defined some outside class-scope functions, that
are only switcher to retrieve easily values related on a single class.

The last basic class is the Frame Info, that I made to keep track all the informa-

Figure 4.14: UML diagram of the basic classes implemented into the project.

tion related to a frame. This could be considered the basic info class for a video, that
is composed by many frames. This class have a single Class List instance and it can
have many of the Rectangle Multiclass. This relations are easy to understand ana-
lyzing the basic properties of the considered class: num obj, rects[], folder (where the
frame is stored), filename (frame filename), dataset path (path of the dataset where
the folder is stored), default path (extra variable to store special path if needed),
width height (sizes of the frame), frame (frame number). The rects[] is the variable
containing all the Rectangle Multiclass instances. The Class List instance instead
is only used into the implemented functions, to relate useful information.

These functions are high level operations some of which are wrapping the single
rectangle functions written into the Rectangle Multiclass. Also here outside class-
scope operations are presented and mainly work to save and append the video results
to a file.

Then there are the utils classes, implemented to slim the code in the interface
classes. Here below it’s possible to see their UML class diagram.

I developed utils classes related to each unit I was working with, so:

• system (utils)

• images (image utils)

• videos (video utils)

Figure 4.15: UML diagram of the utils classes implemented into the project.

The first one is really small and contains only two useful functions, to check file
existence and get files list from a folder path.

The image utils file defines two constant, a size tupla and a save type format
both useful to work with TensorBox that takes only (640,480) images and prefers
”.PNG” type format. This class contains also fundamental functions to relate results
of TensorBox to original size image like:

• getpadd Image

• transform point

• get orig point

• transform rect

• get orig rect

Finally there is the video utils that is the only one that use instances of others utils
files. I also add the two ”Utils” files (Inception and TensorBox) to the schema , see
Figure4.15, to highlight that they are used from the video utils class, mainly called
for some useful operations defined in them. This latter utility file is the one that
contains the functions to track object inside the video:

• recurrent track objects

• track objects

• track min objects

• track and label objects

The first function is the one I used for the final submission results.

Finally, the Interface ”Utils” classes I implemented to work with the trained
models and their results, can be considered as interface to use the projects code and
at the same time utils to use inside my project.

Figure 4.16: UML diagram of the interface classes implemented into the project.

The utils tensorbox defines functions not only to load and write the files to train
the model, but also the Non-Maximum-Suppression algorithm and the most impor-
tant function bbox det TENSORBOX multiclass, that computes object detection
for all the frames of the video.

On the contrary, the utils inception, defines some constants referring to the
trained model in the original code project. Then, with the create graph opera-
tion I loaded the graph and the weights, and the run inception once is the basic
function to label images, which I used into the more complex label video and recur-
rent label video, that really label the detected object in the video.

So structured, the final code of the VID script is the following:

1 import argparse
2 import u t i l s i m a g e
3 import u t i l s v i d e o
4 import Uti l s Tensorbox
5 import Ut i l s Imagenet
6 import frame
7 import v i d c l a s s e s
8 import prog re s sbar
9 import time

10 import os
11 def r e a d t e s t t e x t f i l e (f i l ename , d a t a f o l d e r) :
12 v i d e o s l i s t = []
13 v ideo f rame =[]
14 with open(f i l ename) as f :
15 video=None
16 for l i n e in f :
17 f i l e , idx = l i n e . s t r i p () . s p l i t (’ ’)
18 n e w f i l e=’ ILSVRC2016 ’+f i l e . s p l i t (’ ’) [1]+ ’ ’+

f i l e . s p l i t (’ ’) [2]

19 f i l e=n e w f i l e
20 print ’ F i l e name:\% s ’\% f i l e
21 i f video i s None :
22 v ideo f rame . append ((d a t a f o l d e r +

f i l e + ’ .JPEG ’ , idx))
23 video=f i l e . s p l i t (’ / ’) [0]
24 else :
25 i f video==f i l e . s p l i t (’ / ’) [0] :
26 v ideo f rame . append ((d a t a f o l d e r

+ f i l e + ’ .JPEG ’ , idx))
27 else :
28 v i d e o s l i s t . append (v ideo f rame)
29 v ideo f rame = []
30 v ideo f rame . append ((d a t a f o l d e r

+ f i l e + ’ .JPEG ’ , idx))
31 video=f i l e . s p l i t (’ / ’) [0]
32 return v i d e o s l i s t
33 def main () :
34 t o t s t a r t = time . time ()
35 par s e r = argparse . ArgumentParser ()
36 par s e r . add argument (’−−d a t a f o l d e r ’ , d e f a u l t=’ /

VID/ t e s t / ’ , type=str)
37 par s e r . add argument (’−− f i l e p a t h ’ , d e f a u l t=’VID/

t e s t . txt ’ , type=str)
38 par s e r . add argument (’−−hypes ’ , d e f a u l t=’

over f ea t rezoom . j son ’ , type=str)
39 par s e r . add argument (’−−weights ’ , d e f a u l t=’ save .

ckpt−1500000 ’ , type=str)
40 par s e r . add argument (’−−perc ’ , d e f a u l t =5, type=

int)
41 par s e r . add argument (’−−p a t h f i l e o u t p u t ’ ,

d e f a u l t=’ output . txt ’ , type=str)
42 args = par s e r . p a r s e a r g s ()
43 v i d e o l i s t t e s t = r e a d t e s t t e x t f i l e (args .

f i l e p a t h , args . d a t a f o l d e r)
44 for video in v i d e o l i s t t e s t :
45 s t a r t = time . time ()
46 decomposed path=video [0] [0] . s p l i t (’ / ’)
47 p a t h v i d e o f o l d e r = decomposed path [len (

decomposed path)−2]
48 print ”Path Video Folder : \%s ”\%

p a t h v i d e o f o l d e r
49 os . makedirs (p a t h v i d e o f o l d e r)
50 print” Created Folder : \%s ”\%(

p a t h v i d e o f o l d e r)
51 p rog r e s s = progre s sba r . ProgressBar (widgets =[

p rog r e s sbar . Bar (’= ’ , ’ [’ , ’] ’) , ’ ’ , p rog r e s sbar .
Percentage () , ’ ’ , p rog r e s sba r .ETA()])

52 f r ame incep t i on =[v i d e o i n f o [0] for v i d e o i n f o in
video]

53 f rame tensorbox =[]
54 print ” Creat ing Tensorbox F i l e s f o r v ideo :\%

s ”\%p a t h v i d e o f o l d e r
55 for image path in prog r e s s (f r ame incep t i on) :
56 f rame tensorbox . append (u t i l s i m a g e .

