
Disentangling neural network structure from
the weights space

Master Thesis
submitted to the Faculty of the

Escola Tècnica d’Enginyeria de Telecomunicació de Barcelona
Universitat Politècnica de Catalunya

by

Pol Caselles Rico

In partial fulfillment
of the requirements for the master in

Advanced Telecommunication Technologies

Advisors: Konstantin Schürholt (ICS-HSG), Damian Borth (ICS-HSG), Xavier
Giró-i-Nieto (UPC)

Barcelona, Date 20/01/2021

2

Contents

List of Figures 4

List of Tables 5

1 Introduction 8
1.1 Gantt diagram . 11

2 State of the art and related work 12
2.1 Representation learning in NN weight space 12
2.2 Attention architectures . 15
2.3 Visualization and dimensionality reduction 16

3 Methodology 17
3.1 Attention auto-encoder I (AttnAE I) . 17
3.2 Attention auto-encoder II (AttnAE II) . 20
3.3 Data augmentation . 22
3.4 Manifold Visualization . 22

4 Experiments and results 23
4.1 Metrics . 23

4.1.1 Signal-to-noise ratio (SNR) . 23
4.1.2 Coefficient of determination score (R2) 24

4.2 Dataset exploration . 24
4.2.1 Tetris-Seed dataset . 26
4.2.2 Tetris-hyper dataset . 29
4.2.3 Google dataset . 31

4.3 Tetris-seed and tetris-hyper datasets experiments 35
4.3.1 Model weights reconstrucction . 36
4.3.2 Downstream tasks: accuracy and hyper-parameters prediction . . . 40
4.3.3 Attention score maps interpretability 44

4.4 Google dataset experiments . 50
4.4.1 Model exploration and code validation 50
4.4.2 Model weights reconstrucction . 52
4.4.3 Downstream tasks: accuracy and hyper-parameter prediction 53

5 Environment impact 59

6 Conclusions 60
6.1 Future work . 61

References 62

3

List of Figures

1 Main setup . 9
2 Gantt diagram . 11
3 Meta-classification performance maps . 13
4 Tetris model architecture . 18
5 AttnAE I encoder architecture . 19
6 AttnAE I decoder architecture . 19
7 AttnAE II encoder architecture . 20
8 Tetris pieces dataset . 24
9 UMAP: weight space and statistics of the tetris dataset 26
10 Visualization of basic statisics of the tetris dataset 27
11 UMAP: comparison of data encoding of the tetris dataset 28
12 UMAP: weights and statistics space on tetris-hyper dataset 30
13 UMAP: weights on google dataset . 33
14 UMAP: statistics on google dataset . 34
15 Reconstruction R2 score over epochs and representation learning progress . 38
16 AttnAE attention score maps . 45
17 Correlation matrix of attention score maps 46
18 AttnAE architecture noise robustness over different SNR thresholds 47
19 AttnAE architecture noise robustness over epochs 48
20 Recall curves for hyper-parameter classification 56
21 Accuracy distribution over epochs . 57
22 Epoch prediction in the Google dataset . 58

4

List of Tables

1 Dataset properties . 25
2 Correlation between accuracy and statistics on the tetris-seed dataset . . . 28
3 Correlation between accuracy and statistics on the google dataset 32
4 Accuracy prediction results on tetris dataset 36
5 Accuracy prediction on tetris-seed and tetris-hyper datasets 41
6 Hyper-paramaters prediction on the tetris-hyper dataset 42
7 Accuracy prediction from the AE embeddings 43
8 Accuracy prediction baselines comparsion on google dataset 51
9 Accuracy prediction results on google dataset 53
10 Hyper-parameters classification results on google dataset 55

5

Abstract

Deep Neural Networks have been used to tackle a wide variety of tasks achieving great

performance. However, there is still a lack of knowledge of how the training of these mod-

els converge and how weights relate to their properties. In this thesis we investigate the

structure of the weight space and try to disentangle its properties. Attention mechanisms

are introduced to capture relations among neurons’ weights that help in weight recon-

struction, hyper-parameter classification and accuracy prediction. Our approach further

has the potential to work with variable input size allowing different network width, depth

or even architecture types.

6

Acknowledgments

I would like to thank my tutor, Xavier Giro-i-Nieto, for granting me the opportunity to do

my master’s internship at ICS-HSG in Sant Gallen, Switzerland. I want to acknowledge

Konstantin Schürholt for his huge help during the development of the thesis. I would also

thank to Damian Borth for the kind hospitality I received at all times and for having

accepted me in the ICS-HSG lab.

7

1 Introduction

In recent years, Deep Neural Networks (DNN) have been used to tackle a wide variety of

tasks, achieving incredible results. Looking at the amount of papers where these method-

ologies have been used, it has not stopped growing. DNN have been applied successfully

to a wide different domains such as language, 3D reconstruction and analysis, image and

video classification, creation and understanding, speech analysis and synthesis and so

much more. DNN are increasingly employed to real-world use-cases and have become the

state of the art of a lot of approaches. However, their structures and operations are still

poorly understood. There is a lot of information and intuition but more research into this

direction is needed to fully describe and define them in depth.

Mathematical fundamentals and a lot of techniques are know to train DNN, but due to the

high dimension of the space in which these technologies work (in some cases up to 100B

trainable parameters) it is difficult to explore it with the computation power that there is

nowadays. There are still countless open questions about the solutions reached and how

and why they really work: why do some networks generalize, while others do not? Why do

some networks learn a bias, while others do not? Looking directly at the weight space of

the networks, are different networks trained on the same task learning the same features

or are different solutions? How unique are the solutions in the weight space? Can we map

or group these unique solutions to some latent space that we can then take advantage

to be applied into any other downstream task? How do different architectures trained on

the same task relate to each other? Do different domains and tasks guide how the model

ends up to different weights? Nowadays it is difficult to answer all these questions without

uncertainty, and more explanations are still needed.

Gaining insight into the model weight structure may change the way new models are

trained. Having a better understanding can lead us to potentially develop new strategies

during the model design processes. This knowledge can be also used in the field of intellec-

tual property to define metrics to certificate and patent them. Versioning and diagnostics

can also be potentiated by the influence of models’ knowledge providing explanations

of their behaviour and how the appropriate structure should be. Having full knowledge

of models’ weights trajectories and how they relate to accuracy we could save time and

computing power consumption. This knowledge can be used to predict which models are

or are not going to flourish. Being able to compress model weights can also be useful in

weight deployment transmission and storage savings. Another interesting topic that can

take advantage in the field of the DNN is called interpretability. Fully understanding them

8

can lead us to discover new properties of the neural networks. Nowadays, in order to fine

tune our models we usually retrain them by applying small changes in a wide variety of

hyper-parameters. There is a field called meta-learning that studies the evolution of the

models during training in order to learn how to learn. The explainable artificial intelli-

gence field is concerned with explaining how models work beyond the theoretical part.

It attempts to answer questions of a moral nature or of interpretation of their function-

ing and to explain the reason why some decisions are made or others not. Given that

the field of artificial intelligence is the mathematics that defines the criteria of decision,

investigating the question can help to understand the solutions obtained.

The data for this thesis are the models trained on different datasets, tasks, architectures,

properties of training and the randomness of the iterative procedures (split of the dataset,

batch composition, dropout and so on). Our goal is to generate model-level embeddings

that are rich enough to define the entire architecture in time (including current state in

training, e.g. epoch), dataset on which the model was trained on and properties defined

during training as well as the structure of the architecture. Achieving this goal would mean

that it will be able to understand the underlying structure. Due to the dimensionality of

the solution space, finding analytical solutions is generally infeasible. Therefore, we have

opted for the use of deep learning methodologies as they are designed to work with large

volumes of data.

The main idea is to focus on a subset of models with a limited number of tunable param-

eters and try to disentangle the structure from the weight perspective. There is a wide

range of architectures and possibilities during training. For this reason we have worked

on vanilla convolutional and feed forward networks, of model sizes between 100 to 5000

weights for each sample.

Figure 1: The main setup: define a bidirectional mapping between model architecture
and its properties and a model-level embeddings that are rich enough to define it.

9

Recently, different datasets of neural networks trained on vision tasks datasets MNIST,

MNIST-FASHION, SVHN, CIFAR10 for image classification tasks have been published.

They are composed of models of different sizes and varying hyper-parameters for different

trainings. In this domain, a sample of the dataset is the model’s weights for a given hyper-

parameters and checkpoint properties. Unterthiner et al.[1] released a dataset composed

of a fixed architecture trained for image classification on the aforementioned datasets.

The authors investigated the accuracy prediction from the weights and the statistics

transformation space.

In our work we present an study on representation learning of neural network models

from the weights perspective. We first introduce an analysis of the Google dataset. The

investigation reveals that the characteristics of the networks have been impregnated in its

weights. In order to exploit its weights’ relationships we propose a novel attention-based

approach to learn representation of weights space of neural networks. We demonstrated

that this approach outperforms the DNN baseline as presented in Unterthiner et al.[1]

and it is competitive against GBM. Same approach has been used to extend it to learning

hyper-parameters as well as self supervised weights’ reconstruction.

Attention mechanism has shown its capacity to work well in recurrent state approaches

[4], [5] outperforming in some tasks well known approaches such as LSTM or GRU and

the issues with exploding and vanishing gradients are solved. Besides, by looking at the

attention score maps, it provides means for interpretability that can be useful in order

to disentangle how the weights of a model interact. The transformer encoder is a well

known architecture that implements attention mechanism, therefore it has been decided

to incorporate it in our model as a core blocks to capture relations.

10

1.1 Gantt diagram

Figure 2: Gantt diagram

11

2 State of the art and related work

Currently there are a wide variety of methodologies and algorithms for a wide range of

applications. In recent years, technologies based on deep neural networks have grown

significantly. Systems based on DNN achieve very good results in many areas. However,

they are the most difficult systems to understand in comparison with other mathematical

methodologies such as decision trees [19]. For this reason, it is important to understand

why deep neural networks obtain one outcome or another. It is also interesting which

procedure the weights follow to reach a good solution and which characteristics they

acquire. In this line of research, in this thesis we have focused on the representation

learning from weights. Currently there are few publications concerning the prediction of

accuracy and hyper-parameters using only the information of the weights that compose the

models. Furthermore, we have opted for attention-based architectures for data processing

and the use of linear dimensionality reduction systems and manifold learning.

2.1 Representation learning in NN weight space

There have been published works [2], [1], [3] that tackle directly the field of neural networks

representation from the weights’ perspective. Unterthiner et al.[2] published a full dataset

of neural networks trained on four well known vision datasets on classification tasks.

They published two splits of the datased called C fixed (in this case the architecture

used is fixed around 90K parameters) and C main (the architecture used also varies as

another hyper-parameter, up to 300K parameters). In both datasets the authors trained

the models during 86 epochs and they provide checkpoints at epochs 0, 1, 2, 3, 4, 20, 40,

60, 80, 86.

