Object Model Adaptation for Multiple Object Tracking

Author

miquel.escobar@upc.edu

Advisors

cventuraroy@uoc.edu, {andreu.girbau, ferran.marques, xavier.giro}@upc.edu

Abstract

Multiple object tracking is a broadly used task in multi-
ple applications, all the way from bioengineering to security
applications. In this paper we propose a variation of RVOS
[I7] by adding the center estimation of detected instances, by
means of a second head in the decoder which is assigned the
task of detecting the corresponding object’s bounding box
arithmetic center. We have trained the model using three
variants of the cross-entropy loss, which has been adapted
to tackle the class imbalance caused by the fact that the
center of an object is represented by only one pixel of the
image, and have obtained some promising results.

1. Introduction

This work is product of the Challenged Based Innovation
subject at UPC, which aims to introduce undergraduate stu-
dents to the world of research, and has been developed with
the mentorship of professors Ferran Marqués, Xavier Giro,
Carles Ventura and PHD candidate Andreu Girbau. In fact,
the implementation of this model has been built on RVOS
[[7]] public repository, created by the mentioned researchers,
and my task has consisted on adding the functionality of
center detection parallely to the already implemented object
segmentation and tracking.

Multi object tracking is the process of locating one or
more moving objects in a video, while differentiating and
identifying each object instance at each time step. MOT
has gained popularity over recent years, with a spike of
published papers and state-of-the-art models, direct con-
sequence of the publication of multiple purposely made
datasets.

Most multi object tracking models are based on object
segmentation which is often translated into detecting each
entity’s mask separately []. In our case, we only concen-
trate on the arithmetic center of the bounding box of the in-
stances, which is independent from the shape of the object
at each time instant.

2. Related work

A series of deep learning techniques have been pub-
lished over the last few years in the field of object detection,
tracking and segmentation. The following are worth high-
lighting, due to their relationship with this work.

Multi object tracking.

As mentioned often through the entire report, the base ar-
chitecture and inspiration of this work comes from the End-
to-End Recurrent Network for Video Object Segmentation
project [7]] . Its architecture provides support for multiple
cases, such as the zero-shot and one-shot scenarios. The
model is based on RSIS [5], which consists of a recurrent
neural network that predicts the mask of each instance at
every time step, and it adds the recurrence to the temporal
domain which provides more information to the model that
is translated into better results.

In Figure[I|we observe the architecture of the neural net-
work that we will modify to produce the centers predictions
we are looking for.

Figure 1: Architecture of the RVOS model.

Object detection.
There have been published various deep learning tech-

https://github.com/imatge-upc/rvos

niques to detect objects, both represented as binary masks
or, more commonly, as bounding boxes. Since we are work-
ing with a model that predicts the center pixel of the bound-
ing box, we are more interested in the latter.

CornerNet [3] is one of these approaches, as it detects
the object’s bounding boxes as a pair of keypoints, the top-
left corner and the bottom-right corner, and does it by using
a single convolution neural network. By doing so, it can get
rid of the anchor boxes used by other single-stage detectors.
In figure[2] we observe an example of an output produced by
their proposal.

Figure 2: Example of an output from the CornerNet model.

Another model that is worth mentioning is CenterNet
[2], which is inspired in CornerNet: the idea they propose
is to also explore the central part of a proposal, i.e., the re-
gion that is close to the geometric center, but with one extra
keypoint. They extend the pair of keypoints into a triplet of
them if a center keypoint is detected independently in the
resulting bounding box’s central region. Thus, detected ob-
jects are represented as a triplet of keypoints, as shown in

Figure[3]

Figure 3: Example of an output from the CenterNet model.

