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Abstract

This thesis investigates the importance of motion when predicting saliency in

videos. Naturally, humans observe both dynamic and static objects. When we

are focused on watching a video, we tend to keep our eyes on the objects that

are moving in the scene, items that we quickly recognize, as well as to those

that attract our attention. In this work, different experiments are presented to

corroborate this implication. Various approaches will be shown implementing

an adaptation of the SalBCE neural network by using only motion. A simple

implementation is proposed for the generation of saliency maps using previ-

ously extracted static and dynamic information from the images. The DHF1K

dataset has been used for the experiment’s realization.



Abstract

Esta tesis investiga la importancia del movimiento al predecir el saliency en

los videos. Naturalmente, los humanos observan objetos tanto dinmicos como

estáticos. Cuando nos enfocamos en mirar un video, tendemos a mantener la

vista en los objetos que se mueven en la escena, los elementos que reconoce-

mos rápidamente, aśı como aquellos que atraen nuestra atención. En este tra-

bajo, se presentan diferentes experimentos para corroborar esta implicación. Se

mostrarán varios enfoques implementando una adaptación de la red neuronal

SalBCE utilizando solo movimiento. Se propone una implementación sim-

ple para la generación de mapas de saliency utilizando información estática y

dinámica extráıda previamente de las imágenes. El conjunto de datos DHF1K

ha sido utilizado para la realización del experimento.



Abstract

Aquesta tesi investiga la importància del moviment en predir el saliency en els

v́ıdeos. Naturalment, els humans observen objectes tant dinàmics com estàtics.

Quan ens enfoquem en mirar un v́ıdeo, tendim a mantenir la vista en els ob-

jectes que es mouen en l’escena, els elements que reconeixem ràpidament, aix́ı

com aquells que atreuen la nostra atenció. En aquest treball, es presenten

diferents experiments per corroborar aquesta implicació. Es mostraran diver-

sos enfocaments implementant una adaptació de la xarxa neuronal SalBCE

utilitzant sol moviment. Es proposa una implementació simple per a la gen-

eració de mapes de saliency utilitzant informació estàtica i dinàmica extreta

prèviament de les imatges. El conjunt de dades DHF1K ha estat utilitzat per

a la realització de l’experiment.
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Chapter 1

Introduction

1.1 Project overview and goals

Saliency prediction is a topic studied in computer vision field. It consists of predicting

the zones of an image/video that people will give more importance. Visual attention en-

ables humans to quickly analyze complex scenes by giving to higher regions of processing

and visual awareness. This behavior can be modeled as Saliency Prediction and we can

also apply this concept to videos. In order to represent the saliency, we usually generate

heat maps where each pixel has a value from 0 to 1, meaning less or more odds to be

attracted by the human eye. We have to take into account that making these saliency

predictions in videos we increase the difficulty from static images. The main hypothesis

is that people tend to give more importance to objects that are moving, so, for this rea-

son, a salient heat map of an image could differ from the same image as a frame of a video.

In order to calculate and predict the saliency, we have chosen to use DNN (deep neural

networks[1]) and machine learning as a basis to face the challenge. We have to take into

account that, in the official benchmarks (DHF1K[2] dataset), the ones that give the best

score are those based on these technologies. For this reason, we have decided to implement

certain improvements in the architecture created by my partner Juanjo, SalBCE[3]. The

main idea is to add the motion within the saliency prediction process, due to the strong

hypothesis that the movement has huge importance. To carry out this architecture, the

SalBCE model has been used to generate salience maps only from the RGB images. On

1



1.1 Project overview and goals

the other hand, the same model has been made inference on the images associated with

the motion of these. From the two groups of images, an own model has been used, in

order to integrate the static and dynamic information to generate the final saliency maps.

The main objective of this work is to discover the importance of movement in the predic-

tion of saliency, and if that importance is proven, find a solution integrating this concept.

In order to carry out this process, the following objectives have been proposed during the

execution of the work:

• Check the importance of movement in saliency;

• Extract the information related to the movement efficiently;

• Propose a solution that integrates the previous information;

• Obtain better results than the non-movement approach;

2



1.2 Work Plan

1.2 Work Plan

For the completion of the end-of-grade project, weekly meetings have been planned with

my two tutors (Xavier Giró-i-Nieto and Kevin McGuinness) in order to discuss all the

steps taken and plan the work to be done. We have based on a system of micro-tasks

where each week the work to be done is defined for the following week.

The realization of this work has been carried out in the Insight Center for Data Analyt-

ics1 research center located at Dublin City University (DCU). The meetings have been

done through video calls with the two tutors in almost all the meetings. Because each

university has a different schedule for the presentation of the documentation and delivery

of the work, the following schedule is defined:

1. Arrival at DCU (Dublin), 23.01.2019

2. Initiation meeting. Objectives presented: 27.02.2019

3. Status Report: 28.02.2019

4. Presentation Submission: 12.03.2019

5. Report Submission: 21.05.2019

6. Poster Submission: 21.05.2019

7. EXPO Attendance: 23.05.2019

8. Continuation of the project at the UPC (Barcelona): 25.05.2019

9. Completion of the project: 25.06.2019

1https://www.insight-centre.org/

3



1.3 Work Breakdown Structure

1.3 Work Breakdown Structure

Below is a diagram summarizing the general line of work carried out in this project in

order to facilitate the understanding of the different tasks carried out.

Figure 1.1: Work Breakdown Structure of the project

In Figure 1.1 the general structure of the work is shown. Before start developing the main

line of work, it was necessary to carry out evaluation scripts in order to be able to apply

the metrics, and thus be able to compare the results. On the other hand, it was necessary

to use SalBCE to generate the saliency maps without the motion.

During the progression of the work different scripts have been tested as well as the ver-

ification of the results in order to verify the initial hypothesis. At first, the motion of

the dataset under study (DHF1K) has been computed, and we store new images with

this information. Next, EMA has been applied to these new images in order to store

information from the past. Using Custom CNN head , static maps have been combined

with maps that take into account the motion to generate a final saliency map.

4



1.4 Milestone list

1.4 Milestone list

Tasks Description Date

State of the art

Realization of the module in Machine Learning to
begin to obtain concepts about Computer Vision.
Read and study the work that Juanjo did. Study
the appropriate papers to understand the basis of

the project.

14.02 -
28.02

Become familiar
with the

environment

Work with Juanjo to understand his code and
how to execute it in the work environment of the

Insight Center. Become familiar with Machine
Learning concepts.

27.02 -
01.03

Code, test,
verify the

Optical Flow

Read the documentation to learn the Optical
Flow concept. Compute the Optical Flow of the

entire dataset.

04.03 -
11.03

Compute frame
differencing

Implement the difference of frames as another
method to measure the movement. Apply the
EMA taking into account the change of scene.

4.03 - 8.03

Generation of
datasets

Generate images where the three channels
corresponding to the RGB, the magnitude of the
difference of frames are stored, in the other two

channels the position x and y of the Optical Flow.

11.03 -
28.04

Comparison

Train the Juanjos model with the images as
inputs where only the movement between frames

is taken into account. Frame differencing and
Optical Flow

08.04 -
01.05

A fusion of the
two models

Implement a simple structure that has as inputs
the saliency maps generated with the static

information of the images and the Optical Flow
obtained with SalBCE.

01.05 -
20.05

One stream
approach

Implement SalBCE that has as inputs the
saliency maps generated with the static

information of the images and the dynamic
information

30.05 -
15.06

Table 1.1: Milestone list

5



1.5 Time Plan (Gantt diagram)

1.5 Time Plan (Gantt diagram)

Figure 1.2: Gantt Diagram of the project

6



Chapter 2

State of the art

Summary

The background concepts will be described as well as the necessary information to under-

stand why the initial hypothesis and how to start developing the idea. The architectures

used will also be presented, the dataset from which the whole study has been developed

as well as the breakdown of the metrics used with their respective mathematical develop-

ment. The aim is to introduce the initial concepts that led to the beginning of the basic

idea of the importance of motion in the prediction of saliency.

