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Abstract

In an attempt to enable agents carrying Artificial Intelligence (Al) components to solve quotidian real
world problems, the behaviours that define the intelligence of the agents must adapt to the nature of the
real world environment. In the Deep Learning (DL) field it has been shown that deep Neural Networks
(NN) are outstanding models for learning in a supervised way. In this way, NNs have achieved state-
of-the-art performance in many supervised tasks, even outperforming humans (i.e. image, object and
voice recognition). However, for many tasks it is not possible to label the real world environment due
to its complexity. Hence, agents carrying NNs trained in a supervised way will eventually underfit the
real world environment. Self-Supervised Learning (SSL) and Reinforcement Learning (RL) are approaches
that aim to enable Al models to obtain knowledge without the assumption of extrinsic annotations as in
Supervised Learning (SL). Actually, SSL and RL approaches are much closer to how the humans learn
from the real world environment. For instance, when we are babies, we do not learn how to walk by only
watching examples of people walk. We learn to walk by a combination of exploration of behaviours plus the
interaction with the real world. Within this example, an interaction with the real world could be pain in the
baby’s body for having fallen after misplacing its legs when trying to stand up. Also, babies eventually prefer
walking rather than crawling because they learn to distinguish the value of the two behaviours: walking
is more valuable than crawling as it allows one to reach a navigation goal, or perform auxiliary actions
with a smaller effort and a higher precision. Along this example, the majority of the fundamental human
knowledge, and specially the one that implies interaction with the real world environment is self-obtained by
means of action-value estimation. This is all thanks to the brain processing capabilities in combination of
the human-world reward interactions. Arguably, the aforementioned statements about the human learning
processes considerably intersect with the principles of SSL and RL.

Among all the scenarios where the Al capabilities can provide a valuable service to humans, robotics
might be the most conditioned one by the real world environment. In this field of embodied Al, the most
sophisticated robots nowadays integrate natural language processing, speech generation, face recognition,
motor control, and many other capabilities. However, if we drop one of these most sophisticated robots in
our homes and tell them to perform any human quotidian action (e.g, look for the lost TV remote control,
put the pizza in the oven, close the bathroom door) they will fail drastically. The robots will fail because
there is an implicit difficulty in the accomplishment of generalization across multiple tasks, no matter
how simple the tasks are. That is because for efficiently solving a set of downstream tasks, embodied Al
agents at least need to (i) Perceive the environment: for instance through vision sensors as RGB or Depth
observations; (ii) Act: navigate and interact with their environment to accomplish goals; and (iii) Reason:
consider and plan for the long-term consequences of their actions.

This work focuses on the self-acquirement of the fundamental task-agnostic knowledge available within an
environment. The aim is to discover and learn baseline representations and behaviours that can later be
useful for solving embodied visual navigation downstream tasks. In this way, the difficulty of the embod-
ied multitask learning problem is simplified by first obtaining an intelligent perception of the environment
and its dynamics. Following the previously mentioned examples of human quotidian tasks (i.e. close the
bathroom door or put a pizza in the oven), this work motivates that first knowing how to recognize the
bathroom, what makes it different from the kitchen, and learning to navigate between both will facilitate
both downstream tasks.

Specifically, the presented approach extends the idea of the Explore, Discover and Learn (EDL) paradigm



to the pixel domain. This way, this work is centered in the representations and behaviours that can be
learnt by an agent that only integrates an image capture sensor. Both the agents and the environment that
is used in this work run over the Habitat Al simulator, which is developed by Facebook Al, and renders 3D
fotorealistic views of the insides of apartments.

Resum

Per tal que els agents que inclouen components d'Intel-ligéncia Artificial (IA) puguin resoldre problemes
quotidians del mén real, els comportaments que defineixen la intel-ligéncia d'aquests agents s’han d'adaptar
a la seva naturalesa. En el camp de I'aprenentatge profund, deep learning (DL), s'ha demostrat que les
xarxes neuronals profundes (NN) sén models excel-lents per aprendre de manera supervisada. Es aixi com
les NN han aconseguit un rendiment excepcional en una gran varietat de tasques supervisades, fins i tot
superant els humans (ex. reconeixement d'imatges, objectes i veu). No obstant aix0, no és possible etiquetar
I'entorn del mén real per a moltes d'altres tasques a causa de la seva complexitat. Per tant, en molts casos
els agents que inclouen xarxes entrenades de manera supervisada no poden captar la complexitat del mén
real. L'aprenentatge autocontrolat, self-supervised learning (SSL), i |'aprenentatge de reforg, reinforcement
learning (RL), sén enfocaments que tenen com a objectiu que els models d'lA puguin obtenir coneixement
sense |'ds d'anotacions extrinseques, com a |'aprenentatge supervisat (SL). En realitat, els enfocaments SSL
i RL sén molt similars als dels aprenentatges que fan els humans del seu entorn, el mén real. Per exemple,
quan som nadons, no aprenem a caminar mirant només exemples de gent que camina. Aprenem a caminar
mitjancant la combinacié de I'exploracié de comportaments i la interaccié amb el mén real. Seguint amb
aquest exemple, una interaccié amb el mén real podria ser el dolor que pot sentir el nadé si, després de
posicionar malament les cames en intentar posar-se dret, cau a terra. A més, els nadons eventualment
prefereixen caminar en lloc d'arrossegar-se, perque aprenen a distingir el valor dels dos comportaments:
caminar és més valuds que arrossegar-se, ja que permet assolir un objectiu de navegacié o realitzar accions
auxiliars amb un esforc menor i una precisi6 més alta. Juntament amb aquest exemple, la majoria del
coneixement huma fonamental, i especialment el que implica la interaccié amb I'entorn del mén real,
s'obté autonomament per mitja d’exploracié i estimacié del valor dels nostres comportaments. Tot aixo
passa gracies a les capacitats de processament del cervell en combinacié de les interaccions de recompensa
amb I'entorn. Es podria dir que les afirmacions esmentades sobre els processos d'aprenentatge humans es
creuen considerablement amb els principis de SSL i RL. De tots els escenaris en qué les capacitats d'lA
poden proporcionar un servei valuds als humans, la robotica pot ser la més condicionada per I'entorn del
mon real. En aquest camp de la IA encarnada, els robots més sofisticats integren avui dia processament
del llenguatge natural, generacié de veu, reconeixement facial, control sensorial i moltes altres capacitats.
Tanmateix, si despleguem un d’aquests robots més sofisticats a casa nostra i li diem que faci qualsevol
accié quotidiana humana (per exemple, buscar el comandament del televisor, introduir la pizza al forn,
tancar la porta del bany) fracassara drasticament. El robot fallara perqué hi ha una dificultat implicita
en la generalitzacidé entre varies tasques, per molt senzilles que puguin semblar. Aix0 es deu al fet que,
per resoldre de manera eficient un conjunt de tasques, els agents d'Al com a minim han de (i) Percebre
I'entorn: per exemple, mitjangant sensors de visi6 com RGB o observacions de profunditat; (i) Actuar:
navegar i interactuar amb el seu entorn per assolir els objectius; i (iii) Raonar: considerar i planificar les
conseqiiencies a llarg termini de les seves accions. Aquest treball se centra en I'adquisicié del coneixement
fonamental agnostic de tasques disponibles en un entorn. L'objectiu és descobrir i aprendre representacions
i comportaments generalistes que puguin ser Utils més endavant per resoldre tasques de navegacié visual.
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La dificultat del problema d'aprenentatge multi-tasca se simplifica si primer s’obté una percepcié intel-ligent
de I'entorn i de les seves dinamiques. Seguint els exemples esmentats anteriorment de tasques quotidianes
humanes (és a dir, tancar la porta del bany o posar una pizza al forn), aquest treball motiva que primer
s'ha de saber reconeixer el bany (qué el fa diferent de la cuina?) i després aprendre a navegar entre aquests
dos espais facilitara les dues tasques. En concret, I'enfocament presentat amplia la idea de la técnica
Explore, Discover and Learn (EDL) al domini dels pixels. D'aquesta manera, aquest treball se centra en
les representacions i comportaments que poden ser descoberts i apresos per un agent sense supervisid i
que només inclou un sensor de captura d'imatges. Tant els agents com |'entorn que s'utilitzen en aquest
treball funcionen amb el simulador d'Habitat Al, desenvolupat per Facebook Al, que proporciona vistes
fotorealistes en 3D de I'interior d'apartaments.

Resumen

Para que los agentes que incluyen componentes de Inteligencia Artificial (IA) puedan resolver problemas
cotidianos del mundo real, los comportamientos que definen la inteligencia de estos agentes deben adaptarse
a su naturaleza. En el campo del aprendizaje profundo, textit deep learning (DL), se ha demostrado que
las redes neuronales profundas (NN) son modelos excelentes para aprender de manera supervisada. Es asi
como las NN han conseguido un rendimiento excepcional en una gran variedad de tareas supervisadas,
incluso superando los humanos (ej. Reconocimiento de imdgenes, objetos y voz). Sin embargo, no es
posible etiquetar el entorno del mundo real para muchas otras tareas debido a su complejidad. Por lo
tanto, en muchos casos los agentes que incluyen redes entrenadas de forma supervisada no pueden captar
la complejidad del mundo real. El aprendizaje autocontrolado, textit self-supervised learning (SSL), y el
aprendizaje de refuerzo, textit Reinforcement learning (RL), son enfoques que tienen como objetivo que
los modelos de |A puedan obtener conocimiento sin el uso de anotaciones extrinsecas, como el aprendizaje
supervisado (SL). En realidad, los enfoques SSL y RL son muy similares a los de los aprendizajes que
hacen los humanos de su entorno, el mundo real. Por ejemplo, cuando somos bebés, no aprendemos a
caminar mirando sélo ejemplos de gente que camina. Aprendemos a caminar mediante la combinacién de
la exploracién de comportamientos y la interaccién con el mundo real. Siguiendo con este ejemplo, una
interaccién con el mundo real podria ser el dolor que puede sentir el bebé si, después de posicionar mal las
piernas al intentar ponerse de pie, cae al suelo. Ademas, los bebés eventualmente prefieren caminar en lugar
de arrastrarse, porque aprenden a distinguir el valor de los dos comportamientos: caminar es mas valioso que
arrastrarse, ya que permite alcanzar un objetivo de navegacion o realizar acciones auxiliares con un esfuerzo
menor y una precisidn mas alta. Junto con este ejemplo, la mayoria del conocimiento humano fundamental,
y especialmente lo que implica la interaccién con el entorno del mundo real, se obtiene auténomamente
por medio de exploracién y estimacién del valor de nuestros comportamientos. Todo esto ocurre gracias
a las capacidades de procesamiento del cerebro en combinacién de las interacciones de recompensa con el
entorno. Se podria decir que las afirmaciones mencionadas sobre los procesos de aprendizaje humanos se
cruzan considerablemente con los principios de SSL y RL. De todos los escenarios en que las capacidades
de IA pueden proporcionar un servicio valioso a los humanos, la robética puede ser la mas condicionada
por el entorno del mundo real. En este campo de la IA encarnada, los robots mas sofisticados integran
hoy en dia procesamiento del lenguaje natural, generacién de voz, reconocimiento facial, control sensorial
y muchas otras capacidades. Sin embargo, si desplegamos uno de estos robots mas sofisticados en nuestra
casa y le decimos que haga cualquier accién cotidiana humana (por ejemplo, buscar el mando del televisor,
introducir la pizza en el horno, cerrar la puerta del bafio) fracasara drasticamente. El robot fallard porque



hay una dificultad implicita en la generalizacién entre varias tareas, por muy sencillas que puedan parecer.
Esto se debe a que, para resolver de manera eficiente un conjunto de tareas, los agentes de Al como minimo
deben it (i) Percibir el entorno: por ejemplo, mediante sensores de vision como RGB u observaciones de
profundidad; It (ii) Actuar: navegar e interactuar con su entorno para alcanzar los objetivos; y it (iii)
Razonar: considerar y planificar las consecuencias a largo plazo de sus acciones. Este trabajo se centra en
la adquisicion del conocimiento fundamental agndstico de tareas disponibles en un entorno. El objetivo es
descubrir y aprender representaciones y comportamientos generalistas que puedan ser (tiles mas adelante
para resolver tareas de navegacion visual. La dificultad del problema de aprendizaje multi-tarea se simplifica
si primero se obtiene una percepcidn inteligente del entorno y de sus dindmicas. Siguiendo los ejemplos
mencionados anteriormente de tareas cotidianas humanas (es decir, cerrar la puerta del bafio o poner una
pizza en el horno), este trabajo motiva que primero hay que saber reconocer el bafio (que lo hace diferente
de la cocina?) y luego aprender a navegar entre estos dos espacios facilitard las dos tareas. En concreto,
el enfoque presentado amplia la idea de la técnica textit Explore, Discover and Learn (EDL) al dominio de
los pixeles. De este modo, este trabajo se centra en las representaciones y comportamientos que pueden
ser descubiertos y aprendidos por un agente sin supervisién y que sélo incluye un sensor de captura de
imagenes. Tanto los agentes como el entorno que se utilizan en este trabajo funcionan con el simulador
de Habitat Al, desarrollado por Facebook Al, que proporciona vistas fotorrealistas en 3D del interior de
apartamentos.
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1. Introduction

In this work we try to develop autonomous and intelligent robots (agents) that navigate effectively in a 3D
realistic environment. For that, we consider agents that are fed with visual and depth data, which can be
captured with low cost sensors available for robots.. Also, we aim to avoid human supervision for making
the agents obtain generalist knowledge from the real world environment. We dive into the field of embodied
artificial intelligence (Al) for deploying the agents with autonomous behaviours, and we consider the latter
as the basis of assistive robotics capable of empowering people with reduced mobility at home, so that
they can autonomously fulfill their daily living activities. Overall, this thesis motivates the hypothesis that
an environment is full of characteristics that if processed into generalist knowledge it would be valuable for
solving any downstream task in the environment. With all this, we expect truly autonomous embodied Al
agents to function in complex environments and without needing expert human supervision.

We adopt the paradigm of Explore, Discover and Learn (EDL) [1] for allowing the agents to obtain a
generalist and rich perception of their surroundings in an unsupervised manner. Concretely, we aim to train
agents that get to understand the rich visual information in a real world context with the goal to develop
knowledge representations and behaviours that generalize. EDL defines an information-theoretic objective
and makes some assumptions in its formulation that do not scale to the pixel space. In this way, we are
inspired from EDL to achieve our goals, and at the same time, we extend EDL to work for egocentric visual
data from a 3D virtual world, which has not been tested yet. This work has been developed in parallel with
the excellent Master’'s Thesis by Juan José Nieto Salas named Discovery and Learning of Navigation Goals
from Pixels in Minecraft. Compared to the latter, we extend EDL to work in the Habitat Al phototorealistic
environment, we leverage different sources of visual data (depth and semantic segmentation), we do not
make use of human experts to train the agents, we use very different algorithms for defining the behaviours
of the agents, and we provide a comparative analysis between our approach and a baseline to tackle image
goal-oriented embodied navigation.

We deploy our implementation of EDL in the Habitat Al simulator [2]. Habitat is a high-performance 3D
simulator that enables experimentation in embodied Al. It provides configurable agents, multiple sensors
(i.e. GPS, compass, RGB, depth-channel and instance segmentation annotations) and high-performance
rendering of photorealisitic home interiors. Moreover, Habitat contains several set-ups for solving multi-
ple downstream tasks (i.e. visual and GPS-guided navigation, instruction following, embodied question
answering).

In this work we focus on embodied visual navigation. Generally, embodied visual navigation relates to
downstream tasks that are performed within a 3D environment, where there is a need to perform effective
navigation and the instructions to the agents consist of only visual data. In this way, the Habitat Al
environment proposes a challenging real-world-related context in terms of visual and dynamics complexity.
In experimentation, we make use of different types of image data available in the Habitat Al environment,
mainly RGB observations, depth channel information and instance segmentation annotations. With this,
we assess the quality of the discovered representations that our agents adopt and find that we manage to
obtain a valuable perception of the environment in terms of visual resemblance and spatial relations. Also,
we train the agents in a self-discovered task to provide a framework for obtaining generalist behaviours
in an environment. Finally, we propose an approach for transferring the knowledge representations that
we obtain in an unsupervised way to agents that tackle image goal-conditioned navigation (ImageNav).
ImageNav is an episodic task where at each episode the agents are set to an initial location and also set a
goal location. However, the representation of this goal consists of only an image, and the objective is to
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obtain agents that perform effective 3D navigation to reach the navigation goals specified by the images.
With this set-up, we demonstrate that the generalist knowledge of the agents that we develop enables
them to overcome the baseline approach for tackling the ImageNav task. This work has been presented in
a peer-reviewed CVPR 2021 workshop on embodied Al.



2. Background

2.1 Introduction to Artificial Intelligence

Artificial Intelligence (Al) plays a key role in the world we live in. Al enables solutions as diverse as machine
translation, self-driving cars, voice assistants, character and handwriting recognition, ad targeting, product
recommendations, music recognition, and facial recognition. Moreover, Al overcomes us as humans in
many tasks.

