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Abstract

This thesis explores good practices for improving the performance of an existing convnet
trained with a dataset of clean data when an additional dataset of noisy data is available.

We develop techniques to clean the noisy data with the help of the clean one, a family of
solutions that we will refer to as denoising, and then we explore the best sorting of the clean and
noisy datasets during the fine-tuning of a convnet.

Then we study strategies to select the subset of images of the clean data that will improve
the classification performance, a practice we will efer to as fracking.

Next, we determine how many layers are actually better to fine-tune in our convnet, given our
amount of data.

And finally, we compare the classic convnet architecture where a single network is fine-tuned
to solve a multi-class problem with the case of fine-tuning a convnet for binary classification for
each considered class.
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Resum

Aquesta tesis explora diverses pràctiques per millorar el rendiment d’una convnet entrenada
amb un dataset que conté dades netes, quan tenim disponible un dataset addicional amb dades
sorolloses.

Desenvolupem tècniques per netejar les dades sorolloses amb l’ajuda de les netes, una faḿılia
de solucions a les que ens referirem com denoising, i desprès explorem la millor manera d’ordenar
el dataset net i el sorollós durant l’afinació d’una convnet.

Desprès, estudiem estratègies per seleccionar un conjunt d’imatges del dataset net per tal de
millorar el rendiment de la convnet, una pràctica a la que ens referirem com a fracking.

A continuació, determinem quantes capes és millor modificar durant l’afinació en la nostre
xarxa, donada la nostre quantitat d’imatges.

I finalment, comparem l’estructura clàssica d’una convnet, on una xarxa es afinada per a
resoldre un problema de varies classes, amb el cas on afinem una xarxa per fer una classificació
binaria per cada classe.
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Resumen

Esta tesis explora varias prácticas para mejorar el rendimiento de una convnet entrenada con
un dataset que contiene datos limpios, cuando tenemos disponible un dataset adicional con datos
ruidosos.

Desarrollamos técnicas para limpiar los datos ruidosos con ayuda de los limpios, una familia
de soluciones a las que nos referiremos como denoising, y después exploramos la mejor manera
de ordenar el dataset limpio y el ruidoso durante la afinación de una convnet.

Después, estudiamos estrategias para seleccionar un conjunto de imágenes del dataset limpio
con tal de mejorar el rendimiento de la convnet, una práctica a la que nos referiremos como
fracking.

A continuación, determinamos cuantas capas es mejor modificar durante la afinación en nues-
tra red, dada nuestra cantidad de imágenes.

Finalmente, comparamos la estructura clásica de una convnet, donde una red es afinada
para resolver un problema de varias clases, con el caso donde afinamos una red para hacer una
clasificación binaria para cada clase.
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Chapter 1

Introduction

1.1 Statement of purpose

Cultural heritage is broadly considered a value to be preserved through generations. Every
society has created through years collective cultural events celebrated with certain temporal
periodicity, commonly yearly. These festivities may widely spread geographically, like the Chinese
New Year’s or Indian Holi Festival, or much more localized like the Carnival in Rio de Janeiro or
the Castellers in Catalonia.

However, as in any classic multimedia retrieval problem, while the acquisition and storage of
visual content is a popular practice among event attendees, their proper annotation is not. Only
a minority of photo and video uploaders will add the simplest form of annotation, a tag or a
title, while most users will just store their visual content with no further processing. So, the goal
of cultural event recognition is not only to find images with similar content, but further to find
images that are semantically related to a particular type of event.

In our work, we addressed the cultural event recognition problem in photos by classifying the
visual features extracted from convolutional neural networks (convnets). These convnets require
to be trained with a large amount of labeled images describing the problem that must be solved.
But obtaining clean data is expensive and requires a big human effort to manually check all the
images and label them. On the other hand, downloading noisy data from the Internet in an
unsupervised fashion is easier and cheaper. This thesis explores good practices for improving
the performance of an existing convnet trained with a dataset of clean data when an additional
dataset of noisy data is available. In particular, this work focuses on the clean dataset for cultural
event recognition provided in the ChaLearn Challenge 2015 [3], which was augmented with a noisy
dataset downloaded from Flickr.

In particular, the main contributions of this project are:

• Find the best sorting of the clean and noisy datasets during the fine-tuning of a convnet;
which is a process of adjusting the parameters of a pre-trained convnet to adapt it to a
new visual classification problem.

• Develop techniques to clean the noisy dataset with the help of the clean one, a family of
solutions that we will refer to as denoising.

• Explore strategies to select the subset of images that will improve the classification perfor-
mance, a practice we will refer to as fracking

• Determine how many layers are actually better to fine-tune in our convnet, given our
amount of data.

• Compare the classic convnet architecture where a single network is fine-tuned to solve a
multi-class problem with the case of fine-tuning a convnet for binary classification for each
considered class.
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The baseline of this project was our participation in the CVPR ChaLearn: Looking at peo-
ple Challenge in 2015 [3]. Our team composed of researchers from Universitat Politècnica de
Catalunya and St. Poelten University of Applied Sciences participated in the Cultural Event Clas-
sification task and achieved the second place. The submission of those results occurred during
the beginning of my thesis, so the work presented in this report was posterior. We plan to submit
the presented improvements in the next edition of the challenge in September 2015.