7



2.1 Technical Background, Architecture used

2.1 Technical Background, Architecture used

2.1.1 SalGAN

Visual Saliency Prediction with Generative Adversarial Networks (SalGAN[4]) model was

proposed as an adversarial training for visual salience prediction (GAN) instead of on-

adversarial training (BCE) and even combine them to obtain better results in stability

and convergence rate. In this study, they proposed the SalGAN model for visual saliency

prediction. They concluded that the proposed GAN training approach is generic and that

using its structure they could apply to improve the performance of other saliency models.

SalGAN is composed of two parts; the generator that has a convolutional encoder-decoder

(the encoder consists of a fully convolutional architecture based on the popular VGG-16[5]

and the decoder with the inverse layers of the encoder, replacing max-pooling with up-

sampling layers) and the discriminator that is in charge of distinguishing between ground

truth saliency maps and generated saliency maps from the generator.

During adversarial training, the loss function of the saliency is a combination between the

error from the discriminator and the cross-entropy with respect to the ground truth. As

they show, a α = 0.1 has good results.

LBCE = − 1

N

N∑
j=1

(Sjlog(Ŝj) + (1− Sj)log(1− Ŝj))
2 (2.1)

L = αLBCE + L(D(I, Ŝj), 1) (2.2)

During the training of the discriminator, no content loss is available and the loss function

is:

LD = L(D(I, Sj), 1) + L(D(I, Ŝj), 0) (2.3)

8



2.1 Technical Background, Architecture used

2.1.2 SalBCE

SalBCE[3] is an adaptation of SalGAN architectures with some changes. It consists of

using only the generator part, using the Binary Cross Entropy (BCE) as the loss function.

In addition to training using RGB, it is included depth as well as CoordConv. In the first

case, it was based on the idea that the objects closer are more salient than those that are

further away. In the second case, the idea of this technique is to provide the convolutional

input layers access to its own input coordinates through the use of extra coordinate

channels. Finally, the idea of implementing the Optical flow was proposed, although it

was not developed in his work.

Figure 2.1: SalBCE model architecture

In figure 2.1 it can be seen the architecture used, with a total of 31,787,009 hyperparam-

eters: During the training part it has been using the Adam [6] optimizer. The initial

weights have been obtained from SalGAN. Starting with a learning rate of 0.00001 and

dividing by 10 every 3 epochs (total of 27 epochs) with a batch size of 12 (due to the

limitation of space in the GPU) has been proposed. For the baseline weights, SalBCE has

trained on SALICON[7] dataset, which the images used are from the COCO[8] dataset.

These weights are going to be the ones used as a baseline in our custom CNN head

architecture based on SalBCE.

9



2.1 Technical Background, Architecture used

2.1.3 ACLNet

ACLNet is a Convolutional Neural Network (CNN), model designed to predict saliency

from videos. More recently, they presented a new video saliency prediction benchmark.

They propose a novel deep learning based video saliency model (Figure 2.2), which en-

codes to supervised attention mechanism to explicitly capture static saliency information

and help LSTM better capture dynamic saliency representations over successive frames:

Figure 2.2: ACLNet architecture composed of VGG-16, Attention module and ConvL-
STM.

In their model, they used an attention mechanism in order to obtain the static information

to leave the LSTM focus on the temporary information. The attention module was trained

in the SALICON dataset, while the whole architecture was trained in a combination of

different datasets, DHF1K[2], HollyWood2[9] and UCF Sports[10]. They used as a loss

function a combination of three different metrics, in order to be able to measure more

accurately depending on the different proposed metrics (in SalBCE, BCE was used as a

loss function).

L (Y, P,Q) = LKL(Y,Q) + α1LCC(Y,Q) + α2LNSS(Y, P )) (2.4)

where the predicted saliency map is Y ∈ {0, 1}28×28, the map of fixation locations is

P ∈ {0, 1}28×28 and the continous saliency map (distribution) is Q ∈ {0, 1}28×28. Note

that in order to obtain the Q continous saliency map, a blurring with a small Gaussian

Kernel must be applied to the discrete fixation map P . αs are balance parameters ans

are empirically set to α1 = α2 = 0.1

10



2.1 Technical Background, Architecture used

2.1.4 SalBCE motion approach

Our Custom CNN head is based on the motion integration together with the result of

SalBCE of the RGB images. To improve the prediction using only the dynamic infor-

mation, at first, optical flow (OF, see in 3.2) and frame differencing (FD, see in 3.1) are

computed, and using a structure of one stream architecture [11] an image is generated,

in which the three channels correspond to [FD, OFx axis, OFy axis]. Then, using the

SalBCE architecture, the saliency maps are generated only from the images that contain

motion’s information.

Parallel to this, the saliency maps are also generated from the RGB images, using the Sal-

BCE architecture. From this point, an image of 2 channels corresponding to the previous

output is generated. Where the first channel corresponds to the saliency map of the static

images and the other channel to the dynamic information of those. A new architecture

of 4 convulsion layers (Table 6.1) is presented, which finally generates a saliency map

integrating all the information.

Layers depth Kernel Stride Pad Activation

conv2d 64 3x3 1 1 ReLU
conv2d 256 3x3 1 1 ReLU
conv2d 128 3x3 1 1 ReLU
conv2d 64 3x3 1 1 ReLU

Output 1 1x1 1 0 Sigmoid

Table 2.1: Fusion saliency maps architecture

SalBCE’s baseline weights have been used (SalBCE trained on SALICON for 27 epochs),

and SalBCE has been trained in RGB images for 4 epochs, and 20 epochs for the dynamic

images. Making inference in the images which only have motion information, it is not

enough to overcome SalBCE on RGB metrics. However, the results obtained with the PF

and OF images are close to it, only in the AUC-shuffle, it obtains better results.

In order to train the entire architecture, we have trained every dataset separately (GPU

limitations). SalBCE’s baseline weights have been used (SalBCE trained on SALICON

11



2.1 Technical Background, Architecture used

for 27 epochs), and SalBCE has been trained in RGB images for 4 epochs, and 20 epochs

for the dynamic images. The learning rate started at 1 · 10−5 and every 2 epochs we

divide it by 10, and we used an Adam optimizer. Once we have generated both saliency

maps for the entire train DHF1K dataset, we fuse both maps for each image Ijmix =

IjFrom RGB + Ijfrom motion as an input of the architecture in Table 6.1. (The results of this

implementation are in 4.4)

Figure 2.3: The full architecture used. Two SalBCE in parallel, and a custom CNN head.

2.1.4.1 One stream approach

In order to simplify the training process and simplify the model, the use of SalBCE is

only proposed by inputting 6 channel image as input (the RGB image and the motion

information) [R,G,B, FD, OFx axis, OFy axis].

Training with the same parameters as in the 2.1.4 section, the Custom Neural Network is

thus eliminated and the training time of the model is halved. Important train from scrath

because the model was pre-trained only with the images of 3 channels. If the weights are

reused the system will tend to eliminate the information related to the movement.

12



2.2 Working Dataset

2.2 Working Dataset

In this thesis, we have exclusively used the dataset called DHF1K. This dataset stand

from Dynamic Human Fixations 1K it is the largest video saliency dataset. As we can

see in Table 2.2, this dataset is the newest one. It contains 1000 videos, which the first

600 are dedicated to training, from 601 to 701 for validation and the last 300 for the test.

For the generation of this dataset, they searched in the Youtube platform for around 200

keywords and selected 1000 video sequences. The videos were exported at 30fps at a

resolution of 640x360.