3. Approach

Our approach consists on representing the objects sim-
ilarly to CornerNet and CenterNet, that is, simplifying the
object’s detection to a single keypoint corresponding to its
center. This keypoint is the coordinates of the arithmetic
center of the bounding box. Then, some transformations
have been applied to make the data more balanced and
tackle the class imbalance problem, as thoroughly explained
in Section 311

The idea is to add a new head to the pre-existing RVOS
model in order to detect the center of each instance. Vari-
ous implementations have been carried out, both based on

the (ResNet-101 [1]])) encoder’s and the decoder’s features,
which are represented in Figure [I} After the first tests, we
have disregarded the option of only using the encoder’s fea-
tures (see Section[3.3.1) as it did not result in good models
and the executed model trainings did not seem to reduce
the loss significantly. On the other hand, using the features
obtained by the decoder (see Section[3.3.2)) of the model re-
sulted in successful trainings and much better results. Both
MLP and convolutional layers have been added at the end
of the decoder, but only the latter have resulted in the out-
puts we are looking for. The final chosen architecture for
the center detection layer is explained in Section[3.3.2}

3.1. Center as a Gaussian distribution

The dataset we have used, Youtube-VOS [8]], as de-
tailedly explained in section 1] is composed by annota-
tions of the masks of each instance. Since we want to work
with the centers of the instances, which we will need rep-
resented as a keypoint, a transformation must be applied in
order to obtain them.

We are taking the center of each instance as the arith-
metic center of the mask’s bounding box, that being ¢, =
M and ¢, = top=bottom =y here right, left, top
and bottom correspond to the coordinates of the bounding
box. In Figure[d] we observe the transformation from masks
into the bounding boxes and their corresponding centers,
marked in red circles.

o

50
100
150
00
50

00

] 100 200 00 400 500 600

30
0

(b) The detected bounding
boxes and their corresponding
centers.

(a) Example of an instance
ground truth mask.

Figure 4: Computation of bounding box centers from object
masks.

After computing the center, what we are left is with a
ground truth of only one true pixel (the center), and the rest
is set to false. This is very bad for training purposes, given
such a huge class imbalance, and thus we tackle this prob-
lem by representing the center as a Gaussian distribution
centered at the bounding box center and with the variance
being to the width and height of the object, as expressed in

equation 3.1}

L —@w?/20?

P(z) = o

ey

Where z is the center 2D-vector (¢, ¢,), and o is the

. . 0 . .
covariance matrix o =), being w = right — left

w
0 h
the width and h = top — bottom the height of the ob-
ject’s bounding box. For instance, the left image of Figure
[]is transformed into the center representation of the right,
where the distribution variance is higher on the y-axis than
on the x-axis given the shape of the object.

o

o B

100
%

150

100

20

150

20

0 0 S 100 150 20 20 300 30 40

%0
0 S 10 150 20 20 0 B0 40

(b) The resulting Gaussian
center representation
obtained from the instance
mask.

(a) Example of an instance
ground truth mask.

Figure 5: Computation of the center’s Gaussian
representation from the object’s mask.

3.2. Loss functions

Various loss functions can be used for our purpose. We
are treating with labels of continuous value, that is, the
ground truth is composed of probabilities and so is non-
binary. For a given instance, the model assigns the prob-
ability of each pixel being its center. We want to fit this
probability to the value obtained off of the Gaussian center
representation.

In order to do so, a lot of loss functions have been tested
out:

* Mean squared error. It was tested as a first approach,
but as expected it did not work properly and was hardly
reduced during training. Given the nature of the data
we are dealing with are probabilities p € [0, 1], this
loss function was not expected to work. Furthermore,
as it has been discarded for training, it is later used as
a metric to measure the obtained results (see Section
[A.2). Equation 2] shows how this loss function is com-

puted.
N

1 i
MSE = =% (yi = i) 2

i=1

Kullback-Leibler divergence. Given the data we are
treating consists of probability distribution, and this
function allows us to compare two distributions, it
seemed it could fit well for our purpose. In equation 3|
we observe the computation of this loss, where p is the

Gauss distribution centered on p = (Cy, ¢,y) and with

16) 2) , and g is the 2D-prediction

covariance o =

of the distribution.