r e s i z e s ave Image (image path , p a t h v i d e o f o l d e r))
57 v i d e o i n f o=Ut i l s Tensorbox .

bbox det TENSORBOX multiclass (f rame tensorbox ,
args . hypes , args . we ights)

58 t racked v ideo=u t i l s v i d e o .
r e c u r r e n t t r a c k o b j e c t s (v i d e o i n f o)

59 l a b e l e d v i d e o=Ut i l s Imagenet .
r e c u r r e n t l a b e l v i d e o (t racked v ideo ,
f r ame incep t i on)

60 frame . appendVideoResults (args . p a t h f i l e o u t p u t ,
video , l a b e l e d v i d e o)

61 end = time . time ()
62 print (” Elapsed Time:\%d Seconds ”\%(end−s t a r t

))
63 print (”Running Completed with Success f o r

v ideo : \%s ! ! ! ”)\%p a t h v i d e o f o l d e r
64 tot end = time . time ()
65 print (” Elapsed Time:\%d Seconds ”\%(tot end−

t o t s t a r t))
66 print (”Completed the whole Test with Success ! ! ! ”

)
67 i f name == ’ ma in ’ :
68 main ()

The script defines a function to read the text test file and in 83 lines achieves a slim
and clear implementation.

4.3 Dataset Processing

The dataset, as I said many times, is the primary quality source of the learning.

Understand its quality and how the model learn from it, are key factors, which
sometimes are underestimate and that sometimes can be improved or fixed easily.

The databases [40] provided by Imagenet [43] hosts, are different for each chal-
lenge, from Classification to Scene Parsing. The order of dimension for the whole
database for the VID challenge is around 100 Gb (Train + Validation + Test).

Manage that amount of database, might seem easy, but when its on a server-side,
it’s not; especially, if you have run errors and you would like to check visually the
data. For this reason, the database is provided with a full text of instructions that
the user can apply to understand its structure, weakness and strength points, but
more important how to use it for the development.

This latter was my main problem during the work. The database is redundant, it

has video snippets, extracted frames, which are the ones belonging to the annotations
files. Into it are also provided ”.txt” files that link the train, the validation and the
test database.

Due to my inexperience about the topic and the main tricks to use to speed up
the development with the database learning, I didn’t use the yet prepared ”.txt”
files but I generated them by myself, clustering the whole dataset differently from
the provided structure, in the way TensorBox[44] was requiring.

The provided structure wasn’t divided in classes, but mixed and I clustered them
for type to have a best personal view. This decision took me time and effort, instead
from the learning point of view is better a mixed database to perform a longer train
that is less over-fitted on specific object shapes. Precautions such as this, could be
one of the first improvements for the project.

The work I made on the database wasn’t a waste of time, because I learned
directly from the experience and now I have a better and clear overview on their
importance and I know the best practices to use with them to boost accuracy learn-
ing.

The competition rules on the database are easy. There are two different submis-
sion categories, depending on the used dataset:

• Use only the Train dataset of the competition, with any strategy ratio;

• Use as base the Train dataset, then use other dataset, as for example the
Validation from the same challenge of ILSVRC;

I submitted only the first one, due to time problems and few experience. Some of the
main used strategies for this submission type, because of the nature of the challenge,
are to use not all the frames but for example, one every two or three. So we can
reduce the overfitting for the classification unit and train on more ”difficult” data
the tracker and the object detector. This because, the differences between following
frames are too small that can cause overfitting to the object shape and reduce the
real possibility to learn a true task applicable to test data.

This strategy was employed by K. Kang et al [32], who used a really smart
precaution also for the second type of submission. They took the DET dedicated
dataset, to boost recognition, localization and detection accuracy mixing it with the
VID one with the following ratio: VID:DET=2:1. They didn’t gain the first place
in last year competition, but they showed how this boost their results. Tricks like
this are unforgettable.

With the dataset is provided the Development Kit with the instructions I men-
tioned before, and some routines to evaluate the developed model.

For VID competition the basic unit is the snippet, which contains many frames
and a Video might contain several snippets. There were three sets of snippets data
and objects labels:training, validation and test; with no overlap between the three
sets. The validation and test datasets of this year, were partially refreshed by the
hosts:

As the instructions explain, most of the videos are queried using Youtube API
with manually selected topicIDs from Freebase. These latter are specifically related
to a particular synset (Cartoon and unnatural videos are not considered).

All visible objects from all frames in each snippet are exhaustively annotated with
bounding box with the use of VATIC. Two types of boxes are provided: the manually

Number of snippets
Dataset TRAIN VALIDATION TEST

VID 3862 555 937

Table 4.1: Number of snippets in each dataset[40] provided for the ILSVRC VID
competition.

annotated ones, that are mostly tight with the visible portion of the object, and the
others generated using linear interpolation. One of the most important note to take
care of in the instruction is the following: ”Due to the scale of the data, a small
subset of frames in each snippets may nevertheless have errors in the annotations.”
This highlights how datasets are to be considered carefully.

The object categories in the VID dataset are 30 classes: those which can move,
such as ’airplane’ and ’dog’; whereas CLS-LOC and DET contain more static classes:
200 in total, e.g. ’chair’ and ’backpack’.

Some other useful statistics to relate snippets number, with the numbers of
images and boxes are in the table below.

Datasets Statistics
Dataset TRAIN VALIDATION TEST
Snippets 3862 555 937
Frames 1122397 176126 -

Annotated Objects 866870 135949 -

Table 4.2: The Training dataset has median of 116 positive snippets per synset
and 180 frames per snippet; the Validation dataset has a median of 17 snippets per
category and 232 frames per snippet; the Test dataset information aren’t released.

The structure in which the datasets are organized is different. For the train one
there are thirty different ”.txt” files, each one corresponding to a label:

ImageSets/VID/train 1.txt

...
ImageSets/VID/train 30.txt

In these files, every line contains just a snippet id and a label. The snippet frames
are stored in a directory as JPEG images with naming like snippet id/%06d.JPEG,
and the corresponding annotations are snippet id/%06d.xml.
The train snippets are also divided in four batch: ILSVRC2015 VID train 0000

ILSVRC2015 VID train 0001
ILSVRC2015 VID train 0002
ILSVRC2015 VID train 0003

Each one contains at most 1000 snippets.
Validation and Test dataset are organized in the same way, but with a single-batch
structure. The instructions also describe the submission format for the challenge,
which is a ”.txt” file that must be filled with this line format:

frame index ILSVRC2015 VID ID confidence xmin ymin xmax ymax
Frame index corresponds to the frame index from val.txt or test.txt, depending on

which set of images is being annotated. The change in 2016 competition was the
possibility to submit tracked or not tracked object detections. I submitted only the
one with the tracking id, but I post validated only the not tracked one.