Dataset Year Videos Resolution Duration(s) Viewers Task

CRCNS 2004 50 640x480 6-94 15 task-goal
Hollywood-2 2012 1,707 720x480 2.120 19 task-goal
UCF sports 2012 150 720x480 2-14 19 task-goal

DIEM 2011 84 1280x720 27-217 ∼50 free-view
SFU 2012 12 352x288 3-10 15 free-view

DHF1K 2017 1,000 640x360 17-42 17 free-view

Table 2.2: Statistics of typical dynamic eye-tracking datasets

This set of videos stores a total of 150 different categories. It also offers diversity with

different camera movements and content. To generate the Ground Truth of these videos

they used an eye-tracker called Sensoc Motoric on a total of 17 participants of an age

between 20 and 28 years old. Note that the image size is higher than the input of the

above architectures, for this reason, a resize will be applied to use them.

13



2.3 Metrics used

2.3 Metrics used

In order to be able to measure how well or badly predictions are made, we need part

of the ground truth to compare the correct solutions. The mathematical function that

we apply between the reference and the predicted map is called system metrics and they

allow us to evaluate the distance with respect to the solution. Although there is a large

number of metrics available, only the 5 most popular ones have been used. As it is shown

in this paper [12], the result could be optimized for each of these metrics, however, only

one prediction has been generated for each frame. Following is a brief summary of the

metrics used [13]:

Location-based metrics

Given the goal of predicting the fixation locations on an image, a saliency map can be

interpreted as a classifier of which pixels are fixated or not. This suggests a detection

metric for measuring saliency map performance.

• AUC Judd: This metric consists of calculating the area under the ROC curve. To

draw the ROC curve, only true positive rate (TPR) and false positive rate (FPR)

are necessary. The TPR defines how many positive positives results occur among

all positive samples available during the test. FPR, on the other hand, defines how

many incorrect positives results occur among all negative samples available during

the test.

TPR =
TP

P
=

TP

TP + FN
FPR =

FP

N
=

FP

FP + TN
(2.5)
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2.3 Metrics used

Figure 2.4: ROC curve and its density function representation

The maximum value of this metric (coincides with the best possible value) is 1, coin-

ciding that to get a 100% of true positives there are a 0% false positives (Ideal case

where the two probability functions are sufficiently separated so as not to overlap

at any point). As we can see in the image above, the ROC curve identifies the rela-

tionship between true positives and false negatives in the entire possible spectrum

of the threshold value.

AUC is computed by varying the threshold of the saliency map and computing to a

trade-off between true and false positives. Lower thresholds correspond to measur-

ing the coverage similarity between distributions, while higher thresholds correspond

to measuring the similarity between the peaks of the two maps.

• AUC-Shuffled: In general, datasets tend to include a higher density near the center

of the image. Taking into account this, making a model where only the fixations ap-

pear in the center will obtain greater results than if we did it in a random way. The

shuffled AUC metric, sAUC samples negatives from fixation locations from other

images, instead of uniformly at random. This has the effect of sampling negatives

predominantly from the image center because averaging fixations over many images

results in the natural emergence of a central Gaussian distribution.
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2.3 Metrics used

• NSS: The Normalized Scanpath Saliency consists of measuring the average of the

saliency map predicted in those points wherein the ground truth there is a fixation

point. For this reason, the value for each pixel of the fixation ground truth map

Qj ∈ {0, 1} is binary, making the average only in certain regions of the image.

Before computing this metric, the predicted P map is normalized with respect to

the mean, so if there is a false positive in an area where there is no fixation point, it

is reducing the value of the others that are in the correct area, for this reason, NSS

is sensitive to false positives.

NSS(P,QB) =
1

N

∑
j

Pi·QB
j (2.6)

N =
∑
j

QB
j , P =

P − µ(P )

σ(P )
(2.7)

The mean saliency value is subtracted during computation, NSS is invariant to lin-

ear transformations like contrast offsets. Where i indexes the ith pixel, and N is

the total number of fixated pixels. Positive NSS indicates correspondence between

maps above chance, and negative NSS indicates anti-correspondence.

Distribution-based metrics

The (location-based) metrics described so far score saliency models at how accurately they

predict discrete fixation locations. If the ground truth fixation locations are interpreted as

a possible sample from some underlying probability distribution, then another approach

is to predict the underlying distribution instead of the fixation locations
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2.3 Metrics used

• SIM: The similarity metric can be understood as the computation of the min func-

tion between the saliency prediction map P and the fixation map QD for each pixel,

and then the average of these. The saliency prediction map and the binary eye

fixation map are normalized:

SIM(P,QD) =
∑
j

min(Pj, Q
D
j ) (2.8)

where
∑
j

Pj =
∑
j

QD
j = 1 (2.9)

iterating over discrete pixel locations i. A SIM of one indicates the distributions

are the same, while a SIM of zero indicates no overlap. SIM is very sensitive to

missing values, and penalizes predictions that fail to account for all of the ground

truth density.

• CC: Pearson’s Correlation Coefficient can be understood as an indicator that ex-

presses how two variables are linearly correlated, or in another way, how dependent

is one of the other. CC can be used to interpret saliency and fixation maps, P and

QD:

CC(P,QD) =
σ(P,QD)

σ(P ) · σ(QD)
(2.10)

where (P,QD) is the covariance of P and QD. CC is symmetric and penalizes

false positives and negatives equally. High positive CC values occur at locations

where both the saliency map and ground truth fixation map have values of similar

magnitudes.

To obtain good results in the previous metrics, it is necessary to take into account how

the metrics vary according to the saliency maps generated. As shown in Table 2.5, it can

be seen which properties affect and which do not in each type of metric. For example, in
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2.3 Metrics used

the variation of the variance in the prediction has no implications in the AUC metric but

a huge descend appear in the SIM metric.

Figure 2.5: Variation of metrics selected for saliency prediction evaluation

In this study [12] they propose the generation of different saliency maps to improve as

much as possible in each of the metrics. In this work, we are not going to continue in this

direction and we will propose a single map for each prediction. Below are three ways to

normalize the saliency maps, and depending on the type required will apply one or the

other as appropriate in each circumstance.

NormRange S −→ S −min(S)

max(S)−min(S)
(2.11)

NormV ariance S −→ S − µ(S)

σ(S)
(2.12)

NormSum S −→ S

sum(S)
(2.13)
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Chapter 3

Techniques studied

Summary

Below are the different concepts used for the realization of the thesis. The mathematical

bases are defined to perform the tasks of Frame Differencing and Optical Flow as well

as the development used to implement the exponential Moving average and the shot

detection. A brief summary of certain basic concepts of statistics is also presented. It is

intended to give sufficient development to understand in detail all the processes carried

out subsequently correctly.
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3.1 Frame Differencing (FD)

3.1 Frame Differencing (FD)

Frame Differencing is a technique used in video whose objective is to obtain the motion of

the image by calculating the difference between one frame and the next. This technique

consists of measuring the Euclidean distance between the vector with RGB components

of each pixel with respect to that same pixel of the next frame. In this way, for every two

images we will obtain one of the same resolution, in which each pixel will have a unique

value, resulting from the following formula:

Ot
j =

∥∥xtj − xt+1
j

∥∥
2

=
√

(r1 − r2)2 + (g1 − g2)2 + (b1 − b2)2 (3.1)

Ot
j : Heatmap resulting from the frame differencing at frame t, one channel per pixel

xtj = [r, g, b]T : Full image with 3 channels per pixel

r1,2, g1,2, b1,2 : red, green, blue channels of each pixel

This method has a great capacity to detect moving objects, as long as the scene remains

static (that is, the camera must remain still, without displacement). It also will not work

correctly if there is a scene change between two consecutive frames - it will detect a large

amount of movement in the whole image due to the large difference - or even a variation

of the illumination. On the other hand, the rate of frames per second can cause variations

in the magnitude of the movement.

Assume the same object moving at a constant speed in a section of the video. When

dividing it between 10 frames, it will have a much greater apparent speed than if we

divide that same fragment of video between 100 frames. For this same reason, if the ob-

ject moves at high speed and the fps rate is low, its movement cannot be detected correctly.