N
_ N p(xi)
L(g,p) = ;p(%) log 3)
N .
L(g.p) =) yi-log 0 “)
i=1 v

e Cross-entropy variants. Three different variants
of the cross-entropy loss have been regarded, which
tackle differently the issue of class imbalance. In this
case, the loss converged during training and the ob-
tained results were satisfactory. It is worth noting
that in order to implement this loss into the training,
the three variants required binary masks, and thus the
Gaussian probabilities of the ground truth had to be
thresholded into booleans. In order to do so, the re-
sulting Gauss distribution is normalized dividing it my
its maximum value (which by definition is less than 1),
and then thresholded by the value ¢ = 0.5, obtaining
the binary mask around the center of the object and
still respecting the variance at each axis.

The three implemented cross-entropy variants, which
have been the ones used for the final three models are the
following:

Binary cross-entropy loss (BCE).

In this case, we could say that we “ignore” the class im-
balance and simply use the basic binary cross-entropy loss.
We would expect that the model trained with this loss pre-
dicts too many false negatives due to the class disparity.

N
BCE = —% D v p(y) + (1 —ys) - log(1 = p(y:))

i=1
)
Focal loss (FL).
In order to tackle the class imbalance problem, we sub-
stitute the binary-cross entropy with a focal loss. The origi-
nal focal loss is defined in equation 6]

FL=—a(l—p(y:))" -log(p(yi)) (6)

We use the parameter v = 1 and replace the o param-
eter with the computation of the mean between the losses
of foreground and background pixels, which are computed
separately, thus assigning the same relevance to each of the
classes for each of the objects. This is computed as shown
in equation 9]

down 2x diown 2

cony L con
frame 2R dowm 2x
B4 v‘ conmy
dioren 2x
512 Oy
SO
. -
1Cl2£.‘cc-\:\:ﬁ- 128 -
= ﬁ Conmv
‘B 1sm
2048 128

frame t

Figure 6: Architecture of the model’s encoder and decoder. In the left, in blue, the components corresponding to the
encoder. On the right and in green, the components corresponding to the decoder.

N
- Z (1—ws) - log(1 = p(ys))

FLy=
Zz 1 (1 —¥i) io
(7
FLI = Zyz log yz (8)
z lyl i=1
L L
FL = %)

Modified focal loss (Mod. FL).

In the two previous variants, the Gauss distribution per
se is not being used completely. That is because we must
threshold the values in order to obtain the needed binary
mask. In this case, what we do is to ponderate the loss of
each pixel by its distance to the center, which is denoted
by the Gaussian ground truth distribution. Thus, for fore-
ground pixels, we ponderate the loss by g(y;) (more impor-
tant as it is closer to the center), and for background pixels
by 1—g(y;) (more important if it is further from the center).
This is computed as shown in equation[T2]

N
(1

of the video sequence, as well as the centers of the objects
at the frame where each instance appears. These centers are
obtained as explained in Section[3.1} Then the model passes
the input to the encoder (see Section[3.3.1)), generating a set
of features as an output, which is then used as an input to
the decoder of the model (see Section [3.3.2), which returns
the prediction of the center assigning a probability to each
pixel of the 2D-image. This architecture is shown in Figure
©

Other model architectures have been tested out, such as
using only the features of the decoder (by applying an MLP
or convolution layer on the last feature),

3.3.1 Encoder

We use the architecture proposed by [7]], which consists of
a ResNet-101 [1]] model pre-trained on ImageNet [4]. This
architecture does instance segmentation by predicting a se-
quence of masks. The input z; of the encoder is an RGB
image, which corresponds to frame ¢ in the video sequence,
and the output ft = {f.1, fi,2, ., fi.k} is a set of features
at different resolutions. The architecture of the encoder is
illustrated as the on the left in[6l

Lo=— Z = i) -log(1 = p(yi)) - (1 = 9(¥:)332 Decoder

Zz 1 (1 —vi) io
(10)

Ly = Yi - 9(yi) (11
Zz 1 Z;

=t (12)
2
3.3. Model

The model we propose is fully based on the RVOS archi-
tecture. The input consists of the set of RGB image frames

The decoder is composed by recurrent ConvLSTM [6] lay-
ers, which can treat the different resolutions of the input fea-
tures fy = {fi.1, ft.2,--» fr.e}» Where fi are the features
extracted at the level k of the encoder for the frame t of the
video sequence. Each ConvLSTM layer also receives the
mask of the previous frame at the corresponding resolution
as an input.