In their work Eilertsen et al. [2] predict models’ accuracy with a linear regression pre-

dictor. They showed how important is each hyper-parameter to achieve good test predic-

tions. Initialization was one of the most important parameters followed by the size of the

convolution filters as well as the fully connected layers size. In order to apply different

predictors their input vector of the models was defined as a vectorized form of all the

trainable parameters of the network.

Eight basic statistics were computed : mean, variance, skewness (third standardized mo-

ment), and five-number summary (1, 25, 50, 75 and 99 percentiles) over the weights and

their gradients. This process was applied for each layer of the network. SVM and SVM

with Radial Basis Kernel as well as deep meta-classifers (DMC, applied directly on the

12

model’s weights) where used in order to predict the hyper-parameters in each training.

Results showed that this task is possible by looking at the weight space. They also pro-

posed to apply DMC in chunks of 5000 weights (5% of the total number of the model’s

weights) and it had been able to predict them surprisingly well. This means that even

with a little amount of weights it keeps information of the entire model and how it was

trained.

Due to the fact that DMC can be applied in different positions along the vectorized

weights of the model as well as there are model weights’ checkpoints during training

(time axis), the authors showed heatmaps (Figure 3) of how good the predictions can be

for each of the hyperparameters depending on training time and model’s weights depth.

For example Figure 3(c) shows that in order to predict which initialization procedure was

used, results show that best prediction accuracy is achieved when looking at the beginning

of the training checkpoints.

Figure 3: Taken from [2]. Meta-classification performance maps, visualizing the average
test accuracy at different model depths and training progress steps. The y-axis illustrate

training progress, from initialization (0%) to converged model (100%), while x-axis is
the position of the weight vector where evaluation has been made, from the first weights
of the convolutional layers (0%) to the last weights of the fully connected layers (100%).
Since the results are evaluated over models with different architectures, it is not possible
to draw separating lines between individual layers. (c) and (f) show how similar trends
are found by DMCs and SVMs. Note the different colormap ranges (e.g. higher lowest

accuracy for initialization).

13

Unterthiner et al.[1] generated a dataset of models trained on the same well known datasets

(Google dataset) as described in Eilertsen et al. [2]. However, in this case a fixed network

of size of 4970 trainable parameters each were used, which is considerable lower in size in

the dimensional space.

In order to predict the test accuracy of a given model, Unterthiner et al.[1] have compared

three approaches: gradient boosting machine using regression trees (GBM), logit-linear

model (Log-linear) and fully-connected deep neural network (DNN). The authors showed

a wide research on how to apply these predictors to this domain and best results are

achieved when computing basic statistics (as done in [2], but only on the weights and layer-

wise) and applying the aforementioned predictors on it. GBM demonstrate its capacity

to capture mean and almost all variance on models’ accuracy test predictions achieving

between 0.986 R2 score (models trained on SVHN-GS) and 0.993 R2 score (models trained

on MNIST).

The authors further show that their accuracy predictors generalize from MNIST to other

datasets, e.g. CIFAR10. Results show good adaption on domain shift tasks. Training

models on different datasets in the same task share some properties that are able to be

captured in the accuracy prediction task. It can be concluded then that at least, models

that are designed for one kind of task are related somehow, which let us to speculate

about the potential to be exploited for other tasks. This assumption is not new. Other

approaches in the field of transfer learning relay on this idea.

Both works demonstrated that it is possible to predict the performance of deep neural

network using its weights, at least under certain circumstances. They also show that the

use of simple statistics can be very helpful in the hyper-parameter and accuracy prediction.

However, we should be aware that as another work pinpointed [3], this could also be due

to the collapsed weight’s matrix rank, where few eigenvalues retain almost all variance.

This could be an explanation of why it is straightforward to predict accuracy from the

weights.

14

2.2 Attention architectures

In different areas the sequence to sequence structure (seq2seq) was used for a variety of

fields. However, it was mainly used in the field of natural language processing (NLP).

Architectures based on LSTM and more recently GRU [15] have been used, but the main

problem is the inability to maintain long term information. Attention mechanisms arrive

to solve this problem being able to access to all the input sequence.

In recent years one of the most widely used architectures in this area has been the well-

known architecture called Transformer [6]. Although at first it was developed for language

tasks, it has expanded to many other fields. Its good functioning has led to many adap-

tations with promising results and has shown that it performs well. Different works use

as a main module the transformer encoder block as a bidirectional encoder. In the differ-

ent implementations, in the field of the NLP the expected input is a sequence of words.

Without going into detail, word embeddings are generated from each of the words that

form the fixed-size embedding variable length sequence, and relative position information

is added. This process can be done without context information such as word2vec [12] or

Glove [13] (it means that the same word, which can have different meanings, will generate

the same representation regardless of the context) or they can be learnt representations

such as ELMo [14] or BERT [8] (in this case the generated embedding depends on the con-

text). Attention-based modules are applied by capturing relational information between

the different embeddings for tasks such as question answering (SQuAD), natural language

inference (MNLI), next sentence prediction (NSP) and next word prediction (NWP), text

classification, neural machine translation (NMT), named entity-linking (NEL) and others.

To further develop more related tasks, there have been using different modification to the

initial structure. There have introduced special tokens into the sentence such as separator,

verb tense, unknown word, masked word, or global classification. The global classification

token is used to make the model identify that the output of this token in the transformer

encoder is used to generate a global sentence representation embedding. In the paper

Bidirectional Encoder Representations from Transformers (BERT[8]), they added this

last token at the beginning of the sentence for classification tasks. Expanding on this

idea, in Vision Transformer (ViT) [7], the authors have applied all these concepts to the

domain of image classification. They divided the images into different smaller squares,

which through a non-linear transformation they build a fixed size embedding and with

the help of the classification token the model has been built. In this thesis we use the

knowledge developed for NLP tasks adapted to the domain of weights sapce. We introduce

15

the concept of tokenising model weights to generate a sequence of embeddings. We also

incorporate global tokens at the beginning to generate global representations.

2.3 Visualization and dimensionality reduction

In domains where each of the data available has a large number of features, it is usually

necessary to perform one or more methods to reduce their size. This process is used in

order to eliminate information that is not relevant or does not provide anything new. In

many occasions it is necessary to reduce the size of the data to be able to train models

or also to be able to visualize the data in 2D representations.

The main techniques of dimensionality reduction can be summarised in the methods based

on feature selection, those based on matrix factorization, those based on manifold learning

or the auto-encoder methods. Moreover, these can be classified in two main groups, those

that make a linear reduction and those that are non-linear.

In order to be able to represent large dimensional data, the principal component analysis

(PCA) method and the non-linear tSNE [16] and the uniform manifold approximation

and projection for dimension reduction (UMAP) [17] methods have become very popular.

In general, PCA is used for fast reduction and elimination of information that is not

relevant. In contrast, tSNE and PCA are used for large compression up to two or three

dimensions. They are mainly used to visualise large dimensional data.

tSNE methodology is based on t-distributed stochastic neighbour embedding with non-

linear scaling to represent changes at different levels, it preserves local structure in the

data. On the other hand, UMAP claims to preserve both local and most of the global

structure in the data. Unlike PCA which is deterministic, these technique does not expect

the relationship to be linear.

Both algorithms are highly stochastic and very much dependent on choice of hyper-

parameters (t-SNE more than UMAP) and can yield very different results in different

runs, so the plots might obfuscate an information in the data that a subsequent run

might reveal.

16

3 Methodology

In this thesis I have focused on the representation learning from the weights space. I

have tackled different tasks such as accuracy prediction, hyper-parameter classification,

weights’ compression and noise robustness using in all cases attention mechanisms. In

this chapter, we present the auto-encoder architecture attention auto-encoder I (AttnAE

I) and its evolution (AttnAE II) in order to be able to deal with variable input sizes.

I also present the insights of the Unterthiner et al.[1] Google’s dataset and ours tetris-

seed and tetri-hyper datasets. I finish off with some definitions of the metrics and data

augmentation techniques that have been used.

A model based on neural networks uses a series of mathematical operations to modify

its weights during training. This process establishes structure in the weight space. Due

to the dimensionality of the environment, the space is going to be sparse. Therefore, it

may be difficult to establish relationships between models and to understand the inter-

actions. Attention-based architectures have the potential to learn the relationships that

exist among weights. Multi-head attention and positional embeddings both provide in-

formation about the relationship between different embeddings. Besides, the transformer

encoder architecture does not suffer from long dependency issues and it is suitable for

domains with a large amount of training data. Data augmentation techniques such as ap-

plying Gaussian noise, erasing input sequences and applying permutations (they do not

modify the functioning of the model) have been studied.

3.1 Attention auto-encoder I (AttnAE I)

Attention mechanisms have been used in a wide variety of tasks. In recent years the well-

known Transformer architecture has been used and adapted to different fields due to its

great capacity to work well. For this reason we decided to use the encoder of the complete

model as the main block of our architecture to compute the attention. The main block

does not reduce the dimensionality, and it also needs all input embeddings Zi to be the

same size. For this reason, the difficulty to use it lies in the methodology used to adapt

or translate the model weight information into a series of embeddings.

In previous works [1] [2], the input was defined as a vector of a concatenation of all the

weights of the model. In our case, a criteria has been defined to separate the weights

to generate a sequence of embeddings that represents our model. Depending on how the

weights have been transformed into these embeddings, they are described as follows:

17

• Neuron: Each weight is passed through a Multi Layer Perceptron (MLP) to obtain

an embedding of size dmodel.

• NeuronGroup: All the wheights that compose each neuron are mapped into an

embedding of size dmodel. In case the model is a convolutional neural network (CNN)

then all the weights of each kernel are flattened and are used as a group. Biases are

included in its corresponding group/kernel weights added at the end.

• Layer: All the weights of all neuron for each layer are mapped into an embedding

of size dmodel. In case the model is a convolutional neural network (CNN), then all

the weights of all kernels for each layer are used as a group.

Figure 4: Model architecture used in the tetris dataset. The weights of this model at
different checkpoints is considered one sample of the tetris-seed dataset. The colours

shown refer to the NeuronGroup’s embedding system (an embedding will be generated
from all the weights corresponding to each of the neurons). Colors refer to the

embeddings in figure 5.

Each group of weights for a model is encoded with a different MLP to a fixed size dmodel (see

Figure 5). After the transformer encoder, all the dmodel embeddings are concatenated. The

function fseq2neck is defined as a MLP of one layer from the size length sequence∗d model
to the size of the bottleneck. With this approach we have to be aware of how it scales

as the length of the sequence and size of the embeddings increases. The reason is that

with this structure the dimension of all the embeddings must be reduced to the size of

the bottleneck. For large models this could be an issue becasue the dimensionality of the

function fseq2neck should be increased. What it would be doing then is using a usual auto-

ecoder MLP, where attention mechanism has been used to generate such a vector. In short,

attention would be simply added before performing a regular dimensionality reduction.

During all the N blocks applied in the transformer encoder it does neither reduce the

dimensionality nor telling the model to summarize the key features of each embedding.

The best results were obtained by forcing the bottleneck to have values between -1 and 1

by applying tanh function on it.

18

Figure 5: Attention encoder used to map weight’s vector to a smaller latent space
embedding. The number of input embedding into the transformer encoder remains

exactly the same at the output of it.