In order to reduce the noise, a blurring has been applied just after the calculation, the

average has been computed, and all those values that are below have been forced to be

worth the minimum. Then, all those pixels that had a magnitude smaller than a thresh-

old have been eliminated and, subsequently, a stronger blurring has been applied again

than the previous one. In this work the value of this threshold has not been optimized,

20



3.1 Frame Differencing (FD)

since one has been chosen that captures enough information. The heatmap has been nor-

malized (See 2.11) between 0 and 1, where 0 means the absence of movement and 1 the

maximum possible. It can be understood that, although two videos have objects moving

at a different speed, for the purposes of this normalization (applied with respect to the

maximum of each frame), there will be no difference.

Therefore, once the differencing frame is applied, we will obtain a heatmap whose values

will be comprised between 0 and 1, being able to be interpreted as the zones with the

most movement of each frame.

Figure 3.1: Left image is the video 007 of the DHF1K dataset, frame 99. Right image is
the FD saliency map between frames 99 and 100
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3.2 Optical Flow (OF)

3.2 Optical Flow (OF)

Optical Flow can be understood as the motion vectors of each pixel in a given two images.

That is, given a couple of images, to determine where each of the pixels moves between the

two frames. Depending on the degree of sophistication, 2D or 3D maps can be generated.

Optical Flow can also be defined as the distribution of apparent velocities of movement

of brightness pattern in an image.

Figure 3.2: Optical Flow interpretation. Left image is the frame at time t. Middle image
is the frame at time t+ 1. Right image is the Optical Flow output.

The result of the optical flow is an image of two channels where for each pixel it ex-

presses the direction x and y associated with the movement vector of this, between the

two consecutive frames. Although it may seem a relatively easy task, there are different

aspects that should be highlighted. You can define the movement in different ways: there

are different factors that can influence the motion, such as the movement of the camera,

the scene or the change of luminosity. In order to gain insight into methodology used to

calculate the Optical Flow, below is a summary:

22



3.2 Optical Flow (OF)

Lukas Kanade methodology [14]

First we define the equation of motion, where u and v are the variation for each axis

between two frames:

I(x, y, t) = I(x+ u, y + v, t+ 1) (3.2)

Take Taylor expansion of I(x+ u, y + v, t+ 1) at (x, y, t) to linearize the right side:

I(x+ u, y + v, t+ 1) ≈ I(x, y, t) +
∂I

∂x
u+

∂I

∂y
v +

∂I

∂t
(3.3)

It +∇I[u, v]T = 0 (3.4)

In (3.4), there is only one equation but we need to determine u and v. This is called

the aperture problem [15]. In order to understand it, we can imagine the typical barber

spiral which is spinning, however, we see as it is moving upward. Therefore we impose

additional constraints. We assume that the flow field is smooth locally, one method is to

pretend the pixel’s neighbors have the same (u, v). If we use a 5x5 window, that gives us

25 equations per pixel:

0 = It(Pi) +∇(Pi) · [u, v]T (3.5)


Ix(p1) Iy(p1)

Ix(p2) Iy(p2)
...

...

Ix(p25) Iy(p25)


u
v

 = −


It(p1)

It(p2)
...

It(p25)

 (3.6)

Ad = b −→ minimize ||Ad− b||2 (3.7)

We have more equations than unknowns: solve least squares problem. This is given by:

ATA · d = AT b (3.8)
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3.2 Optical Flow (OF)

Optimal (u, v) satisfies Lucas-Kanade equation:

∑ IxIx
∑
IxIy∑

IxIy
∑
IyIy

u
v

 = −

∑ IxIt∑
IyIt

 (3.9)

This equation is solvable when ATA is convertible, ATA is not too small due to noise,

eigenvalues λ1 and λ2 of ATA should not be too small, and finally ATA should be well-

conditioned (λ1/λ2) should not be too large. The ATA matrix has the same shape as the

formula for Finding Corners [16]:

C =

 ∑ I2
x

∑
IxIy∑

IxIy
∑
I2
y

 (3.10)

C = R−1

λ1 0

0 λ2

R (3.11)

where R is a rotation matrix, so corners are the things we can track. Corners are when λ1,

λ2 are big, this is also when Lucas-Kanade works. Corners are regions with two different

directions of the gradient (at least). Aperture problem disappears at corners. To work

correctly we have to assume that the movement will be small, there will be a low level of

noise in the image and the chosen window will not be too large and the neighboring pixels

will move in the same direction. If this is not the case, the pyramid method is proposed,

where the image is resized until it has a smaller motion and then it is applied layer by

layer. Even so, it will not be detected correctly with color and shape changes.

In the beginning, this implementation was started, although in the end it was opted for

a coarse-to-fine optical flow method[17] which, in principle, has better results predicting

the motion of the objects. The mathematical explanation of this model is summarized

below:
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3.2 Optical Flow (OF)

Taking into account the same definition of grayscale sequence, where I(x, y, t) is the grey

value of the point (x, y) at the first frame while the gray value of the corresponding point

at the next frame is I(x + u, y + v, t + 1). The grey value constancy assumption is very

sensitive to the illumination changes, this is the reason for the proposal of the gradient

constancy assumption:

∇I(x, y, t) = ∇I(x+ u, y + v, t+ 1) (3.12)

They combined the grey value constancy assumption and the structure tensor constancy

assumption to create the energy function to be minimized x = (x, y, t)T and w = (u, v, 1)T :

Edata(u, v) =

∫∫
Ω

Ψ(|I(x+ w)− I(x)|)2 + γΨ(|I(x+ w)−∇I(x)|)2 dxdy (3.13)

Ψ(s2) =
√
s2 + ε2 , ε = 0.001 (3.14)

where Ψ(s2) is the penalty function which reduce the influence of the outliers. To design

the smoothing term, they first introduce the classical smoothing strategy proposed by

Horn and Schunck [18] as follows:

Esmooth(u, v) =

∫∫
Ω

Ψ(|∇3u|2 + |∇3v|2) dxdy (3.15)

In the traditional optical flow method, the weighting factor of the smoothing term usually

was a fixed value which made the same smoothing extent in any area of the image. With

the design of the data term and smoothing term, the proposed optical flow model could

be written as the followed energy function:

E(u, v) = Edata + αEsmooth −→ minimize (3.16)

The Euler-Lagrange equations [19] are nonlinear in their argument w = (u, v, 1)2. The first

step towards a linear system of equations, which can be solved with common numerical

methods, is the use of fixed point iterations on w. In order to implement a multiscale

approach, necessary to better approximate the global optimum of the energy, these fixed
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3.2 Optical Flow (OF)

point iterations are combined with a downsampling strategy. Instead of the standard

downsampling factor of 0.5 on each level, it is proposed here to use an arbitrary factor

η ∈ (0, 1), which allows smoother transitions from one scale to the next 1. Moreover, the

full pyramid of images is used, starting with the smallest possible image at the coarsest

grid.