The available routines for evaluating a submission for the detection task were in
Matlab and only the one without tracking was provided. The hosts also gave some
submission examples, to better understand the whole structure and kit usage.

To clarify the comparisons I made in the state of the Art chapter it is important to
understand some differences between the databases I presented above, the ImageNet
and the PASCAL VOC, on which many models were tested. As we can evince from
the PASCAL VOC website [56], the database provided contains:

• 20 classes;

• Train and Validation data has 11,530 images,containing 27,450 ROI annotated
objects and 6,929 segmentations.

This numbers are pretty far from the ones of the VID, CLC and LOC. So the results
I showed in the second chapter, must be taken carefully, because with a bigger
dataset, results can really change a lot due to different photos and object exposure,
which cause a different learning.

4.4 Training Specifications

In this chapter I will highlight the training process of the Inception and TensorBox
components of the model.

4.4.1 TensorBox Training

The TensorBox project takes an ”.idl” file for training. It must contain a line for
each image, with the relative bounding boxes objects kept into the picture. The
batch size was related to the grid size of the model, becoming 300 (15x20) with a
learning rate of 0.001. Here some extrapolation from TensorBoard of the training
phase for the model over 2M iterations.

As we can see from the graphs in the Figure 4.17, all the functions become flat,
but still have sparse results and peaks out of the flat value. This is due to the
generalization of the model, that is not learning different masks for each object
category, but only one for all of them. This lowered the whole accuracy.

As the Figure 4.18 shows, the weights of the model after 1.6M iterations, come
immediately flat. This means that the model wasn’t learning any more.

It’s useful to see now the Test graphs available in TensorBoard which give us a
better awareness of the previous graphs and the real accuracy of the model in test
phase.

It becomes immediately clear from the Tests graphs in the Figure 4.18, that only
the loss functions are the most flatted, instead the accuracy still be sparse and with
many peaks.

TensorBoard gives the possibility to observe the test phase also on the images,
giving a more clear view on the accuracy of the model, here below an example: The
test image above shows how really the model is learning, where it becomes easier

Figure 4.17: Event training graphs, extrapolated from TensorBox

Figure 4.18: Training weights graphs, extrapolated from TensorBox

to detect objects in monochrome backgrounds (like airplanes into the figure of the
whole process), but training to detect generalized object, where this condition is not
satisfied, gives us a lower accuracy, more if overlapped object are present.

4.4.2 Inception Training

Differently from TensorBox, Inception is more lightweight and could be run also on a
Personal Computer without too much effort. More over it needs really less training
steps than the previous component, because it arrives yet trained for ImageNet
CLC. The train scope becomes adding specific layers for the new recognition task,
but using the previous learned knowledge for CLC.

I trained the model for 125K iteration steps with a train batch of 500 images

Figure 4.19: Event training graphs, extrapolated from TensorBox

Figure 4.20: Test Image extrapolated from TensorBox

and a learning rate of 0.001.
Here below the graphs of the training accuracy and cross-entropy cost function:

The Figures 4.21 highlight that both functions become flat almost immediately,
because the model only has to focus on 30 classes of 1000 objects it yet knows.
To confirm this aspect we can look at the Figures 4.22 below, where the Standard
Deviation of weights and biases highlight that the graph learns well.

As for TensorBox, we can see train/validation graphs to confirm the training
ones.

Differently from the TensorBox test graphs, the Inception validation ones shows
less out of the range peaks and a more stable trend.

In the next chapter we will make some evaluations on the work and then the
conclusions.

Figure 4.21: Graphs of Accuracy and Cross Entropy cost function, taken from Ten-
sorBoard.

Figure 4.22: Standard Deviation graphs of Biases and Weights values of the model,
extrapolated from TensorBox.

Figure 4.23: Graphs of Accuracy and Cross Entropy cost function, taken from Ten-
sorBoard.

Figure 4.24: Standard Deviation graphs of Biases and Weights values of the model,
extrapolated from TensorBox.

Chapter 5

Evaluation of the Work

This section concerns the evaluation of the results I got from the model for the
Validation and Test dataset, showing also the results of the VID ILSVRC 2016 .
Then I will resume some evaluation on the asterix infrastructure performance and
adaptation to the TensorFlow environment.

5.1 ImageNet Challenge Results

The 2016 challenge winners are listed in the following Tables 5.1 5.2 5.4 5.5, according
to the training data and to the detection+tracking or not of the results.

Team name Entry description
Number of

object
categories won

mAP

NUIST
cascaded region regression

+ tracking
10 0.808292

NUIST
cascaded region regression

+ tracking
10 0.803154

CUVideo
4-model ensemble with

Multi-Context Suppression and
Motion-Guided Propagation

9 0.767981

Trimps-Soushen Ensemble 2 1 0.709651

Table 5.1: Object detection from video with provided training data, Results from
ILSVRC 2016.

As we can see there is a big difference of 0.22 mAP between the Object Detection
in Video, and the Object detection with tracking in Video. The latter is the one
in which I participate with the model and I was introduced only this year to the
competition.

More over the additional training data raise up the score only of the detection
plus tracking category of a 0.03 mAP that is not so significant at all; and for the
other contrary category to the last year trend there is a lost of the mAP. Here below
the results of last year competition allow a better overview of the challenge trend.

This year’s results respect to the 2015’s have been increased from 0.67 mAP to
0.8 mAP with a boost of 0.13 in the accuracy for the challenge with only provided

63

Team name Entry description
Number of object

categories won
mAP

NUIST
cascaded region regression

+ tracking
17 0.79593

NUIST
cascaded region regression

+ tracking
5 0.781144

Trimps-Soushen Ensemble 6 5 0.720704

ITLab-Inha
An ensemble for detection,

MCMOT for tracking
3 0.731471

Table 5.2: Object detection from video with additional training data, Results from
ILSVRC 2016.

Team name
Description of outside

data used
NUIST proposal network is finetuned from COCO
NUIST proposal network is finetuned from COCO

Trimps-Soushen
Extra data from ImageNet dataset

(out of the ILSVRC2016)

ITLab-Inha
pre-trained model from COCO detection,

extra data collected by ourselves (100 images per class)

Table 5.3: Extra Training Data information refered to the previous table of results
from ILSVRC 2016.