In order to recover again the input vector from the bottleneck, a different MLP is defined

from the neck size to dmodel size. We have then n (where n is the length input embedding

sequence) linear layers to generate the input embeddings to the decoder transformer en-

coder block. Afterwards, each of the embedding Z
′
i is mapped to the correspondent group

of weights that it belongs to.

For example, if neuronGroup is being used, each embedding Z
′
i would contain the neces-

sary information to be able to recover the weights corresponding to that embedding. For

each of the embeddings a MLP is used to transform it back to the weights. For example,

the Z
′
1 would be converted back to the first 16 values. With this approach the model is

forced to learn attention in order to be able to capture information of the other neurons

in the reconstructed vector.

Figure 6: Attention decoder used to map bottleneck to the reconstructed weight’s
vector. This architecture forces the model to use attention in order to capture

information of other groups.

19

3.2 Attention auto-encoder II (AttnAE II)

In the case that the datasets contain architectures of different lengths, the previous ar-

chitecture cannot be used, because it would be necessary to train a specific embedder for

those new weights. In addition, if the models are very large, the function fseq2neck will

be very complex, and the difficulty will be focused on a standard auto-encoder. So the

previous architecture does not scale and is not flexible enough to deal with variable input

size models. Expanding the idea from vision transformer (ViT) [7] and BERT [8] (where

special token is applied to represent the meaning of the entire model), we have introduced

some changes in the input embedder and the way we compute the bottleneck.

Figure 7: Attention encoder II. It uses unique embedders for each group of weights. It
implements sine/cosine position encoding as well as Lk tokens to generate global

embeddings of the models.

Depending on the Encoder type, the embedders will end up slightly different. In the case

of the NeuronGroup, a single MLP is defiend for each type of neuron. In the tetris-seed

dataset (described in section 4.2)there are two types, the first layer (where each neuron

has 16 weights) and the second layer (where each neuron has 5 weights). In this particular

case, two linear mappings will be learnt from sizes 16 and 5 to dmodel embedding size,

called MLP1 and MLP2.

In order to make this step as scalable as possible being able to use different model sizes,

sine/cosine position embedding have been used. Taking into account that in an auto-

encoder setup the size of the bottleneck needs to be reduced with respect to the input

vector, with a transformer encoder the size is not actually being reduced, because the

input and the output are exactly the same sequence size. Therefore, the interpretation of

the output of the autoencoder has been changed:

20

• Lk learneable embeddings have been defined which are concatenated at the input

sequence. We cannot take any other embedding from the input sequence because

its output is the token model’s representation. We add a token which has no other

purpose than being a model-level representation. After N blocks of the transformer

encoder, we are going to take as output only the corresponding embeddings to the

ones we introduced. In essence, we can understand these learnebale embeddings as a

way of telling the model that those embeddings are not actually the information of

the input model, but to encode the entire model during each block of the transformer.

• In order to generate the bottleneck, the function seq2neck is a linear layer from the

concatenated Xk embeddings to the size of the neck.

This setup is able to deal with different layer sizes without changing the architecture.

The size of the compression can be changed in the transformer encoder by varying the

number of Lk tokens. Due to the domain field, it will be very possible to have to deal with

very large sequences. In this case the implementation of Reformer [9] for fast attention

computation can be done. They replace dot-product attention by one that uses locality-

sensitive hashing, changing its complexity from O(L2) to O(LlogL), where L is the length

of the sequence. In case it is needed to increase the number of transformer encoder blocks

N , reversible residual layers are used instead of the standard residuals, which allows

storing activations only once in the training process instead of N times. We have not

implemented it in the proposed methodology.

For the decoder, a similar approach may apply, a MLP may be mapped from the bottle-

neck to embedding of d model size plus sine/cosine position embedding. In this case the

learneable embeddings have not been used due to the fact that the information is not be-

ing compressed. The length of the sequence is exactly the same used to encode the model.

From the output of the transformer encoder block a MLP is used for each type of neuron

that is going to be reconstructed. In our example, each Z ′n is directly the compressed

information representation embedding to reconstruct each GroupNeuron. Afterwards, all

the output vectors are concatenated to reconstruct the input vector.

21

3.3 Data augmentation

Generally to be able to train models with many parameters, we usually need very large

datasets. One way to be able to get new samples is by using data augmentation techniques

applied at the existing dataset.

In the domain of neural networks, one method of being able to generate new samples

without modifying their behaviour is by performing permutations among the neurons

within a same layer.

With Li the number of neurons at each i of N layers N ∈ N in a deep fully connected

network, it can be generated up to
(∏N−1

i=1 Li!
)
− 1, forN > 1 permutations without

affecting its operation. Same procedure will be applied when using convolutional neural

networks (CNN) on the order of the kernels. When applying permutations layer-wise, the

order of the weights of each neuron of the following layer must change accordingly to the

permutation applied before.

3.4 Manifold Generation and Visualization

UMAP vs. t-SNE The main difference between t-SNE and UMAP is the interpretation

of the distance among clusters. t-SNE preserves local structure in the data. UMAP claims

to preserve both local and most of the global structure in the data.

In t-SNE the distance does not mean anything, close proximity is highly informative,

distant proximity is not very interesting and cannot rationalise distances, or add in more

data.

On the other hand UMAP is faster to compute than tSNE. It can preserve more global

structure than tSNE, it can run on raw data without PCA preprocessing, an allow new

data to be added to an existing projection. Instead of the single perplexity value in tSNE,

UMAP defines nearest neighbours as the number of expected nearest neighbours and

minimum distance as how tightly UMAP packs points which are close together.

For these reasons, we used UMAP as it can cope with non-linear scaling and can reduce

to 2D well. Due to the dimensionality of the domain the difference in time of the two

methods is of great importance. In all the representations of the models in 2D visualiza-

tions they correspond in applying UMAP reduction up to two components. Where the

first component is the x-axis and the second component is the y-axis.

22

4 Experiments and results

Training neural networks is generally assumed to impress a pattern in the parameter

space, determined by dataset, task and training regime. The main goal is to understand

the relationships that exists among neurons. From this knowledge we expect that it helps

in a wide variety of downstream tasks. To investigate the weight space for patterns, we

apply representation learning on three datasets (tetris-seed, tetris-hyper, and google). On

each dataset, we present results of weight reconstruction, accuracy prediction and hyper-

parameter classification. On the tetris-dataset we exapand the downstream tasks to be

computed on the compressed embeddings generated by the auto-encoder setup. The ex-

periments and results obtained in the different sections will be presented subsequently.

They have been separated into two main groups, the experiments performed in the tetris

datasets and the experiments performed in the Google dataset.

4.1 Metrics

4.1.1 Signal-to-noise ratio (SNR)

Signal-to-noise ratio is defined as the ratio of the power of the input vector to the power

of the distortion injected noise. Logarithmic decibel scale has been used due to very wide

dynamic range of the input.

SNRdB = 10 log10

(
Pinput

Pnoise

)
; Px = E[X2] =

1

N

N∑
i=0

x2i (1)

In order to perturb different signals in our setup, we decided to use Gaussian noiseXnoise ∼
N (0, σ2) . Taking it into account and using the expression described in 1, we can define

sigma as follows:

PXnoise
= E[X2

noise] = σ2
noise where σnoise(Pinput, snr) =

√
Pinput · 10−

snrdB
10 (2)

Where σnoise is computed for a given input power and the desired signal to noise ratio to

be applied.

23

4.1.2 Coefficient of determination score (R2)

R2 is a statistic that provides information about the goodness of fit of a model. In regres-

sion, the R2 coefficient of determination is a statistical measure of how well the regression

predictions approximate the real data points. Non-positive values indicate that we are not

doing better than fitting a constant predictor (horizontal hyperplane), and values close to

1 indicate that the regression predictions perfectly fit the data. This implies that 100%

of the variability of the dependent variable has been accounted for.

R2 = 1− MSEres

MSEtot

= 1−
∑

i(yi − ŷi)2∑
i(yi − ȳ)2

(3)

R2 score is scale invariant and multiplying the outputs by a constant will not change the

metric. In essence, the coefficient of determination is a relative measure which compares

the MSE of the Model to the MSE of a constant prediction.

4.2 Dataset exploration

In this chapter, we will start off with the three datasets used in the thesis (Google ,

tetris-seed and tetris-hyper datasets), continue with its explanation and describing its

properties. Public datasets already exists for neural networks trained on popular vision

datasets as described in Chapter 2, although, it is for its complexity that only the google

dataset [1] has been picked and we have worked on a smaller custom generated datasets,

either to validate code as well as to better understand the results due to the reduction in

size.

Figure 8: Tetris pieces used to generate tetris-seed and tetris-hyper datasets on the
classification task. This representation has been adapted into a color space images. The
pictures used in training are composed of one channel images where the background is

white and the pieces are black.

24

The custom tetris dataset is designed to be much more tractable in terms of complexity

and size. It is composed of models of fixed size (two feed forward layers, five and four

neurons each, respectively). The images on which these models have been trained were

also generated. It is composed of four tetris pieces in a 4 by 4 black-and-white pixels

setting. The models were trained to classify which piece each image had. The models

have been trained for 75 epochs storing each checkpoint of a vectorized version of size 100

(model’s weights have been flattened).

Dataset Model type Samples Parameters Datsets trained Model diferences

Google [1] CNN ∼1,1M 4970

Mnist
Fashion mnist

Cifar10
Svhn

Optimizer
Init method
Activation

Tetris-seed FCN ∼75K 100 Tetris shapes Init seed

Tetris-hyper FCN ∼105K 100 Tetris shapes
Init method
Activation

Table 1: Dataset properties. Comparison between Google and tetris datasets.

The google dataset consists of a 120k models trained on Mnist, Fashion-mnist, cifar-10

and svhn equally distributed. For each model trained there have been stored 9 checkpoints

at epochs 0, 1, 2, 3, 4, 20, 40, 60, 80 and 86. The difference between trainings are the

initialization function (Random Normal, Truncated Normal, glorot normal, he normal,

orthogonal) and the activation function (relu, tanh). Same seed have been used for all the

trainings.

In the following model representations Uniform Manifold Approximation and Projection

for Dimension Reduction (UMAP) has been used to generate two-dimensinal plots. In all

representations, the x-axis and y-axis refers to the first and second components. In the

following graphs I do not differentiate between different trainings, so all models and their

different checkpoints will be shown as points. All plots have been generated using the

same hyperparameters with minimum distance set to 0.1, number of neighbours set to 50

and using euclidean distance function.

25

4.2.1 Tetris-Seed dataset

In order to generate the representations, the same methodology used in previous studies

has been used, where all the weights are concatenated in a single vector. Each model is

composed by a single vector of size 100. In addition, a statistical vector has been gener-

ated (as [1] used), computed on the original vector, obtaining a new vector of dimension

7 (mean, variance and percentiles 1,25,50,75,99). In all the representations each dot cor-

responds to a model at specific epoch, meaning that each model trained over 75 epochs

will be represented as 75 points in the space.