S(q) =

∫ b

a

L(t, q(t), q′(t)) dt (3.17)

∂L

∂qi
(t, q(t), q′(t))− d

dt

∂L

∂qi
(t, q(t), q′(t)) = 0 for i = 1, ..., n (3.18)

After applying the minimization of the energy function of the image, we will obtain

for each pixel a component in the x-direction and a component in the y-direction, thus

obtaining an image with two channels per pixel. For the realization and application of the

above described, the implementation in python, Optical flow method based Coarse2Fine

warping method from Thomas Brox has been used. Below are some examples of the

Optical flow computed with the script PyFlow[20]:

Figure 3.3: Optical Flow Color axis map

Figure 3.4: Left image is an example of two consecutives frames. Right image is the
Optical Flow output between those images.
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3.3 Exponential Moving Average

3.3 Exponential Moving Average

Exponential Moving Average (EMA) is a type of mean where the most recent samples

have a greater weight. Similar to the Simple Moving Average (SMA) but with more

sensitivity to the closest changes. It is computed using the following expression:

EMAt
j = α ·Ot

j + (1− α) · EMAt−1
j (3.19)

EMA0
j = O0

j (3.20)

The alpha parameter defines the weight of the current image with respect to the past,

that is, the higher it is, the lower the importance of the previous images, and the smaller

it is, the greater the importance. It should be emphasized that the importance of the past

will have a decreasing exponential weight:

EMAt
j = αOt

j + αβOt−1
j + αβ2Ot−2

j + αβ3Ot−3
j + · · · (3.21)

Therefore, this technique will be interesting as long as the previous information belongs

to the same video and scene since otherwise, the past will not have relevance to generate

the next image.
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3.4 Shot Detection

3.4 Shot Detection

In the same video, different scenes may appear, which must be detected in order to not

take into account the information prior to that scene. Using the exponential moving av-

erage (EMA) methodology explained above, it is necessary to know where those changes

occur so as not to generate the image taking into account frames that do not belong to

the image in question. Let’s suppose that, a car appears on the video moving along the

road, and there is a change of scene, then the interior of the car is shown, in this case,

the information of the moving vehicle from outside has no visual relationship with the

object that is focusing inside the car. For this reason, when there is this type of change

in the images, it is necessary to be aware of it. In addition, it is also necessary to define

which motion image to calculate, since, the result of the difference between images has

no meaning, and does not provide us with the movement of an object.

Thus, at the moment that there is a change of scene, the movement between those two

images will be defined as a heatmap of value 0 in all the points, and information from

the images generated previously will not be used. In the next frame, the FD will be

calculated, but neither will the information of the previous frame be taken into account

since we have defined it as 0.

Currently, there are several ways to be aware of the changes of scene in a video. We soon

realize that it is a complex task: Let’s suppose that a bird appears flying in the video

where the camera also moves at the same speed, in this case, the background will be in

continuous movement but the scene will be the same. Note that, in this case, we detect

the movement of the background but not the main object. Then it will be understood that

it is a complex task, and for this reason (it is not the objective of this work) a relatively

simple system has been used to detect the typical and most relevant changes of the videos:

Given a couple of consecutive images, the proposed script will return True or False indi-

cating whether it is a scene change or not. To make this binary decision, it is determined

as follows: The 3 indices described below are calculated, which each of them returns True
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3.4 Shot Detection

or False and to finally decide the result is considered positive if at least two of these three

indicators are positive:

• Sum of absolute differences (SAD): Consists of calculating the sum of all Euclidean

distances between the color vector associated with each pixel and the same one of

the previous frame. SAD is very sensitive to small changes in the same scene: rapid

movements of the camera, explosions or simply turning on the light in a dark room

can produce a false detection. On the other hand, SAD does not detect soft cuts

very well. With this measure, you can measure the strong changes in scenes very

well.

SADt =
∑
j

||xtj − xt+1
j ||2 =

∑
j

Ot
j (3.22)

Ot
j : Heatmap resulting from the frame differencing, one component per pixel

xtj = [r, g, b]T : Full image with 3 components per pixel

• Histogram difference (HD): Consists of calculating the difference between the his-

tograms of each frame. To measure this distance Chi-Square is used because in

general, it obtains better results compared with the Log-likelihood statistic or His-

togram intersection [21]. HD is not as sensitive to small changes in the same scene

as it is SAD and therefore produces fewer false detections. The main problem is

that the two images can have the same histogram while the content is extremely

different. For example, an image of a beach could have the same histogram as a

desert with a blue sky. For the same reason, this indicator is not guaranteed to

recognize sudden changes in the scene. The chi-square distance between two rows

l, k is defined below:
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3.4 Shot Detection

HD(l, k)t =
∑
j

√
1

x+j

·
(
xlj
xj+
· xkj
xk+

)2

(3.23)

xi+ =
∑

j xij , x+j =
∑

j xij

M =


xtl,0 xt−1

k,0

xtl,1 xt−1
k,1

...
...

xtl,n xt−1
k,n

 : Matrix of the two histograms

• Edge change ratio (ECR): The ECR attempts to compare the actual content of

two frames. Transforms both frames into edge images, (extracts the contours of

the objects within the images). Then, compare these edge images using dilation

to calculate the probability that the second frame contains the same objects as the

first frame. This metric is very sensitive to sudden changes of scenes and at the

same time can detect smooth cuts. The final calculation to determine the ECR of

an image is shown below:

Figure 3.5: Steps of edge change ratio
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3.4 Shot Detection

ECRt = max(ECRin
t , ECR

out
t−1) = max

(∑
ECin

t∑
Pt

,

∑
ECout

t∑
Pt−1

)
(3.24)

ECRin
t : Edge Change Ratio of the edges of the input edges

ECRout
t−1 : Edge Change Ratio of the points of the trailing edge

Pt : Total points of the edges

In the image above, an outline of the operation of the ECR calculation process is

shown. At first, the edges of the two images (Canny edge detector) are detected.

The number of total points respectively for each image is then calculated and stored

in Pt and Pt−1. Then the dilation is applied and the images inverted. In order to

detect the difference of points, the AND function is applied between the dilated and

inverted image of the frame fn−1 and the image obtained with the detected edges of

the image fn. The same operation is performed with the two remaining images. The

ECR is considered between two frames as the maximum between the entry points

and the exit points.

The following image (Figure 3.6) shows the three indicators for a video section with

about 600 frames in total (represented by the x-axis). All metrics are normalized

between values [0, 1]. As we can see, there are 5 drastic changes of scene in this

section of a video, where to a lesser or greater extent it is collected by the three

indicators presented previously.
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3.4 Shot Detection

Figure 3.6: Steps of edge change ratio

Bearing in mind that it is necessary to detect when there is a drastic change in these

indexes, the information of previous images will have to be stored in order to know

when there is a significant relative maximum. In the presented script, an average of

the 10 previous samples is calculated and when this exceeds x times the value of the

average is considered a maximum. This threshold has been chosen so that it works

well for the dataset in question (DHF1K). Note that for the scene changes less than

10 frames, this system will not work correctly.
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3.5 Statistical Parameters

3.5 Statistical Parameters

During the execution of this thesis, different statistical parameters have been used in order

to extract information from the tests performed. Here is a brief summary of them:

• Variance is a measure of dispersion defined as the hope of the square of the deviation

of the said variable with respect to its mean. It can be interpreted as a measure of

the dispersion of the samples with respect to the mean.

σ2
n = E[X −X2

] = E[X2]− E[X]2 =

(
1

n

n∑
j=1

x2
j

)
−X2

(3.25)

n : Number of samples

xj : Value of each sample

x : Mean of the data

• Kurtosis is a measure of the ”tailedness” of the probability distribution of a real-

valued random variable. The standard measure of kurtosis, originating with Karl

Pearson, is based on a scaled version of the fourth moment of the data or population.

This number is related to the tails of the distribution, not its peak. We can define

kurtosis in the following way:

E[xp] =

∑n
j x

p
j

n
= αp (3.26)

E[(x−m)4] = α4 − 4αα3 + 6α2α2 − 3α4 = µ4 (3.27)

kurtosis = β2 =
µ4

σ4
(3.28)
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3.5 Statistical Parameters

In the normal distribution, it is verified that µ4 = 3σ4, where µ4 is the moment

of order 4 with respect to the mean and the standard deviation. Therefore, the

following definition of the kurtosis coefficient is more widespread:

leptokurtic: β2 > 3 and g2 > 0: more pointed and with tails thicker than normal

platykurtic: β2 < 3 and g2 < 0: less pointed and with tails thicker than normal

mesokurtic: β2 = 3 and g2 = 0: when it has a normal distribution

g2 =
µ4

σ4
− 3 (3.29)
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Chapter 4

Experiments

Summary

The work done as well as the experiments and their respective results are presented below.

The results obtained and their direct implications on the initial hypothesis are discussed.