1.2 Requirements and specifications

This project has been developed as a tool that could be used for other students or developers
in the future to participate in upcoming challenges by recycling or improving it .

The requirements of this project are the following:

• Improve the results obtained in our submission to the first edition ChaLearn Challenge on
Cultural Event Classification in the associated workshop at the IEEE International Confer-
ence on Computer Vision (CVPR) 2015.

• Find a method to exploit the noisy dataset collected from Flickr to improve the classification
performance of the clean dataset, a task in which we failed in the first submission to the
ChaLearn Challenge.

• Prepare the participation in the second edition ChaLearn Challenge on Cultural Event
Classification at the associated workshop at the IEEE International Conference on Computer
Vision (ICCV) 2015.

• Evaluate the results and make a comparative study between them.

The specifications are the following

• Use the software platform Caffe[14] as the basic deep learning framework for development.

• Developed in Python and Matlab.

1.3 Methods and procedures

The baseline of this project is the solution presented in the ChaLearn Challenge 2015 on
Cultural Event Classification [27]. This solution first extracted visual features from the last three
fully connected layers of both CaffeNet (pre-trained with ImageNet) and a fine tuned version for
the ChaLearn challenge. Then proposed a late fusion strategy that trains a separate low-level
SVM on each of the extracted neural codes. The class predictions of the low-level SVMs form
the input to a higher level SVM, which gives the final event scores. The solution achieved the
best result by adding a temporal refinement step into the classification scheme, which is applied
directly to the output of each low-level SVM. The approach penalizes high classification scores
based on visual features when their time stamp does not match well an event-specific temporal
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Figure 1.1: Global architecture of the solution presented in ChaLearn

distribution, learnt from the training and validation data. Figure 1.1 shows an a schematic
pipeline of that solution.

An additional extension explored for the challenge submission was the addition of an external
image dataset collected from Flickr, which was used to increase the number of training images for
fine tuning. However, this experiment was not successful: the performance decreased when the
new images were used for training. This problem is known in the literature and has been referred
as cross-domain adaptation [5, 17, 10] or dataset bias [33]. For this reason, in this project we
try to make this dataset useful by applying a denoising technique to those images before using
them for training.

Moreover, we have realized that we can follow two ways when we are fine-tuning a convnet:
one of them by joining all the datasets and working as it was a big one, and the other by fine-
tuning first with one, and then with the next one. In this last case we analyze the best to way
to order the datasets during the process.

We have also explored a method to improve the capability of a convnet to better recognize
those images that are classified with a low score, referred as fracking by the authors in [29]. This
method uses, for a given convnet model, the worst classified images in each event to train again
the convnet and highlight where those images belong.

Following the lecture notes in [15], we aim to check if fine-tuning only the last layers of the
convnet increases the score with respect to fine-tuning all layers with our training images. As
our dataset is much smaller than the one used for training the convnet used as reference, trying
to modify its learned weights of earlier layers could result in a worse perfomance.

Finally, we investigate if results improve if we perform a single convnet for each event. It means
that each convnet has to recognize only one type of event, making it easier than classifying all
of them.

1.4 Work Plan

This project has followed the established work plan, with a few exceptions and modifications
explained in the section 1.5.
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1.4.1 Work Packages

• WP 1: Project propose and work plan.

• WP 2: Introduction to the involved technologies

• WP 3: Development of the classification code

• WP 4: Participation in the ChaLearn Challenge on Cultural Event Classification at CVPR
2015

• WP 5: Critical Review of the project

• WP 6: Development of improving solutions

• WP 7: Writing and presentation of the project

1.4.2 Gantt Diagram

Figure 1.2: Gantt Diagram of the Degree Thesis

1.5 Incidents and Modification

During the project we decided to increase the workload and duration of the tasks in the WP
3 at the same time as keeping the timetable. To do this, we added a task for searching methods
to classify the images using the features obtained with Caffe.

13



The initial WP 6 consisted on participating in another scientific challenge, MediaEval 2015.
However, once the challenge for this year was announced, none of the tasks was about image
classification, thus we decided not to participate. Nevertheless, we thought that it was interesting
to investigate why some solutions proposed for ChaLearn did not work, and implement some new
solutions to improve our score. Thus, we changed the WP 6 and created new tasks and timetables,
making a delay in WP 5.

Another modification that we made had to do with the main objectives of the thesis. At first,
they were related to the participation to the ChaLearn challenge, but once this objective was
completed, we focused on adding developing solutions to improve the results.
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Chapter 2

State of the art

2.1 Convolutional Neural Networks

Deep convolutional neural networks (convnets) have recently become popular in computer
vision, since they have dramatically advanced the state-of-the-art in tasks such as image classi-
fication [1], retrieval [2] or object detection [9][12].

Convnets are typically defined as a hierarchical structure of a repetitive pattern of three hidden
layers: (a) a local convolutional filtering (bidimensional in the case of images), (b) a non-linear
operation, (commonly Rectified Linear Units - ReLU) and (c) a spatial local pooling (typically a
max operator). The resulting data structure is called a feature map and, in the case of images,
they correspond to 2D signals. The higher layers in the convnet do not follow this pattern
anymore but consist of fully connected (FC) layers: every value (neuron) in the fully connected
layer is connected to all neurons from the previous layers through some weights. As these fully
connected layers do not apply any spatial constrain anymore, they are represented as single
dimensional vectors, further referred in this paper as neural codes[2].