Figure 9: UMAP Representations of the tetris dataset. Color heatmap ranges from blue
color for samples which have low test accuracy to yellow color for the models that
achieved high performance. Left image is the projection from the weights (size 100
values) into two dimensions. Right image is the projection from the concatenated
statistics of dimension 7 (mean, variance, and percentiles 1,25,50,75,99) into two

dimensions.

UMAP has been applied to the dataset represented by the vectors containing all the

weights of dimension 100, and to the dataset represented by vectors composed of the

statistics of dimension seven. In the first case, short trajectories (little worms) for each

model have appeared. These worms are not interconnected among them. However, when

the UMAP representation of the pre-proceces weights (basics statistics) are projected, a

clear trajectory of the models can be seen, which shows a clear correlation between the

statistics and the model performance. Statistics of the models’ weights capture enough

information in order to predict the test accuracy. This behaviour could explain why other

works [1] are able to predict accuracy up to 0.99R2 score from the model’s statistics.

26

The plots showed are UMAP mappings from hundred to two dimension which could

introduce some undesirable results. For this reason all the plots have been computed

several times. Although correlations do not imply causality between two variables, Pearson

(assesses linear relationships) and Spearman (it assesses monotonic relationships whether

linear or not) correlation between accuracy and each of the statistics of the input vector

were computed (see Figure 2). In addition, a linear predictor has been used for each of

the values generated by each statistician to predict accuracy. Using linear regression the

best result achieves up to 0.86 R2 score when using all the statistics values. Using only

the percentile 25 it can be obtained 0.82 R2 score (see Table 2). In general using each of

the basic statistics alone are high correlated with the accuracy. Although two correlation

methods have been used, the results are similar in both cases.

Figure 10: Representations of basic statistics tetris dataset. Color heatmap ranges from
blue color for samples which have low test accuracy to yellow color for the models that

achieved high performance.

The statistics that have obtained a higher correlation for each of the two metrics used

have been selected. The results show that the models with a smaller 0 and 25 percentile

and a higher variance have a better performance (see figure 10). We need to be cautious

in order to avoid learning this statistics to predict accuracy (this could be a shortcut)

if our goal is to learn the weights’ structure that there is behind. This could lead us

that our architectures learn this statistics instead of learning the structure. In short, out

intention is to understand the reason why this correlation is produced and what causes

such dependence. Because although the best models are characterized by a high variance,

this does not imply that this is the cause of their good performance.

27

Correlation Linear regression
Pearson Spearman MSE R2

Mean -0.274 -0.2 5.43e-3 0.066
Variance 0.86 0.88 1.5e-3 0.74
Percentile 0 -0.86 -0.85 1.5e-3 0.74
Percentile 25 -0.91 -0.9 1.1e-3 0.82
Percentile 50 0.28 0.22 5.3e-3 0.082
Percentile 75 0.83 0.86 1.8e-3 0.69
Percentile 100 0.71 0.72 2.9e-3 0.51
Stack All - - 0.8e-4 0.86

Table 2: Pearson and Spearman correlation between the statistics of the model weights
and the accuracy prediction of the model on the tetris-seed dataset. Linear regression

applied for each of the statistics and also stacking all as seven ordered variables.

UMAP representation of neuronLayer and neuronGroup approaches have been generated,

Figure 11. In this case the basic statistics have been computed for each embedder type

and concatenate all the values in a single vector. In the first case the vector has been

composed by the concatenation of seven statisticians for each one of the layers 2x7 = 14,

and in the second case computed by each one of the weights that conform each neuron

9x7 = 63. In both cases the shapes does not show a clear pattern for accuracy prediction.

Figure 11: UMAP reduction of dataset tetris-seed using basic statistics applied at each
neuronGroup (left image) and applied at each layer (right image). Heatmap ranges from
blue color for samples which have low test accuracy to yellow color for the models that

achieved high performance.

28

4.2.2 Tetris-hyper dataset

Same scheme described in Tetris-Seed has been used to present the following results.

UMAP representations have been generated on the complete weight vector and on the

statistics vector. This dataset was generated using two types of activation functions and

six different initialization procedures, for this reason we also present the results of accuracy

and its properties.

The UMAP representations of the model samples directly from the weights show similar

results as described in the Tetris-Seed dataset. In this case, as different architecture and

training procedures have been used, I also have plotted the models which have comformed

by relu or tanh as an activation functions. The statistical vectors present a better sepa-

rability of the classes both according to the accuracy of the models and to differentiate

the activation function used.

As seen in Figure 12, by looking directly to the model’s weights (top row) it is barely

impossible to define clear regions where the models differ. However, when the vectors

are used with the statistics the UMAP projection (bottom row) presents a more defined

pattern. In this case both models start at a similar point in the space and statistics of

the converged models changes due to updates during training depending on the usage of

relu or tanh. This allows them to derive into new and different shapes, which is easy to

classify them even by human-eye. Figure 12 shows how the weights are modified differ-

ently depending on the hyper-parameters and structure used. The trained models have

properties in the space of the weights that are characteristic of their characteristics and

that have been changed during their training. Depending on the nature of each one, its

impact will be more noticeable at the beginning (like the function used to initialise the

weights) or when the model has already converged (in general this will happen after a few

iterations).

Deep neural networks are sensitive to initialitzation [2] and slightly differences on some

hyper-parameters completely change the final optimized weights. The complexity of the

space where this models belongs could not be defined by just some statistics, slightly

different weights could end up with a model with completely different performance. For

a given distribution, if we take samples of it in order to generate models, only some of

them will be able to still predict the tetris pieces.

29

Figure 12: Top images are UMAP mappings directly from input vector of dimension
hundred to two dimensions. Bottom images are UMAP mappings from basic statistics of
dimension seven to dimension two. Color map of left images show accuracy score from

blue to yellow (low to high). Color map of right images show the activation function, red
to tanh and blue to relu.

30

4.2.3 Google dataset

The results showed in this chapter have been separated in four main groups depending

on the dataset in which the models were trained on. Although the MNIST group is going

to be discussed in detail, the same conclusions can be applied to the rest of the splits

(FASHION-MNIST, SVHN, CIFAR-10). The UMAP mappings are computed directly

from the input vector of dimension 4970 to two dimensions and from the concatenation of

the basic statistics described previously. Unlike the tetris-Seed and tetris-Hyper datasets,

the google dataset uses convolutions at the beginning of the network (the properties could

be different than fully connected layers).

Unlike tetris-seed and tetris-Hyper datasets, the UMAP embeddings applied directly to

the input weight vectors show clear patterns of the models’ trainings (see Figure 13). It

can be seen kind of individual leaves which at the beginning achieves low accuracy, but

as the models are being trained, the accuracy grows. As expected, Figure 13 show how

different distributions in a different position in the space achieve similar results in terms

of accuracy. This result could be understood as models that have converged in different

relative minimums but maintain the same performance. In case all trainings achieved the

absolute minima (considering there is only one possible absolute minima) all the models

should then converged to the exact same weights being mapped closely in the UMAP

transformation, which in reality this is not going to happen.

In the activation and initialization plots (Figure 13), each of the leaves belongs to a

different properties of the architecture. Depending on them the weights are modified

accordingly. There are some models that do not flourish which are spread out in the

space. Similarly, the models at the beginning of the training with the same initialization

procedure are close (different samples of the same distribution are mapped close while

different distributions are mapped far away). As the training starts, each of the properties

changes the way the updates in the back propagation affects the final distribution, creating

this regions where it can be easily seen properties at human-eye level.

Using the statistics vector of the model’s dataset (Figure 14), the interpretability has

changed. Each model started in a different position at the beginning, but as is being

trained, the models start to join. Therefore the results shows that is easier to predict

the accuracy of the models from the statistics. However, it seems more complicated to

distinguish the properties of the model or how they were trained.

31

Correlation Linear regression
Pearson Spearman MSE R2

Mean -0.26 -0.20 0.11 0.07
Variance 0.18 0.72 0.11 0.03
Percentile 0 -0.40 -0.73 0.099 0.16
Percentile 25 0.36 -0.56 0.10 0.13
Percentile 50 -0.05 -0.09 0.12 0.002
Percentile 75 0.30 0.52 0.11 0.09
Percentile 100 0.40 0.73 0.099 0.156
Stack All - - 0.08 0.30

Table 3: Pearson and Spearman correlation between the statistics of the model weights
and the accuracy prediction of the model on the google dataset. Linear regression
applied for each of the statistics and also stacking all as seven ordered variables.

As explained in the tetris datasets, Pearson and Spearman correlation have been applied

between basic statistics and accuracy (see Table 3). Correlation values between those are

really high. Same pattern can be seen in previous smaller datasets. In this dataset the

model trained has a difference on the architecture (in this case is a convolutional neural

network). Nonetheless, we are able to predict accuracy up to 0.3R2 score with linear

regression from the concatenation of the statistics. Comparing results with the tetris-

dataset, the correlation values between statsitics are different, meaning that I cannot

generalize which statistics better define the overall accuracy score.

Overall, these results suggests that having information of the distribution of the model’s

weights give us a lot of information of the model’s behaviour. This shortcut can lead

us to fail when defining and designing architectures. If computing mean and variance is

enough for achieving good performance, the model will end up learning this transforma-

tion instead of learning the relation between weights. Besides, permutations as a data

augmentation will not help because this data augmentation is invariant to the mean and

variance transformations.

32

Figure 13: UMAP embedding applied directly from the input vector of dimension 4970
to two dimensions. Top left image show the accuracy of each sample (low accuracy in

blue, high accuracy in yellow). Top right show the checkpoint during training
(checkpoints: 0-magenta, 1,2-green, 3-blue, 40,60,80-red, 86-yellow). Bottom left image
show the activation function (relu-magenta, tanh-green). Bottom right image show the

inisialitation function (RandomNormal-red, TruncatedNormal-blue, glorotNormal-green,
heNormal-magenta, orthogonal-yellow)

33

Figure 14: UMAP embedding of statistics from the input vector of dimension 7 to two
dimensions. Top left image show the accuracy of each sample (low accuracy in blue, high

accuracy in yellow). Top right show the checkpoint during training (checkpoints:
0-magenta, 1,2-green, 3-blue, 40,60,80-red, 86-yellow). Bottom left image show the

activation function (relu-magenta, tanh-green). Bottom right image show the
inisialitation function (RandomNormal-red, TruncatedNormal-blue, glorotNormal-green,

heNormal-magenta, orthogonal-yellow)

34

4.3 Tetris-seed and tetris-hyper datasets experiments

We begin our experiments on the tetris-seed and tetris-hyper datasetes, as they are the

smallest dataset. On both datasets, we have performed compression and accuracy predic-

tion tasks with AttnAE I and AttnAE II architectures as well as vanilla DNN and PCA

based auto-encoders. In a further step, we also present information regarding the inter-

pretability of the attention score maps as well as the robustness to noise when performing

compression tasks.

To establish the existence of patterns and in an attempt to learn useful embeddings, we

learn incomplete auto-encoders with a compression ratio of 5:1 in all experiments (from

input vector of size 100 to a vector size of 20). The dataset was divided into two groups

of 50% of the samples for each group. I have also ensured that each model with all its 75

checkpoints are to the same corresponding split. All the values presented are computed

on the test split. The number of models for each checkpoint are equally distributed on

both splits.