The process of obtaining the motion of the videos is explained in detail and how they

have been integrated together with a static model. The own model is also presented to

realize said mixed implementation. It is intended to give a detailed explanation of the

entire process to establish the basis for the final conclusions.
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4.1 Obtaining the movement

4.1 Obtaining the movement

At first, the frame differencing has been computed, which consists of measuring the vec-

tor distance between two frames, as well as OpticalFlow. In the following sections, I will

explain in depth the difference between these two methodologies. We will focus only on

the model based on the Frame Differencing (see in 3.1):

Figure 4.1: examples of the frame differential heatmap

The hypothesis consists of verifying that movement is important in the generation of

saliency maps in the video. To begin to verify this idea, as explained before, the saliency

maps were generated, that is, they were created only and only from the movement pre-

dicted by this technique. From these maps, the metrics previously described for each

frame of the validation dataset were computed. As expected, it can be seen (Table 4.1)

that the Frame Differencing obtained a lower average score than SalBCE (Table 4.1).

However, that does not mean that it does not make a good prediction, it must be borne
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4.1 Obtaining the movement

in mind that this system does not capture static objects without movement. For that

reason, all those videos where still objects appear, or moments of the video where there

is no motion will not be detected.

The rate between the frames where FD obtained better results with respect to all the

frames has been computed. The obtained results show that there is an improvement be-

tween ∼12% and ∼24% of all frames, that is to say, that almost in 1/4 of the frames,

the simple technique of FD showed a better score (Table 4.1, row 14). At first, it was

expected that this technique would obtain better results depending on the type of video,

and according to the results obtained (see Figure 4.2) where the result is shown in orange

using a model without taking into account motion, and in blue the saliency maps with

the FD technique, you can see that in almost any video is getting better average results

from all the frames in each video.

- AUC-Judd SIM S-AUC CC NSS
SalBCE 0.8909 0.2667 0.7102 0.3819 2.135

Frame Differencing 0.7052 0.1534 0.5917 0.1335 0.7493
Rate of FD doing it
better than SalBCE

12.33% 14.98% 23.81% 13.17% 13.48%

Table 4.1: Experiment results

Figure 4.2: Comparison of results in the dataset validation

37



4.1 Obtaining the movement

To generate the following graph (Figure 4.3), the difference in the value of the metrics

for each frame between the dynamic model and the static model has been computed. All

those points/frames that obtain a positive value means that they have obtained a better

result while, if a negative value is obtained, the static model has obtained a better score.

In addition, the absolute value of that difference shows the magnitude of the distance.

In blue, the frames are shown where a positive value has been obtained, and in orange,

a negative value. It can be verified that, although in almost any video it has obtained

better results, there is a great number of frames that it has. Occasionally there are certain

videos where you get a much higher score and others that lower, but it is found that the

improvement exists in certain frames of all videos:

Figure 4.3: Comparison of results in the dataset validation

Even so, the average is still lower than the static model (Figure 4.4), and can be checked

by comparing the metrics of all the frames of the same video. Next, the value of the

static model is shown in orange, and without contemplating movement in blue (dynamic

model). You can see that although in most frames the result is much worse, there is a

certain number of frames which is higher:
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4.1 Obtaining the movement

Figure 4.4: Comparison of the results of a given video of the validation dataset

The trivial conclusion that is obtained from these results, is the fact that this system only

captures information when the object which we set is in motion, for this same reason,

the only improvement is captured in those frames where this dynamism exists. Those in

which there is no motion or is composed of not only dynamic parts, a worse result will be

obtained.
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4.2 Motion integration with static objects

4.2 Motion integration with static objects

In a first approximation, it has been proposed to generate a new mixed prediction, that

is, from the two maps generated by each system, use both to generate a map that inte-

grates the two types of information. To generate such predictions, two systems have been

proposed:

• Mixed integration: Apply different mathematical functions to generate another map

from the two, such as making a mean, or taking the maximum of each map, etc ..

• Binary Classifier: Based on other statistical parameters, which do not include the

ground truth, decide in each prediction which system will get the best score and

which one, one or the other.

Mixed integration

In the first methodology, 4 basic functions are proposed to generate the saliency maps.

In this case, no statistical parameter has been applied. After the application of these

functions all the saliency maps have been norm by range between (0, 255):

• Parameter α: A weighted sum has been applied to the two resulting maps.

mapnew = α ·mapstatic + (1− α) ·mapdinamic

• Sum: The direct addition pixel to pixel of the two saliency maps has been applied.

mapnew = mapstatic +mapdinamic

• Maximum: The maximum pixel to pixel function has been applied to both maps.

mapinew = max{mapistatic, mapidinamic}

• Minimum: The minimum pixel to pixel function has been applied to both maps.

mapinew = min{mapistatic, mapidinamic}
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4.2 Motion integration with static objects

In Table 4.2 it can be verified how the results have been similar, although the one corre-

sponding to the weighted average with α = 0.5, has been the one that has obtained the

best results in all the metrics studied. Even so, the results are not better with respect to

SalBCE except in SIM and S-AUC metric.

- AUC-Judd SIM S-AUC CC NSS
α = 0.5 0.8730 0.3412 0.7127 0.3412 1.906
addition 0.8730 0.2289 0.7127 0.3412 1.906

maximum 0.8640 0.2192 0.7091 0.3238 1.813
minimum 0.7813 0.2153 0.6226 0.2395 1.323
SalBCE 0.8909 0.2667 0.7102 0.3819 2.135

Frame Differencing 0.7052 0.1534 0.5917 0.1335 0.7493

Table 4.2: Mixed integration results

Note that although α parameter and addition seem exactly the same, there is a difference.

While the first one is computing the average of both maps and its value never is more

than 255, in the second one, before normalizing we truncate the saliency map. So, all the

pixels where the sum of both images in that pixel is greater than 255 will be represented

as the same value.

Binary Classifier

In the second methodology, the use of statistical parameters is proposed in order to pre-

dict which model will generate a better prediction. The kurtosis, the variance and the

amount of movement have been used to try to make this prediction. The previous sta-

tistical parameters have been computed on the FD. The main idea is to decide without

having knowledge of the ground truth which of the models will obtain the best result and

choose one or the other as appropriate.

Next, the difference in a video between the dynamic model and the static model is shown

in blue. In orange, the total amount of movement is shown in the first case (Figure 4.5),

and in the second, is shown the kurtosis (Figure 4.6).
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4.2 Motion integration with static objects

Figure 4.5: Comparison of kurtosis with the good results

Figure 4.6: Comparison of motion with the good results

It can be verified that there is a certain relationship between the amount of movement

and a better implementation with the model that implements the movement. Actually,

the most important thing is not the numerical value, rather if it is positive or not. To do
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4.2 Motion integration with static objects

this, the function sign{kurtosis,motion, variance}has been computed and it has been

proved that an important correlation exists.

In order to generate the final saliency maps, different implementations have been proposed:

• Choose the dynamic model only those frames where the variance of the FD associ-

ated with that frame is less than -0.5. Table 4.3

• Choose the dynamic model only those frames where the amount of movement of the

FD associated with that frame is greater than 0.5. Table 4.3

• Choose the dynamic model only those frames where the kurtosis of the FD associ-

ated with that frame is greater than 0. Table 4.3

• Choose the dynamic model only those frames where the AND function is fulfilled

between the amount of movement, the variance and the kurtosis of the FD associ-

ated with that frame is greater than 0. Table 4.3

• Choose the dynamic model only those frames where the AND function is fulfilled

between the amount of movement is greater than 0.5, the variance less than -0.5

and the kurtosis higher than -0.5 of the FD associated with that frame. Table 4.3

- AUC-Judd SIM S-AUC CC NSS
variance from (FD, < −0.5) 0.8687 0.2513 0.6955 0.3494 1.952

average motion (from FD, > 0.5) 0.8684 0.2531 0.6986 0.3541 1.981
kurtosi (from FD, > 0) 0.8237 0.2261 0.6636 0.2883 1.614

mix (α > 0) 0.8788 0.2602 0.7046 0.3671 2.063
mix (> 0.5, > 0.5, > −0.5) 0.8946 0.2698 0.7147 0.3876 2.176

SalBCE 0.8909 0.2667 0.7102 0.3819 2.135
Frame Differencing 0.7052 0.1534 0.5917 0.1335 0.7493

Table 4.3: Binary decision results
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4.2 Motion integration with static objects

It can be seen that all the models have obtained a similar score and lower than the static

model. However, the last implementation (Table 4.3), has obtained slightly higher re-

sults. It must be taken into account that the decision of the parameters is not optimized

to obtain the best results. The difference is very small so it could be the case that in fact

due to variations in the computation of the metrics there would not be a big difference

between one model or another, so we have to improve our model to include motion in

video saliency prediction.