Al is about making machines mimic intelligent behaviours. For that, Machine Learning (ML) sets the
foundations of Al. ML works over the most valuable and key source of knowledge that exists: data. In ML,
machines take in data and learn patterns that would be difficult for humans to learn. ML is valuable in
the sense that the data processing (or data classification, segmentation, representation) capabilities go far
beyond than what humans can achieve. Some of the most applied ML models are: SVMs [3], Classification
Trees [4] or Logistic Regression [5] for classification (the models predict the categorical class membership of
the input data); Lasso/Ridge Regression [6, 7] and Regression Decision Trees for regression [8] (the models
predict a numerical value usually in the continuous domain); K-means [9] and Agglomerative Clustering [10]
for clustering (the models learn representations of the input data that provide a meaningful segmentation
of the whole data set); and PCA [11] and SVD [12] for dimensionality reduction (the models learn simple
representations of the data that preserve the complexity and variability of the entire data set).

2.1.1 A taxonomy of Machine Learning

In the wide field of ML there exists a distinguishment among several methodologies depending on the way
the machines process the data into valuable knowledge:

e Supervised Learning (SL): It is based on input-output pairs of data. The machines infer a function
that maps the input data to the output label. It demands a considerably large amount of input
(training) examples. Otherwise, the inferred function's complexity can overfit the training examples
not providing generalization.

e Unsupervised Learning (UL): It learns patterns from untagged data. Some well-known capabilities of
UL is inferring probability densities, as in principal component and clustering analysis.

e Self-Supervised Learning (SSL): It falls between SL and UL. It is about self-crafting a proxy supervised
objective within an untagged amount of data. In this way, machines can learn valuable representations
from an untagged data set in a supervised way. A popular successful application of SSL is found in
the training process of massive language models. Starting from a huge set of unlabelled text data and
with the manipulation of this data (i.e. masking a random word in each sentence to the machine)
a supervised objective is defined: predict the missing word. For which objective we have available
ground truth as in SL (we just transformed a part of the data into labels).

e Representation Learning: It approaches the form in which the inputs are encoded before being fed
into an Al component. In ML, a very important part of the capabilities (i.e. accuracy) that a model
provides is due to the appropriate representation of the inputs. However, in DL representation learning
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relates the embedded process in which NNs learn a mapping between inputs and representations.
The representation space (in this work also categorized as embedding/latent space) aims to provide
a simplification of the complex input space by relying in a low-dimensional manifold that preserves
the input space variability.

e Reinforcement Learning (RL): RL changes the paradigm and formalism of the other approaches of
ML. RL is about mapping situations to actions in order to maximize a reward signal within an
environment. RL provides a framework for enabling embodied Al components (agents) to learn by
interaction with an environment.

It makes sense to relate the aforementioned taxonomy of ML to "traditional Al". By traditional we
understand the Al-enabled systems that are embedded in software applications/programs and depend on
digital sources of data. For instance, Natural Language Processing (NLP) (i.e. sentiment analysis, language
generation, machine translation), or image-based processing (i.e. object recognition, image captioning,
trajectory-prediction) rely on massive digital sources of data (i.e. Sentiment140 or 20newsgroups for NLP
and ImageNet [13] or COCO [14] for images). However, embodied Al also benefits from the traditional Al
capabilities. By embodied Al we relate to Al components that are embedded into real world bodies. In
this way, embodied Al can be the result of the deployment of sophisticated language or computer vision
models into real world bodies. Actually, the most advanced robots nowadays are capable of recognising
faces and emotions, sensing obstacles and even handling conversations (text and speech recognition and
generation). However, all these capabilities are pretrained digitally and deployed into the robots. In
fact, when the ML models that allow the aforementioned capabilities are digitally trained, they rely on
shuffled, randomized packages of data, and this process does not map to the way in which humans learn.
Humans learn by sequentially perceiving, moving and interacting with the environment. Mimicking the
human learning processes in the real world is essential and becomes the major challenge of embodied Al.
Intelligent robots could benefit from capabilities as incredible as effective navigation (i.e. self-driven cars),
quotidian multitask handling or embodied question answering (i.e. service robotics, robots in healthcare).

A characteristic of embodied Al is that is ruled by egocentric perception. All the interaction of embodied Al
agents come from a first-person view of the environment so all the objects are encoded with respect to the
agents. In this sense, embodied Al finds its similarity with the human condition. For performing effective
learning processes in the real world, embodied Al agents at least need to (i) Perceive the environment: for
instance through vision sensors as RGB or Depth observations; (ii) Act: navigate and interact with their
environment to accomplish goals; and (iii) Reason: consider and plan for the long-term consequences of their
actions. In this way, embodied Al agents implicitly deal with interactions within an environment. Hence, it
makes sense to relate RL to embodied Al. RL is the main methodology for providing embodied Al agents the
intelligent capabilities of (i) mapping the agent observations to actions in the environment; (ii) assessing
the value of their behaviours to accomplish goals; and (iii) adapting/tuning their behaviours/policies to
optimize their performance in a given task.

In many cases, the real world is a too expensive environment for massively experimenting with embodied Al
agents. In this way, there exist many simulated (virtual) graphical environments nowadays that are adapted
to the training processes of RL [15, 16, 2]. Each of these serves a specific pipeline to solve an embodied Al
related task (i.e. visual navigation, robotic manipulation, policy optimization, multi-agent learning). The
standardised pipeline for obtaining real world intelligent behaviours nowadays consists of deploying virtual
embodied Al agents in the aforementioned simulators and then transferring the obtained behaviours into
real world bodies.

10



In the following, RL is characterised in order to specify the context of this work.

2.2 Preliminaries of Reinforcement Learning

In RL the characterization of an environment comes with the definition of the sets of states s € S and actions
a € A, and possibly the reward signal R(s,a) € R C R and the distribution of transition probabilities
p(s’, r|s, a). The fact that the reward signal and the transition probabilities are known or not makes the
difference between model-based and model-free RL. Learners in model-based RL resort to planning, which
involves predicting the future states that will be consequences the of taken actions. In contrast, learners in
model-free RL learn the best policies explicitly by trial-and-error. Another core element of the RL set-up
is the policy 7(a|s) which expresses the agents behaving at a given time by defining a mapping between
states and actions. With this framework, at each step the RL agents visit a state, take an action in the
current state and receive guidance with the reward outcome. Ultimately, the goal of the RL agents is to
maximize the total sum of rewards over the long run, namely the return:

Gt = R + YRey1 + VP Rego + Y’ Reys + ...

Where «y € [0, 1) is a discount factor that makes the agent put the priority in the immediate rewards. Along
the definition of this goal, an interesting observation arises: The only way to know how valuable is taking
an action in a given state is by exploring so. In the most challenging cases, the value of an action in a
given state might not be defined by the immediate reward but by the long-term subsequent rewards that
will come from the transitioned state. In this way, the RL core tasks are (i) exploration of the possible
state-action pairs in an environment together with the value of these (which is characterised by R(s, a),
which at the same time is usually stochastic); and (ii) exploitation of behaviours that visit and take the
most valuable state-action pairs.

For formally describing an environment in RL, we define Markov Decision Processes (MDP) that frame
the underlying rules and dynamics of the environment. MDPs work over the Markov assumption: any
action affects the immediate reward and the next state. What this assumption means is that any state
visitation is only consequence of the last action taken. MDPs are defined by a tuple: M = (S, 4, P, R, )
where S is the set of states s € S, A is the set of actions a € A, R is a reward function taking values
R(s,a) = E(Re+1|St = s,Ar = a), P is the transition probability distribution that characterizes the
environment dynamics p(s’|s,a) = Pr(Siy1 = s'|S¢ = s, A = a) and 7 is the aforementioned discount
factor. With this set-up, if one wants to maximize the expected total reward G; the goal to be accomplished
is to learn the policy that obtains the highest expected total reward 7*(a|s) = argmax;E,(G;).

With the goal of the maximisation of the expected total reward in mind, two key concepts arise. In the
following it is defined the way in which the agent learns to estimate the value of its behaviours: either the
value of visiting a state and the value of taking a specific action in that state.

The value of the state s is defined as the expected cumulative reward that will be obtained following the
current policy:

Vﬂ-(S) = Eﬂ-(Gt‘St = 5)
where v, (s) is the state-value function.

Then, the value of taking an action a in a given state s is the expected total reward that will follow the
decision of taking a in s and following the current policy:

Gr(s,a) = Ex(G¢|St = s, Ay = a)

11
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Now, taking into account that E(G;) = E(R: + YE(G¢+1)) is recursive, two very important equations of
RL arise:
vr(s) = Ex(Re + vr(Se11)|Se = 5)

which is the Bellman expectation equation for the state-value function. And we have another recursive
expression for the action-value function:

Gels,2) = 3 pls' rls. a)lr + 9 Y 1(15)x(5', )]

r,s’
These two equations provide the foundation of all the RL algorithms, since they provide a framework for
deriving different methodologies for estimating the values of the states and the actions. Some examples of
RL techniques are (i) Monte-Carlo (MC) methods, that use sampling for estimating the value functions; (ii)
dynamic programming (DP) methods, that derive an update formula which uses the current estimate of the
functions for the estimation in the next time step; (iii) temporal-difference (TD) methods, that combine
(i) and (ii) for deriving update formulas. Intuitively, these methods iteratively update the state and action
values with the reward distribution that the agents observe when visiting and taking each state and action.
So far, we have assumed capacity for storing entries v(s) and q(s, a) for each state and state-action pairs
in a look-up table manner. However, this is not feasible for environments with large number of states or
actions (i.e. Atari games, states of which are characterised by image pixels, contain more different states
than atoms in the universe [17]), and neither when a finite amount of experience is available. In these cases,
the solution is to learn approximations of the state and action value functions using parametric functions:

V(s,w) = ve(s)

G(s,a,w) = gr(s, a)

where w € RY is the set of weights of dimension independent to the number of states (and ideally much
smaller). These methods are in the field of Value Function Approximation (VFA). As an alternative to
VFA, Policy Gradient (PG) methods use parametric functions to directly estimate the policies:

7t(als, 0) = Pr(As = a|S: = s, 0)

The goal when introducing w and @ in these frameworks is offering generalization. We look for parametric
value functions that provide accurate estimation for unseen states and unexplored actions.

In comparison with VFA methods, PG methods show better convergence properties (although they converge
to local optimums and not global) and are more effective in high-dimensional action spaces. However, PG
method show higher variance when evaluating the learnt policies.

With this set up, Deep Neural Networks (DNNs) make its way to RL since DNNs are outstanding universal
function approximators. When DNNs appear in RL we relate to deep RL (DRL). DRL has shown great
results in tasks that could not be tackled with traditional RL (i.e. robotics or NLP) and have shown
superhuman performance in videogame environments [18, 19, 20, 21].

2.3 Challenges

In the field of RL and DRL, there exist huge differences on the experimentation of different methodologies
depending on the environment that is used. While some benchmark models can successfully tackle simple
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environments, they can fail drastically in more complex ones. Arguably, the characterization of the com-
plexity of RL environments depends on their underlying dynamics (which conditions the difficulty to explore
them) and the shape of their associated reward distributions. For instance, a maze environment is more
difficult to explore than an open field due to the environment dynamics. Hence, in the beginning of the
training process in the maze environment, agents (with random behaviours) will struggle in reaching novel
states that can give them valuable information. Hence, the problem with environment dynamics is that
they can define very unbalanced distributions over states s € p(s). In the maze scenario, and assuming
a dense reward distribution, agents would most probably fall into local optimums on the maximization of
the reward. In addition to environment dynamics, the reward distribution associated to a given task in an
environment conditions the learning process of the agents. Since the obtained reward is the only signal
driving the learning processes of the agents, if the reward distribution is very sparse, meaning that rewards
are provided in very few states, the agents will never be guided. In this sense, even if the agents benefit
from a suitable distribution over states p(s), they will struggle in assessing the value of the actions to take
in each state because for that they need to obtain reward outcomes. In the real world context, many RL
problems consist of hard-exploration problems (due to the complex dynamics of the real world) and shaped
with sparse or reward-free distributions. For instance, designing an agent to navigate effectively from one
room of an apartment to another one is difficult to explore due to the dynamics of the environment (the
agent can only leave a room navigating through a little door) and the reward distribution is sparse since
the agent only receives a positive reward when the navigation goal is reached. If we had an oracle that at
each step told the agent how far is from the navigation goal, the reward distribution would be dense and
the problem could easily be solved with DNNs. Reward shaping [22] for easing such tasks is possible in the
real world if we wanted the agent to learn to navigate to a single goal. However, it would not solve guided
navigation, where a user determines a different navigation goal at each episode (we will not put oracles in
every point of our apartments), which would actually define a multitask problem. Even in the case that
we put an oracle to every point in our apartment and we designed an agent to learn to navigate to all the
positions, we would not be able to do so by defining dense distributions of rewards. That is because of
catastrophic interference [23], a tendency of DNNs to abruptly forget previously learned information when
given new one. This means that the agent would be capable of learning to navigate to one goal at a time,
and would only support being shaped by a single reward distribution. Intuitively, this comes from the fact
that the agents learn to assess the values of visiting states and taking actions depending on the reward
outcome that they receive. In this sense, the value functions of their behaviours does not generalize nor
scale (i.e. navigating to the sofa might be a valuable behavior for looking for a lost TV remote but will be
rapidly forgotten when learning to close the bathroom door). Moreover, in the majority of cases, crafting
a unique dense reward distribution that generalizes to multiple tasks within an environment demands too
much expertise and is not feasible.

To overcome such limitations, intrinsic curiosity [24] and empowerment [25] methods provide intrinsic
rewards that encourage the agents to seek for novelty and hence explore the unexplored, which increases the
probability of eventually succeeding in the extrinsic tasks. These methods aim to overcome the limitations
of RL in environments with sparse rewards by defining proxy rewards that can shape the agents in the
early stages of their learning processes. These intrinsic rewards aim to enable the agents to learn baseline
task-agnostic representations and behaviours that generalize and are valuable to perform any task within
the environment.

With all this, we expect truly autonomous embodied Al agents to function in environments with sparse
rewards or even reward-free. We dream with agents that approach artificial general intelligence so that
they can learn multiple objectives in the same way as we humans do. For that, this thesis focuses on the
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representation learning and self-acquirement of skills/abilities in the absence of task-oriented rewards.
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3. Related Work

Reinforcement Learning (RL) [26] has witnessed a wave of outstanding works in the last decade. The ones
that received more interest being in videogames [20, 19, 18], but also in robotics [27, 28]. These works
follow the classical approach of RL. This approach consists of an agent that interacts with an environment
and learns a policy that maximizes the expected sum of total rewards, namely the return. In the majority of
cases, the reward distribution offers guidance to the agents in order to empower them to solve a particular
task. This fact enables the agents to learn representations and policies end-to-end for solving the task that
is tackled. However, the task-specific knowledge of these agents is not useful for being transferred to other
downstream tasks due to catastrophic forgetting [23]. That is, the representations of the environment
that the agents learn during the guidance of a specific reward signal only encode the value of each state
for performing the given task (defined by the reward signal). This fact limits the scalability of the RL
agents since they cannot approach multi-task problems or cannot obtain task-agnostic knowledge from
an environment. For this reason, during the last few years the research community of RL has put lots
of interest in the unsupervised and self-supervised approaches for learning task-agnostic representations
[29, 30, 31, 32| and behaviours [33, 34, 35, 36, 1| within an environment.

In fact, the will to overcome supervision in Al and DL is not new at all. The Computer Vision (CV)
and Natural Language Processing (NLP) fields have already experienced the self-supervised learning (SSL)
revolution [37, 38, 39]. In these works, massive language models like the GPT-3 [39] and novel visual
architectures like the Visual Transformer [40] achieve impressive results in multiple downstream tasks
thanks to being trained in a generic task and in a self-supervised manner. Following the popularity of SSL,
several paradigms are arising in the last few years for obtaining task-agnostic knowledge in RL [1, 36, 35,
41, 34, 33]. These works aim to uncover ways to motivate the agents to acquire valuable knowledge from
an environment without supervision. In RL, the value of the task-agnostic knowledge can be assessed by
both the generalization capabilities of the learnt representations and the usefulness of the learnt behaviours
(policies). For this reason, recent works rely on the disentanglement of representation learning and RL
[29, 1].

On the one hand, different approaches have arisen for self-learning valuable generic representations [42,
43, 31]. Some of these methods asses the quality of the learnt representations directly on the value that
they provide to RL agents [29, 31]. However, RL environments that define high-dimensional state spaces
(i.e. the pixel space) carry a set of difficulties that makes autonomous representation learning more difficult
to accomplish [44, 41]. On the other hand, several paradigms have gained popularity for driving the RL
agents learning of behaviours independently of extrinsic task-oriented reward functions. Curiosity-driven
learning [24] is the approach that encourages the agents to seek for novelty in the environment and hence
maximize the coverage of the state space [34, 45]. In this way, curiosity does not only provide capabilities
for covering the state space in hard-exploration or task-agnostic environments [46] but also helps to drive
learning in environments with very sparse rewards [34].