Team name Entry description mAP
CUVideo 4-model ensemble 0.558557

Table 5.4: Winner of the Object detection/tracking from video with provided train-
ing data of ILSVRC 2016, the second place was taken from NUIST Team, that was
the winner of all the others category.

Team name Entry description
Description of
outside data used

mAP

NUIST
cascaded region regression
+ tracking

proposal network is
finetuned from COCO

0.583898

Table 5.5: Winner of the Object detection/tracking from video with additional
training data of ILSVRC 2016.

data, instead for the category with additional data has a lower improvement from
0.73 mAP to 0.79 mAP.

The winner with the highest mAP is the NUIST team, that in the specification
entries about their model they wrote:

• ”inception v2 is used in the VID task, which is almost real time with GPU.”

• ”cascaded region regression is used to detect and track different instances.”

• ”context inference between instances within each video.”

Team name Entry description
Number of object

categories won
mAP

CUVideo
Average of models,

no outside training data,
mAP 73.8 on validation data

28 0.678216

RUC BDAI
We combine RCNN and

video segmentation to get the final result
2 0.359668

Table 5.6: Object detection from video with provided training data, Results from
ILSVRC 2015.

Team name Entry description
Number of object

categories won
mAP

Amax

only half of the videos
are tracked due to deadline limits,

others are,
only detected by Faster RCNN

(VGG16) without tempor smooth.

18 0.730746

CUVideo

Outside training data
(ImageNet 3000-class data)

to pre-train the detection model,
mAP 77.0 on validation data

11 0.696607

Trimps-Soushen
Models combine with

main object constraint
1 0.480542

Table 5.7: Object detection from video with additional training data, Results from
ILSVRC 2015.

Team name
Description of

outside data used
Amax –

CUVideo
ImageNet 3000-class

data to pre-train the model
Trimps-Soushen COCO

Table 5.8: Extra Training Data information refered to the previous table of results
from ILSVRC 2015.

• ”online detector and tracker update to improve recall .”

Their specification highlights which components for a model are the most important
as: inception for visual recognition, a detector, a tracker, and the cascade region
regression to detect and track. This team is formed by a part of Amax team that
won last year competition.

This aspect highlights how many teams are working for years to implement and
improve their model, trying to overcome new limits.

5.2 Computational Evaluation

For its modular nature, the model I developed has different computational workloads
on the infrastructure. As I anticipated in the previous chapter the Inception v3
workload is so low because of its great implementation, that could be trained and
tested for 30 object classes also on a Personal Computer.

It is the TensorBox component that has affected the whole model workload a lot.
Due to its unbalanced model implementation and the imperfect use of TensorFlow
library, it has a really high usage of CPUs and GPU.It works only with one graphic
process unit and not with many in parallel.

The importance of the parallelization for some models is really more important
than for others, TensorBox workload needs are enormous and with a parallel imple-
mentation, the model could been faster and lighter to train and test,instead it could
be easily trained and tested only at server side.

Figure 5.1: CPU usage of the TensorBox component of the model.

As we can see from the Figure 5.1 representing the CPU usage panel, TensorBox
program creates many threads, 22 to be precise and tries to use as much memory as
available. It’s the infrastructure middle-ware itself that balances the workload on
the whole set of CPUs.

Instead for the GPU, the script can run only on one a time, using 92% of its
power and memory, losing parallelization potentialities. It becomes clear how much
the TensorBox model implementation is power consumption and how much the
performances could be boosted and computation needs lowered, if it has a better
implementation .

5.3 Model Evaluation

The model I made reaches the last position of the Object Detection and Tracking
competition with the score of 0.002263 mAP.

The evaluation of the validation dataset returns the following values: To under-
stand why these results are so low, we have to go through some considerations.

First of all the model composition, the modularity is one of the key aspects for
all the main models into the competition. This because it lets developers decide the

Figure 5.2: GPU usage of the TensorBox component of the model.

Class Name mAP score Class Name mAP score
airplane 0 lion 0
antelope 0 lizard 0
bear 0 monkey 0
bicycle 0 motorcycle 0.0219
bird 0 rabbit 0
bus 0 red panda 0
car 0.0002 sheep 0.0329
cattle 0 snake 0
dog 0.0006 squirrel 0
domestic cat 0.1492 tiger 0
elephant 0 train 0
fox 0 turtle 0.0615
giant panda 0 watercraft 0.0001
hamster 0 whale 0
horse 0 zebra 0

Table 5.9: Per-Class validation routine results.

best configuration between modules to get the best results for the task.
So it’s important to analyze each of them to understand which one is the main

responsible. Starting with the training results I explained in the Development chap-
ter, we can easily understand which between the two main modules (TensorBox,
Inception) is the one that is lowering down the mAP.

Inception for its nature and implementation is the most solid, having high ac-
curacy for Visual Recognition of objects in images. This is clear from the valida-
tion/test graph extrapolated from TensorBoard (see figure), so for sure this is not
the main responsible of the low results.

Instead for TensorBox, if we look the considerations made into the Development
chapter, it’s clear that the peaks of accuracy into the test phase and the image test
taken from the Control Board, explain that the low detection precision comes from

this model.
So the modules after the General Detector suffer of its low accuracy of detection,

from the tracker to the Inception module. The tracker might increase or decrease the
accuracy, but the errors come from the first module and the latter is not learning
how to compensate the errors but it only makes a post processing on the results
given by TensorBox.

The final consideration could be to invert the order of some modules trying to
achieve a better final result. I will go more in deep on this final consideration in the
conclusive chapter.

Chapter 6

Conclusion

I divided the following chapter into overall considerations about the thesis and per-
sonal ones on the project itself.

6.1 Overall Conclusions

Resuming, the main aims of the thesis are: implementing a Deep Learning environ-
ment with TensorFlow technology and trying to implement a model suitable for the
VID ILSVRC challenge.

The first one seems easy to realize, but face to the real implementation of the
environment, solving problems and have it always up to date was seriously difficult;
but at the end it is working efficiently and now anyone can work on it easily.

The second one was the hardest to achieve and at the end, the final results show
that there are only the bases and the basic concepts for a real, well-working model
for object detection and tracking in video. This consideration comes from the low
mAP of the validation set, from the challenge results and mainly on the training
results of the models.

The modules configuration could be for sure improved, switching the order of
them into the following: Inception, TensorBox, Tracker.

Mainly the tracker must be a trainable component and not a post processing
module. This for sure can improve the accuracy, not only for the tracking accuracy,
but also to avoid false positive or missing detections.