In these experiments, we can conclude that motion is important. Although a solid solution

has not been proposed as far as implementation is concerned, the foundations of its

necessary implementation in prediction have been proposed, as well as a corroboration of

the importance of motion in saliency prediction task.
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4.3 Optical Flow implementation

4.3 Optical Flow implementation

Once the involvement of the movement in the prediction of salience has been demon-

strated, it has been decided to improve the capture of this movement. PyFlow (see in 3.2

has been used in order to obtain the Optical Flow of the dataset. Unlike the differenc-

ing frame, the optical flow identifies the direction and magnitude of that movement. To

be able to represent this direction, it is necessary to map the addresses (x, y) with the

spectrum (R, G, B) in the range of (0, 255). Although it is also possible to calculate the

magnitude, it is preferred to use the extra information provided by this model.

For this study we have used the implementation made in C ++ instead of FlowNet 2.0[22],

although with this second method, we could probably obtain higher speed of generation

of the Optical Flow and greater precision in the detection of this.

In Figure 4.2, the different values obtained with SalGAN (orange), FD (blue) and Optical

Flow (green) are compared in the AUC judd metric. It can be seen that this system does

not obtain a better average score in the videos. It has similar behavior to the FD although

in some videos they obtain better results, nevertheless, it obtains a lower percentage of

frames better than the static model, as well as a worse score in all the metrics (Table

4.4). In the figure some frames it can be seen that similar behavior is obtained in FD.

An improvement in certain frames of the same video, obtaining in the rest a result much

lower than the one obtained with SalBCE.

On the other hand, it has been verified what is the similarity percentage between these

two approximations, that is, what percentage of the frames that best obtain the FD also

obtained it in the Optical Flow, and surprisingly the result was approximately ∼ 60%. It

means that ∼ 40% of frames, which scored better, are different frames. So if we take into

account the extra percentage, the percentage of better frames is increased, using only the

technology with movement:
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4.3 Optical Flow implementation

- AUC-Judd SIM S-AUC CC NSS
Rate of FD doing it
better than SalBCE

12.33% 14.98% 23.81% 13.17% 13.48%

Rate of PF doing it
better than SalBCE

12.09% 14.56% 23.41% 12.14% 12.55%

Rate of PF doing it
better than SalGAN

in which FD did
52.9% 61,7% 52.8% 54.2% 61.1%

Rate of FD and PF
doing it better than

SalBCE
18.02% 20.56% 34.86% 18.73% 18.36%

Table 4.4: Ratio of improvement, of movement respect without movement

It can be observed in the previous table that with a simple movement model, that is,

decide that where there is movement there is salience, it is achieved in the best case, an

improvement of 34.86% of the frames, obtaining a clear correlation between movement

and salience.

To understand what properties a video must have in order to see which model works best,

it has been decided to choose certain videos. Specifically, the visualization of videos 626,

655, and 666 has been chosen for the study, coinciding in the peaks where the best result

is obtained (see Figure 4.7), with both movement systems and SalBCE where it obtains

a worse result. In these videos is where motion models get a better percentage of frames

than the static model:
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4.3 Optical Flow implementation

Figure 4.7: Comparison of results in the dataset validation and the rate

Video 626: It can be observed that the movement occurs in the golf ball located in the

lower right part of the image. You can check in the prediction made with SalGAN that at

no time does the ball appear. However, in the two systems with the movement they have

only marked that point, obtaining a greater result, with a kinship to the ground truth

much higher.

47



4.3 Optical Flow implementation

Figure 4.8: Video 626: DHF1K video, ground truth, PF and FD

Video 656: An orchestra can be observed playing the instruments, where there is a lot of

movement but in small parts inside the video. In the static model, a salience is observed

in almost the entire frame, however, with FD it is able to obtain better this information,

obtaining a better result again.

Figure 4.9: Video 656: DHF1K video, ground truth, PF and FD
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4.3 Optical Flow implementation

Video 666: In the video, you can see a woman moving around the kitchen. In the static

model, it is mainly shown the fixed objects of the countertop beside the girl. However, in

dynamic models, they better capture the movement of the girls predicting in a better way.

Figure 4.10: Video 666: DHF1K video, ground truth, PF and FD

It can be concluded that in those videos where scenes with movement appear, and these

are the most relevant points from the point of view of salience, dynamic systems tend

to obtain better results. However, the optimal point would be the inclusion of both

information in the same model in order to get a better prediction.
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4.4 Motion with neural networks approach

4.4 Motion with neural networks approach

The model proposed in the section 2.1.4 based on Convolutional Neural Networks (CNN)

has been used to generate the saliency maps implementing the information extracted from

the original images and the motion of said images. In order to improve their metrics val-

ues, we have made the inference from the SalBCE model in the frame differencing images,

optical flow images and the image with a mix of both techniques.

In Figure 4.11 it can be seen how the model using the complete image (FD and PF as in

one stream method [11]) with all the information related to the motion, obtain a better

approximation. In the NSS and SIM metrics is where you can see more difference and

greater improvement:

Figure 4.11: Metrics results of training SalBCE. The inputs are the three different types
of motion images. The x-axis represents the epochs and in the y-axis the value of each
metric. Top left: AUC Judd, Top right: AUC shuff, Middle left: CC, Middle right: NSS,
Bottom left: SIM
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4.4 Motion with neural networks approach

SalBCE inference in: AUC-Judd SIM S-AUC CC NSS
FD 0.778 0.219 0.700 0.253 1.25
PF 0.756 0.212 0.700 0.231 1.17

FD and PF 0.850 0.295 0.716 0.335 1.78
RGB 0.873 0.342 0.645 0.408 2.23

Table 4.5: Metrics results making inference in the motion generated images

In the table 4.5 it can be checked how the models exclusively using the movement infor-

mation is not enough to overcome the SalBCE metrics. It must be taken into account

that due to the lack of the initial wights of SalBCE because they are not published, it

has been necessary to re-train the model, reason why the values of SalBCE in the RGB

images differ a little with respect to the offers during the work. (At first, only the images

from validation dataset were generated and to train the complete model it was necessary

to replicate the conditions of SalBCE training, and once we got the right weights to make

inference in de validation as well as the training dataset

Figure 4.12: Metrics results of training the last architecture to mix both saliency
maps.(from RGB and motion). Top left: AUC Judd, Top right: AUC shuff, Middle
left: CC, Middle right: NSS, Bottom left: SIM
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4.4 Motion with neural networks approach

In Figure 4.12 are the results of training the custom CNN head architecture proposed to

generate the final saliency map from the two corresponding outputs of making an infer-

ence with SalBCE in the RGB images and those of the motion. There have been done 20

epochs with a descendant learning rate.

SalBCE inference in: AUC-Judd SIM S-AUC CC NSS
RGB 0.873 0.342 0.645 0.408 2.23

FD and PF 0.850 0.295 0.716 0.335 1.78
RGB, FD, and PF 0.874 0.345 0.750 0.410 2.27

Table 4.6: Metrics results making inference in the motion generated images

In Table 4.6 it can be seen how the final maps generated are quite similar to the ones

without taking motion into account, except in the SIM metric, all the others have been

improved in respect to the initial ones. Although the improvement is relatively small

and an impressively high absolute result has not been obtained comparatively with other

implementations (see in Table 4.13), the metrics of the initial system have been improved,

allowing to say at least the inclusion of the movement has certain relevance.