Empowerment has become an interesting and popular intrinsic curiosity framework [47, 25, 48, 49]. Em-
powerment relies on the information-theoretic approximation of the influence of a behaviour with respect to
consequences in an environment. In this way, the empowerment of an RL agent consists of the maximization
of the consciousness about the action-outcome interaction within a RL set-up. In several works that regard
empowerment, the skills to discover and learn are defined as the behaviours that effectively perform such
agent-environment interactions [1, 35, 50, 36]. In classical empowerment these interactions are between
sequences of actions (behaviours) and final states [25]. Central to the formulation of empowerment is the
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concept of mutual information (MI). Several works have already used this information-theoretic metric for
driving the learning processes of RL agents in absence of task rewards [51, 52]. In comparison to classical
empowerment [25], where an agent blindly commits to a sequence of actions, Gregor et al. [36] introduce a
novel approach where the decision to take each of the actions also depends on the environment observation
at that state. The latter is accomplished by maximizing the MI between states and some latent variables.

Our work is inspired from the Explore, Discover and Learn (EDL) [1] paradigm for the unsupervised
skill discovery and learning of task-agnostic skills. EDL approaches the maximization of the MI between
states and their latent representations [36]. However, EDL makes some assumptions that regard the Ml
formulation that do not scale to the pixel space. For instance, the fact that EDL uses variational inference
[53, 42] involves the computation of the Mean Square Error (MSE) between states for computing the MI.
Intuitively, the latter does not scale to the pixel space as one cannot relate the MSE between images to
the actual distance in the environment.

To develop our work we deploy our solutions in the Habitat Al environment [2]. The Habitat simulator
supports several datasets of 3D scenes. This work only makes use of the Matterport3D scenes available for
Habitat [54], and tackles embodied visual navigation [55, 56, 57]. The current state-of-the-art methods
for 3D navigation are based on Simultaneous Localization and Mapping (SLAM) [58]. These methods
iteratively construct maps of the scene by memorizing the environment dynamics and observation resem-
blance through the intelligent usage of sensory data (does not always imply image data). The Habitat
simulator provides an open-source SLAM-based baseline implementation together with an implementation
of Proximal Policy Optimization (PPO) [59] algorithm. PPO is a RL-based policy gradient algorithm that
combines learning from interaction with the environment and from the optimization of a surrogate objective
function on collected batches of data. PPO has demonstrated to outperform other online policy gradient
methods [59] in several RL environments. Since this work relies on RL, we will use PPO for implementing
our experimentation.

This work focuses on image goal-driven navigation [60] (ImageNav). For tackling general RL goal-oriented
problems, the most popular approach is to use Universal Value Function Approximators (UVFA) [61] where
at each step, the agents take actions according to a policy which is jointly conditioned by the current agent
state and the selected goal.
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4. Goals and Problem Formalization

Acquiring abilities in the absence of a task-oriented reward function is at the frontier of RL research
[1, 35, 25, 36].

The goal of this thesis is to extend the paradigm of Explore, Discover and Learn (EDL) to the pixel domain.
The purpose of doing so is to provide an end-to-end framework for RL agents to discover and learn skills
from image data in a self-supervised task-agnostic fashion.

The EDL paradigm intersects with empowerment: EDL addresses the reward-free skill discovery and learning
tasks to discover what can be done in an environment and how. EDL consists of unsupervised skill discovery
and training of RL agents without considering the existence of any extrinsic motivation or reward. The
EDL ultimate goal is to learn state-covering skills in an unsupervised manner. It addresses the task by
breaking down the end-to-end training process to three disjoint problems: (i) Exploration, which goal is to
obtain a representative model of the state space; (ii) Skill-discovery, which goal is to relate the properties
of the state space to a finite set of meaningful goals; (iii) Skill-learning, where RL agents are trained to
maximize the mutual information (MI) between the current states and the state-covering skills. Each of
these three stages can be studied, addressed and improved independently.

For the moment, EDL has been tested only in toy example mazes, so this work presents a pixel-based
implementation of EDL available for embodied Al agents in Habitat. The objective of EDL is to discover
representative state-covering goals and to learn RL policies, namely skills, that achieve the self-discovered
goals. In this work, the discovered goals are interpreted as navigation objectives.

The Habitat set-up allows to configure many different tasks in the same apartment. These tasks are defined
by different reward distributions depending on the goal that wants to be achieved. For this work, all the
rewards will be discarded since the objective is to provide a framework for autonomous RL agents to obtain
valuable knowledge in absence of task-oriented extrinsic rewards. In this way, for framing the underlying
process of the environment in a way that allows RL agents to formalize their performance we consider a
Markov Decision Process (MDP) without rewards. Hence, in this case the underlying MDP is defined as
the tuple M = (S, A, P) where S is the high-dimensional set of states (defined by image pixels). A is the
action space and P = p(s|s, a) is the transition function. The definition of the action space A is set to a
finite set of actions that enables discrete movements. Concretely, the agents are only capable of moving
forward 0.5 meters, turning left 452, turning right 452 and not moving at all.

With this framework, the information-theoretic approach of EDL aims to learn latent-conditioned policies
m(als, z), and defines skills or options as the policies obtained when conditioning 7 on a fixed value of
z € Z. We define S ~ p(s) as the probability function of visiting a state s (which is characterized by
the image observation that the RL agents capture in that state), and Z ~ p(z) the probability function
for the latent random variable Z. In this way, for learning the skills EDL aims to find the policies that
maximize the MI between S and Z. Using notation from information theory, Z(- ; -) is the Ml and H(-) is
the Shannon entropy. Due to symmetry, the M| can be defined in two different forms, namely the forward
and reverse forms:

(S5, Z) = H(Z) — H(Z]S) — reverse
=H(S) — H(S|2) — forward
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As seen in equation (1), the maximization of the MI requires knowledge of the unknown distributions p(s),
p(s|z) for the forward form and p(z|s) for the reverse form. EDL uses the forward form of the Ml for the
maximization of the MI. The original EDL paradigm is applied to "toy mazes’ where the state space is
defined by 2D coordinates. In this way, Campos et.al [1] approximate p(s|z) with variational inference and
are then capable of computing the forward form of the MI with the differences between p(s) and p(s|z),
which happens in the state space s € S. In this way, EDL uses the difference between the current state
of the RL agents (defined by a 2D position) and the skill-conditioning goal state (defined by a discovered
2D position) to define a reward distribution which maximization results in the maximization of the Ml
itself. However, when working in the pixel domain the state space is defined by the high dimensional image
pixels. Still, the objective is to achieve effective goal-conditioned navigation in an environment (which
is 3-dimensional in this case). In this way, it makes no sense to relate the distance in the state space
(difference between images) to the actual distance in the environment. For this reason, it makes more
sense to aim to maximize the reverse form of the MI, which implies approximating p(z|s) as a mapping of
the state space S to a latent space Z, choosing a suitable Z ~ p(z) and defining a reward that relates to
the distances in the latent space p(z) — p(z|s).

In the following, one can find the definition of the 3D environment used for experimentation. We majorly
work over an specific scene of the Matterport3D [54] dataset available in the Habitat Al virtual environment,
which will be related as the white apartment.

Figure 1: Top-down view of the white apartment.

As seen in Figure 1, the white apartment dynamics are complex. The apartment contains many different
rooms and non-navigable areas within them. Furthermore, the apartment is rich in visual details and
contains a considerable amount of variability among the visual appearance within the different rooms.

Figure 2: Samples from the interior of the white apartment.

18



Also, as seen in Figure 2 the apartment contains similar visual features in many different regions (i.e. there
are a lot of white objects). Since the objective of our approach to EDL is to discover (and learn) valuable
knowledge from image data only, the state space of the white apartment consists of image observations.
Hence, our methodology will be tested in the available image data in the Habitat environment, which is

shown in Figure 3.
D 4

Figure 3: The available image data in the Habitat environment: (left) RGB; (middle) instance segmentation;
and (right) depth observations
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5. Proposed Solution

In the following we characterize the pipeline that we follow for extending Explore, Discover and Learn (EDL)
to the pixel domain. In general, we approach embodied visual navigation by leveraging self-supervised learn-
ing techniques, parametric policies and goal-conditioned reinforcement learning. We provide a methodology
for (i) exploring a complete set of representative states; (ii) discovering generalist state-covering represen-
tations of the states and defining a set of meaningful navigation goals; and (iii) learning goal-conditioned
policies that reach the navigation goals.

5.1 Exploration

Exploration is a central task in RL. The selection of the best actions in each state is guaranteed by
previous exploration of all the available actions that can be taken in each of the available states within an
environment.

Ideally, in a reward-free task agnostic set-up, one would like to learn baseline behaviours (skills) that are
later useful for solving multiple unrelated downstream tasks. Without prior knowledge of the availability
of useful skills within an environment, the objective that one can set is to at least ensure that these skills
provide complete coverage of the entire state space [1, 45]. In this way, one would make sure that the
learnt skills are not missing any information available in the environment. Hence, discovering state-covering
skills requires complete exploration of the state space. Formally, the challenge of the exploration stage is
to obtain a source of states s € S that are representatives of the environment and that the learnt skills will
ultimately cover. A reasonable choice for encouraging the discovery of state-covering skills is to perform
sampling from p(s) ~ S uniformly. Uniform sampling would be possible if we assumed a considerable level
of prior knowledge of the environment for which we could use an oracle to obtain different valid navigable
states uniformly. A more realistic approach for tackling the inference of a state-covering distribution p(s)
is to train exploration policies to infer a uniform p(s) [46]. However, as we deal with the high-dimensional
pixel space, inferring a uniform p(s) is not feasible. For this reason, the final approach is to adopt a
non-parametric solution by collecting a dataset of trajectories in the environment. In this way, we tackle
exploration by implementing random agents that perform episodes of a specific length and collect the
trajectories of image observations.

As seen in Figure 4, the white apartment is too complex in its dynamics to be easily explored by random
agents. For this reason, we will assume a little degree of prior knowledge of the environment for which we
will set random navigable points for the agents to start in each of the episodes.

In Figure 5 it can be seen how with the aforementioned adjustment, random agents collect a dataset of
image observations that covers a complete set of representatives of the environment.

5.2 Skill Discovery

The goal of the skill discovery phase is to extract a finite set of meaningful representatives of the state space.
Concretely, following the formulation of the reverse form of the Ml in equation (1), the objective of this
phase is to model p(z|s) as a mapping between the states s and some latents z, and p(z) as a categorical
distribution over the latents z € Z. Ideally, one would like the latent space Z to be low-dimensional and
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Figure 4: Results of the exploration performed by random agents in 500 trajectories of 150 steps in the
white apartment. In all the episodes, the random agents start in the position marked by the red cross.

Figure 5: Results of the exploration performed by random agents in 500 trajectories of 150 steps in the
white apartment. The random agents start in a random navigable position in each of the episodes.

to preserve valuable features of the state space. For this work, we aim to learn baseline navigation skills
in the 3D Habitat environment. Hence, we would like to map the image observations s to latents z that
encode both existing similarities in the images and the spatial relation between them.

This work studies two different approaches for mapping the image observations to meaningful representa-
tions. Since the two approaches are differnt, these imply further differences in the design of the marginal
distribution of the latents p(z). In the following, the two self-supervised learning approaches are charac-
terized together with the pipeline for modelling both p(z|s) and p(z).
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5.2.1 Contrastive

It is a SSL approach in which a siamese model (which uses two architectures in parallel) learns to define an
embedding space by projecting pairs of positive and negative input examples (in our case of inputs images).
Some examples of positive pairs of input images consist of augmentations of an original image (i.e. random
crops, color changes, rotations) as it is done in CURL [31]. Then, negative pairs of input images are just
pairs of different images of the dataset. In this way, contrastive-based approaches aim to characterize an
embedding space that preserves the features of the images by projecting similar observations closer in the
embedding space.

The training process of a contrastive approach consists in feeding a batch of original images to the main
encoder and its corresponding positive and negative pairs to the second encoder (namely, momentum
encoder). In a batch of N original images, the momentum encoder is fed with N — 1 negative images and
a positive one. In this way, the contrastive training process becomes a classification problem where the
network weights are updated according to correct and incorrect predictions on positive or negative pairs.
Both encoders consist of the concatenation of some convolutional layers that extract visual features with a
small fully connected head (a small MLP). This work implements the contrastive approach by making use
of the adaptation to CURL proposed by Stooke et al. [29], namely Augmented Temporal Contrast (ATC).
Compared to CURL, in ATC the positive pairs of inputs consist of two image observations belonging to
the same exploration trajectory. In this way, we encourage the model to map the image observations to an
embedding space which encodes spatial relations between them. That is, we train a contrastive model so
that a positive pair of inputs consists of two observations of the same trajectory with a delay d ~ N'(u, o?).
We experiment with ;4 = 15 and ¢ = 5. Hence, in each epoch, each of the original images in the dataset
is matched with a different positive pair (since d is sampled from a non-deterministic distribution). In
this way, we perform a data augmentation in the temporal domain. With this configuration we obtain
the latents z,z/ € Z in the outputs of the MLP heads. This siamese contrastive approach minimizes
the InfoNCE(z, z") loss for training the two encoders, which results in the maximization of the mutual
information between the observations s and the latents z to which they are mapped [43? ]. Formally, the
latents z and Z’ are obtained after passing the pair (s, s’) through the main and momentum encoders ey
and e respectively and through their corresponding MLP heads h and A’

z = h(ey(s))
Z' = h'(ey(s"))
Then, the network is updated according to the InfoNCE(z, z') values.

exp(z" W2')

InfoNCE(z, 2') = log e ,
exp(zTWz') + 31, exp(zT Wz')

(2)
Where W is a learned parameter matrix that allows the similarity computation between latent variables:
sim(z,2') = zT WZ'.

At this point, given a model of p(z|s) provided by the main encoder, we require a model of p(z) for later
computing the reverse form of the M|l 1. Taking into account that the sampled latents z ~ p(z) are the
ones that will condition the skills 7(als, z), we want to model a categorical distribution p(z) defined by a
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Figure 6: Schema of self-supervised contrastive approach for learning valuable features from image obser-
vations. A clustering in the embedding space is applied when the training loss is minimized to obtain k
representative latent variables.

finite set of latents z. Intuitively, we want the selected latent variables to be representatives of the latent
space Z. With this, we assume that a good model of p(z|s) will cause the z that are more representative
of the latent space to be also representatives of the original state space in terms of existing environment
similarities and spatial relations. A reasonable choice for obtaining these representatives is to perform a
clustering in the embedding space [30]. For this reason, this work explores the application of K-means
to finally obtain the finite set of latent variables z that define the categorical distribution p(z). Figure 6
summarizes the contrastive approach for learning meaningful image representations and discovering goals
in a self-supervised way.

5.2.2 Reconstruction

In this work, our self-supervised reconstruction approach performs variational inference by means of an
encoder-decoder architecture. Variational inference is a well-known method for modelling posterior distri-
butions without relying on the computation of marginal ones (i.e. p(s)), which is an advantage.

Concretely, we make use of a variational autoencoder (VAE) with categorical classes, namely vector quan-
tised VAE (VQ-VAE). The VQ-VAE model uses an encoder to learn gy(z|s, ) and a decoder to learn
qo(s|z, ). With this, the objective is to achieve good approximations of the actual distributions:

p(z|s) ~ qu(z|s,0)
p(s|z) ~ qu(s|z,0)

We use convolutional layers for obtaining the input image features in the encoder of the VQ-VAE and
a small MLP to obtain the actual latent belonging to the input image. Then, the latents are mapped
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to a discrete dictionary of embeddings, namely the codebook of the model. Finally, the decoder receives
a specific embedding from the model’s codebook and reconstructs an image that is consistent with all
the images that have been mapped to the input embedding. The number, of embeddings in the model's
codebook is an hyperparameter of the architecture. The schema of the VQ-VAE architecture is shown in
Figure 7.

The approach for achieving good models of the mappings between image observations and latent variables
(and viceversa) relies on the minimization of a reconstruction error together with an introduction of a
commitment cost. Following the information-theoretic approach, introducing a commitment cost in the
loss function encourages the model to maximize the perplexity. The perplexity expresses the uncertainty
in the choice of an embedding in the model’'s codebook where to map the input images. In this way, we
want to obtain (and actually use) embeddings in the model’'s codebook that encode disjoint regions of the
state and latent space. In this way, the overall loss in the reconstruction approach is defined as follows:

L(s,s) = log(p(s'|z4(s))) + Bllze(s) — sgle]ll3 (3)

The first term of the loss belongs to the reconstruction error, and measures how capable is the model of
reconstructing s’ from the quantized encoded input observation z.(s), with z. being the encoder and z, the
decoder. The second term ensures that the values of the encoded observations do not grow and commit
to an embedding from the model’'s codebook (sg means stop gradient). Finally, 8 weights the importance
of the second term in the overall loss.