We investigate whether auto-encoder for weight reconstruction yields embedding spaces,

that are useful for general downstream tasks and preserve information on the samples

embedded. To evaluate the amount of information that is preserved, accuracy prediction

was performed using linear regression and vanilla multi-layer perceptron (MLP).

35

4.3.1 Model weights reconstrucction

For the AE reconstruction task, we compare several architectures. As baseline, we consider

PCA and a MLP-based Auto-encoder. Further, we apply the transformer-based architec-

tures we propose in the previous section, the first version (AttnAE I) and the second

update (AttnAE II) using the general context tokens concepts used in Bert and ViT. To

evaluate the quality of the reconstruction we have used the metrics R2 between the input

vector and the reconstructed vector of all the samples of the test set.

Each sample of the dataset is represented by a vector where all the weights are concate-

nated. The vanilla auto-encoder uses this vector directly. However, AttnAE I/II are de-

fined to work with embeddings which represents the models. The neuronGroup approach

(where all the weights associated with each neuron are used to generate an embedding)

was used to encode the input data. This decision was taken due to its better performance.

It was considered a reasonable form to spread the information without generating too

many embeddings (an embedding for each weight) or losing information among different

neurons (generating one embedding for all the weights for each layer).

Deep neural networks are able to modulate nonlinear functions, therefore they should

obtain at least the same performance as PCA, which relies on a linear auto-encoder.

All experiments were trained for 8000 epochs (except PCA). The experiments where

data augmentation was applied only permutations on the weights of each model were

used as permutation. As a reminder, this augmentation generates equivalent samples

without changing the performance. 120 possible permutations were generated and applied

randomly during training.

Architecture
Embed

Size
Parameters
(N, dmodel)

Model Size
Data

Augmentation
R2 Test

Reconstruction
PCA 20 - - No 0,352

10 layer MLP 20 - ∼90k Permutations 0,756
AttnAE I 20 1, 20 ∼16k No 0,643
AttnAE I 20 1, 128 ∼80k Permutations 0,830
AttnAE I 20 2, 128 ∼180k Permutations 0,843
AttnAE II 20 4, 128 ∼100k Permutations 0,865

Table 4: Model performance in weight reconstruction task. PCA computed with a linear
kernel.

36

The results of our experiments are presented in Table 3. All non-linear models have

achieved better performance than linear auto-encoder (Principal Component Analysis for

reconstruction in a setup 100-20-100). Comparatively, the two attention-based versions

(AttnAE I/II) achieved better scores than regular multi-layer perceptron auto-encoder

(10 layer MLP for the encoder and symmetric decoder). The AttnAE II model achieved

the best reconstruction score. In both cases it was necessary to use permutations as

data augmentation techniques in order to improve the results, otherwise the model suffers

from huge over-fitting and performance is considerably lower. In the case of MLP, without

permutations, values around 0 R2 were obtained. Without data augmentation the variance

could not be predicted and only the mean value was forecasted.

The results shown in Table 4 clearly show how transformer-based systems achieve superior

results in reconstruction. It has also been proven that they have a higher convergence

speed than the regular vanilla MLP auto-encoder as seen in Figure 15. In the case of

AttnAE II, it was able to work with models that had not seen before with a different

number of weights. However, in this comparison the whole dataset is composed of a fixed

architecture. The fact that AttnAE II uses the same encoder for each type of neuron

greatly reduces the size of the model and scales better as the input has more neurons. For

the model to converge it is necessary to increase the number of transformer encoder blocks

so that the model-level representation token is rich enough to perform the compression.

This behaviour may be due to the reduction in the number of trainable parameters used

in the embedder to generate the tokens that describe the input models. That is the reason

for increasing the complexity in the transformer encoder block where the compression is

generated. This combination enables to reduce the complexity of the encoding of the input

with the disadvantage of increasing the number of transformer encoder blocks needed to

make the model converge.

The main hypothesis is that as the models are being trained, their weights will get struc-

tured depending on different parameters, such as which data have been used for training,

which architecture has been chosen or which hyper-parameters have been selected. There-

fore, based on the good functioning of AttnAE I/II architecture that uses attention, the

hypothesis is that it is possible to better identify and capture the relationship between the

embeddings. In these experiements, we used neuronGroup to generate an embedding from

the weights that composes each neuron. We expect that the reconstruction performance

increases as the weights gain more structure.

37

Figure 15: Left figure: Reconstruction R2 score performance over epochs. Each dot
represents the score computed only for models that belongs to the selected checkpoint in

the test split. The model has been trained with models from all epochs without any
distinction. Right Figure: Model reconstruction R2 score performance on the first 1k

epochs training. Results given in the test split.

To get a better understanding where structure exist, we evaluate the reconstruction per-

formance over the epoch of the samples (see Figure 15). The AttnAE II model with 100K

parameters was chosen to evaluate the reconstruction R2 score. The test split consists of

models belonging to different epochs. The results presented in Table 4 were computed on

all the samples without differentiating in which group they belonged. The model used was

trained with samples belonging to all groups without distinction.

The reconstruction R2 in models belonging to the firsts epochs is considerably lower than

the models that have already converged (the models are expected to be converged on

the last checkpoints). The weights of the models in the first epochs are samples from a

known distribution (they have not gotten structures from their properties). This implies

that we are able to predict the mean of the population, but it is difficult to predict the

exact realisation from the given input. Even knowing the distribution we are sampling

from, the best it an be done is to sample from the same distribution so the reconstruction

predictions will match the mean and will have the same variance.

This behaviour can be attributed to the difference in structure that exists between the

models with random weights and those that have acquired structure during their training.

This results validate the idea that at the beginning there is no structure among weights

(just samples from distribution) that is why we cannot understand and capture the relation

because there have not been place any back-propagation update yet. However, as the

training progresses, the weights are updated in a particular manner depending on wide

38

variety of parameters (such us the dataset to train it or the hyper parameters used)

giving them structure. Our hypotesis is that more structure in the weights space allows

the attention mechanism to capture this interaction and therefore it is able to reconstruct

the weights (because these values are not random samples from a given distribution).

39

4.3.2 Downstream tasks: accuracy and hyper-parameters prediction

We want to explode the interaction between neurons to better define properties of the

models and be meaningful in downstream tasks. In this section, we explore the accu-

racy prediction and hyperparameters classification (activation function and initialization

method) on the tetris-seed and tetris-hyper datasets. To evaluate what properties are

encoded in the embeddings learned for reconstruction (for each input vector of size 100

an embedding of size 20 from the bottleneck is generated), we apply linear probing and

vanilla MLP from the embeddings to accuracy. Performance is measured using the R2

score metric for the entire test set.

Mainly two approaches were used to construct the samples in the two datasets. On the

one hand, a linear regressor was used to predict the accuracy in two modalities: Directly

from the weights’ vector and on a vector generated with the concatenatenation of basic

statistics. In the latter group, the statistics are compared by applying them directly to

all the weights in each layer and to the neuronGroup approaches. On the other hand, the

AttnEnc architecture was used (adapted from the AttnAE I/II) and the three different

methods of grouping the weights have been compared to generate the embeddings (layer-

wise, neuron and neuronGroup).

In order to tackle accuracy prediction and hyperparameters classification tasks, the ar-

chitecture AttnAE was adapted. To adapt the architecture the encoder part was used (a

neural network that transforms the embeddings that describe the model into a reduced

fixed size embedding). In order to be able to make predictions, we have adapted the last

layer from the bottleneck to fit the requirements:

• Accuracy prediction: From the bottleneck vector (generated by the encoder block

from AttnAE) a linear layer and sigmoid function is applied. The model generates

for each sample a prediction in the range [0, 1] as accuracy is defined in this range.

• Hyper-parameters classification: From the bottleneck vector (generated by the

encoder block from AttnAE) a linear layer of size the number of possible classes to

be predicted for each group is used. Afterwards, a softmax function is applied to

force the output to be a probability distribution. The class chosen is the one that

has achieved greater output value or probability.

40

Architecture Input type Data Augmentation
Accuracy R2

tetris-seed
Accuracy R2

tetris-hyper
Linear regression weights No 0.48 0,23

Linear regression
weights

statistics
No 0.86 0,67

Linear regression
weights

statistics
layer-wise

No 0,87 0,74

Linear regression
weights

statsitics
neuronGroup

No 0,89 0,74

MLP
(4 layers)

weights No 0,87 0,71

Attn Enc
weights

layer-wise
No 0,87 0,72

Attn Enc
weights

neuronGroup
No 0,92 0,87

Attn Enc
weights

neuronGroup
Permutations 0,95 0,89

Table 5: Accuracy prediction on tetris-seed and tetris-hyper datasets. Comparison of
models using directly the weights and using the basic statistics transformation.

As shown in Table 4, applying a linear regressor on the weights’ vector to predict accuracy

has obtained 0,48 R2 and 0.23 R2 for tetris-seed and tetris-hyper datasets. The usage of

the statistical transformation with neuronGroup encoding has increased the results up

to 0,89 R2 and 0,74 R2 respectively. Results reported on previous works concluded that

pre-processing the weights by computing its statistics layer-wise helps on predicting the

accuracy. In our datasets, computing the statistics layer-wise did not give any advantage

with respect to the global statistics.

We extend these results by applying our attention encoder architecture, which outperforms

the linear regression results in all experiments. This results were expected due to the

fact that our model is able to map non linear relations and we suppose the interactions

among neurons are highly non linear. In our approach we expect the model to learn in

an unsupervised manner the interconnections by learning from the neuron’s relations. We

have not used neuron encoder because of the poor scalability that this approach offers

when dealing with bigger models. We need some criteria to reduce the size of the weight

vector. From Table 5 we can state that treating all the weight for each neuron gives us

the best performance. Using permutations in training helped to make the model more

accurate and gain in terms of generalization.

41

Architecture Input type Data Augmentation
Activation
(F1 score)

Initialization
(F1 score)

Linear regression weights No 0,82 0,32

Linear regression
weights

statistics
No 0.80 0,42

Linear regression
weights

statistics
layer-wise

No 0,80 0,47

Linear regression
weights

statsitics
neuronGroup

No 0,87 0,45

MLP
(4 layers)

weights No 0,90 0,39

Attn Enc
weights

neuronGroup
No 0,91 0,38

Attn Enc
weights

NeuronGroup
Permutations 0,97 0,46

Table 6: Hyper-paramaters prediction on the tetris-hyper dataset. Comparison of models
using directly the weights and using the basic statistics vectors transformation.

Performance is evaluated using F1 score.

The tetris-hyper dataset adds additional complexity and makes both reconstruction and

property prediction harder. It is composed of models trained with two different activation

functions and six different ways of initializing the weights. By using a log linear predictor

it has been possible to predict in a very notable degree the activation used. In the case

of the initialization the best combination has been achieved using the vector of layer-wise

computed statistics. The attention-based model has obtained the best classification using

neuronGroup encoding (the other two methods of coding the models have obtained a

lower value and have been omitted) surpassing the vanilla MLP. Both models are formed

by approximately 100K parameters.