Figure 2.1 from [2] shows an example of a convnet. Purple nodes are the input and output.
Green units correspond to outputs of convolutions, red units correspond to the outputs of max
pooling, and blue units correspond to the outputs of ReLU transform. Layers 6,7 and 8 are fully
connected.

Figure 2.1: Convolutional Neural Network architecture

The amount of layers is a design parameter that, in the literature, may vary from three [20] to
nineteen [30]. Some studies [36] indicate that the first layers capture finer perceptual patterns,
while the deeper the level, the more complex patterns are modeled, in many cases associated
to semantic concepts. However, there is no clear answer yet about how to find the optimal
architecture to solve a particular visual recognition problem. The design of convnets is still
mainly based on trial-and-error process and the expertise of the designer. In our work we have
adopted the public implementation of CaffeNet [14], explained in 3.1.2

Apart from defining a convnet architecture, it is necessary to learn the parameters that govern
the behaviour of the filters in each layer. These parameters are obtained through a learning
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process that replaces the classic handcrafted design of visual features. This way, the visual
features are optimized for the specific problems that one wants to solve. Training a convnet
is achieved through backpropagation [21], a high-computational effort that has been recently
boosted by the affordable costs of GPUs. In addition to the computational requirements, a large
amount of annotated data is also necessary. Similarly to the strategy adopted in the design of
the convnet, we have also used the publicly available filter parameters of CaffeNet [14], which
had been trained for 1,000 semantic classes from the ImageNet dataset [7].

The amount of photos of annotated cultural events available in this work is much smaller
than the large amount of images available in ImageNet. We have addressed the situation by fine
tuning CaffeNet, that is, providing additional training data to an existing convnet which had been
trained for a similar problem. This way, the network parameters are not randomly initialized, as
in a training from scratch, but are already adjusted to a solution which is assumed to be similar
to the desired one. Previous works [9, 12, 16] have proved that fine-tuning [13] is an efficient
and valid solution to address these type of situations.

2.2 Social Event Classification

A very similar problem to Cultural Event Recognition, namely “Social Event Classification”,
was formulated in the MediaEval Social Event Detection benchmark in 2013 [26] [25]. The
provided dataset contained 57,165 images from Instagram together with available contextual
metadata (time, location and tags) provided by the API. The classification task considered a
first decision level between event and non-event and, in the case of event, eight semantic classes
were defined to be distinguished: concert, conference, exhibition, fashion, protest, sports, the-
atre/dance, other. The results over all participants showed that the classification performance
strongly benefits from multimodal processing combining content and contextual information.Pure
contextual processing as proposed in [31] and [11] and yielded the weakest results.

The remaining participants proposed to add visual analysis to the contextual processing.
CERTH-ITI [28] combined pLSA on the 1,000 most frequent tags with a dense sampling of
SIFT visual features, which were later coded with VLAD. They observed a complementary role
between visual and textual modalities. Brenner and Izquierdo [4] combined textual features with
the global GIST visual descriptor, which is capable of capturing the spatial composition of the
scene.

The best performance in the Social Event Classification task was achieved by [23]. They
combine processing of textual photo descriptions with the work from [22] for visual processing,
based on bag of visual words aggregated in different fashions through events. Their results
showed that visual information is the best option to discriminate between event/non-event and
that textual information is more reliable to discriminate between different event types.

2.3 Convnets for Cultural Event Recognition

Our participation in the ChaLearn Challenge for Cultural Recognition in [3] has allowed us to
compare our technique with other state of the art solutions in a very fair fashion. This sub-section
reviews the contributions of other selected participants. It must be noticed, though, that these
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papers were published during the final stage of this thesis, preventing us to incorporate some of
the interesting ideas in our pipeline due to the time limitations

2.3.1 Event Recognition Using Object-Scene Convolutional Neural Networks

This proposal presented in [35] was the winning one in ChaLearn Challenge on Cultural Event
Classification in CVPR 2015. The winners proposed a new architecture based on the Object-
Scene Convolutional Neural Network (OS-CNN), and adapt the deep (AlexNet) [1] and very-deep
(GoogLeNet) [32] networks to the task of event recognition.

Figure 2.2: Architecture of Object-Scene Convolutional Neural Network for event recognition

The object stream, pre-trained in a large object dataset (ImageNet) [8], carries information
about object depicted in the image. The scene stream, pre-trained in large scene dataset (Places)
[38], captures the pattern abut scene context of this image.

• Object Net: They choose the Clarifai network architecture and use the pre-trained model
from VGG group [6]. Then, they fine-tune the model parameters for the task of event
recognition on the training dataset provided by ChaLearn.

• Scene Net: They use the pre-trained model in Places dataset, which chose the AlexNet
architecture. Then, they fine-tune the model parameters on the training dataset provided
by ChaLearn.