In the switched architecture, the Inception component will detect the objects
into the frames, whose accuracy it’s for sure higher than the one of TensorBox and
could be also improved by statistical considerations on the whole set of frames in
the video. Then we have to train an Overfeat model for each class of the challenge.
In this way, using the higher quality results of Inception model object recognition,
we can use the class-specifics trained model to look for objects into frames.

Finally, the trainable tracker will make the in space and time analysis on the
still image detection made by the previous modules.

Considering the really small time constraints, 5 months and my personal limited
knowledge into the Deep Learning Topic at the start, I think I reached the aims of
the thesis. The initial question was: ”Can TensorFlow [21] be the fastest adaptable
environment for Machine Learning, for implementing Research and Development,
into a different infrastructure architecture with a great improvement perspective?

69

” I think the answer is clear: Yes, Tensorflow [21] is a great, adaptable and
really well supported Machine Learning library, with an incredible improvement
perspective, given not only by the author itself, Google [1], but, more important
by a fast-growth Digital Community. Tensorflow [21] is perfect to implement a Re-
search and Development sector in any Academics, Company or house; its adaptation
properties are incredible, it can be installed and used from a Raspeberry Pi [] to a
Supercomputer infrastructure, giving the possibilities to adapt the development to
the research needs and to the available computational power. All these features are
incredible and due to the Python environment, it is easy to use other third parts’
libraries adapting the environment to the needs. I suggest everyone interested in
approaching Machine Learning or implementing a Research and Development area
in the topic to start with TesorFlow[21].

6.2 Personal Considerations

The thesis was a great personal challenge, anything easy to achieve. Initially I
was pretty worried about a topic as Machine Learning, that for me was personally
new, but more for the results expectations, because I was starting everything from
scratch.

In 5 month, I started a Deep Learning environment into a Server Infrastructure,
solved problems and errors regarded not only the TensorFlow [21] constraints itself
but also for some useful third part libraries, like OpenCV. I Learned from the ba-
sics, to the more advanced knowledge in the Machine Learning general topic and
Image Recognition specific one, adapted to my previous theory experience into it,
with a young, powerful, but ”restrictive” Library as Tensorflow [21]. Despite to the
fast-growth of its Community and available implemented projects, it gave me many
problems. This because, from its early birth, not all the well-experienced Researcher
and Users of the Image Recognition topic, started re-implement from scratch mod-
els and components yet available in Theano [50] or in the more complex Caffe[3]
libraries.

This is why I said ”restrictive”, because it has limited my possibilities to work
faster and had a better implementation of single modules of the model to achieve
highers mAP results.

The time constraints led me the possibilities to try different projects as YOLO
[16], TensorBox[44] or Inception[20] but not to implement complex models structure
from scratch. Because to implement the working and error-prone environment took
me almost one month, then learning the Deep Learning basics, understanding which
were the bests starting points projects, took me another month and half. Finally
when everything was ready to work the time was shorter and going from theory to
implementation was a great step and for anything error-prone.

I had to solve: run problems, dataset problems, architecture development prob-
lems, all by myself in almost half of the total time constraints. The Machine Learning
topic it’s really complicated:it’s necessary to have experience and a depth knowl-
edge on the general and specific topic, so the team work it’s the best choice, where
is possible a parallel development and problem solver strategies.

I had to face problems one by one, spending time on the development of parts
in which there where problems with the dataset or with tests and vice-versa. If
I had a more stable project or a longer time constraints the possibilities were in-

credible; more over If I had experience in the specific and general topics, knowing
best-practice for the development and for the dataset managing, etc. Some of the
considerations I made in the Overall conclusions were discussed with the Advisors,
but were labeled as ”last-chance”, that at the end it was impossible to implement
in less than one month, so I decided to continue and try to boost accuracy as much
as I could. The development’s period, Summer, and the ”asterix” infrastructure,
due to the high GPUs workload gave me a lot of problems, crashing many times,
culminating in August with a 10 days off, due to the impossibility to restart it
outside from the technical office. Summing the main factors as: TensorFlow, the
”short” time constraints, the development of a model for Object Detection in Video,
my important lack of knowledge into the topic (general and specific), I’ve done the
maximum possible facing also hard personal moments. For these reasons I’m glad
about knowledge I’ve acquired, not only from this experience, but also for the whole
road I’ve crossed to reach these results, which after the previous considerations are
more than acceptable.

Appendix A

Appendix

This chapter resumes some basic knowledge I learned to reach my Thesis’ purpose.
Initially, I will briefly expose the ILSVRC history and evolution that,from my

point of view,it is really useful to understand how the challenge and the knowledge
has evolved in time.

Then, I will give to the reader some basic notions in order to help him to under-
stand the State of the Art and Development of the Work chapters, in which different
structures and concepts are clearer.

The last concepts I will write about are the knowledge and steps that I had to
get in TensorFlow library, showing the importance of its community and then some
information about its general performance.

A.1 Basics History Information about ILSVRC

A.1.1 The competition

Figure A.1: ILSVRC competition Logo.

The ILSVRC was born in 2010 helded as a ”taster competition” in conjunction
with PASCAL Visual Object Classes Challenge 2010 (VOC2010). Created by Alex
Berg, Fei-Fei Li and Jia Deng respectively from Columbia, Princeton and Stanford.

The first edition had only one challenge, focused on image categorization with
1000 object classes. Now at the 7th edition we can find 5 challenges:

• object localization;

• object detection;

• object detection in video;

72

• scene classification;

• scene parsing;

All with the same number of classes to identify.
As evident, the increasing interest in the community, through the growing sup-

port by the University Authorities, led the challenge to become not more a tester
challenge but always hosted in conjunction with PASCAL VOC. But it’s important
to highlight that the evolutions of the challenge, which started from the basic image
classification as evolved, undertaking new challenges and eliminating the ones where
the State of the Art limit was fixed, helped to improve the support and the focus
on the topic.

In the Digital Era, the Visual Recognition area is an hot topic of interest not only
for university researchers but more for service companies as Google [1], Facebook
[7], Microsoft [35] and NVIDIA [36], that supporting this type of competitions,
can achieve better results for their projects. This because device applications of
the algorithms implemented into the competition are Virtual Reality, Augmented
Reality, or as few weeks ago Google affirmed Transmogrified Reality [17].

A.1.2 The ImageNET Dataset

The challenge is based on the ImageNET Database, a collection that grows with
the challenge in time: adding categories, images, video, snippets, annotations, and
more important checking the correctness of the latter, otherwise the quality of the
learning could be affected.