The fact that using a linear model on basic statistics of the weights has been the approach

that best predict initialization could be due to its nature. Statistics are a useful method

of determining the density functions used to generate the weights. Using transformers and

permutations such as data augmentation has achieved a slightly lower result. We compare

these findings again to Classifying the classifier: dissecting the weight space of neural

networks [2], who present that in the classification section, better results are obtained for

the activation functions than for the initialisation (different datasets and different classes

for each of the categories).

42

In the chapter 4.2.2 the architecture AttnAE II is used so that in a self supervised manner

the initial vector is reconstructed. The thinnest layer called bottleneck is formed by a

vector of length 20. The model trained for reconstruction has been used to transform the

tetris-seed dataset into the respective latent space vectors from the bottleneck. Structure

and information is generally lost when the weights that compose a model are compressed.

However, depending on the task, it is not necessary to have the full initial available

information and there may be irrelevant or highly correlated variables.

A linear regressor and a vanilla MLP were trained to predict accuracy from the AE

embeddings. The AE embeddings of tetris-seed dataset are formed by exactly the same

number of samples but instead of being stored in a 100 length vector they have been

compressed with a 5:1 ratio. The same split train-test has been used to train the accuracy

predictors. Only data augmentation techniques have been used in the training of the

reconstruction model (which has then been used to compress the dataset). The accuracy

prediction task has not been trained end-to-end with the reconstruction architecture. The

metric used to measure the prediction is the R2 relative score.

Architecture Input type Data Augmentation
Accuracy R2

tetris-seed

Linear Regression
bottleneck
(size 20)

Used only when training
the auto-encoder architecture
to generate the bottlenecks

0,54

MLP (3 layers)
bottleneck
(size 20)

Used only when training
the auto-encoder architecture
to generate the bottlenecks

0,85

Table 7: Accuracy prediction score from the bottlenecks obtained on the task of
reconstruction. The model used to generate this bottlenecks is the AttnAE II achieving

an R2 score reconstruction of 0,86

Using a linear regressor for accuracy prediction applied directly on all weights provided

a result of 0.48R2 score. However, if it is applied to dimension 20 compressed vectors

it has been possible to predict with a performance of 0.54R2. On the other hand, using

a non-linear method, better results have been obtained. In the latter case, the value

obtained is similar to those obtained with Attn Enc and a vanilla MLP using all the

available information. This means that by using aggressive compression (ratio 5:1), the

information needed to predict accuracy is only slightly lower than in the full space, at

least for this ratio compression.

43

4.3.3 Attention score maps interpretability

This section presents the attention score maps generated in the AttnAE I and AttnAE II

models for the entire range of models that composes the tetris-seed dataset test partition.

In addition, the correlation between them is shown, those that obtain the best score

and those that obtain the least score. Lastly, the noise robustness of the model used for

reconstruction applied in the weight vector and applied in the bottleneck is investigated.

One benefit of using attention mechanisms in a model is that the attention maps can

be investigated to gain insights in the model’s mapping. The attention score maps can

be understood as the amount of information needed to obtain from the corresponding

embedding. An advantage of using this methodology is that it is possible to investigate

existing relationships by interpreting the score maps. Models with lower accuracy tend to

have less structured weights. Since the AttnAE model uses the information among neurons

to perform different tasks, it should present different patterns in the attention score maps

depending on the accuracy obtained by each model. For this reason, the expected result

is being able to establish a correlation between connections of the models that belong to

the same range of accuracy prediction performance.

First of all, attention-based auto-encoders (trained for the task of reconstruction) were

used to reconstruct all the models of the test split. The three methods (neuron, neuron-

Group and layer) described in section 3.1 were used to encode each of the models, but the

neuronGroup was used for two reasons. Firstly because better results have been obtained

for the reconstruction task and secondly because it provides adequate amount of data to

be computed (using each neuron to generate an embedding is not suitable for computing

correlation with the 30,000 samples available in the test set).

Secondly, for each of the models, attention score maps corresponding to the four encoder

heads were stored. For the AttnAE I model, each of the attention score maps has a 9x9

size that represents the attention between the neurons. The first five correspond to the

first layer, and the following four to the second layer. In the case of the AttnAE II model

the maps have a measure of 10x10 where the first corresponds to the global context token.

44

Figure 16: Attention score maps row-wise. Each column represents each of the four
heads used. First row represents the scores from a sample with high accuracy. Bottom

row represents the scores from a sample with low accuracy. X and Y axis have nine
values because it is the number of embeddings used in the transformer encoder (five
neuron groups for the first layer and four neuron groups for the second layer). The

heat-map represents a gradient color between blue and yellow between 0 and 1 values

Different approaches of encoding the networks have been used but the results are similar in

all of them. The results presented correspond to the neuronGroup encoding. The attention

score maps in language tasks are composed of a diagonal with higher values and depending

on the connection with the rest of the words they are interconnected. However, in this case

the patterns do not coincide. Figure 16 shows that the attention in general is looking at the

last neurons, which seem to be more relevant to reconstruct the entire vector. Although

we were expecting to get human interpretation, we could not make any conclusion. Using

four heads rather than just one achieved better performance, however it does not translate

it to better interpretation, at least for the human-eye.

Using the AttnAE II model, no different patterns can be distinguished from the AttnAE I

model either. The only difference is that the values of the scores are not so concentrated,

obtaining more blurred values, but neither is there any visual similarity.

45

Attention score maps do not present a clear pattern identifying their direct relationship

between accuracy, structure and precision. For this reason we have computed Pearson’s

linear correlation between all the attention score maps. First, the score maps of all the

samples from the tetris-seed test partition dataset have been computed. The score maps

have been flattened to compute 1D Pearson correlation among all the samples. After-

wards, the symmetric correlation matrix has been sorted in ascending order (0 index for

the model that obtained the lowest accuracy value, 0.32 R2). Finally, the mean over neigh-

bourhood regions has been computed to decrease its size.

Figure 17: Correlation matrix of attention score maps of the first heads. The samples
used are from the test split.

The results presented correspond to the first head of the four used. In all heads the

results are very similar. Mainly, a diagonal corresponding to the autocorrelation of value

1 is observed. However, there is not a clear correlation between the models that obtain

better prediction accuracy (lower right corner of the correlation matrix) and respectively

with those of lower value (upper left corner of the correlation matrix). Certain correlation

dynamics can be appreciated, where certain proximate groups obtain similar correlation

values. In both plots it can be seen that the models that obtain a lower performance

are more correlated to each other, however there is no clear interpretation. The same

conclusions can be extracted for the case of the decoder’s attention block. In overall

terms, no clear correlation has been found that identifies that the model is attending

differently according to the structure of the weights.

46

In situations where model weights can be affected by distortion, for example in communi-

cations, it can be interesting to know how robust the model is to compress and decompress

these values in a noisy environment. It is also a form of understanding how it affects the

fact that there is structure in the weights, where the quality of the reconstruction can

differ depending on the checkpoint from where the model comes from (different weight

convergence). In order to further investigate the properties of transformer-based attention

auto-encoder and how it behaves under certain noise conditions, a comparison has been

made. Three options are proposed for evaluation based on the AttnAE model:

• Model trained only using permutations as a data augmentation technique in training

time.

• Model trained using permutations and applying a Gaussian noise of 10dB signal to

noise ratio (SNR) on the input vectors that build the model weights.

• Model trained using permutations and applying a Gaussian noise of 10dB signal to

noise ratio (SNR) in the latent space (reduced dimension vector, bottleneck)

In these three cases, two experiments were conducted. First, the R2 score of the reconstruc-

tion was measured on the test partition by applying noise to the input vector. Secondly,

the same approach was performed but in this case applying the noise in the latent space

vector (bottleneck of size 20). Finally a noise of 10 dB SNR has been selected (applied in

the latent space in the test partition) and the behaviour has been evaluated of the three

models mentioned for each group of chekpoints (a total of 74 checkpoints’ groups).

Figure 18: Comparison of attention auto-encoder models for weight reconstruction.
Reconstruction R2 score over different SNR when applying Gaussian noise on the latent

embedding (left image) and on the input vector (right image) in test time.

47

When noise is applied to the latent sapace (see Figure 18), two main regions can be

differentiated. The first one is found for low SNR values (the noise is high compared to

the signal) where the model that has not been trained with noise in any of the presented

methods obtains worse scores. The best model in this aspect is the one that has been

trained specifically for this task. Secondly, when the SNR is high (signal is considerably

higher than noise) the model that is able to obtain better results is the one that has not

been trained with noise.

On the other hand, when noise is applied directly to the vector of weights that define the

models, a slightly different behaviour is observed. In this case the model able to obtain

better results for low SNR values is again the one that has been entered with noise in the

input vector. However, when the SNR is high this last model obtains results practically

similar to the model that has not used noise in the training.

Figure 19: Comparison of attention auto-encoder models for weight reconstruction. Left
figure: Reconstruction R2 score performance over different Signal to noise ratio (SNR)

when injecting Gaussian noise on the latent embedding in test time. Right figure:
Reconstruction R2 score performance over different Signal to noise ratio (SNR) when

injecting Gaussian noise on the input vector in test time.

48

The results show the reconstruction model is very sensitive to noise. Even the models

that have been trained to take noise into account in their multiple configurations have

a low robustness to it. However, the model that was trained applying noise in the input

vector presents a middle point, improving when there is more interference and obtaining

practically the same results when there is no noise. The main conclusions are that the

weights are very sensitive for reconstruction tasks, where the AttnAE model is not able

to correctly capture the interactions.

The results presented previously refer to all the samples from all the checkpoints. However,

as the values for each of the groups are computed (Figure 20) it is possible to see a

difference in the results. The model that has not been trained with noise obtains a better

robustness in those models that obtained a low accruacy prediction (in general they

correspond to the groups of the initial checkpoints where statistically the weights have

not yet converged). However, when the model is evaluated for the groups that in general

have converged, the best model is the one that was trained to deal with noise in the latent

space, followed by the one that was trained with noise applied in the input vector.

In conclusion, the models that were trained with noise obtain a lower score for reconstruc-

tion mainly due to a significantly poor performance in the lower groups. However, if only

the converged models are considered (only the converged dataset samples, corresponding

to the highest checkpoints) and therefore have a higher structure, the noise-trained model

applied in the latent space is the one with the best capacity to capture the relationships

among neurons.

49

4.4 Google dataset experiments

As the last and most complex dataset, we apply my architecture on the published dataset

from Google [1] in their four splits of models trained on mnist, fashion-mnist, cifar10 and

svhn. Results presented in the tetris-seed and tetris-hyper datasets showed the capability

of the attention architectures to successfully work in this domain. The training times have

been significantly increased by working with a significantly larger and a more complex

dataset. In their work they did not neither present tasks of reconstruction nor hyperpa-

rameter prediction. In our case, we have tackled all these downstream tasks as well as the

accuracy prediction.

4.4.1 Model exploration and code validation

We begin with reproducing the results from the paper Predicting neural network accuracy

from weights [1] from the google paper described in the state of the art. I decided to

implement their approach to validate that the metrics and setup is working properly. In

[1] two technologies were used (deep neural networks and gradient boosting machines) to

predict accuracy. They also use two methodologies to perform the computation, using the

vector with all weights of each model concatenated and using a basic statistical vector.