• Final Score: The score from multiple object and scene nets are combined using late fusion

2.4 Recognizing Cultural Events in Images: a Study of Image
Categorization Models

The method presented in [18] is based on Least-Squares Support Vector Machines (LSSVM)
and consider three types of local features: SIFT, Color and CNN. They use a combination of
Spatial Pyramid Matching (SPM) [19] using as a features SIFT and Color, and a RMP using
cNN. Both SPM and RMP are LSSVM:
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• Spatial Pyramid Matching (SPM) [19]: is a popular approach for image categorization.
It works by partitioning an image into increasingly fine sub-regions and aggregating local
features found inside each sub-region. They use a SPM model with three levels, as shown
in the figure 2.3.

Figure 2.3: Spatial Pyramid Matching structure

• Regularized Max Pooling (RMP): it works by partitioning an image into multiple regions
and aggregating local features computed for each region, as in the case of SPM. However,
RMP does not rely on rigid geometric correspondence of grid division. In RMP, the grid
division has limited discriminative power for recognizing semantic category with huge vari-
ance in location or large deformation. The region can be considered as a parts at different
locations and scales.

2.5 Cultural Event Recognition by Subregion Classification with
Convolutinal Neural Network

The technique [24] depicted in the Figure ?? detects regions of the image with different sizes
and classifies those regions individually using convolutional neural networks. Finally, the class
probabilities of each region are gathered together to produce the final outuput for the query
image.

By extracting distinctive and meaningful regions from an image, they assume that the dis-
criminant features are at the object levels. The possible object localizations are extracted via
selective search [34], which combines an exhaustive search and segmentation. They exclude from
the extracted candidate regions those that are too small, too tall or wide regions. Then they
apply the CNN to classify these regions. Before gathering the classification results of each region,
the image regions whose class probability distribution have high entropy are discarded, because
they are considered to contain not much discriminant information. Finally, the classification
probabilities are combined by average.

18



Chapter 3

Methodology

3.1 Baseline

The baseline result considered in this thesis was our submission to the ChaLearn Cultural
Event challenge in CVPR 2015 [27]. I participated in this first submission during the early stages
of my thesis, not as a main author, was as an exercise to become familiar with the tools and
datasets considered in the problem. This participation provided me by the sufficient level of
autonomy to proceed with the advances reported in the later sections, which represent the core
of my work and contributions.

3.1.1 Datasets

Two datasets were used during the development of my work. A first one provided by the
organizers of the ChaLearn challenge, and a second one created by our team at UPC.

3.1.1.1 ChaLearn

The organizers of the ChaLearn Challenge provided a dataset cultural events and their corre-
sponding labels. The dataset was already divided in the three classic partitions to developed a
supervised learning experimentation. The first partition is the traininig dataset, which contains
5,875 images, the second one is the validation dataset containing 2,332 images and, finally, the
test dataset includes 3,569 images. Labels were also provided for the training and validation
datasets, not for the test one to ensure a fair evaluation of the results. These images were
classified between 50 cultural events, from which are also provided the country where the event
is original from. The dataset was created by downloading photos from Google Images and Bing
search engines, which were carefully labeled by organisers to create a very clean dataset.

3.1.1.2 Flickr

As previous works[16][1][36] have reported gains when applying some sort of data augmen-
tation strategy, we considered that our results may improve by adding additional training data
downloaded from Flickr.

Flickr is a photo repository with a public API that allows to query its large database of photos
and filter the obtained results by tags, textual data search and geographical location. For the
challenge 3 sets of images from Flickr1 were generated, each of them introducing a higher degree
of refinement:

1More details in Section 5.2 of [27], included in the Annexes
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1. 90k set: Around 90.000 photos retrieved by matching the provided event title on the Flickr
tags and content metadata fields.

2. 21k set: The query from the 90k set as combined with a GPS filtering based on the
provided country.

3. 9k set: The query from the 21k set was further filtered with manually selected terms
from the Wikipedia articles related to the event. In addition, the Flickr query also toggled
on an interestingness flag which improved the diversity of images in terms of users and
dates. Furthermore, as explained in the Section 3 of the paper [27], a temporal model for
each event was created. These temporal models were also used to improve the likelihood
that a downloaded photo actually belonged to a certain event. For each image the day of
capture was extracted from its metadata and retrieved the score from the temporal model
of its class. Then, the score was threshold to remove the items that are unlikely from the
temporal model.

The Flickr dataset used during this project corresponds to 9k set filtered with a threshold of
0.9, which result in 4,068 images.

3.1.2 Fine-tuning CaffeNet

Caffe[14] is a deep learning framework from Berkeley Vision and Learning Center (BVLC)
that allows to extract features from a convolutional neural network. Caffe includes the Caf-
feNet pre-trained convnet, which was inspired by AlexNet [1]. Its architecture is composed by
5 convolutional layers and 3 fully connected layers, whose parameters were trained on 1,200,000
ImageNet images and 1,000 object classes.

As we introduced in 2.1, fine-tuning is the process adapting an already learned model to
a novel classification model. Starting from an existing model allows a faster and more stable
convergence than if starting with random values.

There are a few steps to follow to fine-tune a convnet with Caffe2:

1. Preparation of the data: Caffe needs a training and a validation dataset, which are read
from two different text files. These text files must contain, for each image, the path where
it is located and its semantic class. The train dataset is used to learn the weights in each
layer, while the validation dataset is used to compute the accuracy and provide intuition
about the evolution of the training process.

2. Definition of the new architecture: A new architecture adapted to the novel classification
problem must be create in a file. The file defines parameters such as: number of layers,
filters, paths to the input data, etc.