The output of the decoder is a set of center distribution
predictions {Ct,1,,...,Ct,i,...,Ct, N}, where C, ; is the
segmentation of object ¢ at frame ¢, which are computed by

either applying a 2D-convolution to the last hidden state h
and up-sampling it to match the input image resolution, or
by combining all hidden states (except the last) of the de-
coder by using a convolution and up-sampling layer to each
hidden state and combining them with the last one by apply-
ing a mean, and finally applying a 2D-convolution layer and
an up-sampling to match the input image resolution, exactly
like in the first option.

Out of the two variants to make the predictions
{Ct,1,,...,Ct,i,...,Ct, N}, the first one (which only uses
the last hidden state) has obtained significantly better re-
sults, and thus all the results exposed in this document cor-
respond to this model version.

SPATIO-TEMPORAL RECURRENCE

= |

- - L]

=
2

BT =

nalanca 3 éo =] -é- =) iﬁ

Figure 7: Architecture of the model’s decoder, using an
spatiotemporal recurrent network.

4. Experiments
4.1. Dataset

We use the YouTube-VOS dataset [8]], the first large-
scale benchmark that supports multiple video object seg-
mentation tasks, including Semi-supervised Video Object
Segmentation and Video Instance Segmentation.

It has the following features:

* 4000+ high-resolution YouTube videos
* 90+ semantic categories

* 7800+ unique objects

* 190k+ high-quality manual annotations

¢ 340+ minutes duration

4.2. Metrics

Once the models have been trained and we obtain pre-
dictions for the test dataset, these must be evaluated using
objective metrics. A very important condition is that the
metrics must be different than the loss functions used, in or-
der for them to be more reliable. We want to measure how
well does the model predict the center of the image: in or-
der to do so, we use two metrics that compute the euclidean
distance between the real center and the center of mass of
our 2D-prediction, and one that measures the intersection

over union between both. The latter is useful given that if
we take the center of mass of our prediction, we are partly
neglecting the distribution (two very differently distributed
predictions can have the same center of mass): by comput-
ing the intersection over union, we can compare which of
the models predicts better the regions of the foreground pix-
els, even though the metric in itself is not of much interest
as we are interested in the center and not in a mask of the
object.

Mean absolute error (MAE)

The first metric is to compute the mean absolute error
for all predictions. In this case, the error is measured as
the euclidean distance between the real center y; and the
predicted center ;.

N
1 ,
MAE—NZ;lyZ-—yZ\ (13)

Mean squared error (MSE)

This metric is computed in order to penalize the models
which produce more outliers. A model with a lower MAE
but a higher MSE would mean that it is better generally at
predicting the center, but that it is also more prone to getting
it completely wrong. Equation [I4] shows how this measure
is computed.

N
MSE = %Z (yi — 9:)* (14)
i=1

Intersection over Union (IoU)

As explained at the beginning of this section, the IoU is
used to analyze whether or not the distribution of the pre-
dictions match the ground truths, as the quality of the center
measured by MAE and MSE only takes into consideration
the center of mass of the prediction. Equation[I5|shows how
this metric is computed.

Area of overlap < Yi, Ui >

IoU = =
N N
dlim1 Y+ D imy Ui

15
Area of union (s)

4.3. Results

We have trained the model for the three different losses
exposed in Section f.2] (BCE, FL and Mod. FL). The ob-
tained results in table [I] show that the best model at fitting
the position of the center is the one trained with the Focal
Loss (FL), even though the one with Modified Focal Loss
seems to pick up slightly better on the distribution of the
center, as it presents a higher IoU. Both losses that have
been customized for this case outperform the basic Binary
Cross Entropy Loss.

o gt N
WAL] §
R

e

[] " ‘ 7
A W
l"' '.

(a) Original RGB image. (b) Predicted center distribution.