With the reconstruction approach, the definition of p(z) as a categorical distribution over the latent space
is straightforward. In our case, we obtain p(z) ~ Z by defining a uniform distribution over the embeddings
in the model's codebook. This makes sense because the embeddings in the model’'s codebook have been
defined to be disjoint and to preserve the characteristics of different sets of input images, which intersects
with the definition of the cluster centroids of the contrastive approach.

Original observation Encoder Model Codebook Decoder Reconstructed observation
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Figure 7: Schema of self-supervised reconstruction approach for learning valuable features from image
observations. We apply a clustering in the embedding space when the training loss is minimized to obtain
k representative latent variables.
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The VQ-VAE model relies in the sensible value of the commitment cost for configuring the model’s code-
book [62]. For this reason, we implement an initialization technique that smoothes the dependency between
the commitment cost and the convergence of the model codebook. Particularly, we forward all the col-
lected image data to a randomly initialized encoder architecture and perform a K-means clustering of the
embedding space. With all this, we initialize the model codewords to each of the found centroids. In this
way, the model starts tunning the encoder/decoder and codebook from a disjoint set of representatives.
We find that this technique allows to relax the hyperparameter dependency of the VQ-VAE model.

5.3 Skill Learning

In the last stage of the training process, the goal is to learn latent conditioned policies, namely skills
m(als, z), that maximize the mutual information between the states s € S and the latents theirselves
z € Z. In this way, the embodied RL agents learn multiple self-discovered intrinsic objectives. In this work,
the intrinsic objectives are interpreted as navigation goals. Hence, our final objective is to learn baseline
navigation skills on self-discovered conditioning goals. A successful skill learning phase would provide the
RL agents with the capabilities of effective navigation towards the regions of the state space encoded by
the representative latents z € Z.

At this point, the training pipeline of the skills does not rely on the way in which the latent variables
have been obtained (i.e. either with the contrastive or reconstruction approaches in our case). Given the
latent variables z, a reasonable choice for training the skills is to define z ~ p(z) as a uniform distribution
from which we will sample at each training episode. In this work we assume that all the discovered
skills are equally important and well-defined so a uniform p(z) might be suitable for learning the multiple
skills. Another more complex option would be to infer the p(z) distribution so that we would sample the
conditioning latent variables with probability depending on the importance of these (i.e. importance of a
skill could be defined by the size of the specific cluster covered by the sampled latent).

The implementation of the training pipeline of the RL agents and policies makes use of the PPO [59]
architecture provided by the Habitat environment. At each step, we feed the concatenation of the encoded
image observation of the current step together with the conditioning z to the PPO network. Then, PPO
outputs a distribution of probabilities over the actions and selects one by sampling from it. Now, to
encourage the maximization of he M| between states and latents we craft a reward distribution which
maximization coincides with the maximization of the MI itself. As mentioned in Section 4, we use the
reverse form of the MI to assess the differences in the image-based state space. For this reason, we craft
the rewards in equations (4) and (5) for the reconstruction and contrastive approaches respectively:

(s, k ) 1, ifk= argminj |ze(s) — ejH (4)
i =Zz)=
0, otherwise

(5)

1, if k = argmax;|[ze(s) Wejl|
0, otherwise

Where s is the current observations of the RL agents, z ~ p(z) is the conditioning goal representation and
k is the index of z within all p(z). In this way, we only give rewards to the agents if they commit to actions
that take them to a next state where the obtained image embedding z.(s) is closest to the conditioning z
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embedding among all z ~ p(z). Hence, with these definitions we are giving and maximizing a reward by
computing a distance in the embedding space as z — z.(s) which coincides with the reverse formulation of
the Ml in equation (1). Note that for the contrastive approach, z.(s) is the result of passing the image
observation s through the trained main encoder, and for the reconstruction approach it is the result of
passing s through the VQ-VAE encoder. Figure 8 shows the skill learning pipeline for both the contrastive
and reconstruction approaches.

2~ 7 € Rk

Main encoder l

z ~ p(2)

B [ ; )( l ]

| PPO |

Current Observation

Figure 8: Schema of the skill learning pipeline. The pretrained main encoder is used for obtaining the
input image latent representations. Then, the input latent is concatenated with the sampled discovered
goal latent and fed to the PPO network all together. PPO outputs an action distribution for the current
input state.

We refer to the task of learning the skills as SkillNav, which is a navigation episodic task. Formally, we
define the SkillNav task as an episodic navigation task where at each episode we sample a navigation goal
z ~ p(z) uniformly and we train the agents to reach the goals within 150 steps (which is consistent with
the number of steps of the random agents performing exploration in the apartment). Then, we assess the
performance of the agents by evaluating the reward curves that they obtain in addition to the evaluation
of policies that they learn (which we can see in generated videos). Moreover, we obtain insights of the
performance of the training process by looking at the Success and Success weighted by Path Length (SPL)
metrics provided by Habitat. The success measure is only positive when the agents call the stop action
(which does not move the agents at all) in a distance less than 1 meter away from the sampled navigation
goal in the current episode. Then, the SPL measures the ratio of the obtained success signals with the
length of the navigation paths performed, hence assessing not only the capabilities to reach the goals but
also to do it optimally. Finally, for PPO we can evaluate the entropy of the distribution of probabilities of
the actions belonging to the policy. Intuitively, we expect the entropy to reach lower values during training
since the agents reduce the uncertainty in the actions that they take, hence defining a robust behaviour. In
this way, the entropy of the distribution over actions should reach the maximum in the early stages of the
training process when the agents adopt random behaviours and the uncertainty in their decisions is very
high.
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6. Results

In this section we present and discuss the obtained results of the skill discovery and learning of our method-
ology. With this, we aim to provide insights on the process of self-supervised learning from pixels. We test
the quality and assess the value of the learnt representations for RL agents that navigate in 3D environ-
ments. Before that, we first show in Figure 9 the results of the skill discovery stage of the standard EDL
[1] in the white apartment of the Habitat environment. In the case of EDL, since the skills are learnt by
a VQ-VAE model that works over spatial coordinates within the state space, the skills only encode spatial
relations over the environment. Hence, the found clusters do not provide a segmentation of the state space
that encodes the existing visual similarities in the state space. The latter can be seen in Figure 9 where two
different rooms that look very different are mapped to the same cluster, or where the same room is split
in two, even though it looks the same visually. For leveraging the embedded visual information in realistic
3D environments we implement the self-supervised representation learning pipelines described in Section
5.2 and show their results in the following.
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Figure 9: Representations learnt by a VQ-VAE model on environment position coordinates.

6.1 Skill Discovery

In the following section we assess the quality of the learnt representations during the skill discovery phase
for both contrastive and reconstruction approaches. Each experiment is characterized by the input data
that is used (i.e. RGB, depth, instance segmentation).
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6.1.1 RGB sensor

The RGB sensor captures colored images of the environment and stores them in objects of size (image
width, image height, channel) where the channel is 0 for R, 1 for G and 2 for B. Each of these channels
contain integer numbers to define the color values. For the following experimentation, we use 500 episodes
of 150 RGB observations.

Using RGB data only we obtain the segmentation of the state space shown in Figure 10:

RGB Data

Reconstruction Contrastive

.‘..., NS o __'. WS
£ :‘ B
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Figure 10: Index maps obtained with RGB input data only.

We refer to the colored plots in Figure 10 as index maps. Index maps are obtained after computing the
centroids of the clusters of the embedding space and projecting the encoded images in the dataset of
collected trajectories to the closest centroid.

As it can be seen in Figure 10, the contrastive approach is capable of obtaining a meaningful spatial
segmentation of the environment only from RGB data. The contrastive-based model finds 10 almost
equally represented clusters that encode quasi-disjoint regions of the stats space. In this way, we obtain
a model of the environment that encodes both existing similarities in the image observations and spatial
relations among them. Also, the clusters found by the reconstruction approach coincide in some cases with
the ones found by the contrastive one, but look much more overlapped and less disjoint. The fact that
the discovered zones are not clearly separated is a problem for interpreting these as navigation goals, since
the agents would receive positive rewards in different zones of the apartment and would not converge to a
spatial location.
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Figure 11: Reward map obtained with the contrastive approach and RGB data in the white apartment.

Following the reward definition in equation (5), we obtain the reward distribution shown in Figure 11. We
refer to this type of figures as reward maps. In the reward maps we see the zones where the agents will
receive a positive reward for each of the discovered goals. For instance, if we conditioned the RL agents
with the goal representation of the green cluster of the contrastive approach in Figure 10, these agents
would only get positive rewards if they navigated on the yellow zone shown in the second map in Figure
11.

In Figure 12 it can be seen how the reward distribution formulated in equation (4), which is obtained by the
reconstruction approach does not provide clear and separate navigation goals in general. However, see that
the second goal representation in the contrastive approach coincides majorly with the third one obtained
by the reconstruction approach.

Figure 12: Reward map obtained with VQ-VAE and RGB data in the white apartment.

Furthermore, for the reconstruction approach we can show the images that the VQ-VAE model reconstructs
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for each of the latents z ~ Z. These are shown in Figure 13. We can perceive some variability in the
reconstructed images that indicates that these encode visually different zones of the apartment. They do
not provide much detail since these images are reconstructions of clusters by definition.

Figure 13: Reconstructed images from the VQ-VAE codebook on RGB data.

With all this, the contrastive approach shows much better capabilities than the reconstruction approach
for learning meaningful representations when only RGB data is considered.

6.1.2 Depth sensor

The depth sensor stores one-channel objects of size (image width, image height) that accurately encode
the depth of the perceived environment. These objects store the depth values with decimal variables (i.e.
floats), and hence they involve a much higher cost in storage. For the following experimentation we use
500 episodes of 150 depth observations.
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Figure 14: Index maps obtained with depth data only.

Using only the depth channel of the image observations we obtain the index maps shown in Figure 14. It
can be seen that both the contrastive and reconstruction approaches struggle in finding meaningful and
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disjoint areas that can encode navigable goals. Although, the contrastive approach shows better capabilities
than the reconstruction approach for finding more clear clusters. Even though the visual information that
is encoded in the depth sensor does not show to be enough for discovering clear navigation goals, we
consider that the sensor provides valuable information that can be leveraged all together with the RGB
sensor. Then again, the contrastive approach shows to be robust on learning representations from pixels
in a self-supervised way.

Figure 15 shows that the perplexity metric is adequately maximized in the training of the VQ-VAE so that
the model commits to all the latent representations in its codebook (defined in Section 5.2.2). This fact
might indicate that the learnt representations not being meaningful is not being caused by a wrong training
configuration.

Perplexity

Step

500 1k 1.5k 2k 2.5k

Figure 15: Perplexity curve of the training process of the VQ-VAE model when fed with depth data only.
The model commits to the all the possible model codewords.

The reconstructions of the latents in the VQ-VAE model when fed with depth data only is shown in Figure

16. With these reconstructions it can be seen that the VQ-VAE model is not capable of learning disjoint
representations of the image observations with respect to their depth channel variability.

Figure 16: Reconstructed images from the VQ-VAE codebook on Depth data.

6.1.3 Instance segmentation sensor

In the following we make use of the image data that encodes the segmentation of instances within the
environment. The instance segmentation consist of one-channel objects of size (image width, image height)
where the object masks are encoded with integer values.

The results of the skill discovery stage are shown in Figure 18.
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Figure 17: Reconstructed images from the VQ-VAE codebook on instance segmentation annotations.

Instance Segmentation Data

g

Reconstruction Contrastive

Figure 18: Index maps obtained with instance segmentation annotations only.

With the segmentation of instances we leverage the masks that encode different objects within the envi-
ronment. In this case, we can see that this type of image data provides features that are more valuable
than the depth channel information for discovering disjoint spatial zones. It can be seen in Figure 18 that
both reconstruction and contrastive approaches discover some interesting and meaningful areas, and in
some cases these areas coincide in both approaches. When dealing with instance annotations, we do not
consider that one approach is more valuable than the other.

Since we see that some valuable information is encoded in these annotations we motivate further experi-
mentation on skill discovery using the joint information provided by the RGB images, the depth channel
and the instance annotations. Furthermore, we hypothesise that not only the segmentation of instances is
useful for discovering disjoint representations of the environment, but object (class) segmentation would
provide a better understanding of the scene. Figure 19 shows the difference between instance segmentation
and ground truth masks. The key difference is that in instance segmentation, a pair of objects of the same
class (i.e. chairs) are encoded differently. It can be seen that object segmentation encodes all the walls
with the same color which does not happen in instance segmentation annotations. Intuitively, we consider

32



that more meaningful differentiation of the state space would be provided by object segmentation.

Instance Segmentation Object Segmentation

Figure 19: Difference between instance and class annotations.

6.1.4 RGB + Depth + Instance Segmentation

Finally, we leverage all the visual information provided by the Habitat environment in order to discover
representative navigation goals within the environment. For this reason we train both the contrastive-
based and VQ-VAE models to receive 5-dimensional inputs consisting of the stack of 3 RGB channels plus
1 for the depth channel and 1 for the instance segmentation annotations. With this settings, we do not
modify the models or adapt them to receive different data types all together. Due to the limitation in the
storage capacity of the server used for experimentation we are only capable of training the models on 200
episodes of 150 5-dimensional observations.

RGB+Depth+instance Annotations Data

r

Reconstruction Contrastive

Figure 20: Index maps obtained with RGB, depth and instance annotations data.
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In Figure 20 it can be seen that providing too much information to the models does not improve the skill
discovery task. Concretely, the VQ-VAE model struggles with committing to more than 3 codewords, even
though some clusters are meaningful. Also, the contrastive approach does not discover navigation goals
as well-defined as with RGB data only. For this reason, we consider that due to the lower performance
and the cost of obtaining depth and instance annotations, making use of RGB observations is enough for
discovering meaningful navigation goals. However, we hypothesise that more sophisticated reconstruction
and contrastive architectures could leverage all the visual information available in a more accurate way. For
example, instead of sharing the model parameters for encoding the visual features of the images, making
use of separate encoders for each type of image data could lead to better results.

6.1.5 Generalization among different apartments

In the following we evaluate the generalization, robustness and consistency of the contrastive and recon-
struction approaches. For that, we apply the contrastive-based and VQ-VAE models to other apartments in
the exact same way that we do in the white apartment and evaluate if the models are robust. Ideally, we are
interested in that they do not demand high level of fine-tunning, and that they discover meaningful goals
independently of the complexity of the apartments. In Figure 22 we show the results of both contrastive
and reconstruction approaches for what we refer to as the maze apartment due to its complex dynamics.
Without any changes in the architecture of the two models, it can be seen that the contrastive approach is
robust and allows to discover meaningful goals also in the complex maze apartment. Also, the reconstruc-
tion approach finds some interesting patterns but the areas that we want to interpret as navigation goals
are much more overlapped and less clear.

Exploration trajectories

Reconstruction

Figure 21: Exploration trajectories and index maps on the maze apartment.

We also test the results of the skill discovery phase in what we refer to as the circular apartment and show
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Figure 22: Reward distribution (5) provided by the representations learnt by the contrastive approach in
the maze apartment. Many navigation goals (i.e. 2, z3, Z, z7 and zg) are well defined and not overlapped.

the results in Figure 23. Surprisingly, the reconstruction approach is not capable of committing to more
than one codeword. Again, the contrastive approach proves to be robust and provides a clear segmentation

of the state space.

Exploration trajectories

Reconstruction Contrastive

Figure 23: Exploration trajectories and index maps on the circular apartment.

Overall, we find that the contrastive approach is more robust than the reconstruction one because it provides
high-quality representations independently of the visual appearance and complexity of the environment, and
independently of the data type that is used for training the models (i.e. RGB, depth, instance annotations).
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Figure 24: Reward distribution (5) provided by the representations learnt by the contrastive approach in
the circular apartment. In general, the reward distribution encodes consistent navigation goals.

6.2 Skill Learning

In the stage of skill learning we interpret the discovered goals as navigation objectives. With this definition,
we aim to learn latent-conditioned policies (skills) 7w(als, z). For that, we make use of the contrastive-based
model encoder that we have pre-trained with RGB data since it provides an accurate segmentation of the
state space (see Section 10). Hence, when conditioning with a specific goal z we concatenate the encoded
image observation of the current step with z and feed it to the PPO network (see Section 5.3). Finally, at
each step we give a reward of 1 only if the embedding of the current image observation is closest to the
goal z among all z € Z as defined in equation (5). Overall, we train the agents for 3,000,000 frames and
obtain the curves in Figure 25.