The best practice to create such file is copying the one defining CaffeNet and change the
parameters to fit our needs. The main parameters to be changed are:

• the source parameters to point it to our dataset files

2http://caffe.berkeleyvision.org/gathered/examples/finetune_flickr_style.html

20

http://caffe.berkeleyvision.org/gathered/examples/finetune_flickr_style.html


• the blobs lr : is a specific multiplier that is applied to the base learning rate. If we do
not want to change the weights of a layer, this parameter should be 0, but if we want
to tune the weight of a layer we do not have to modify the original.

• If we want to completely change a layer we have to rename it and modify it as we want.
For example change the num output to specify a new size for the output vector. The
instances where the old name appeared in the files have to be changed too. During
training this layer will be detected as a new one. Thereby, the weights of this layer
will be initialized from a random values instead of the weights from CaffeNet.

In our case, for example, the only layer that we changed was the last one, because
we wanted to change the output vector size from 1000 to 50, which corresponds to
the number of events in our dataset.

3. Definition of the training parameters: The solver is the file that specifies the training
parameters, such as: the number of iterations, the testing interval, the base learning rate,
or if we are running in GPU or in CPU. It is necessary to change the net parameter to point
it to the network file that we have created before, and the snapshot prefix which points to
the folder where we want to save the model.

It is important to know that the number of epochs, which corresponds to the number of
times each image passes through the network, are fixed with the parameters that we define
in the solver and in the network:

epochs =
num iterations× batch size

training samples

where:

• num iterations is the number of times that a random set of images with the size
defined in the batch size passes through the network.

• batch size is the number of images that go through the network at once.

• training samples is the number of images used for training.

4. Fine-tune: Finally we can fine-tune the network. We need to specify where the solver is,
and where our reference model is, for example we can use CaffeNet.

Once we have our fine-tuned network, we can classify our images. The classification output
is a prediction, generated by our trained network, which corresponds to the score given to the
image for each one of the 50 classes (events).

3.2 Dataset ordering during fine-tuning

As presented in section 3.1.1, we have different two datasets: the one provided by ChaLearn
and the other one downloaded from Flickr. We explored different schemes to use them both,
which are summarized in Figure3.1:

• Joint method: We can join the two datasets as if it was a single one. To do this, we
only have to join all the train and all the validation text files prepared for Caffe as we
explained in 1. Then we can fine-tune using CaffeNet as a reference model, which provides
the initialization weights, as explained in Section 3.1.2. This was the approach used in our
baseline solution [27]
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• Sequential method: The two datasets are used separately in a sequential scheme. To
do this, we initially use only one dataset, starting from the reference model of CaffeNet.
Then, we fine-tune with the other dataset, but instead of using CaffeNet as a reference
model, we use the one re-trained with the first dataset. If we want to fine-tune another
dataset, we should start from the one trained with the second dataset, and so on. In our
case, where two datasets are considered (clean and noisy), this method can be applied in
two different configurations, depending on the sorting.

ORIGINAL 
MODEL

Fine-tune
joining all datasets

Ref*: original model

*reference model

ALL DATASETS 
MODEL

Ref*: original model

DATASET 1 
MODEL

Fine-tune
with dataset 1

Ref*: dataset 1 model

Fine-tune
with dataset 2 DATASET 2 

MODEL

Figure 3.1: Two options to combine two datasets for fine-tunning the original model (trained on
ImageNet) with data from cultural events

It is important to notice that during the fine-tunning process, Caffe will select a random set
of images, defined by the batch size, to pass through the network. This means than in Joint
method will show to the network images from both datasets indistinctively, while the weights in
the sequential method will be more adjusted to the second dataset.

The experiments on these configurations can be found in Section 4.4.

3.3 Denoising a weakly labeled dataset

A visual inspection of some images from the clean (ChaLearn) and noisy (Flickr) datasets
clearly shows the differences between both sets. As is can be observed in Figures 3.2 and
3.3, the Flickr images are much more diverse than the ones manually curated by the ChaLearn
organizers. We hypothesize that this diversity in quality was one of the reasons why in our
baseline experiments adding images from Flickr to fine-tuning produced a strong degradation of
the performance [27].
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(a) From validation dataset

(b) From Flickr dataset

Figure 3.2: Mosaic of Queens Day images
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(a) From validation dataset

(b) From Flickr dataset

Figure 3.3: Mosaic of St.Patrick Day images

Based on this hypothesis, we decided to explore strategies to remove those images from the
Flickr dataset which were ”too different” from the ones provided by the clean ChaLearn dataset,
so we called this method denoising, as also suggested in [5]. Our strategy consists on using
a model only trained with the ChaLearn images to discard the Flickr images which are badly
classified. Thus, those images that are very different from those used to train are discarded, and
the remaining images are added to the training dataset.

In particular, the adopted denoising process follows these steps:
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1. Classify all images in the Flickr dataset with a convnet fine-tuned with ChaLearn images.

2. For each class, generate a ranked list of the images labeled with this class according to
their ground truth. The sorting of the images is based on classification score provided by
the ChaLearn convnet.

3. Decide a percentage of top ranked images of each ranked list which are to be kept in the
filtered list. We ran experiments with different percentage values.