As their website describes: ”ImageNET is an image database organized according
to the WordNet hierarchy (currently only the nouns), in which each node of the
hierarchy is depicted by hundreds and thousands of images. Currently we have an
average of over five hundred images per node” [43].

Figure A.2: Hierarchical organization of Worldnet Database of the English language.

For who is wondering, Worldnet [52] is a large database of the English language,
from syntactical to lexical, hosted by Princeton University. The use of this database

for the labels and semantics was fundamental to correlate further complex compu-
tations without loosing previous results, so from the localization to the labeling,
finally to the scene classification and parsing. This always has to follow the parallel
human knowledge of the meanings on the images.

If someone asks which is the aim to invest all this effort to build a so detailed
database of images, the answer is easy and direct: Helping the continuous interest on
the topic to develop and increase the community. Everything is strongly related with
the database because without it, the source of learning is none and so it becomes
impossible the development and the research in new directions. As I said many
times, Database is the source of the quality and the type of the learning, and both
are not to underestimate.

A.2 Basics Knowledge of Deep Learning

I will give some definitions and basic laws, some of the principal history milestone,
with their technical advantages and finally how now the environment is evolving.

A.2.1 Definition and Basics Laws

The complete name is Machine Deep Learning; it’s a branch of the learning based
on a set of algorithms, that attempts to model high level abstractions in data, using
multiple processing layer. These models are based on two fundamental concepts,
the neural network, see Figure A.3, and the back propagation algorithm.

The first is a system that tries to approximate the human brain structure with
programs and data structure combination. The network initially is trained on a large
amount of data and rules about their relationship and then tested on the learned
function, like object detection. The structure of the network is usually composed
by three fixed layer typology: Input Layer, Hidden Layer, Output Layer. The ones
that really learn are the hidden ones, that can be 1+n, in any combination and
functionality, where their total number defines the length of the model; from here
the adjective deep.

Figure A.3: Neural Network schema, on the edges are stored the weights of the
model. This features values are the one updated through the Back Propagation
algorithm.

Then it’s the Back Propagation Algorithm that makes possible training the
model respect to an optimization method. The system calculates the gradient of a
loss function, respect to all the weights in the network and then it’s passed to the
optimization method that updates all the network weights trying to minimize the
loss function.

This two laws are at the base of any other more complex concepts in Deep
Learning area, in the next sub paragraph I will go through the history milestone of
the concepts that are at the base of the nowadays models.

A.2.2 Principal History Milestone

The history of Machine Learning was born in written digit and numbers’ areas: the
first ones are digitally representable. In the 1965 Alexey Grigorevich Ivakhnenko, a
Soviet and Ukrainian mathematician, builds the first working learning algorithm, the
Group Method of Data Handling, becoming famous as the father of Deep learning.
It’s only 6 years later, in 1671, that the GMDH becomes the first 8 layers Neural
Network, trained.

But the problem of train multiple hidden layers simultaneously remains open
until 1898, when Yann LeCun [34] applies the back propagation algorithm to a
Neural Network, from here forward also the hardware limitations was starting to
end shortly.

The 90s are the Gold Age for the basics architectures, starting from 1993 with
Jurügen Schmidhuber proposing the Recurrent Neural Network, a particular model
where thanks to the directed cycle of connections between units, have internal mem-
ory, showing dynamic themporal behaviour.

Still Jurügen with Sepp Hochreiter , in 1997, propose the Long Short Term Mem-
ory model, an evolution of the RNN, from which differs for his well-suited structure
to learn from experience to classify, process, predict also time series, that becomes
important for long term run as the needed. Finally in 2000, Yann LeCun, proposes
the Convolutional Neural Networks. Developed starting from the organization of
animal visual cortex, the network is composed by two fundamental cells types: sim-
ple ones, that respond maximally to specific edge-like patterns inside their receptive
field, and the complex ones, having larger receptive fields and locally invariant to
the exact position of the pattern and acting as local filters over the input space.

From here forward the developed models comes as combination or evolution of
those we have been through.

A.2.3 Nowadays Environment

Today, the most of the proposed architectures are basic models evolutions depending
on the application area.

One particular example that I encountered during my fast learning, is the You
Only Look Once model [37], that differently from the main strategies for visual
recognition as the sliding window in the convolutional neural networks proposes a
complete different and really light weight model.

Figure A.4: Architecture schema of the YOLO model.

This architecture,as showed in Figure A.4, is composed by a single neural network
on the whole image, that divides in fixed regions the picture and proposes different
bounding boxes and related confidence for each one.

Strategies like YOLO are the raising ones that try to overcome the high com-
putational workload, with architectures that, also on a portable computer, could be
considered ”real-time”. Unfortunately it has really less support from the commu-
nity, due to an high effort needed for the training (quality of the pictures) and lower
detection rate.

I can affirm that is a matter of trade off between real applications and research
topics. Here, some results form a run of YOLO on artwork:

Figure A.5: Results on artwork dataset, from You Only Look Once model, looks
pretty accurate if wasn’t for some wrong classes detection.

A.3 Basics Knowledge about Tensorflow

This last section, from the computer architectures point of view, is one of the more
technical. I will explain how I installed the environment problems I encountered and
how I solved them. Then I will go through the community that makes so strong and
fast in growth TensorFlow and finally I will make a brief computational evaluation
of the library and some possible supported configurations.

A.3.1 The TensorFlow Environments

TensorFlow library is available for Python 2.7 or 3.3+, for all Linux-kernel based
systems as Linux and OSX.

It comes with many installation support, but most important methods, we can
install it in five different ways: Pip, Anaconda, Docker, Virtual Environment and
from source.
The plenty number of possible isolated installation, made easy to choose the more
comfortable one for the infrastructure and use it. As asterix as yet installed Vir-
tualEnv and its great usability and small abouse of systema space, I’ve use the
following instruction to install it:

1 mkdir VirtualEnv
2 cd VirtualEnv
3 mkvirtualenv tenso f l ow
4 cd tenso f l ow
5 pip i n s t a l l −−source−l i nk−t en so r f l ow

From here the basic TensorFlow library was operating, but because of the in-
frastructure possibilities, 4 GPUs Nvidia Tesla 40c, was required to boost and use
all the available hardware to speed up performance. With the help of the technical
support for the really delicate installation, we found after a while the right version
of the CUDA and cuDNN libraries of Nvidia to maximize the GPU computational
performances. Problems came out due to the shared environment, where some ver-
sions were compatible each other and others had unsolvable installation problems,
that obliged me to skip it. To use this performance computational libraries with the
Virtual Envirornment, I had only to export the needed paths:

1 export LD LIBRARY PATH=”\$LD LIBRARY PATH: / usr / l o c a l
/cuda−7.5/ l i b 6 4 : / home/ us e r s / a f e r r i /cuda”

2 export CUDA HOME=”/usr / l o c a l /cuda−7.5”

Here ends the principal environment configuration for TensorFlow, but it was
everything than easy to find the right combination between the library and the ones
of Nvidia.