In Figure 25 we see the reward curve increase to an average value of 115, which is promising taking into
account that the maximum reward that can be obtained each episode is 150 considering 1 reward for each
step. Also, we see that the average distance to goal remains stable in the value of 5,5. This indicates
that the agents never really reach the navigation goals which are the centroids of the discovered clusters.
Moreover, the success and SPL metrics decrease as the average reward increases which correlates with the
fact that the agents are not succeeding in reaching the navigation goals but are obtaining positive rewards
before that. Finally, we see the expected result in the entropy of the distribution of the agent's policy for
which the agent commits to a more clear behaviour which decreases the uncertainty of the actions that it
takes. In this way, Figure 25 shows the results of what could be a promising skill learning phase. However
in Figure 26 we now show the reward obtained in evaluation time for each of the 10 goals.

The fact that the agents obtain reward when tackling skills 0 and 6 is not surprising since these skills provide
positive rewards in the initial location where the agents start (see Figure 11). What is more concerning
is the fact that the agents are not capable of learning the other more interesting skills for which they
have to actually navigate to reach the goals. We hypothesise that even though the reward distribution in
Figure 11 seems reasonable, it might provide too sparse signals to the agents for complicated navigation
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Figure 25: Summary of the SkillNav training.

Reward

Step

Figure 26: Rewards of the evaluation of the 10 navigation skills in SkillNav.

goals. However, we also hypothesise that the evaluation of the agents is not consistent with the training
outcomes, meaning that we are actually accomplishing the desired behaviours in the training phase. Also,
the poor evaluation results can be due to only running an evaluation episode per skill, which defines a
slightly biased evaluation.

6.3 Image Navigation

So far, we have defined and experimented with the SkillNav task for formally defining a set-up for learning
the discovered skills. Additionally, we now propose experimentation with the ImageNav set-up. The latter
is the baseline definition for tackling image goal-driven navigation in Habitat. Similar to SkillNav, ImageNav
consists of an episodic navigation task where the objective is to reach a different goal in each episode. In
ImageNav the goal is specified uniquely by an image. Compared to SkillNav, the reward that the agents
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receive at each step is computed directly with respect to the actual distance in the environment between
the agents and the goal. Formally, the differences and similarities between ImageNav and SkillNav are
listed as follows.

e In ImageNav the agents start in a different location each episode while in SkillNav the start location
is fixed to the center coordinate.

e In ImageNav there are approximately 70k different episodes (with different goals and initial locations)
in each apartment while in SkillNav there are only 10 fixed goals which are self-discovered.

e In ImageNav, the task-oriented reward at each step is computed with the distance between the agent
and the goal in the environment space, while in SkillNav the reward is computed in the latent space
to maximize the MI (see Equation 5). Hence the reward in ImageNav is quite dense while in SkillNav
is much more sparse.

e In ImageNav a goal position is characterized by an image that can be captured from that point with
a random orientation while in SkillNav a goal position is characterized by a single embedding (either
the centroid of the K-means clustering or a VQ-VAE codeword).

e In both ImageNav and SkillNav the goal is fed to the agents with an encoded embedding and later
concatenated with the current observation embedding.

e In both ImageNav and SkillNav the agents have a fixed number of 150 steps to complete the episode.

e In both ImageNav and SkillNav the agents succeed in an episode if they call the stop action within
a distance of 1 meter from the goal position.

e In both ImageNav and SkillNav we let the agents train for a total number of 3,000,000 steps.

The baseline approach for tackling ImageNav is very similar to the one that we use for SkillNav. The
actions that the agents take are conditioned not only on the image state that they observe m(a|s) but also
on the conditioning goal 7(als, z). Regarding the baseline implementation provided in Habitat for tackling
ImageNav, the network consists of a convolutional goal visual encoder and an identical visual encoder. The
reason for working with the two encoders in parallel is not due to different architectures (because they are
identical) but for updating their parameters separately both for agent observations and episode goals. On
top of the two encoders the networks contain the PPO implementation that we use also for SkillNav.

In the experimentation with ImageNav we want to evaluate whether the representations that we learn in
a task-agnostic fashion are useful for performing image goal-driven navigation. Concretely, we transfer
the pre-trained contrastive-based main encoder with RGB data and train a PPO policy on top. Then, we
compare the agents performance with the baseline on-line training of two convolutional encoders of the
same size of the main encoder together with the policy on top of them.

In the white apartment we obtain the results in Figure 27. We see that pre-training the encoders provides
useful capabilities to RL agents performing image goal-oriented navigation. Pre-training overcomes on-line
training in the sense that it enables agents to obtain higher rewards, to be more successful in reaching
the goals and to do so with shorter path lengths. Also, the entropy of the learn policy is lower in the
pre-training case meaning that the learnt behaviours are more robust and consistent.
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Figure 27: Summary of the ImageNav results in the white apartment. Comparison between (blue) pre-
training the image encoders on the skill discovery phase and learning just the policy on top against (purple)

learning both encoders and policy on-line.
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Figure 28: Summary of the ImageNav results in the circular apartment
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learning both encoders and policy on-line.

Additionally, we perform the same experimentation in both circular and maze apartments to assess if pre-
training the encoders consistently overcomes on-line goal-driven navigation. We display the results obtained

in the circular apartment in Figure 28.
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Finally, Figure 29 shows the results in the maze apartment. In this case, there is no evidence that pre-
training the encoders facilitates the downstream task. We hypothesise that transferring only the visual
encoders might not be enough in the maze apartment due to the visual and dynamic complexity of the
environment.
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Figure 29: Summary of the ImageNav results in the maze apartment. Comparison between (blue) pre-
training the image encoders on the skill discovery phase and learning just the policy on top against (purple)
learning both encoders and policy on-line.

With this, we find that the learnt representations are generally useful for performing image-guided navigation

even though we do not obtain very good results in SkillNav. We provide qualitative evaluation of the agents
in this video!. The information that is displayed in the video follows the organization shown in Figure 6.3.

Agent Egocentric View Image Goal

Shortest Trajectory (green) Agent Trajectory (blue)

"https://youtu.be/WN4CGioUZ-k
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7. Conclusions

We have extended the paradigm of Explore, Discover and Learn (EDL) to the pixel domain. We have also
provided an end-to-end development and deployment pipeline of our methodology available in the Habitat
Al environment [2]. We also provide the open-source repository of this project?.

Regarding EDL, we have simplified the exploration task with non-parametric inference of the state distribu-
tion. However, we motivate that as EDL allows to tackle exploration independently of the posterior tasks,
the former can be solved with more sophisticated techniques if needed (i.e. Random Network Distillation
[34]).

Then, inspired from the information-theoretic objective of EDL, we have demonstrated the capabilities of
variational inference to discover meaningful representations of a state space in the pixel domain and in
an unsupervised manner. Furthermore, we have also leveraged a contrastive approach for the unsuper-
vised discovery of the state representations from pixels. Also, we have demonstrated the robustness and
consistency of the contrastive approach for obtaining meaningful representations in multiple environments
and from different types of data. We hypothesize that it is the training pipeline design of the contrastive
approach what allows the model to offer such consistent performance. We consider that the fact that
we are capable of feeding as many different positive and negative image pairs as we want (because it is
an easy process to craft both positive and negative examples in the way that we define them) allows the
model to fit the image features distribution with high precision. In contrast, the reconstruction approach
defines an embedded bottleneck and reconstruction loss that limits the model performance to its capability
of extracting the most valuable features and representations from the images. In this way, we motivate
that the implementation of more sophisticated encoder architectures in the VQ-VAE model would definitely
increase the reconstruction approach performance.

Additionally, we have made use of the reverse form of the mutual information to derive a reward distribution
for RL agents to provide a skill-learning framework. However, the results of the skill-learning stage are not
as good as expected (specially in evaluation). We hypothesise that the problem relies in the evaluation of
the agents since we obtain meaningful results in the training of the skill-learning stage. Also, we believe in
our proposed methodology since we have externally demonstrated that it does work in other environments
(63, 64].

Finally, we have demonstrated that pre-training the visual encoders of RL agents in a task-agnostic manner
increases the agents performance in the task of image goal-oriented 3D navigation. With this, we motivate
possible improvements and future work in the following stages.

e Usage of smarter exploratory policies in the exploration phase. We discuss that training policies to
infer a uniform distribution over the state space or to intrinsically seek for novelty would provide
consistency among the experimentation environments (thinking outside of Habitat Al simulator).
Also, these more sophisticated techniques would relax the need of any prior information from the
environment (in our implementation we retrieve a random navigable point to start each exploratory
episode).

e Implementation of more sophisticated encoder architectures (i.e. ResNet encoders) for the self-
supervised representation learning stage. Also consider parallel encoders for representing different

*https://github. com/yuyecreus/Habitat-PixelEDL
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data types (RGB, depth, instance segmentation) and join the representations later in the process.

e Design of more dense reward distributions which maximization also coincides with the maximization
of the reverse mutual information (i.e. use the distance or similarity in the embedding space and not
just binary rewards).

e Evaluation of ImageNav between our approach and the baseline implementation in more apartments to
consistently demonstrate that transferring the pre-trained encoders increases the agents performance.

Following the inspiration from EDL [1], this work has contributed to the research pipeline of PixelEDL:
Unsupervised Skill Discovery and Learning from Pixels® [63] and PiCoEDL: Discovery and Learning of
Minecraft Navigation Goals from Pixels and Coordinates* [64], which are peer-reviewed publications in the
CVPR 2021 workshop on embodied artificial intelligence®. We have also submitted Unsupervised Skill-
Discovery and Skill-Learning in Minecraft to the ICML 2021 workshop in Unsupervised Reinforcement
Learning®, and we are currently under review. One can find the three papers, the poster presentation of
PixelEDL: Unsupervised Skill Discovery and Learning from Pixels and a screenshot of the presentation of
our work in the CVPR 2021 workshop on embodied artificial intelligence in the Appendix section.

*https://imatge-upc.github.io/PixelEDL/
*https://imatge-upc.github.io/PiCoEDL/
*https://embodied-ai.org/
®https://urlvorkshop.github.io/

42


https://imatge-upc.github.io/PixelEDL/
https://imatge-upc.github.io/PiCoEDL/
https://embodied-ai.org/
https://urlworkshop.github.io/

References

[1]

2]

Bl

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

Victor Campos, Alexander Trott, Caiming Xiong, Richard Socher, Xavier Giro-i Nieto, and Jordi
Torres. Explore, discover and learn: Unsupervised discovery of state-covering skills. In International
Conference on Machine Learning, pages 1317-1327. PMLR, 2020.

Manolis Savva, Abhishek Kadian, Oleksandr Maksymets, Yili Zhao, Erik Wijmans, Bhavana Jain,
Julian Straub, Jia Liu, Vladlen Koltun, Jitendra Malik, et al. Habitat: A platform for embodied

ai research. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages
0339-9347, 20109.

Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine learning, 20(3):273-297,
1995,

Claude Sammut and Geoffrey |. Webb, editors. Classification Tree, pages 171-171. Springer US,
Boston, MA, 2010.

Claude Sammut and Geoffrey |I. Webb, editors. Logistic Regression, pages 631-631. Springer US,
Boston, MA, 2010.

Arthur E Hoerl and Robert W Kennard. Ridge regression: Biased estimation for nonorthogonal
problems. Technometrics, 12(1):55-67, 1970.

Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical
Society: Series B (Methodological), 58(1):267-288, 1996.

Claude Sammut and Geoffrey |. Webb, editors. CART, pages 147-147. Springer US, Boston, MA,
2010.

James MacQueen et al. Some methods for classification and analysis of multivariate observations. In
Proceedings of the fifth Berkeley symposium on mathematical statistics and probability, volume 1,
pages 281-297. Oakland, CA, USA, 1967.

Fionn Murtagh and Pierre Legendre. Ward's hierarchical agglomerative clustering method: which
algorithms implement ward'’s criterion? Journal of classification, 31(3):274-295, 2014.

Svante Wold, Kim Esbensen, and Paul Geladi. Principal component analysis. Chemometrics and
intelligent laboratory systems, 2(1-3):37-52, 1987.

Gene H Golub and Christian Reinsch. Singular value decomposition and least squares solutions. In
Linear algebra, pages 134—-151. Springer, 1971.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pages 248-255. leee, 2009.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollar, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In European conference
on computer vision, pages 740-755. Springer, 2014.

43



[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

44

Unsupervised Skill Discovery and Learning from Pixels

Matthew Johnson, Katja Hofmann, Tim Hutton, and David Bignell. The malmo platform for artificial
intelligence experimentation. In [JCAI, pages 4246-4247. Citeseer, 2016.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym. arXiv preprint arXiv:1606.01540, 2016.

Lukasz Kaiser, Mohammad Babaeizadeh, Piotr Milos, Blazej Osinski, Roy H Campbell, Konrad
Czechowski, Dumitru Erhan, Chelsea Finn, Piotr Kozakowski, Sergey Levine, et al. Model-based
reinforcement learning for atari. arXiv preprint arXiv:1903.00374, 2019.

Christopher Berner, Greg Brockman, Brooke Chan, Vicki Cheung, Przemyslaw Debiak, Christy Den-
nison, David Farhi, Quirin Fischer, Shariq Hashme, Chris Hesse, et al. Dota 2 with large scale deep
reinforcement learning. arXiv preprint arXiv:1912.06680, 2019.

Oriol Vinyals, lgor Babuschkin, Wojciech M Czarnecki, Michaél Mathieu, Andrew Dudzik, Junyoung
Chung, David H Choi, Richard Powell, Timo Ewalds, Petko Georgiev, et al. Grandmaster level in
starcraft ii using multi-agent reinforcement learning. Nature, 575(7782):350-354, 2019.

Julian Schrittwieser, loannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent Sifre, Simon
Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Graepel, et al. Mastering atari, go,
chess and shogi by planning with a learned model. Nature, 588(7839):604—609, 2020.

Kun Shao, Zhentao Tang, Yuanheng Zhu, Nannan Li, and Dongbin Zhao. A survey of deep reinforce-
ment learning in video games. arXiv preprint arXiv:1912.10944, 2019.

Adam Daniel Laud. Theory and application of reward shaping in reinforcement learning. Technical
report, 2004.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A
Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcom-
ing catastrophic forgetting in neural networks. Proceedings of the national academy of sciences,
114(13):3521-3526, 2017.

Yuri Burda, Harri Edwards, Deepak Pathak, Amos Storkey, Trevor Darrell, and Alexei A Efros. Large-
scale study of curiosity-driven learning. arXiv preprint arXiv:1808.04355, 2018.

Christoph Salge, Cornelius Glackin, and Daniel Polani. Empowerment—an introduction. In Guided
Self-Organization: Inception, pages 67—114. Springer, 2014.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

lige Akkaya, Marcin Andrychowicz, Maciek Chociej, Mateusz Litwin, Bob McGrew, Arthur Petron,
Alex Paino, Matthias Plappert, Glenn Powell, Raphael Ribas, et al. Solving rubik’s cube with a robot
hand. arXiv preprint arXiv:1910.07113, 2019.

Jemin Hwangbo, Inkyu Sa, Roland Siegwart, and Marco Hutter. Control of a quadrotor with rein-
forcement learning. IEEE Robotics and Automation Letters, 2(4):2096-2103, 2017.

Adam Stooke, Kimin Lee, Pieter Abbeel, and Michael Laskin. Decoupling representation learning from
reinforcement learning. arXiv preprint arXiv:2009.08319, 2020.



[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

Denis Yarats, Rob Fergus, Alessandro Lazaric, and Lerrel Pinto. Reinforcement learning with proto-
typical representations. arXiv preprint arXiv:2102.11271, 2021.

Michael Laskin, Aravind Srinivas, and Pieter Abbeel. Curl: Contrastive unsupervised representations
for reinforcement learning. In International Conference on Machine Learning, pages 5639-5650. PMLR,
2020.

M Jaderberg, V Mnih, WM Czarnecki, T Schaul, JZ Leibo, D Silver, and K Kavukcuoglu. Reinforce-
ment learning with unsupervised auxiliary tasks, in ‘iclr’. 2017.

Deepak Pathak, Pulkit Agrawal, Alexei A Efros, and Trevor Darrell. Curiosity-driven exploration by
self-supervised prediction. In International Conference on Machine Learning, pages 2778-2787. PMLR,
2017.

Yuri Burda, Harrison Edwards, Amos Storkey, and Oleg Klimov. Exploration by random network
distillation. In International Conference on Learning Representations, 2018.

Benjamin Eysenbach, Abhishek Gupta, Julian Ibarz, and Sergey Levine. Diversity is all you need:
Learning skills without a reward function. In International Conference on Learning Representations,
2018.

Karol Gregor, Danilo Jimenez Rezende, and Daan Wierstra. Variational intrinsic control. In Interna-
tional Conference on Learning Representations (workshop), 2017.

Xinlei Chen, Saining Xie, and Kaiming He. An empirical study of training self-supervised visual
transformers. arXiv preprint arXiv:2104.02057, 2021.

Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski,
and Armand Joulin. Emerging properties in self-supervised vision transformers. arXiv preprint
arXiv:2104.14294, 2021.

Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are few-
shot learners. In Proceedings of the 31st International Conference on Neural Information Processing
Systems, 2020.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale. In
International Conference on Learning Representations, 2021.

David Warde-Farley, Tom Van de Wiele, Tejas Kulkarni, Catalin lonescu, Steven Hansen, and
Volodymyr Mnih. Unsupervised control through non-parametric discriminative rewards. arXiv preprint
arXiv:1811.11359, 2018.

Aaron van den Oord, Oriol Vinyals, and Koray Kavukcuoglu. Neural discrete representation learning.
arXiv preprint arXiv:1711.00937, 2017.

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predictive
coding. arXiv preprint arXiv:1807.03748, 2018.

45



[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

46

Unsupervised Skill Discovery and Learning from Pixels

Alex Lee, Anusha Nagabandi, Pieter Abbeel, and Sergey Levine. Stochastic latent actor-critic: Deep
reinforcement learning with a latent variable model. Advances in Neural Information Processing
Systems, 33, 2020.

Victor Campos, Pablo Sprechmann, Steven Hansen, Andre Barreto, Steven Kapturowski, Alex Vitvit-
skyi, Adria Puigdomeénech Badia, and Charles Blundell. Coverage as a principle for discovering trans-
ferable behavior in reinforcement learning. arXiv preprint arXiv:2102.13515, 2021.

Elad Hazan, Sham Kakade, Karan Singh, and Abby Van Soest. Provably efficient maximum entropy
exploration. In International Conference on Machine Learning, pages 2681-2691. PMLR, 2019.

Navneet Madhu Kumar. Empowerment-driven exploration using mutual information estimation. arXiv
preprint arXiv:1810.05533, 2018.

Alexander S Klyubin, Daniel Polani, and Chrystopher L Nehaniv. All else being equal be empowered.
In European Conference on Artificial Life, pages 744—753. Springer, 2005.

Alexander S Klyubin, Daniel Polani, and Chrystopher L Nehaniv. Keep your options open: An
information-based driving principle for sensorimotor systems. PloS one, 3(12):e4018, 2008.

Joshua Achiam, Harrison Edwards, Dario Amodei, and Pieter Abbeel. Variational option discovery
algorithms. arXiv preprint arXiv:1807.10299, 2018.

Shakir Mohamed and Danilo Jimenez Rezende. Variational information maximisation for intrinsically
motivated reinforcement learning. arXiv preprint arXiv:1509.08731, 2015.

Guido Montdfar, Keyan Ghazi-Zahedi, and Nihat Ay. Information theoretically aided reinforcement
learning for embodied agents. arXiv preprint arXiv:1605.09735, 2016.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114,
2013.

Angel Chang, Angela Dai, Thomas Funkhouser, Maciej Halber, Matthias Niessner, Manolis Savva,
Shuran Song, Andy Zeng, and Yinda Zhang. Matterport3d: Learning from rgb-d data in indoor
environments. arXiv preprint arXiv:1709.06158, 2017.

Kuan Fang, Alexander Toshev, Li Fei-Fei, and Silvio Savarese. Scene memory transformer for embodied
agents in long-horizon tasks. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 538-547, 2019.

Devendra Singh Chaplot, Dhiraj Prakashchand Gandhi, Abhinav Gupta, and Russ R Salakhutdinov.
Object goal navigation using goal-oriented semantic exploration. Advances in Neural Information
Processing Systems, 33, 2020.

Dmytro Mishkin, Alexey Dosovitskiy, and Vladlen Koltun. Benchmarking classic and learned navigation
in complex 3d environments. arXiv preprint arXiv:1901.10915, 2019.

Hugh Durrant-Whyte and Tim Bailey. Simultaneous localization and mapping: part i. IEEE robotics
& automation magazine, 13(2):99-110, 2006.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.



[60]

[61]

[62]

[63]

[64]

Yuke Zhu, Roozbeh Mottaghi, Eric Kolve, Joseph J Lim, Abhinav Gupta, Li Fei-Fei, and Ali Farhadi.
Target-driven visual navigation in indoor scenes using deep reinforcement learning. In 2017 IEEE
international conference on robotics and automation (ICRA), pages 3357-3364. |IEEE, 2017.

Tom Schaul, Daniel Horgan, Karol Gregor, and David Silver. Universal value function approximators.
pages 1312-1320. PMLR, 2015.

Adrian tancucki, Jan Chorowski, Guillaume Sanchez, Ricard Marxer, Nanxin Chen, Hans JGA Dolfing,
Sameer Khurana, Tanel Alumae, and Antoine Laurent. Robust training of vector quantized bottleneck
models. In 2020 International Joint Conference on Neural Networks (IJCNN), pages 1-7. IEEE, 2020.

Roger Creus Castanyer, Juan José Nieto, and Xavier Giro-i Nieto. Pixeledl: Unsupervised skill discovery
and learning from pixels.

Juan José Nieto, Roger Creus Castanyer, and Xavier Giro-i Nieto. Picoedl: Discovery and learning of
minecraft navigation goals from pixels and coordinates.

47



Unsupervised Skill Discovery and Learning from Pixels

Appendices

VQ-VAE
learning rate le-3
batch size 256
epochs 300
num hiddens 64
num residual hiddens 32
num residual layers 2
embedding dim 256
num embeddings 10
15} 0.25
decay 0.99
Ky 15
ks 5

ATC
learning rate le-3
batch size 128
epochs 300
T 5e-3
soft update 2
embedding dim 128
ku 15
ks 5

PPO
learning rate 2.be-4
number of minibatches 4
PPO epochs 4
RNN hidden size 128
number of steps 128
max episode steps 150
clip parameter 0.2
ADAM epsilon le-5
max gradient norm 0.5
gamma 0.99
tau 0.95
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1. Introduction

We tackle embodied visual navigation in a task-agnostic
set-up by putting the focus on the unsupervised discov-
ery of skills (or options [2]) that provide a good cov-
erage of states. Our approach intersects with empower-
ment [10]: we address the reward-free skill discovery and
learning tasks to discover what can be done in an envi-
ronment and how. For this reason, we adopt the existing
Explore, Discover and Learn (EDL) [!] paradigm, tested
only in toy example mazes, and extend it to pixel-based
state representations available for embodied AI agents.
The information-theoretic paradigm of EDL [I] aims to
learn latent-conditioned policies, namely skills 7(als, z),
by maximizing the mutual information (MI) between the
inputs s and some latent variables z. Hence, EDL [!] con-
sists of unsupervised skill discovery and training of rein-
forcement learning (RL) agents without considering the ex-
istence of any extrinsic motivation or reward. We present
PixelEDL, an implementation of the EDL paradigm for the
pixel representations provided by the AI Habitat [11] and
MineRL [3] environments. In comparison with EDL, Pix-
elEDL involves self-supervised representation learning of
image observations for information-theoretic skill discov-
ery. Still, PixelEDL aims to maximize the MI between in-
puts and some latent variables and for that it consists of the
same three stages of EDL (explore, discover and learn). By
breaking down the RL end-to-end training pipeline into the
three stages, we also simplify the implicit difficulty in learn-
ing both representations and policies from a high dimen-
sional input space all at once [7].

CUSTOM MINECRAFT MAP REALISTIC MINECRAFT MAP HABITAT APARTMENT

Figure 1. Top-down views of the three considered environments:
(i) a custom ”’toy example” Minecraft map, (ii) a Realistic
Minecraft map, and (iii) a Habitat apartment.

The results presented in this extended abstract are further
extended in our project site'.

2. Methodology

We assume an underlying Markov Decision Process
(MDP) without rewards: M = (S, A, P) where S is
the high-dimensional set of states (defined by image pix-
els). A is the action space and P = p(s|s,a) is the
transition function. Moreover, we define the objective of
PixelEDL as the maximization of the MI in equation (1),
which requires knowledge of the unknown distributions

p(s), p(s]2), p(2]s).
Z(S,Z)=H(Z) - H(Z|S) — reverse
=H(S) —H(S]Z) —

forward

2.1. Exploration

The first task to tackle in PixelEDL is exploration. With-
out any prior knowledge, a reasonable choice for discov-
ering state-covering skills is to define the distribution over
all states p(s) uniformly. However, training an exploration
policy to infer a uniform p(s) is not feasible in PixelEDL
since it deals with the high-dimensional pixel space. To
overcome this limitation we adopt a non-parametric estima-
tion of p(s) by sampling from a dataset of collected experi-
ence. Hence, in PixelEDL the goal of the exploration stage
is to collect a dataset of trajectories containing representa-
tive states that the learned skills should ultimately cover.
PixelEDL adopts a random exploration of the environment
through agents that perform random actions within a dis-
crete action space (i.e. move forward, turn left, turn right)
and collect the trajectories generated by the environment.
For our custom Minecraft map, random policies from agents
instantiated in the center of the map are capable of covering
a complete set of representative states of the environment
given a large number of episodes. In the realistic Minecraft
map the random agents do not cover as many representative
states as in the custom map but still provide enough cov-
erage of the state space. However, in order to obtain a set

"https://imatge-upc.github.io/PixelEDL/



of representative states of the Habitat map we let the agents
start in random navigable points of the map at each episode.

2.2. SKill Discovery

The Discovery stage of EDL aims at finding the latent
representations z that will ultimately condition the agent
policies to learn the skills 7(als, z). Hence, the goal of Pix-
elEDL in this stage is to model p(z|s) as a mapping of the
states to their representations and to model p(z) as a cate-
gorical distribution of meaningful representations.

Ideally, we aim to obtain representations of the image
observations that encode existing similarities and spatial re-
lations within the environment [6]. Furthermore, we aim
to find z that are representatives of a meaningful segmen-
tation of the state space. In this work the representations
z will be later used to condition a navigation task. Previ-
ous works [16] have reported the challenges of unsuper-
vised learning of representations from images that encode
valuable features for RL agents in a 3D environment. For
modelling p(z|s), we study the performance of two differ-
ent approaches: (i) a contrastive one, that uses a siamese
architecture and aims to project positive pairs of input im-
ages closer in an embedding space, and (ii) a reconstruc-
tion one, that use a Variational Autoencoder (VAE) [5] with
categorical classes, namely Vector Quantisation VAE (VQ-
VAE) [9], to train the model to reconstruct the observa-
tions. For the contrastive approach, we use the adaptation
to CURL [14] proposed by Stooke et al. [15], namely Aug-
mented Temporal Contrast (ATC). Compared to CURL, in
ATC the positive pairs of inputs consist of two image obser-
vations belonging to the same exploration trajectory. That
is, we train both ATC and VQ-VAE so that a positive pair
of inputs consists of two observations of the same trajectory
with a delay d ~ N (1, o). We experiment with . = 15
and 0 = 5. Hence, in both ATC and VQ-VAE we perform
a data augmentation in the temporal domain. Our experi-
ments indicate that the capabilities of both ATC and VQ-
VAE for modelling p(z|s) are promising and we have not
yet observed important differences to justify using one over
the other.

RANDOM LEARN
MAPS TRAJECTORIES ~REPRESENTATIONS ~ CLUSTER

DISCOVER SKILLS
Figure 2. Self-Supervised representation learning and unsuper-

vised skill discovery pipeline.

After the visual representation learning, we model a cate-
gorical distribuiton p(z) by clustering the embedding space
of the representations. Yarats et. al [17] use a projection

of the embeddings onto the prototypes which define a ba-
sis of the embedding space to perform the cluster assign-
ments. However, in VQ-VAE, this clustering is implicit in
the model since the cluster centroids are actually the rep-
resentatives of the model’s codebook. Also, for ATC we
apply a K-means [8] clustering for modelling p(z) with the
cluster centroids. After modelling p(z) and p(z|s), we com-
plete the stages of representation learning and skill discov-
ery. Figure 2 summarises the aforementioned pipeline. We
provide more details in our project site.

2.3. Learning

Given a model of p(z), we make use of the formulation
of Universal Value Function Approximators (UVFA) [12]
to train a policy to maximize the MI (1) between the inputs
and z. That is, we exploit z as navigation goals or intrin-
sic objectives to learn the goal-conditioned skills: 7(als, z).
Hence, we feed the concatenation of the encoded observa-
tion and z to the RL agents. Thus, at each step, the policy
predictions depend not only on the current agent state but
also on z. EDL [1] maximizes the forward form of the MI
(1). That is feasible in EDL because the technique is applied
to toy mazes where the states of the MDP are defined by 2D
coordinates. In this way, EDL models p(s|z) by variational
inference and maximize the MI by deriving a reward that
involves computing euclidean distances in the state space
of coordinates. However, as in PixelEDL we deal with the
pixel space, it is not coherent to match the euclidean dis-
tance in the image observation space with the distances in
the 3D environment. For this reason we make use of the re-
verse form of the MI (1) and we model p(z|s) with the en-
coder that learns latent representations from image observa-
tions. Finally, we craft a reward distribution that maximizes
the MI (1) between the inputs and the skills by taking into
account the distances in the latent space of the representa-
tions. Concretely, we assign a positive reward to an action a
that positions the agents in a state s only if the encoded im-
age observation is closest to the skill-conditioning z among
all z ~ p(z). We use the baseline RL models provided by
both Habitat and MineRL for implementing the aforemen-
tioned training pipeline. These models are Proximal Policy
Optimization (PPO) [13] and Rainbow [4] respectively.

While PixelEDL is capable of learning some of the dis-
covered skills, specially in the custom Minecraft map, it
finds more difficulties in the realistic one and in Habitat.
We hypothesize that: (i) Rainbow struggles with the latent
codes z that encode similar regions of the realistic Minecraft
state space; (ii) further tuning of PPO could achieve better
results when learning the skills in Habitat, since we already
obtain high-quality discovery of these. We provide qualita-
tive results together with a demo video in our project site.
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1. Introduction

Defining a reward function in Reinforcement Learning
(RL) is not always possible or very costly. For this reason,
there is a great interest in training agents in a task-agnostic
manner making use of intrinsic motivations and unsuper-
vised techniques [7, 6, 15, 2, 14, 3]. Due to the complexity
to learn useful behaviours in pixel-based domains, the results
obtained in RL are still far from the remarkable results ob-
tained in domains such as computer vision [5, 4] or natural
language processing [ 1, 12]. We hypothesize that RL agents
will also benefit from unsupervised pre-trainings with no
extrinsic rewards, analogously to how humans mostly learn,
especially in the early stages of life.

Our main contribution is the deployment of the Explore,
Discover and Learn (EDL) [3] paradigm for unsupervised
learning to the pixel and coordinate space (PiCoEDL). In
particular, our work focuses on the MineRL [9] environment,
where the observation of the agent is represented by: (a) its
spatial coordinates in the Minecraft virtual world, and (b) an
image from an egocentric viewpoint. Following the idea of
empowerment [10], our goal is to learn latent-conditioned
policies by maximizing the mutual information between
states and some latent variables, instead of sequences of ac-
tions [7]. This allows the agent to influence the environment
while discovering available skills.

2. From pixels and coordinates to skills

We formulate a Markov decision process (MDP) as
M = (8§, A,P). S is the high-dimensional state space
(pixel images and coordinates), A refers to the set of actions
available in the environment and P defines the transition
probability p(st41]s:, a). We learn latent-conditioned poli-
cies 7(al|s, z), where the latent z € Z is a random variable.

Given the property of symmetry, the mutual information
(Z) can be written using the Shannon Entropy (#) in two
ways:
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(S, 2) = H(Z) — H(Z|S)  —
=H(S)-H(S|Z) —

reverse

forward

Maximizing the mutual information (MI) requires knowl-
edge of unknown distributions (p(s), p(s|z), p(z|s)). For the
former we study two cases: (a) Using expert trajectories, and
(b) Using the distribution induced by a random policy. A
comparison of both strategies can be found in Section 2.1,
for now we assume the latter case of p(s). We rely on varia-
tional inference techniques for estimating the mappings from
the states to the latent variables and backwards. These are
estimated from the rollouts induced by the random policy.
Finally, we also need to define a prior p(z) to sample from,
which in our case, following EDL [3] is a fixed uniform
categorical distribution.

If we proceed with the derivation of the forward form in
EDL [3], we can find that in our case the intrinsic objective
becomes a distance in the pixel space. Since we cannot
assume that it is representative of a meaningful distance
in the environment, we discard this approach. Instead, we
adopt the reverse form of the MI. We use the VQVAE [13]
model, that allows us to estimate the posterior p(z|s) with
the encoder ¢, (z|s) by maximum likelihood on (s, z) tuples
and also contains a categorical bottleneck for p(z). Then,
our final objective becomes:

1, if k = argmin,||z(s) — e;]|

r(5,2) = golz = kls) = {

0, otherwise
©))
ze(s) is the sum of the outputs of two encoders: (a) a 2D
convolutional encoder for the images, and (b) a multilayer
perceptron for the coordinates. Both have the same output
dimension that allows summing up the resulting embeddings.
Then in Equation 2, we find the index of the closest embed-
ding in the VQVAE codebook e. Only if this index matches
the sampled latent variable z that is conditioning the policy,
it will return a reward of 1. Despite the sparsity of rewards,
since we use a p(s) that is induced from a random policy, we



a) MINECRA’FT MAP
Figure 1. a) Top-view of our Minecraft map. The caption below b) c) d) e) refers to the nature of the states (pixels, coordinates or both) and
the type of trajectories (expert or random). Each coloured point indicates the closest centroid to the encoded embedding.

know that these states are reachable and we will not suffer
from exploration problems. Also, there are other problems
due to multiple states rising positive rewards which could
lead to ambiguous objectives. This can be tackled using a
smoother reward function such as computing the distance in
the embedding state, but in our experiments we did not have
any problem by leveraging the previous reward.