4. Build a new filtered set of Flickr images that will be combined by the ChaLearn ones
following one of the schemes presented in Section 3.2.

The results of this technique are reported in Section 4.4.

3.4 Fracking the training dataset

The easiness or difficulty of the samples used to train the classifiers may have an impact in
the performance of the learned model. We refer to fracking [29] to the process of selecting
those samples which will drive to a superior performance of our convnet. As suggested in [29],
we will select these samples through an iterative process that will show multiple times to the
network those samples which are wrongly classified. By doing this, we show multiple times to
our networks those images that cause most confusion to them, with the goal that it will learn
better decision boundaries between the classes.

Only those images which are not correctly classified will be re-introduced to the network for
a limited amount of iterations.

The detailed steps for our fracking approach are the following:

1. Classify the training set of ChaLearn images with a convnet which was fine-tuned with
those same images.

2. For each class, consider the ground truth labels to tag each image as positive or negative
depending whether the prediction was correct or incorrect, respectively.

3. For each class, generate a ranked list of positive and negative images based on the prediction
score assigned by the convnet.

4. Select a predefined percentage of bottom-ranked images from the positive list of each class.
These images correspond to the worst classified belonging to the class, and we want to
“remind” the convnet that they belong to the class.

5. Select another predefined percentage of top-ranked images from the negative list of each
class. These images correspond to the best classified images that do not belong to the
predicted class.

6. Build a new reduced set of training images to fine-tune again the convnet. In this case,
the fine-tuning ordering must follow a sequential method as introduced in Section 4.5.
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3.5 Fine-tuning deeper layers only

Recent visualization works on convnet layers [37] have pointed out that early layers tend to
capture low-level perceptual features such as colors, textures, or contours. These basic visual
primitives are common to most computer vision tasks, while deeper layers tend to adjust more
specifically to the semantic classes under consideration.

Taking this into account, we realized that in our baseline system [27] we were fine-tuning all
layers, also the early ones trained with 1.2 million images from ImageNet. If we assume that the
low-level primitives for ImageNet and ChaLearn are the same or very similar, it is not necessary
to fine-tune these early layers with our small set of 5,875 images from the ChaLearn training
dataset. So, as suggested in [15], we decided to assess the gains of just fine tunning the deeper
layer only.

In the Caffe software platform, we fixed the weights of the layers we did not want to fine-tune
by setting the blobs lr parameter to 0 in our network file, as explained in section 3.1.2.

The results of this strategy are reported in Section 4.6.

3.6 Ensemble of binary classifiers

The last strategy to explore was inspired by our SVM classifiers used in our baseline system
[27] which, instead of adopting a multi-class form, they were implemented as a collection of
one-vs-the rest binary classifiers, one for each cultural event. We hypothesized that the classic
multi-class architecture of the soft-max classifier built on top of the last layer of the convnet may
also benefit from a reformulation as a binary classifier.

So we tried is to fine-tune 50 different convnets, one for each class, instead of the single
convnet for the 50 cultural events. This method is much slower than the others, but allows each
convnet to train the layers to distinguish one event. It means that all weights in the network
are specialized into the single task of identifying a single event. Finally, each image in the test
dataset would obtain a classification score for each class, which corresponds to the positive class
of each specialized convnet for each event.

The implementation of this experiment required the creation of one training file and one
validation file for each event class. These files have to have only two classes, one class with the
images that belong to the positive class, and a second negative class with all the other images.

The results of this technique can be found in Section 4.7.

26



Chapter 4

Results

This chapter presents the results obtained with the techniques presented in Chapter 3 to
improve the baseline system described in Section 3.1.

4.1 Experimental setup

The datasets presented in Section 3.1.1 can be summarized as follows:

• Training ChaLearn: 5,875 images provided by ChaLearn organizers

• Validation ChaLearn: 2,332 images provided by ChaLearn organizers

• Flickr dataset: 4,068 images obtained from Flickr

We adjusted some parameters in Caffe to adapt it to our needs. We decided to set to
constant all the learning rate parameters and use the same number of epochs in all the fine-
tuning processes. This way it was possible to compare between the experiments, This means
that we only modify the num iterations in the solver file depending on the training samples,
as we see in equation 3. The chosen number of epochs is 270 to be able to compare it with
a previous test of the fine-tuned convnet performed for the challenge. More details about the
training setup were presented in Section 3.1.2

During the experimentation we have also developed a tool to visualize the classification of
the images. This tool give us a mosaic of a certain number of images, sorted by the score, with
a green frame in the images that belong to the class that we are visualizing, or a red frame in
the images that do not belong. This tool has been used to generate the visualization of results
presented in this Chapter.

4.2 Evaluation metric

The evaluation of the proposed techniques was based on the metric and evaluation script
provided by the organizers of ChaLearn. This script needs as an input one text file for each
event, which must contain a ranked list of all the images used for evaluation. As an output it
provides a score which corresponds to the mean Average Precision (mAP) of all the classes.

The mean average precision of the system is obtained by computing the mean of the average
precisions (AP) of the Q classes, as as presented in Equation 4.1.

MAP =
1

|Q|AP (q) (4.1)
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At the same time, the average precision for a class by averaging the precision at position k
(P (k)) of all images in the ranked list which actually belong to the class, which define the set R.
The Precision at position k (P (k)) is defined as the amount of elements in R between positions
1 and k in the ranked list, divided by k. Equation 4.2 formulates this metric.