Then, when I started developing in the Visual Recognition topic, I immediately
encountered some other dependencies problems with the Open Source Computer
Vision library.
This library is one of the most used for the Visual Recognition, with a lot of useful
functions yep implemented, but it’s pretty tricky to install in a server environment
and then use it in the Virtual one. As done with the Nvidia libraries, after installing
on the server, we have referenced the paths inside the Environment of work:

1 export PYTHONPATH=”\${PYTHONPATH} : / opt/amd64/opencv
−3.1.0/ l i b /python2 .7/ d i s t−packages ”

2 export LD LIBRARY PATH=”\$LD LIBRARY PATH: / opt/amd64
/opencv −3.1.0/ l i b ”

Here the main difficulties ended, later on, I only used some other useful python
libraries, easily installable through ”pip install” as: PIL the python image library,
sometimes preferred to OpenCV, progressbar, to highlight the remaining time for
the computation and the last but not the least NumPy library part of the SciPy
package. This library is the basic of the numerical computation in python, defining
types and functions useful for the numerical manipulation of images.

A.3.2 The community

The TensorFlow community’s help was really important to achieve the thesis goals
and personally, for its really early birth, I think it’s one of the best created and
well-grown in the Digital Era so far.

Starting from the official website [21], where all the basics information to down-
load & setup and basic usage are available, then there are example tutorials that
cover the basic programming structure for almost all the basic models for visual
recognition, here I found the one for Inception [18].

Figure A.6: Tensorflow GitHub community page.

Another great move from the Google side was to find and activate immediately
with the release of the library a GitHub project for TensorFlow [22] that in less
than one year has more than 13k fork, 32k stars and more than 3k of watching
users. The project page is not only for the mentioned numbers a great source
of users, but a great one for code, users custom library, users project, that are
daily committed to the project and that increase significantly the potentiality of the
library itself. Between the most relevant users contributions there are some of them
like the TensorFlow Slim, a framework that gives easier APIs for yet implemented
layers, so the user can build with less effort more complex networks from scratch.
The success of this commit was so high that also Google starts to simplify some of
the interfaces to have a more intuitive usage.

A.3.3 Computational Evaluation

TensorFlow was born for a distributed environment and Google hasn’t fear to show
it. The library has many tools to use to understand the dynamic state of the model
in real time during the training only, but more over gives a banch of APIs to output
what it’s our interest on this tool. The most useful is TensorBoard, see the Figure
A.7, that executed in a different process in the output folder of the running model,
shows us what we want:

• Any kind of Event Graph, from loss functions to activations and weights;

• Any kind of Image, from the training to the test one;

• Any kind of Audio, like the previous point;

• The graph model, where is possible analyze the depth and balance of the
architecture;

• Any kind of Histogram function.

All the models structures and graphs I reported in the thesis are extrapolated from
this amazing Tool. The power of this control board, that is visualizable on the

Figure A.7: Example of Tensorboard control pannel.

browser is unlimited, giving a great and better prospective to the developer and
researcher during the model development . This tool works not only with a single
machine but also with a distributed run, for these reason Google gives a great amount
of examples, tutorials and how to, for the distributed use of TensorFlow. We can
find direct links to the official website [19], but also for each developed model present
on GitHub [20], there are plenty instruction on how to implement the distributed
version of it. The aim of this library is to run in environments with multiple CPUs
and GPUs giving the user the possibility to choose in numbers and workload, having
always everything under control with the help of the control board.

Bibliography

[1] Alphabet. Google. 2016. url: https://abc.xyz/.

[2] University of Amsterdam. University of Amsterdam. 2016. url: http://www.
uva.nl/en/home.

[3] Berkley. Caffe, Deep Learning Framework. 2008. url: http://caffe.berkeleyvision.
org/.

[4] BSC-UPC. BSC-UPC, NVIDIA GPU Center of Excellence (GcoE). 2015. url:
https://www.bsc.es/marenostrum-support-services/hpc-education-

and-training/cuda-center-excellence.

[5] Barcelona Supercomputing Center. BSC. 2016. url: https://www.bsc.es/.

[6] Google Developers. TensorFlow for Poets. 2015. url: https://codelabs.
developers.google.com/codelabs/tensorflow-for-poets/index.html#

0.

[7] Facebook. Facebook Website. 2016. url: https://www.facebook.com/about/
login/.

[8] Andrea Ferri. Contribution 1 Link (a). 2016. url: https://github.com/
Russell91/TensorBox/pull/39#issuecomment-233150694.

[9] Andrea Ferri. Contribution 1 Link (b). 2016. url: https://github.com/
Russell91/TensorBox/commit/aab8e42c12d20c5e9acaa933535ea1696d66c608.

[10] Andrea Ferri. Contribution 2 Link. 2016. url: https://github.com/tensorflow/
models/pull/200#issuecomment-225902722.

[11] Andrea Ferri. Contribution 3 Link. 2016. url: https://github.com/Russell91/
TensorBox/pull/46#issuecomment-234479801.

[12] Andrea Ferri. Contribution 4 Link. 2016. url: https://github.com/Russell91/
TensorBox/pull/49#event-733979605.

[13] Andrea Ferri. TensorflowObjectT rackingV ideo. 2016. url: https://github.
com/DrewNF/Tensorflow_Object_Tracking_Video.

[14] Ross B. Girshick. “Fast R-CNN”. In: CoRR abs/1504.08083 (2015). url:
http://arxiv.org/abs/1504.08083.

[15] Ross B. Girshick et al. “Rich feature hierarchies for accurate object detection
and semantic segmentation”. In: CoRR abs/1311.2524 (2013). url: http:

//arxiv.org/abs/1311.2524.

[16] gliese581gg. YOLO Tensorflow. 2016. url: https://github.com/gliese581gg/
YOLO_tensorflow.

81

[17] Google. GDC Transmogrified Reality Talk. 2015. url: http://www.gdcvault.
com/play/1022343/Transmogrified.