In the following subsections we specify the implementa-
tion details of our approach.

2.1. Exploration and Skill Discovery

Firstly, we considered using expert trajectories to in-
duce the distribution over the states. We used the MineRL
dataset [8], which contains expert trajectories from different
Minecraft worlds. Using expert trajectories may seem prefer-
able since they contain human priors that give more weight
to those states that are meaningful for discovering useful
skills. However, Figure 1b shows that expert trajectories
from pixels discover fewer and sparser skills than the those
discovered by random exploration in our map, depicted in
Figure lc. This suggests that while the skills discovered
by experts may be more generic as they were collected in
different worlds, they are not as useful for our particular map
as the skills discovered by a random policy. This hypothesis
is supported by Figure 2, where we show the reconstructed
images for each of the VQ-VAE codebook centroids. The
reconstructions belonging to the expert trajectories contain
scenarios that cannot be found in our Minecraft map.

In our study case, we aim to learn policies that treat the
latent variables as navigation-goals. For this purpose, Fig-
ure 1 shows complementary skills discovered from pixels
(Figure 1c) or coordinates (Figure 1d). We would like to
discover skills that take into account not only the visual
similarity but also the position relative to the initial state,
so we adopt a solution that considers the two types of state
representations (Figure 1e). This way our agent can distin-
guish between two visually identical mountains located at
two different positions in the map.

Th 1
PIXELS - RANDOM

d) COORDS. - RANDOM

m EEEN.ERE
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Figure 2. Top: images reconstructed from learned centroids using
expert trajectories. Bottom: images reconstructed from learned
centroids using pixels and coordinates from random trajectories.

Figure 3. Left: Observations in yellow are encoded to the code-
book embeddding z3. Right: Trajectories followed by the agent
conditioned by z3.

2.2, Skill-Learning

In the last stage of PICoEDL, we leverage Equation 2,
derived from maximizing the mutual information between
states and latent variables to maximize the expected cumu-
lative reward. The latent codes discovered are now treated
as goal states in a navigation task. We utilize Rainbow [ 1]
algorithm to train our RL embodied agent. The input to the
network is composed of the concatenation of the embedded
observation with the latent embedding that is conditioning
the policy. For each episode, we sample uniformly from p(z)
to determine the conditioning latent.

While there are some policies that are correctly learned,
we find some others that do not achieve satisfactory re-
sults. We hypothesize that these are the latent codes that
encode smaller regions of the state space, and with further
tuning may achieve the desirable results. Figure 3 depicts the
trained policy conditioned with the third codebook. More
examples are available in our project site'.

1https ://imatge—-upc.github.io/PiCoEDL/
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Unsupervised Skill-Discovery and Skill-Learning in Minecraft
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Abstract

Pre-training Reinforcement Learning agents in a
task-agnostic manner has shown promising re-
sults. However, previous works still struggle
in learning and discovering meaningful skills
in high-dimensional state-spaces, such as pixel-
spaces. We approach the problem by leveraging
unsupervised skill discovery and self-supervised
learning of state representations. In our work, we
learn a compact latent representation by making
use of variational and contrastive techniques. We
demonstrate that both enable RL agents to learn
a set of basic navigation skills by maximizing an
information theoretic objective. We assess our
method in Minecraft 3D pixel maps with different
complexities. Our results show that representa-
tions and conditioned policies learned from pixels
are enough for toy examples, but do not scale to
realistic and complex maps. To overcome these
limitations, we explore alternative input observa-
tions such as the relative position of the agent
along with the raw pixels.

1. Introduction

Reinforcement Learning (RL) (Sutton and Barto, 2018) has
witnessed a wave of outstanding works in the last decade,
with special focus on games (Schrittwieser et al. (2020),
Vinyals et al. (2019), Berner et al. (2019)), but also in
robotics (Akkaya et al. (2019), Hwangbo et al. (2017)). In
general, these works follow the classic RL paradigm where
an agent interacts with an environment performing some ac-
tion, and in response it receives a reward. These agents are
optimized to maximize the expected sum of future rewards.

Rewards are usually handcrafted or overparametrized, and
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this fact becomes a bottleneck that prevents RL to scale. For
this reason, there has been an increasing interest in training
agents in a task-agnostic manner during the last few years,
making use of intrinsic motivations and unsupervised tech-
niques. Recent works have explored the unsupervised learn-
ing paradigm (Campos et al. (2020); Gregor et al. (2017);
Eysenbach et al. (2018); Warde-Farley et al. (2018); Burda
et al. (2018); Pathak et al. (2017)), but RL is still far from
the remarkable results obtained in other domains. For in-
stance, in computer vision, Chen et al. (2021) achieve an
81% accuracy on ImageNet training in a self-supervised
manner, or Caron et al. (2021) achieves state-of-the-art re-
sults in image and video object segmentation using Visual
Transformers (Dosovitskiy et al., 2021) and no labels at all.
Also, in natural language processing pre-trained language
models such as GPT-3 (Brown et al., 2020) have become
the basis for other downstream tasks.

Humans and animals are sometimes guided through the pro-
cess of learning. We have good priors that allow us to prop-
erly explore our surroundings, which leads to discovering
new skills. For machines, learning skills in a task-agnostic
manner has proved to be challenging (Warde-Farley et al.,
2018; Lee et al., 2020). These works state that training
pixel-based RL agents end-to-end is not efficient because
learning a good state representation is unfeasible due to the
high dimensionality of the observations. Moreover, most of
the successes in RL come from training agents during thou-
sands of simulated years (Berner et al. (2019)) or millions
of games (Vinyals et al. (2019)). This learning approach
is very sample inefficient and sometimes limits its research
because of the high computational budget it may imply. As a
response, some benchmarks have been proposed to promote
the development of algorithms that can reduce the number
of samples needed to solve complex tasks. This is the case
of MineRL (Guss et al. (2021)) or ProcGen Benchmark
(Cobbe et al. (2020)).

Our work is inspired by Campos et al. (2020) and their Ex-
plore, Discover and Learn (EDL) paradigm. EDL relies on
empowerment (Salge et al., 2014) for motivating an agent
intrinsically. Empowerment aims to maximize the influence
of the agent over the environment while discovering novel
skills. As stated by Salge et al. (2014), this can be achieved
my maximizing the mutual information between sequences
of actions and final states. Gregor et al. (2017) introduces
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a novel approach that instead of blindly committing to a
sequence of actions, each action depends on the observation
from the environment. This is achieved by maximizing the
mutual information between inputs and some latent vari-
ables. Campos et al. (2020) embraces this approach as we
do. However, the implementation by Campos et al. (2020)
makes some assumptions that are not realistic for pixel ob-
servations. Due to the Gaussian assumption at the output of
variational approaches, the intrinsic reward is computed as
the reconstruction error, and in the pixel domain this metric
does not necessarily match the distance in the environment
space. Therefore, we look for alternatives that suit our re-
quirements: we derive a different reward from the mutual
information, and we study alternatives to the variational
approach.

This work focuses on learning meaningful representations,
discovering skills and training latent-conditioned policies.
In any of the cases, our methodology does not require any su-
pervision and works directly from pixel observations. Addi-
tionally, we also study the impact of extra input information
in the form of position coordinates. Our proposal is tested
over the MineRL (Guss et al., 2021) environment, which is
based on the popular Minecraft videogame. Even though
the game proposes a final goal, Minecraft is well known by
the freedom that it gives to the players, and actually most
human players use this freedom to explore this virtual world
following their intrinsic motivations. Similarly, we aim at
discovering skills in Minecraft without any extrinsic reward.

We generate random trajectories in Minecraft maps with
little exploratory challenges, and also study contrastive al-
ternatives that exploit the temporal information throughout
a trajectory. The contrastive approach aims at learning an
embedding space where observations that are close in time
are also close in the embedding space. A similar result can
be achieved by leveraging the agents’ relative position in
the form of coordinates. In the latter, the objective is to infer
skills that do not fully rely on pixel resemblance, but also
take into account temporal and spatial relationships.

Our final goal is to discover and learn skills that can be
potentially used in more broad and complex tasks. Either by
transferring the policy knowledge or by using hierarchical
approaches. Some works have already assessed this idea spe-
cially in robotics (Florensa et al., 2017) or 2D games (Cam-
pos et al., 2021). Once the pre-training stage is completed
and the agent has learned some basic behaviours or skills,
the agent is exposed to an extrinsic reward. These works
show how the agents leverage the skill knowledge to learn
much faster and encourage proper exploration of the environ-
ment in unrelated downstream tasks. However, transferring
the policy knowledge is not as straightforward as in other
deep learning tasks. If one wants to transfer behaviours
(policies), the change in the task might lead to catastrophic

forgetting.

Our contributions are the following:

¢ We demonstrate that variational techniques are not the
only ones capable of maximizing the mutual informa-
tion between inputs and latent variables by leveraging
contrastive techniques.

* We provide alternatives for discovering and learning
skills in procedurally generated maps by leveraging the
agents coordinate information.

¢ We succesfully implement the reverse form of the mu-
tual information for optimizing pixel-based agents in a
complex 3D environment.

2. Related Work

Intrinsic Motivations (IM) are very helpful mechanisms
to deal with sparse rewards. In some environments the
extrinsic rewards are very difficult to obtain and, therefore,
the agent does not receive any feedback to progress. In order
to drive the learning process without supervision, we can
derive intrinsic motivations as proxy rewards that guide the
agents towards the extrinsic reward or just towards better
exploration.

Skill Discovery. We relate Intrinsic Motivations to the con-
cept of empowerment (Salge et al., 2014), a RL paradigm in
which the agent looks for the states where it has more con-
trol over the environment. Mohamed and Rezende (2015)
derived a variational lower bound on the mutual information
that allows to maximize empowerment. Skill discovery ex-
tends this idea from the action level to temporally-extended
actions. Florensa et al. (2017) merges skill discovery and
hierarchical architectures. They learn a high-level policy
on top of some basic skills learned in a task-agnostic way.
They show how this set-up improves the exploration and en-
ables faster training in downstream tasks. Similarly, Achiam
et al. (2018) emphasize in learning the skills dynamically
using a curriculum learning approach, allowing the method
to learn up to a hundred of skills. Instead of maximiz-
ing the mutual information between states and skills they
use skills and whole trajectories. Eysenbach et al. (2018)
demonstrates that learned skills can serve as an effective
pretraining mechanism for robotics. Our work follows their
approach regarding the use of a categorical and uniform
prior over the latent variables. Campos et al. (2020) ex-
poses the lack of coverage of previous works. They propose
Explore, Discover and Learn (EDL), a method for skill
discovery that breaks the dependency on the distributions
induced by the policy. Warde-Farley et al. (2018) provides
an algorithm for learning goal-conditioned policies using an
imitator and a teacher. They demonstrate the effectiveness
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of their approach in pixel-based environments like Atari,
DeepMind Control Suite and DeepMind Lab.

Intrinsic curiosity. In a more broad spectrum we find
methods that leverage intrinsic rewards that encourage ex-
ploratory behaviours. Pathak et al. (2017) present an Intrin-
sic Curiosity Module that defines the curiosity or reward as
the error predicting the consequence of its own actions in a
visual feature space. Similarly, Burda et al. (2018) uses a
Siamese network where one of the encoder tries to predict
the output of the other. The bonus reward is computed as
the error between the prediction and the random one.

Goal-oriented RL. Many of the works dealing with skill-
discovery end up parameterizing a policy. This policy is usu-
ally conditioned in some goal or latent variable z ~ Z. The
goal-conditioned policy formulation along with function
approximation was introduced by Schaul et al. Hindsight
Experience Replay (HER) by Andrychowicz et al. (2017)
allows sample-efficient learning from environments with
sparse rewards. HER assumes that any state can be a goal
state. Therefore, leveraging this idea, the agent learns from
failed trajectories as if the final state achieved was the goal
state. Trott et al. (2019) proposes to use pairs of trajecto-
ries that encourage progress towards a goal while learns to
avoid local optima. Among different environments, Sibling
Rivalry is evaluated in a 3D construction task in Minecraft.
The goal of the agent is to build a structure by placing and
removing blocks. They use the number of block-wise differ-
ences as a naive shaped reward which causes the agent to
avoid placing blocks. Simply by adding Sibling Rivalry they
manage to improve the degree of construction accuracy.

Representation Learning in RL. In RL we seek for low-
dimensional state representations that preserve all the infor-
mation and variability of the state space in order to make
decisions that eventually maximize the reward. This be-
comes crucial when dealing with pixel-based environments.
Ghosh et al. (2018) aims to capture those factors of varia-
tion that are important for decision making and are aware
of the dynamics of the environment without the need for
explicit reconstruction. Lee et al. (2020) also makes use
of variational inference techniques for estimating the pos-
terior distribution, but breaks the Markovian assumption
by conditioning the probability of the latent variables with
past observations. Oord et al. (2018) leverages powerful au-
toregressive models and negative sampling to learn a latent
space from high-dimensional data. This work introduces
the InfoNCE loss based on Noise Contrastive Estimation.
The intuition behind is that we learn a latent space that al-
lows to classify correctly positive pairs while discriminating
from negative samples. We make use of this loss in our
contrastive experiments, as well as the following works ex-
plained. Laskin et al. (2020) trains an end-to-end model by
performing off-policy learning on top of extracted features.

This features are computed using a contrastive approach
based on pairs of augmented observations, while Stooke
et al. (2020) picks pairs of delayed observations. All these
works learn representations from pixel-based observations,
except for the first one by Ghosh et al. (2018).

3. Information-theoretic skill discovery

Intrinsic Motivations (IM) can drive the agents learning
process in the absence of extrinsic rewards. With IM, the
agents do not receive any feedback from the environment,
but must autonomously learn the possibilities available in
it. To achieve that, the agents aim to gain resources and
influence on what can be done in the environment. In the
empowerment (Salge et al., 2014) framework, an agent will
look for the state in which has the most control over the
environment. This concept usually deals with simple ac-
tions. In contrast, skill-discovery temporally abstracts these
simple actions to create high-level actions that are dubbed
as skills or options. Skill-discovery is formulated as max-
imizing the mutual information between inputs and skills.
This encourages the agent to learn skills that derive as many
different input sequences as possible, while avoiding over-
lap between sequences guided by different skills. Therefore,
skill-discovery can ease the exploration in complex down-
stream tasks. Instead of executing random actions, the agent
can take advantage of the learned behaviours in order to per-
form smarter moves towards states with potential extrinsic
rewards.

In the next section we formulate the mathematical frame-
work that is used through our work. First we define the
classic Markov decision process that typically provide a
mathematical formulation for reinforcement learning tasks.
Later on, we introduce the tools from information-theory
that allows us to define the maximization of the mutual
information.

3.1. Preliminaries

Let us consider a Markov decision process (MDP) with-
out rewards as M = (S, A,P). Where S is the high-
dimensional state space (pixel images), A refers to the set of
actions available in the environment and P defines the tran-
sition probability p(s11]|s¢, a). We learn latent-conditioned
policies 7(als, z), where the latent z € Z is a random vari-
able.

Given the property of symmetry, the mutual information (Z)
can be defined using the Shannon Entropy (#) in two ways
(Gregor et al. (2017)):

I(S,.Z) = H(Z) — H(Z|S) — reverse

=H(S) — H(S|Z) — forward
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For instance, we derive the reverse form of the mutual infor-
mation (MI):

I(S7 Z) = Es,zwp(z,s) [1ng(z|5)] - Ez~p(z)[10gp(z)]

2

The posterior p(z|s) is unknown due to the complexity to
marginalize the evidence p(s) = [ p(s|z)p(z)dz. Hence,
we approximate it with g, (z|s) by using variational infer-
ence or contrastive techniques. As a result, we aim at max-
imizing a lower bound based on the KL divergence. For a
detailed derivation we refer the reader to the original work
from Mohamed and Rezende (2015).

Therefore, the MI lower bound becomes:
I(S, Z) > Es,zr\ap(z,s) [IOg q¢(z|s)} - EZNp(z) [logp(z)]
3

The prior p(z), can either be learned through the optimiza-
tion process (Gregor et al., 2017), or fixed uniformly before-
hand (Eysenbach et al., 2018). In our case, since we want to
maximize the uncertainty over p(z), we define a categorical
uniform distribution.