AP =
1

|R|
N∑
k=1

P (k) · rel(k), rel(k) =
{
rel(k) = 1⇔ k ∈ R
rel(k) = 0⇔ k /∈ R

}
(4.2)

4.3 Dataset biases

The first set of experiments aim at measuring the difference between the ChaLearn and Flickr
datasets considered in this work. This study is based on the classification performance obtained
in the reference CaffeNet network when fine-tuned with each of the two datasets separately.

Table 4.1 contains the results of the experiments. Results clearly show how fine-tunning
with only one of the two datasets greatly biases the classification results despite both datasets
depicting the same classes.

Chalearn Train 70% Flickr
ChaLearn Validation 0.61365 0.31929

30% Flickr 0.25686 0.44305

Table 4.1: Dataset bias when fine-tunning with one or two datasets

A qualitative example of the bias of the models can be appreciated by comparing Figure 4.1a
with Figure 4.1b, both of them generated with the convnet fine-tuned with ChaLearn only. While
the top ranked ChaLearn images from Figure 4.1a are mostly correctly classified (i.e. those that
have the green frame, and are in the firsts positions), the Flickr images with highest scores in
Figure 4.1b present a high ratio of red frames, indicating that they belong to another event.
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(a) From validation ChaLearn

(b) From Flickr dataset

Figure 4.1: Qualitative results for the Harbin Ice and Snow Festival with fine-tunning with
ChaLearn
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4.4 Denoising the Flickr dataset

The clear difference between the ChaLearn and Flickr datasets measured in Section 4.3 mo-
tivates the main goal of this section, which is being able to use Flickr images to improve our
baseline performance on ChaLearn images, which is our target dataset.

The denoising technique presented in Section 3.3 aims at filtering the list of the Flickr images
to improve the fine-tuning for ChaLearn data. As a reminder to the reader, this technique was
based on ranking the Flickr images for each event based on their classification score with the
convnet fine-tuned with ChaLearn. The amount of images to include in the filtered list depends
on a predefined percentage of top images to consider, so our results are provided depending on
this value.

As previously introduced in Section 4.4, there exist three possibilities to combine the two
available clean (ChaLearn) and noisy (Flickr) datasets: a first option with a joint fine-tuning
or the two configurations that results from a sequential scheme, depending on the order of the
datasets.

4.4.1 Joint fine-tuning of the clean and noisy datasets

Figure 4.2 depicts the results of classification the ChaLearn validation set with a convnet
fine-tuned jointly with all ChaLearn training set plus a percentage of the Flickr dataset. Results
should be compared with the 0.61365 shown in Table 4.1, which corresponds to the results when
no Flickr data is considered at all.

Figure 4.2: Results of fine-tuning joining as a training dataset the Training ChaLearn and the
denoised Flickr dataset
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We observe that in this case there is a slight improvement by the fact of using a filtered
list of Flickr images, being the best result the case where only the top 25% ranked images are
considered.

However, no strong conclusions should be drawn from these results. The figures are very
similar between them and the small variations in the scores may be due to the randomly chosen
sets of images that the network uses to train in each iteration, or the random weight values that
takes in the initialization in the last layer.

4.4.2 Sequential fine-tuning of clean and noisy dataset

The first sequential scheme that was tested by fine-tuning with the clean dataset (ChaLearn)
first and the noisy one (Flickr) in a second stage. This was actually the approach adopted in our
baseline approach [27].

The results presented in Figure 4.3 indicate this is actually a very bad solution because the
more noisy images are introduced, the worse the performance is. Not even the case of 25%
improves the 0.61365 obtained with no Flickr images at all. As a conclusion, this configuration
should be avoided.

Figure 4.3: Results of fine-tuning using as a first training dataset the training ChaLearn and as
a second the denoised Flickr dataset

4.4.3 Sequential fine-tuning of noisy and clean dataset

Finally, we performed one last experiment changing the order of the datasets in the fine-tuning.
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The results depicted in Figure 4.4 explain a completely different story from the previous
section. Not only using the top 25% Flickr images increases the 0.61365 achieved with ChaLearn
images only, but not filtering Flickr images at all even increases the performance.

Figure 4.4: Results of fine-tuning using as a first training dataset the denoised Flickr dataset and
as a second the training ChaLearn

These results were actually surprising to us because they indicate that the problem was not
actually in filtering the noisy Fkickr images, but on how we were using them. Instead of using them
a posteriori to the ChaLearn data, we should use them a priori. This result indicates that noisy
data can be beneficial because, despite noisy, it is still more similar to the classification problem
of cultural event recognition than the data that was used to train CaffeNet from scratch. While
the original CaffeNet weights were optimized by the objects in the ImageNet dataset, our noisy
Flickr dataset initiates an adaptation of the network to the domain of cultural event recognition.
This preliminary adaptation is finally adjusted to the test data by the ChaLearn training data,
when used in the later stage of the sequential fine-tuning scheme.

4.5 Fracking positive and negative images from ChaLearn

After the experiments with the different datasets presented in Sections 4.3 and 4.4, we also
addressed a strategy aimed at a better use of the available training data.