The structure described in the section 2.1.4 has also been used in order to simplify the

other models in the section 2.1.4.1. Unlike the latter model, the results have been very

similar with all the tests carried out. The static information has been combined with

different movement information: (RGB + FD, RGB + OF, RGB + FD + OF, RGB).

Little improvement has been obtained in any case. With this result we can conclude

that it is necessary to use another type of architecture to better implement the dynamic

information.

Below is the comparative table of the different approaches to solve the saliency prediction.

We can get an idea of the values obtained in this work comparatively with the first

positions. It can be proven that although the best results are not obtained, it is enough

to prove the importance of the movement:
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4.4 Motion with neural networks approach

Figure 4.13: DHF1K video saliency leaderboard. https://mmcheng.net/videosal/. Con-
sulted time: 18 May 2019.
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Chapter 5

Environment

In order to work correctly, organized and safely, a configuration scheme based on the

GitHub platform for code storage and a docker[23] for the correct development of this has

been proposed. To perform code tasks, visual studio code has been used, together with

an external laptop to the server where, through the ssh and scp protocols, they have been

communicated.

Figure 5.1: Enviorment

Due to the need for computing power and storage space, a server with the right compo-

nents has been used (laptops do not have enough features for this kind of task). Thus,

communication with the server has been carried out by means of a laptop. In order to
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avoid compatibility issues and different versions, the docker technology has been used,

so before uploading the programs to the server, local tests were possible (very easy for

scalability). All the code has been periodically uploaded to the GitHub repository in

order to maintain version control and have all the work saved at all times.

The difference of colors between folders serves to understand their connection between

them, that is, the datasets folders and saliency maps (due to a large amount of information

they store) have not been uploaded to GitHub, and therefore their files inside the docker

it is a mapping of the folders inside the server.
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Chapter 6

Budget

For the realization of the thesis a work space has been used at the University of Dublin

(DCU) with sufficient material (Office, screen, servers, electricity, etc ...) to carry out

the necessary tasks. Insight Center for Data Analitycs has provided my tutor Kevin

McGuinness in conjunction with Xavier Giro-i-Nieto (From Universitat Politecnica de

Catalunya) to oversee the thesis. The software used are open-source. However, in order

to perform the necessary computation, it has been compared with cloud services:

• At AWS (Amazon Web Services)1 similar GPU used as an Insight, it would cost

0.9$ + IVA per hour. If the use was prolonged (minimum of 3 years) the price would

be 0.425$ + IVA.

• At GCP (Google Cloud Platform)2 a similar GPU with the same amount of RAM

it would cost 0.95$ + IVA. If a preemptile system is used (permission is given to

google so that it can paralyze the processes up to 24h when they need it) the price

is only 0.135$ + IVA.

Amount Wage/Hour Dedication Weeks Total

Undergraduate researcher 1 10 $ 35 h/week 15 5,250 $
Senior Engineer 2 35 $ 1 h/week 15 1,050 $
GPU Tesla K80 1 0.95 $ 80 h/week 15 1,140 $

Total 7,440 $

Table 6.1: Costs of total hours of work. Social Charges and taxes are not included

1https://aws.amazon.com/es/ec2/instance-types/p2/
2https://cloud.google.com/compute/pricing#sustained use
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Chapter 7

Ethics

In recent years, research in the field of computer science and artificial intelligence has

grown exponentially. Largely due to the increasing computing capacity that this type of

architectures requires, however, there is still a long way to go. With these new method-

ologies have begun to imagine concepts that were previously unthinkable, as could be

the autonomous car or the prediction of diseases just by having a photo. The amount

of possibilities that these technologies can offer is not even present in our lives. Go-

ing a step further, can we imagine a model where, for example, justice is using artificial

intelligence to predict whether or not we will be guilty, even before committing any crime.

We are not really aware of the repercussion that can be predicting the fixations of the eye

in images or videos. To what extent we can understand it as part of our privacy, we could

ethically pass through a barrier. On the other hand, there are a lot of applications with

which the saliency prediction could work very well. Apart from other tasks in artificial

intelligence that this methodology could provide, it could currently be used in market-

ing or for example in video compression (maybe it is not necessary to transmit all the

information of the whole image equally if, in the end, we only look at a part of that frame).

During the realization of the thesis, it has also been possible to identify certain bias

depending on the type of video. The same action performed by different people, in

gender, race, or even religion have different ground truth. This can be seen very well

in sports videos carried out by a man or a woman. We understand then that there is a
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variation of the ground truth in the function of certain parameters of the group that made

these images. Taking a small group of people (see in Table 2.2) it is very likely that the

result will be diverted towards a certain trend. The saliency maps not only depend on the

images that we are seeing but also the people who are behind based on their memories

and experiences. It could be interesting to use a group of children to see how their fixation

maps are.
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Chapter 8

Conclusion and Future
Developement

During this thesis, I have learned a lot of concepts related to artificial intelligence, from

the basic operation of a simple neural network to the Depp Neural Networks (DNN) as the

one of SalBCE. It has also been very useful to start knowing the pythorch framework and

implement my own architecture from scratch. With this project we provide the following

contributions:

• Different approaches have been presented to demonstrate that motion is important

in saliency prediction. Different graphs and findings have been shown using the

DHF1K dataset.

• We have studied a state-of-the-art saliency model for static images named SalGAN

and for videos, SalBCE. We have evaluated its performance in the DHF1K bench-

mark, rating second in the public leaderboard, under ACLNet.

• A custom CNN head has been presented using the well-known SalBCE to implement

the motion in the prediction process. The bases have been laid to begin to develop

a model that implements this concept.

The main goal has been accomplished, as shown in section 1.1, all the proposed objectives

have been met, although with some nuance. It has been proved that, indeed, we tend to

look more to the parts of the objects in motion. On the other hand, the extraction of the

dynamic information has been carried out by means of two known techniques, FD and

PyFlow (Lukas Kanade implementation), thus generating (as in the one stream methodol-

ogy) an image with movement information. An implementation based on SalBCE has also
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been proposed to integrate that movement in the calculation of saliency prediction. The

results obtained with this architecture have not been as expected, although the difference

has been small, we have obtained better results in all the metrics. In AUC-Shuffle, up to

a 16.3 % improvement has been achieved with respect to the baseline BCE, however, in

the other metrics, not much more than 1% improvement has been achieved.

Given the previous results, below are different ways to improve the results:

• To improve the obtaining of the movement, the use of other neural networks is

proposed with the purpose of decreasing the computing time. During the execution

of the work we have been studying the implementation of FlowNet2.0 [22] or more

recently the use of PWC-Net [24] (is 17 times smaller in size, 2 times faster in

inference, and 11 % more accurate on Sintel final than the recent FlowNet2 model).

At the end of the work, a new implementation superior to all demands has been

published, called SelFlow [25].

• The inclusion of a new more complex architecture that can be implemented - as in

ACLNet - attention modules or LSTM between the two image channels, as well as

an improved architecture for the merging of the groups of images.

• Train the model with different datasets, such as SALICON or UFC Sports, in order

to obtain a greater variety of content and improve the accuracy of the prediction.

Although different new ways to improve movement are proposed, we believe that the best

way to improve this system is to directly include the application of the first point, where

the use of a new more precise architecture is necessary. At first, the results obtained with

FD and OF were very positive, however, those calculated using this Custom CNN head

have not been sufficient compared to the computation cost that is required. A system

has been used where the movement information has been considered as important as the

static information, and maybe it would be smarter to use this information to help the

SalBCE in RGB to fix more in those areas with movement.
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