3.1.1. VARIATIONAL INFERENCE

Variational inference is a well-known method for modelling
posterior distributions. Its main advantage is that it avoids
computing the marginal p(s), which is usually impossible.
Instead, one selects some tractable families of distributions
q as an approximation of p.

p(zls) = q(2]0) )

We fit q with sample data to learn the distribution param-
eters f. In particular, we make use of Variational Auto-
Encoders (VAE) (Kingma and Welling (2014)) with categor-
ical classes, namely VQ-VAE (van den Oord et al., 2017),
for modelling the mappings from inputs to latents and back-
wards. The encoder ¢4 (2|s) models p(z|s) and the decoder
qy(s]z) models p(s|z).

3.1.2. CONTRASTIVE LEARNING

Contrastive learning is a subtype of self-supervised learning
that consists in learning representations from the data by
comparison. This field has quickly evolved in the recent
years, especially in computer vision. Within this context,
the comparisons are between pairs of images. Examples of
positive pairs may be augmented versions of a given image
like crops, rotations, color transformations, etc; and the neg-
ative pairs maye be the other images from the dataset. In
this case, representations are learned by training deep neural
networks to distinguish between positive or negative pairs of

observations. The main diference between contrastive self-
supervised (or unsupervised) learning and metric learning
is that the former does not require any human annotation,
while the later does. Learning representations with no need
of labeling data allows scaling up the process and overcom-
ing the main bottleneck when training deep neural networks:
the scarcity of supervisory signals.

Similar to what is done in variational techniques, we can
compute the mutual information between inputs and latents.
In this case, instead of learning the latents by the recon-
struction error, they are learned by modeling global features
between positive and negative pairs of images. Intuitively,
two distinct augmentations (positive pair) should be closer
in the embedding space than two distinct images (negative
pair) from the dataset. Therefore, we need two encoders
in paralel instead of an encoder-decoder architecture. The
second encoder is usually called momentum encoder (Chen
et al. (2021)) and its weights are updated using exponential
moving averages of the main encoder.

In each training step, we forward a batch of different orig-
inal images through the main encoder while we forward
the positive pairs of each of those images through the mo-
mentum encoder. In a batch of N samples, we have for
each positive pair, N — 1 negative pairs. We define z as the
output of the encoder and 2’ as the output of the momentum
encoder. Then, e is a convolutional neural encoder and 4 is
a projection head (small multi-layer perceptron) that returns
alatent z, (z = h(eg(s))).

At the output of the network we can perform a categorical
cross-entropy loss where the correct classes are the positive
pairs in the batch. The correct classes are in the diagonal of
the resulting matrix 27 W2/, where W is a projection matrix
learned during training. In the other positions, we have the
similarity between negative pairs in the embedding space.
Minimizing this loss, whose name is InfoNCE (Oord et al.,
2018), will encourage the model to find global features
that can be found in augmented versions from an image.
Moreover, as stated by their authors Oord et al. (2018),
minimizing the InfoNCE Eq. 5 loss maximizes the mutual
information between inputs and latents. As a result, we learn
the desired mapping from input states s to latent vectors z.

exp(zTW2')
exp(zTW2') + Zf:()l exp(zTWz))
&)

CInfoNCE = log

4. Methodology

In this section we show the implementation details adopted
for each of the stages of our method.
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4.1. Exploration

EDL (Explore, Discover and Learn) (Campos et al., 2020)
provides empirical and theoretical analysis of the lack of
coverage of some methods leveraging the mutual infor-
mation for discovering skills. Either by using the for-
ward or the reverse form of the MI, the reward given
to novel states is always smaller than the one given to
known states. The main problem dwells in the induced
state distributions used to maximize the mutual informa-
tion. Most works reinforce already discovered behaviours
since they induce the state distribution from a random pol-
icy, p(s) ~ px(s) = E,[p=(s]z)]. EDL is agnostic to how
p(s) is obtained, so we can infer it in very different ways.
One manner would be to induce it by leveraging a dataset
of expert trajectories that will encode human-priors that are
usually learned poorly with information-theoretic objectives.
Another way is to make use of an exploratory policy that is
able to induce a uniform distribution over the state space.
Since this is not clearly solved in complex 3D environments
yet, we explore by using random policies in bounded maps.

4.2. Skill-Discovery

In Section 3, we proposed two distinct approaches for mod-
elling the mapping from the observations s to the latent
variables z: variational inference and contrastive learning.
The skill-discovery pipelines for both approaches are de-
picted in Figure 1, and are described in the remaining of this
section.

4.2.1. VARIATIONAL INFERENCE

Vector-Quantized VAE (VQ-VAE) (van den Oord et al.,
2017) is a variational model that allows us to have a categor-
ical distribution p(z) as a bottleneck (also called codebook),
an encoder gy, that estimates the posterior p(z|s), and the
decoder g that estimates p(s|z).

Before training, the model requires to fix the length of the
codebook. This determines the granularity of the latent
variables. If we choose a large number of codes, we will
end up with latent variables that encode very similar states.
Instead, if we choose a small number, we will encourage the
model to find latents that generalize across diverse scenarios.
The perplexity metric measures the number of codewords
needed to encode our whole state distribution. In practice,
this metric is computed per batch during training. Since it is
not possible to know beforehand the number of useful latent
variables that our model will discover, one can iterate over
different codebook lengths until they find a good trade-off
between generalization and granularity.

In EDL (Campos et al., 2020), the purpose of training a
variational auto-encoder was to discover the latent variables
that condition the policies in the Learning stage. But the

2~ Z € RF¥4

( COMMIT LOSS + MSE

.
z~ 7 € R¥*

S\

Figure 1. Skill-discovery pipeline with (top) variational and (bot-
tom) contrastive approaches.

learned representations were discarded. Instead, in our case,
we also leverage the representations learned in the encoder
and decoder for training the RL agent. This allows for faster
and more efficient trainings of the RL agents.

4.2.2. CONTRASTIVE LEARNING

In the contrastive case, we follow the idea of Stooke et al.
(2020) where the positive pairs are delayed observations
from a specific trajectory. Once the latents are learned, we
define a categorical distribution over latents by clustering
the embedding space of the image representations (Yarats
et al., 2021). This step is performed using K-Means with K
clusters equal to the length of the VQ-VAE codebook.

At this point, we have the same set-up for both the con-
trastive and variational approaches. The K-Means centroids
are equivalent to the VQ-VAE codebook embeddings, so we
can maximize the mutual information between the categori-
cal latents and the inputs with the same Equation 2.

4.3. Skill-Learning

In the last stage of the process, we aim to train a policy
m(als, z) that maximizes the mutual information between
inputs and the discovered latent variables. At each episode
of the training, we sample a latent variable z ~ p(z). Then,
at each step, this embedding is concatenated with the embed-
ding of the encoded observation at timestep ¢ and forwarded
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2z~ Z € Rk*d

|

z ~ p(2)

probability

A
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Figure 2. Skill-Learning pipeline for both contrastive and varia-
tional approaches.

through the network. This process is depicted in Figure 2.
At this stage, the latent variables are interpreted as naviga-
tion goals. Hence, the agent is encouraged to visit those
states that brings it closer to the navigation goal or latent
variable. Since each of the latent variables encode different
parts of the state distribution, this results in covering differ-
ent regions for each z. Our method adopts the reverse form
of the mutual information. Since we fix p(z) as a uniform
distribution we can remove the log p(z) constant term from
the Equation 3, which results in the reward of Equation 7
for the variational case, and Equation 8 for the contrastive
case. The agent receives a reward of 1 only if the embedding
that is conditioning the policy is the closest to the encoded
observation.

(s, 2) = qg(z|s) (6)

1, if k=argmin;||z.(s) —e;
Q¢(Z=k|$)= ] J|| e( ) JH
0, otherwise

)

Where z.(s) is the encoded observation and e is the code-
book of embeddings.

1, fork = argmax;(z.(s)We;)

qp(z = k|s) = (8)

0, otherwise

In the contrastive case, we compute a similarity measure.
Therefore, we look for the latent index with highest similar-
ity to the current observation.

5. Experiments

In this section we asses our method in two different
Minecraft maps and set-ups. In each of the trainings we
follow the pipeline described in Section 4, where we first
generate random trajectories in the specified map. Later, we
discover some categorical latents from them, and finally we

train some conditioned policies on these latents. We refer
the reader to the Appendix A to check the hyperparameters
used in the different methods.

5.1. Discovery and learning of skills in handcrafted
maps

The first map, in Figure 3a, is a 2D handcrafted map that
consists in 9 different regions where the only difference
among them is the floor type. The p(s) induced from the
random trajectories seen in Figure 3b covers the state sub-
space uniformly.

(b)

Figure 3. (a) Top-view of the toy map used for asses our method.
The dimensions of this map are 100 square meters, if we consider
that the Minecraft coordinate system was measured in meters. The
agent has no exploratory issues even with a random policy. (b)
Trajectories generated by a random agent deployed in any region
of the map.

The index maps shown in Figure 4 are generated from the
random trajectories in Figure 3b. We encode each obser-
vation from each trajectory with the index of the closest
embedding in the latent codebook or K-Means centroids.
We assign a color to each of the indexes and we get what we
refer as an index map. Thanks to these maps, it is very easy
to visualize whether the learned embeddings are meaningful
or not.

Figure 4 compares the index maps learned with the varia-

Figure 4. Left: Index map generated by the variational approach.
Right: Index map generated by the contrastive approach.
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Figure 5. (a) Observations that are encoded as the latent vector 2. (b) shows the trajectories performed by the agent and (¢) the average
reward received in those trajectories. Both plots conditioning the agent on the latent vector 2.

tional and constrastive methods. In general we can see that
the variational model discretizes slightly better, however
it is unable to distinguish between two particular regions.
Instead, despite the mixing and overlapping among differ-
ent discovered latents, the contrastive approach manages
to clusterize these regions decently. When studying these
visualizations we should be aware that we are not taking
into account the direction in which the agent was looking at
the time it was recorded. Therefore, two points that are next
to each other, might be encoding totally different views and
hence will result in different latent codes.

Learning representations from these observations is quite
straightforward, since the dynamics are not very complex.
Despite that, either when training with the contrastive and
variational methods, we usually find latent centroids that
encode observations in between plots. For this reason, if
we wanted to have a categorical latent vector for each of
the regions we could overclusterize the latent embeddings
(in the contrastive case) or select a larger codebook (in the
variational case). Since we train the agent in a map where we
have already collected observations from random policies,
we can plot the reward that those observations would be
given when conditioned in each of the categorical latents.
For instance, in Figure 5a we can see that the observations
recorded in the top-right corner are encoded as the second
discovered latent. Therefore, if we condition the policy with
it, the agent will receive a reward of 1, following Equation 6.

In Figure 5b, we show how the performance of the agent
when conditioned in this skill. All the trajectories head to
the navigation goal except for one. Moreover, regardless
of the initial direction, we can see that the agent is capable
of orientating and go to the right direction. Lastly, in
Figure 5c, we can see how it requires 10 steps to start
triggering the intrinsic reward until reaching a stable 0.8
reward in average. For more examples on other latent codes
we refer the reader to the Appendix B.

5.2. Discovery and learning of skills in realistic maps

The approach presented in the simple and handcrafted map
of Section 5.1 fails when tested in more realistic Minecraft
maps, like the one in Figure 6a. In this case, the discovered
skills depicted in Figure 6b are no longer distributed in
separable clusters over the map, and one skill (in light blue)
tends to dominate over the others. Since we are treating
each latent variable as a navigation goal, the ones that are
spread out over the whole map will not guide but confuse
the agent as it is receiving high reward in multiple places.

We overcome this problem by exploiting the spatial informa-
tion provided by the environment in the form of coordinates.
The learned embedding space contains a relationship be-
tween visual features and relative spatial coordinates with
respect to the initial state, always the same one. This al-
lows our agent to distinguish between two visually identical
mountains located at two different positions in the map. Fig-
ure 6 shows complementary skills discovered from pixels
(Figure 6b) or coordinates (Figure 6¢). We would like to
discover skills that take into account not only the visual
similarity but also the position relative to the initial state,
so we adopt a solution that considers the two types of state
representations (Figure 6d).

We scale the VQ-VAE (van den Oord et al., 2017) to en-
code both pixels and coordinates independently. We sum
up their embeddings and quantize the result to one of the
codebook embeddings e. Now, the decoder of the model
contains two independent branches, where one reconstructs
an image and the other reconstructs a coordinate from the
same embedding. The only difference from the original loss
function is that we add a term for learning the coordinate
reconstruction.

Once we have better latent embeddings for realistic maps,
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i

a) MINECRAFT MAP

b) PIXELS

c) COORDINATES d) PIXELS AND COORDINATES

Figure 6. a) Top-view of our Minecraft map. The caption below b) ¢) d) refers to the nature of the states (pixels, coordinates or both)
where all the trajectories were collected by random policies. Each coloured point indicates the closest centroid to the encoded embedding.

we can train an agent conditioned on them. Qualitative re-
sults are presented in Figure 7, where we can see an example
of a latent encoding the bottom-left observations and the
trajectories and rewards received in 10 evaluation episodes.
The performance of all the conditioned policies is included
in the Appendix C. We observed that at least 6 skills out of
10 could be potentially leveraged in a hierarchical policy.

Figure 8 shows a clear example of the pixels and coordinates
mixing. If we based our encoder in just pixel observations
we would have an almost identical latent encoding for both
images. Instead, thanks to the coordinates, they become
two separate latents. This may help the agent in being more
precise and distinguish different regions of the space despite
its visual similarity.

6. Conclusions

In this work we present a framework to extend the EDL
paradigm to pixels. This requirement presents one main
problem. Following the EDL derivation of the mutual infor-
mation, we optimize the agents based on the MSE, which
does not have any notion of space in the environment. To

ns,z=2;)

Figure 8. A very homogeneous and big region of the space be-
comes two different skills when using a combination of pixels and
coordinates.

overcome that, we propose to derive the reverse form of
the mutual information between inputs and latents. In this
manner we compute the intrinsic reward in the embedding
space which encodes the dynamics learned during the skill-
discovery phase. We observed that contrastive and varia-
tional approaches are capable of learning the mapping from
inputs to latents. In the former case, we leverage the use
of positive pairs based on delayed observations, and the K-

ta(z=23) rz=z3)

a)

20 40 0 10 20 30 40 50

Figure 7. a) Observations that are encoded as the latent vector 3. b) and c) show the trajectories performed by the agent and the reward

received in average when conditioned on skill 3.
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Means clustering algorithm for determining the categorical
latents. In the latter, we make use of a VQ-VAE model that
directly allows to infer categorical latents from the input
data. We qualitatively show that some skills are correctly
learned, specially in the toy maps where the environment
dynamics are much easier. We demonstrate that for learn-
ing useful navigation goals in realistic maps we need more
information, and therefore, we learn an embedding space
combining pixel and coordinates observations.
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A. Hyperparameters
VQ-VAE
learning rate le-3
batch size 256
num hiddens 64
num residual hiddens 32
num residual layers 2
embedding dim 256
num embeddings 10
B 0.25
decay 0.99
Contrastive
learning rate le-3
batch size 128
T Se-3
soft update 2
embedding dim 128
k, 15
ko 5
Rainbow
learning rate 2.5¢e-4
batch size 64
sampling uniform
max episode steps 500
update interval 4
frame skip 10
gamma 0.99
clip delta yes
num step return 1
adam eps 1.e-8
gray scale no
frame stack no
final expl frames 3.5e5
final epsilon 0.01
eval epsilon 0.001
replay capacity 10.e6
replay start size 1.e4
prioritized yes
target upd interval 2.e4
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B. Learning from Pixels with Contrastive approach
(Handcrafted map)

In this first plot, we show which observations would give a positive reward for each conditioning latent. In some cases they
encode a very specific region, however, in some others the reward is spread over the map leading to poor policies.

ns,z=2zy) s, z=2z3) s, z=2z4)

As we can see in the evaluated trajectories, latents 0,1,2,4,5,6 are properly learned. Instead, we can see that latents 3,7,8,9
are more ambiguous and the agent does not solve the self-supervised task correctly.
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In the last plot we show the average reward of all the trajectories for each of the conditioning latents. We can see that the
curves with higher reward match those trajectories in the previous plot that lead to the region encoded by the latent.
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C. Learning from Pixels and Coordinates with Variational approach

(Realistic map)

In this case, we can see that despite deploying the agent in a realistic map, the discovered latents encode very specific
regions of the map. This is achieved by leveraging the raw pixel information and the relative position of the agent respect to
the initial point.

Due to the dynamics of this map, we can see that is much more difficult to learn the right policies to guide the agent towards
the regions encoded by the latents. Skills 1, 2, 3, 4, 6 and 7 still achieve good results, where, regardless of the agent’s initial
direction, it manages to reach the desired region.

tylz=2zg) tn(z = 2,) tilz=23) thlz=2z5) tn(z = z4)
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