Figure 8: A good prediction of the center of the object by the FL. model. The real center is marked with a dark green circle,
the predicted center is marked with a red cross.

(a) Original RGB image. (b) Predicted center distribution.

Figure 9: A bad prediction of the center of the object by the FL. model. The real center is marked with a dark green circle,
the predicted center is marked with a red cross.

IoU MAE MSE 5. Future work
BCE 0.087 33.72 3376.09 Analyzing the obtained results from this work, there ex-
FL 0.133 28.98 2496.29 ists room for implementation of several modifications and
Mod. FL. 0.149 30.19 2583.05 P

improvement. We list the ideas that can be further devel-
oped from this work:

Table 1: Results for each of the loss functions used in
training the model.

* Some short trainings have been executed for a model

It is worth noting that the treated images are of size 448 x combining the original task of RVOS 7] (multiple ob-
256, and thus an euclidean distance of ~ 30 is relatively ject segmentation) and the center detection, by com-
close. As a reference, the expected distance between two bining their losses. These have reduced the loss func-
random points would be of around ~ 260. Thus, the best tion during training, indicating that there exists poten-
model FL with M AE = 28.98 performs around 10 times tial for using the center detection head as an auxiliary
better than a uniformly random model would. task that could improve the task of the original model.

In Figure [§] we can observe a good prediction made by
the FL. model, at a distance of 2px, while in Figure El we

observe a bad prediction of the same model at a distance of * Changing the task to the detection of not only the cen-
140px , which seems to be confused by another object of ter, but also the bounding box of the object, similarly
the same class. to [2]] and [3]].

6. Conclusions

In this work it has been shown that the model presented
by [7]] can be successfully modified to perform other tasks
than multi object segmentation. It has also been shown that
treating the problem of class imbalance with a proper loss
function that adapts well to it can translate into significantly
better results.

Finally, I would like to add that this introduction to the
world of research has enormously helped me to learn about
the difficulties you can find when exploring a path which is
not marked and how to tackle them, together with dealing
with real-world cases and data, which require scalable and
reproducible implementations of the used code.

7. Acknowledgements

I would like to end this report by thanking both the col-
laboration of Ferran Marqués, Xavier Gird, Carles Ventura
and Andreu Girbau throughout the development of all the
work and the resources provided by UPC’s Image Process-
ing Group.

References

[1] Jifeng Dai, Yi Li, Kaiming He, and Jian Sun. R-fcn: Ob-
ject detection via region-based fully convolutional networks,
2016.

[2] Kaiwen Duan, Song Bai, Lingxi Xie, Honggang Qi, Qingming
Huang, and Qi Tian. Centernet: Keypoint triplets for object
detection, 2019.

[3] Hei Law and Jia Deng. Cornernet: Detecting objects as paired
keypoints, 2019.

[4] Tsung-Yi Lin, Michael Maire, Serge Belongie, Lubomir
Bourdev, Ross Girshick, James Hays, Pietro Perona, Deva
Ramanan, C. Lawrence Zitnick, and Piotr Dollar. Microsoft
coco: Common objects in context, 2015.

[5S] Amaia Salvador, Miriam Bellver, Victor Campos, Manel
Baradad, Ferran Marques, Jordi Torres, and Xavier Giro i Ni-
eto. Recurrent neural networks for semantic instance segmen-
tation, 2019.

[6] Xingjian Shi, Zhourong Chen, Hao Wang, Dit-Yan Yeung,
Wai kin Wong, and Wang chun Woo. Convolutional Istm net-
work: A machine learning approach for precipitation nowcast-
ing, 2015.

[7] Carles Ventura, Miriam Bellver, Andreu Girbau, Amaia Sal-
vador, Ferran Marques, and Xavier Giro i Nieto. Rvos: End-
to-end recurrent network for video object segmentation, 2019.

[8] Ning Xu, Linjie Yang, Yuchen Fan, Dingcheng Yue, Yuchen
Liang, Jianchao Yang, and Thomas Huang. Youtube-vos: A
large-scale video object segmentation benchmark, 2018.