[18] Google. Image Recognition in TensorFlow. 2015. url: https://www.tensorflow.
org/versions/r0.10/tutorials/image_recognition/index.html.

[19] Google. Imagenet Retraining Last layer for new task. 2015. url: https://
www.tensorflow.org/versions/r0.9/how_tos/image_retraining/index.

html.

[20] Google. Inception Tensorflow. 2016. url: https://github.com/tensorflow/
models/tree/master/inception.

[21] Google. TensorFlow. 2015. url: https://www.tensorflow.org/.

[22] Google. Tensorflow. 2016. url: https://github.com/tensorflow.

[23] Image Processing Group. IPG. 2016. url: https://imatge.upc.edu/web/.

[24] W. Han et al. “Seq-NMS for Video Object Detection”. In: ArXiv e-prints (Feb.
2016). arXiv: 1602.08465 [cs.CV].

[25] Kaiming He et al. “Deep Residual Learning for Image Recognition”. In: CoRR
abs/1512.03385 (2015). url: http://arxiv.org/abs/1512.03385.

[26] Kaiming He et al. “Delving Deep into Rectifiers: Surpassing Human-Level
Performance on ImageNet Classification”. In: CoRR abs/1502.01852 (2015).
url: http://arxiv.org/abs/1502.01852.

[27] ILSVRC. ILSVRC 2011 Results. 2011. url: http://image-net.org/challenges/
LSVRC/2011/index.

[28] ILSVRC. ILSVRC 2012 Results. 2012. url: http://image-net.org/challenges/
LSVRC/2012/results.html#t2.

[29] ILSVRC. ILSVRC 2016 Results. 2016. url: http://image-net.org/challenges/
LSVRC/2016/results.

[30] Sergey Ioffe and Christian Szegedy. “Batch Normalization: Accelerating Deep
Network Training by Reducing Internal Covariate Shift”. In: CoRR abs/1502.03167
(2015). url: http://arxiv.org/abs/1502.03167.

[31] Dinesh Jayaraman and Kristen Grauman. “Slow and Steady Feature Analy-
sis: Higher Order Temporal Coherence in Video”. In: CoRR abs/1506.04714
(2015). url: http://arxiv.org/abs/1506.04714.

[32] K. Kang et al. “T-CNN: Tubelets with Convolutional Neural Networks for
Object Detection from Videos”. In: ArXiv e-prints (Apr. 2016). arXiv: 1604.
02532 [cs.CV].

[33] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. “ImageNet Classi-
fication with Deep Convolutional Neural Networks”. In: (2012). Ed. by F.
Pereira et al., pp. 1097–1105. url: http : / / papers . nips . cc / paper /

4824- imagenet- classification- with- deep- convolutional- neural-

networks.pdf.

[34] Yann LeCun. Yann LeCun Website. 2015. url: http://yann.lecun.com/.

[35] Microsoft. Microsoft Website. 2016. url: https://www.microsoft.com.

[36] Nvidia. NVidia Website. 2016. url: http://www.nvidia.it/page/home.
html.

[37] Joseph Chet Redmon. YOLO: You Only Look Once. 2015. url: http://

pjreddie.com/darknet/yolo/.

[38] J. Redmon et al. “You Only Look Once: Unified, Real-Time Object Detection”.
In: ArXiv e-prints (June 2015). arXiv: 1506.02640 [cs.CV].

[39] S. Ren et al. “Faster R-CNN: Towards Real-Time Object Detection with Re-
gion Proposal Networks”. In: ArXiv e-prints (June 2015). arXiv: 1506.01497
[cs.CV].

[40] Olga Russakovsky et al. “ImageNet Large Scale Visual Recognition Chal-
lenge”. In: International Journal of Computer Vision (IJCV) 115.3 (2015),
pp. 211–252. doi: 10.1007/s11263-015-0816-y.

[41] Pierre Sermanet et al. “OverFeat: Integrated Recognition, Localization and
Detection using Convolutional Networks”. In: CoRR abs/1312.6229 (2013).
url: http://arxiv.org/abs/1312.6229.

[42] Karen Simonyan and Andrew Zisserman. “Very Deep Convolutional Networks
for Large-Scale Image Recognition”. In: CoRR abs/1409.1556 (2014). url:
http://arxiv.org/abs/1409.1556.

[43] Princeton University Stanford University. ImageNet Large Scale Visual Recog-
nition Competition. 2010. url: http://www.image-net.org/challenges/
LSVRC/.

[44] Russel Stewart. TensorBox. 2016. url: https://github.com/Russell91/
TensorBox.

[45] Russell Stewart. Russell Stewart website. 2014. url: http://russellsstewart.
com/.

[46] Russell Stewart and Mykhaylo Andriluka. “End-to-end people detection in
crowded scenes”. In: CoRR abs/1506.04878 (2015). url: http://arxiv.org/
abs/1506.04878.

[47] Christian Szegedy et al. “Going Deeper with Convolutions”. In: CoRR abs/1409.4842
(2014). url: http://arxiv.org/abs/1409.4842.

[48] Christian Szegedy et al. “Rethinking the Inception Architecture for Computer
Vision”. In: CoRR abs/1512.00567 (2015). url: http://arxiv.org/abs/
1512.00567.

[49] C. Szegedy et al. “Going Deeper with Convolutions”. In: ArXiv e-prints (Sept.
2014). arXiv: 1409.4842 [cs.CV].

[50] Theano. Theano. 2008. url: http://deeplearning.net/software/theano/.

[51] Università di Trento. Università degli Studi di Trento. 2016. url: http://
www.unitn.it/.

[52] Princeton University. Worldnet, a lexical database for English. 2010. url:
http://wordnet.princeton.edu/.

[53] The Verge. Google revelead AlphaGo secret Hardware with ASIC chip-tensor
Processor Unit for Machine-Learning. 2016. url: http://www.theverge.
com/circuitbreaker/2016/5/19/11716818/google-alphago-hardware-

asic-chip-tensor-processor-unit-machine-learning.

[54] PASCAL VOC. PASCAL VOC 2010 Leadboard. 2015. url: http://host.
robots.ox.ac.uk:8080/leaderboard/displaylb_dt.php?challengeid=6&

compid=4.

[55] PASCAL VOC. PASCAL VOC 2012 Leadboard. 2015. url: http://host.
robots.ox.ac.uk:8080/leaderboard/displaylb_dt.php?challengeid=

11&compid=4.

[56] PASCAL VOC. PASCAL VOC Website. 2015. url: http://host.robots.
ox.ac.uk/pascal/VOC/.