The results presented by the authors show that both technologies work better using the

statistics.

In our case a vanilla MLP was implemented similar to the DNN presented in the paper

in order to predict accuracy of the model. In addition, we implemented different well

known basic architectures to see their behaviour in comparison. Since in our work we

have focused on the understanding of weights, we have only considered to use directly the

weights’ vector of the models. Except for my vanilla DNN, the other models (have been

designed to be able to deal with embeddings that represents the entire model) have used

chunks of the the weights’ vector. In this first approach the weights’ vector were splited

into equal size chunks. The results presented is using four chunks in total to represent

each sample. In all the models the accuracy prediction was achieved using one last neuron

plus a sigmoid function. All trainings used MSE as a cost function:

• DNN: Vanilla MLP of ten layers. Dropout set to 0.1 and no norm layers.

• GRU+Attention: Vanilla bidirectional GRU sequence to sequence. From the re-

sulting sequence attention layer has been used to generate a 128 size embedding.

50

• Transformer Encoder + MLP: After the transformer encoder seq2seq layer, all

the embeddings have been concatenated and a vanilla MLP has been applied.

• Tranformer Encoder* + MLP: Same approach used in the regular Transformer

encoder but in this case using sine/cosine position embeddings. For each of the

chunks a different MLP has been used to generate embeddings to feed the trans-

former encoder.

• MLPLayer + SUM: Different MLP have been used to generate each embedding.

Afterwards all the embeddings are equally added.

Architecture Model Size Input Type
MNIST
R2

SVHN
R2

Baseline
GBM

- weights 0,988 0,971

Baseline
GBM

-
weights

statistics
0,993 0,986

Google Paper [1]
Baseline

DNN
∼1.5-3.6M weights 0,980 0,931

DNN ∼1.8M weights 0,983 0,946
GRU+Attn ∼2M weights 0,985 0,948
Transformer

Encoder
∼2M weights 0,989 0,920

Transformer
Encoder*

∼54M weights 0,993 0,975
Our implementation

MlpLayer + Sum ∼800K weights 0,990 0,975

Table 8: Comparsion between results from Google Paper and our vanilla implementation
in the MNIST and SVHN splits. We have either not use cross validation nor different

realisations. Just for validation purposes.

The results in Table 7 indicate that, the reproduced DNN architecture obtained similar

results to those reported by the authors. Our custom vanilla DNN is in the range of model

size with respect to the baseline. Without entering into too many details, the different

architectures used obtain a very similar result. However, their functioning is different

compared to the vanilla DNN. The main property is that they work with tokens that

describe the models. This allows us to develop models capable of working with variable

inputs in size.

Table 8 it can be seen that regardless of the number of parameters of the models, similar

results are achieved. We cannot state that those models work the best for this domain

51

because we did not extensively fine-tune them. This scores make us think that with this

dataset (google dataset) it is really easy to predict the accuracy.

Taking into account that there is a wide variety of architectures, it is necessary an approach

that is able to work with variable input size. Moreover, since according to the first results in

Table 8 the models based on attention mechanisms work well in this field, we have decided

to explore into this direction. Since models can be very large, we have discouraged the

use of LSTM or GRU based systems due to the issue with vanishing gradients.

4.4.2 Model weights reconstrucction

In the dataset tetris-seed the reconstruction task has been performed using neuronGroup

to generate the tokens that describe each of the models. For this reason, it was decided

to use the same approach for the Google dataset. PCA (with linear kernel) was used

as the linear method and AttnAE II as the non-linear method. Permutations were also

used in the training split as data augmentation technique. The results were evaluated by

computing the R2 score between the reconstructed weights and the initial weights for all

the samples coming from all the checkpoints in the test set.

For the transformer-based model, it was necessary to modify the training method. Its size

was increased to 2.5M parameters, using 4 blocks N = 4, and four heads for each one

h = 4. The learning rate was decreased lr = 1e−5 and it was reduced every 150 epochs

with a ratio 10:1. It was trained for 600 epochs. The size of the latent space was set at

128.

Using the linear system for a bottleneck measurement of 128, a R2 of 0.225 was achieved

in test on the MNIST partition. In the case of the non-linear model a score of 0.214

R2 has been achieved. The use of permutations has been crucial to make the model

converge, however the results have not been as expected. Different configurations of the

hyperparameters, modification of the bottleneck size and different schedulers were used

to modify the learning rate, however in no case it has been possible to exceed the baseline

imposed by the PCA. The results are similar for all the dataset partitions (Fashion-Mnist,

svhn, cifar10 and mnist). In addition, all models present a great instability between train

and test partitions being very sensitive to small modifications. Due to the limited time

available to complete the thesis, it was decided not to continue in this direction.

52

4.4.3 Downstream tasks: accuracy and hyper-parameter prediction

In [1] they predicted the accuracy from the weights and from the basic statistics. In order

to tackle this task, an adaptation of the AttnAE II model was used to predict accuracy.

The same approach described in the tetris-seed dataset to predict the accuracy of the

models (the encoder part of the attention auto-encoder with neuronGroup embeddings)

was used. As explained in the tetris-seed downstream section, a last layer plus sigmoid

function has been applied from the bottleneck vector to predict accuracy values in the

range of [0, 1]. The metric used is R2 score computed between the predictions and the real

value of the accuracys for all the samples from the test set.

In this dataset the first layers of each sample in the collection of models are convolutional

layers. For this reason, the neuronGroup embedding was applied using all the weights that

compose each kernel for each of the dimensions. In this case, the weights were flattened

and 2-dimensional position information has not been included. In addition, the value of

the bias corresponding to each kernel was added at the end of each of these vectors. The

number of embeddings necessary to represent the model is composed by 58 tokens (3x16

corresponding to the three initial convolutional layers and 1x10 for the last dense layer).

Finally, the model was composed of a two global information context tokens plus the 58

representative tokens of the model.

Architecture Input type MNIST SVHN CIFAR10 FASHION
DNN

Google Paper [1]
weights 0,980 0,931 0,954 0,980

AttnPred
neuronGroup

(ours)
weights 0,992 0,972 0,975 0,990

GBM
Google Paper [1]

weights
statistics

0,993 0,986 0,984 0,993

Table 9: Comparsion accuracy prediction results between our approach (AttnPred) and
the best experiments obtained in the google paper for their respective input type. Values

are expressed in R2 score values. DNN from [1] is composed of 1.5-3.6M parameters.
AttnPred is composed of 600K parameters.

The results show in Table 9 better accuracy prediction performance in all four splits of

the dataset compared to the models that were trained using the weights vector. However,

the performance is not as good as the best approach the authors performed, using GBM

applied on the statistics vector layer-wise. However, the main characteristic of our model

53

with respect to the proposed ones is that it is designed to be able to predict models of

variable length and it has 600K prameters instead of 1.5-2.6M of the Gools DNN [1].

The structure generated in the weights space during training tends to be highly correlated

with accuracy. The basic statistics show good behaviour in capturing the information

needed for prediction. It is possible that the attention-based model is learning to generate

these statistics for prediction rather than modelling the connections between the weights.

This could explain the similarity of the results without surpassing them.

This correlation between weights structure and accuracy may be due to the fact that the

generated models have been trained only on one dataset. Furthermore, we are assuming

that the partitions split between train and test come from the same source. Once the

model is trained, the accuracy obtained will also depend on the source of the image used

in the test. The same model with defined weights will have a different accuracy depending

on the test dataset. The results presented show that the statistics work well in predict-

ing the performance of the model using the same dataset, however, not understanding

the behaviour of the model is probably not enough to predict its performance on other

datasets.

In [1] there is no data regarding the predictions made on the hyper-parameters that

identify each of the models, however in the dataset the authors provide all the information

concerning their training and architecture. For each sample they provide the type of

activation, initialization and optimizer function used as well as the epoch where the model

becomes. In particular they provide models in just nine different groups (0, 2, 3, 4, 20,

40, 60, 80, 86).

To perform the hyperparameter prediction task it was approached as a classification prob-

lem. However, in the epoch prediction task, we decided to approach it as a regression be-

cause there is a difference between classifying an epoch closer to or further away from the

true value. Two predictors were used, a log-linear classifier (using the statistic’s vector)

and a non-linear architecture (using directly the weights). The same architecture used for

accuracy prediction was adapted to obtain the number of neurons corresponding to the

number of classes to predict. We apply softmax on the logits and assign labels on the

highest prediction value. To evaluate the predictor the F1 score was used (to measure the

accuracy and the recall in the same metric). For each of the tasks a specific classifier was

trained, minimising the binary cross entropy function as a cost function.

54

Classification
Labels

Architecture MNIST SVHN CIFAR10 FASHION

Linear
(weights s)

0,822 0,823 0,807 0,839
Activation
(2 classes)

AttnPred
(neuronGroup)

0,903 0,924 0,894 0,912

Linear
(weights s)

0,735 0,749 0,709 0,773
Init method
(5 classes)

AttnPred
(neuronGroup)

0,946 0,929 0,941 0,957

Linear
(weights s)

0,674 0,700 0,679 0,696
Optimizer
(3 classes)

AttnPred
(neuronGroup)

0,786 0,740 0,742 0,806

Linear
(weights s)

0,280 0,290 0,268 0,287
Epoch

(9 classes)
AttnPred

(neuronGroup)
0,324 0,319 0,313 0,312

Table 10: Hyper-parameters classification results using an adaption of AttnAE II named
AttnPred. The metric used to evaluate the performance is F1 score. The results

presented are the average of five different splits between train and test (scores obtained
from the test split with checkpoints group balanced). The variance in all fields is less

than 0.001.

Using attention-based neural networks it is possible to identify the different properties that

compose each of the models only from the information of the weights as shown in Table

9. In all cases the classes are equally balanced. In all the hyper-parameters under study,

scores higher than random guessing were obtained. We found the model with N = 4

and heads = 4 (190k parameters) to be the best fit to obtain the best performance

found on the classification task. In all hyper-parameters and all datasets the non-linear

attention-based model has obtained better results than the linear baseline. However, we

consider that the difference in performance is not too large considering the computational

complexity realised by the DNN-based model. For epoch prediction the result obtained

by the log-linear prediction was entered for classification since as a regressor the results

were equal to random guessing. In the case of the AttnPred the results presented were

trained as a regressor to obtain better results than as a classification.

For each of the predictors we have evaluated their performance by plotting the recall

score for the predictions of the initialisation method and the activation and optimiser

functions for each of the groups composed by different epochs. The figure 21 shows the

55

recall obtained for each of the classes during training. For the epoch prediction evaluation,

the confusion matrix including the distribution of predictions for each group of models

coming from the same epoch is shown in Figure 22.

Figure 20: Recall curves for hyper-parameter classification on the Google dataset. Right
column are results for the log-linear predictor. Left column are results for the attention

based architecture predictor, AttnPred.

The Google dataset [1] is composed of models initialised by five different methodologies

using the same seed. For this reason, the group corresponding to epoch zero has only five

possible configurations of weights. From this point on, depending on the configuration

used for the hyperparameters of each model, it progresses in a different manner. Each

of these configurations share a set of rules that correlate the weights with its properties

56

of the models that are configured the same way. Figure 20 shows how the non-linear

model is able to perfectly classify the first group. However, the linear regression-based

model does not manage to group them correctly. In the two predictors the two worst

predicted initialisation functions coincide, being truncatedNormal and random Normal.

This may make sense given that these distributions are very similar to each other. In

general, the linear predictor performs worse in the epochs 20, 40, 60 where there is more

variety of models that are at stages further away from convergence and some that are

already converged (see Figure 21). The non-linear predictor predict better the classes in

all hyper-parameter classification tasks.

Figure 21: Accuracy distribution at different epoch groups of the google dataset [1]

In the case of epoch prediction, the regression-based implementation for the AttnPred

model was chosen instead of classification because of its better performance. In general

the results compared to the other hyper-parameters classification tasks are much worse.

It is more difficult to predict in which epoch the model comes from just by looking at

the weights space. The amount of update weights may not be proportional to the con-

vergence of such models. One model may obtain the same solution trained for only two

epochs while another model may use a longer path requiring more updates to arrive at

the same point. Conversely, a model can be trained indefinitely and never converge to a

good solution. At the distribution of predictions (see figure 22) for each epoch it can be

seen that the model tends to predict values close to the correct ones. The variance of the

predictions is higher in the central range, coinciding in the region with more diversity of

converged and non-converged models.

57

Figure 22: Attention based architecture for epoch prediction on the Google dataset.
Right images are the epoch prediction distribution for each of the epoch groups. Left

image is the confusion matrix.

58

5 Environment impact

In recent years the use of neural networks has increased exponentially, mainly due to

the improvement of the hardware that makes possible the large number of necessary

calculations on this kind of processes. In addition, a large number of data centers have

also been built and expanded. Predictably, in the coming years we will continue using

these technologies due to its great impact in many areas and its good performance.

A distinction must be made between energy consumption and the method of production.

The main source of energy used is electrical energy, which will be produced differently de-

pending on the country where the computer centers are located. There are countries where

renewable energy production sources are used and other places that are more dependent

on non-renewable sources. This thesis have been developed in Switzerland. Although most

of the energy consumed in the country comes from non-renewable source of energy [11],

25% is from electricity production in the country. This electricity is mainly produced by

renewable source of energy, around 75% in 2020.

In this work we have used deep neural networks for development and understanding of

this technology itself. Due to the nature of neural networks, with the technology we have

today, it can be considered a high energy expenditure. In order to reduce the total energy

consumption it is necessary to intervene and develop a variety of aspects (from process

optimisation to hardware energy efficiency), which together will help to reduce energy

consumption. For this reason, although neuronal networks have been used in this thesis,

this work is focused on the line of explainable artificial intelligence, so deciphering and

knowing better its operation can be very beneficial in the future. Knowing how the models

are trained and how the solutions are achieved can help in the future to develop more

efficient methods that require less training than in the present. In addition, to make a

complete study on the amount of energy used, we should also take into account what is

the impact that this development produces and and how these improvements will change

energy consumption in the future.

59

6 Conclusions

In this thesis we have gained insight into the dataset exploration as well as the perfor-

mance of attention mechanisms on representation learning. Depending on the task to be

performed, the statistics synthesize the information achieving the best results in accuracy

prediction. There is a high correlation between the global statistics and their performance.

For hyper-parameter classification on predicting the activation function the statistic’s

transformation does not help for its proper interpretation. On the other hand, for the

initialization function prediction best results have been obtained. The hyper-parameters

used during training define a subspace where the weights acquire structure during train-

ing. Therefore, at the beginning the neural networks are composed of weights obtained

from a certain distribution. As the model converges, the weights are modified by the rules

that are characteristic of the hyper-parameters as well as the architecture and the training

data.

The results obtained show that it is possible to predict the characteristics of the neuronal

networks and their performance from their weights. It has been seen how reconstruction

tasks are also possible with a high level of compression, however it was not been possible

to establish an improvement over a linear approach in the google dataset. In addition,

the AE embeddings keeps significant amount of information so that they can perform

downstream tasks on it with a similar performance to using directly the weights. To

obtain better results, weights and neurons permutations were used as data augmentation

technique, which was found to be a fundamental component in allowing some models to

converge.

Deep neural networks based on attention mechanisms have shown good behaviour. At-

tnAE architecture uses the structure in the weights to perform tasks of reconstruction,

accuracy prediction and hyper-parameter classification. Using the neuronGroup encoder

(generating an embedding with all the weights that constitute each of the neurons in a

model) and the use of transformer encoder blocks allowed to find a solution that scales

much more efficiently than a traditional multi-layer perceptron (MLP) and with a higher

convergence speed. It was demonstrated that this approach outperforms the DNN base-

line as presented in [1] and it is competitive against GBM. The field of neural networks

is characterised by a great variety of structures with different parameters. Tokenizing

these models allow working with variable input sizes which the proposed architecture is

designed for it.

60

6.1 Future work

During the development of this thesis we have mainly encountered three unsolved ques-

tions. On the one hand, it was not possible to establish a direct relationship between the

attention score maps and the performance of the models. Unlike other tasks such as in the

field of NLP, no clear patterns have been identified that define a characteristic behaviour

understandable by humans.

On the other hand, an intrinsic feature of neural networks is their ability to offer multiple

different structures and very different dimensions. Although in this work a more suitable

solution than vanilla MLP was proposed, it is still a direction to be explored. It would

be very interesting to develop an elastic and global form that allows to properly encode

the information of the models. It could also be explored an efficient method of capturing

relations that exists in the different parts of a model and how to model the interaction

among weights.

Finally, no satisfactory results have been achieved in the task of reconstruction in the

google dataset. We think that a possible line of development could be based on improving

the current model to improve the reconstruction. In particular, we think that the decoder

part should be further developed. Furthermore, the interaction between the models in

an unsupervised manner can be investigated. By using permutations of the same models

we could think of using similarity learning which could be a way of not inducing bias

towards the modelling of statistics. Using the model described in this thesis we could

continue in the direction of predicting the characteristics of the models. This could allow

the prediction of their behaviour in early steps during training. Developing a system that

is able to quantify the probabilities that such a model becomes a good solution could

reduce the number of trainings to be performed.

61

References

[1] Thomas Unterthiner, Daniel Keysers, Sylvain Gelly, Olivier Bousquet, and Ilya

Tolstikhin. Predicting neural network accuracy from weights. arXiv preprint

arXiv:2002.11448, 2020.

[2] Eilertsen. et al. Classifying the classifier: dissecting the weight space of neural net-

works. arXiv preprint arXiv:2002.05688, 2020.

[3] Charles H Martin and Michael W Mahoney. Traditional and heavy-tailed self regu-

larization in neural network models. arXiv preprint arXiv:1901.08276, 2019.

[4] Surafel Melaku Lakew, Mauro Cettolo, and Marcello Federico. A comparison of trans-

former and recurrent neural networks on multilingual neural machine translation. In

Proceedings of the 27th International Conference on Computational Linguistics, pages

641–652, Santa Fe, New Mexico, USA, August 2018. Association for Computational

Linguistics.

[5] Albert Zeyer, Parnia Bahar, Kazuki Irie, Ralf Schluter, and Hermann Ney. A com-

parison of transformer and lstm encoder decoder models for asr. pages 8–15, 12

2019.

[6] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N.

Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. CoRR,

abs/1706.03762, 2017.

[7] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua

Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold,

Sylvain Gelly, et al. An image is worth 16x16 words: Transformers for image recog-

nition at scale. arXiv preprint arXiv:2010.11929, 2020.

[8] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-

training of deep bidirectional transformers for language understanding. arXiv

preprint arXiv:1810.04805, 2018.

[9] Nikita Kitaev, Lukasz Kaiser, and Anselm Levskaya. Reformer: The efficient trans-

former. arXiv preprint arXiv:2001.04451, 2020.

[10] Ronald M Parra-Hernández, Jorge I Posada-Quintero, Orlando Acevedo-Charry, and

Hugo F Posada-Quintero. Uniform manifold approximation and projection for clus-

tering taxa through vocalizations in a neotropical passerine (rough-legged tyrannulet,

phyllomyias burmeisteri). Animals, 10(8):1406, 2020.

62

[11] The Federal Council. Energy – Facts and Figures. https://www.eda.admin.ch/

aboutswitzerland/en/home/wirtschaft/energie.html, 2019. [Online; accessed

14-December-2020].

[12] KENNETH WARD CHURCH. Word2Vec. Natural Language Engineering,

23(1):155–162, 2017. Publisher: Cambridge University Press.

[13] Jeffrey Pennington, Richard Socher, and Christopher Manning. GloVe: Global Vec-

tors for Word Representation. In Proceedings of the 2014 Conference on Empirical

Methods in Natural Language Processing (EMNLP), pages 1532–1543, Doha, Qatar,

October 2014. Association for Computational Linguistics.

[14] Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark,

Kenton Lee, and Luke Zettlemoyer. Deep contextualized word representations.

arXiv:1802.05365 [cs], March 2018. arXiv: 1802.05365.

[15] Rahul Dey and Fathi M. Salem. Gate-variants of gated recurrent unit (GRU) neural

networks. CoRR, abs/1701.05923, 2017.

[16] Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal

of Machine Learning Research, 9(86):2579–2605, 2008.

[17] Leland McInnes, John Healy, and James Melville. Umap: Uniform manifold approx-

imation and projection for dimension reduction. arXiv preprint arXiv:1802.03426,

2018.

[18] A. Adadi and M. Berrada. Peeking inside the black-box: A survey on explainable

artificial intelligence (xai). IEEE Access, 6:52138–52160, 2018.

[19] David Gunning. Explainable artificial intelligence (xai). Defense Advanced Research

Projects Agency (DARPA), nd Web, 2(2), 2017.

63

https://www.eda.admin.ch/aboutswitzerland/en/home/wirtschaft/energie.html
https://www.eda.admin.ch/aboutswitzerland/en/home/wirtschaft/energie.html

	List of Figures
	List of Tables
	Introduction
	Gantt diagram

	State of the art and related work
	Representation learning in NN weight space
	Attention architectures
	Visualization and dimensionality reduction

	Methodology
	Attention auto-encoder I (AttnAE I)
	Attention auto-encoder II (AttnAE II)
	Data augmentation
	Manifold Visualization

	Experiments and results
	Metrics
	Signal-to-noise ratio (SNR)
	Coefficient of determination score (R2)

	Dataset exploration
	Tetris-Seed dataset
	Tetris-hyper dataset
	Google dataset

	Tetris-seed and tetris-hyper datasets experiments
	Model weights reconstrucction
	Downstream tasks: accuracy and hyper-parameters prediction
	Attention score maps interpretability

	Google dataset experiments
	Model exploration and code validation
	Model weights reconstrucction
	Downstream tasks: accuracy and hyper-parameter prediction

	Environment impact
	Conclusions
	Future work

	References