As we explained in section 3.4, this method iteratively fine-tunes the network with a list
training samples which were wrongly classified in the previous iteration. Similarly to denoising,
the amount of images in the list will be set with a percentage. In this case we have a percentage
for fracking positive samples, and another one for the negative ones. These percentages were
chosen trying to balance the total amount of positive and negative images.
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The scores shown in Table 4.2 are slightly higher than the 0.61365 obtained with the whole
ChaLearn training dataset. This means that the network actually succeeds in improving his
performance by learning from its own mistakes.

Positive
percentage

Negative
percentage

Amount of
fracking im-
ages

Test set mAP

10% 0,5% 1606
Validation
ChaLearn

0.61694

20% 2% 3959
Validation
ChaLearn

0.62268

15% 3% 4446
Validation
ChaLearn

0.62221

Table 4.2: Results of fine-tuning using fracking

4.6 Fine-tunning FC6, FC7 and FC8 only

As introduced in the Section 3.5 results may improve if we only modify the deeper layers while
keeping the weights for the first layers.

We have performed three experiments with the last fully connected layers FC6, FC7 and
FC8, always using the ChaLearn training dataset for fine-tuning. In order to obtain more robust
conclusions, we have also included in the study the 30% Flickr as a test dataset.

The results contained in Table 4.3 support the expectations, with a gain of more than 3 points
for the ChaLearn case when comparing the fine-tuning of only the three last layers with the fine-
tunning of all layers. Notice also that fine-tuning only FC8 is not flexible enough to transform
the object classification task defined with ImageNet to the cultural event task targeted by our
experiments.

Fine-tuned layers Test set mAP

fc678 Validation ChaLearn 0.6434

fc678 30% Flickr dataset 0.2748

fc78 Validation ChaLearn 0.6298

fc78 30% Flickr dataset 0.2721

fc8 Validation ChaLearn 0.5757

fc8 30% Flickr dataset 0.2511

All Validation ChaLearn 0.6137

All 30% Flickr dataset 0.2569

Table 4.3: Results of only fine-tuning the deeper layers

The effects of fine-tunning the last three layers only can also be qualitatively observed in
Figure 4.5. We can observe that in the second case there are a few more images well classified,
which corresponds to the expected results with the increase of the score.
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Given the good results obtained with the fine-tuning of only the fully connected layers, this
finding was added in some of the most promising configurations found in the previous sections
of this chapter. The results obtained are reported in Table 4.4, where it is clear that the gain is
consistent for all configurations.

Fine-tuned layers Improvement mAP

all None 0.6137

fc678 None 0.6434

all Joint Chalearn + Flickr (top 25%) 0.6152

fc678 Joint Chalearn + Flickr (top 25%) 0.6467

all 20-2% fracking 0.6227

fc678 20-2% fracking 0.6486

all Flickr+Chalearn 0.6260

fc678 Flickr+Chalearn 0.6492

fc678 Fusion 0.6532

Table 4.4: Results of only fine-tuning the deeper layers

The last row in table 4.4 corresponds to a configuration that combines all the lessons learned
in a single experiment, In particular, it consists on applying fracking with the sequential scheme
for fine-tuning of noisy (Flickr) + clean (ChaLearn) datasets.

4.7 Ensemble of event detectors

At the later stages of this thesis, we decided to try another architecture based on an ensemble
binary classifiers instead of a single convnet to predict all classes. This approach is detailed in
Section 3.6.

Initially we expected bad results for the experiment because the resulting networks would be
trained with highly unbalanced datasets. For example in our case, for each convnet that we
are fine-tuning, we specify only two classes, one class with the images that belong to the class,
that we call positive, and a second with the all the other images, which would be the negatives
and will have a higher amount of images. So, theoretically, when the fine-tuning is running, it
will see more negative images than positive and as a result the convnet could be biased towards
classifying most images as a negative. Considering our dataset, this would correspond that each
binary convnet would be trained with around 100-150 positive images and 5,700 negative images.

Surprisingly, the results reported in Table 4.5 are the best obtained for all configurations tested
in this thesis. The results are obtained with the fine-tuning of only the fully connected layers in
each network. According to our experiments, this simple change in the architecture introduces a
very significant gain of almost 7 points.
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Validation dataset mAP

One multi-class convnet (baseline) 0.6137

Fusion of all previous improvements 0.6532

Ensemble of binary convnets 0.67060

Table 4.5: Results of ensemble of binary

We could not extend the experimentation and analysis of this research line due to the time
constraints of the thesis. Nevertheless, we plan to pursue this research line in the future to try
to understand the reasons of this unexpected result.
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(a) Results of fine-tuning all layers

(b) Results of fine-tuning the last three layers

Figure 4.5: Classification of Castellers images
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Chapter 5

Budget

This project has been developed using the resources provided by Image Processing Group of
UPC, and as it is a comparative study, there are not maintenance costs.

Thus, the main costs of this projects comes from the salary of the researches and the time
spent in it. I consider that my position as well as the one of the Phd student supervising me was
of junior engineer, while the two professors who were advising me had a wage/hour of a senior
engineer. I will consider that the total duration of the project was of 25 weeks, as depicted in
the Gantt diagram in Figure 1.2.

Amount Wage/hour Dedication Total

Junior engineer 1 8,00 e/h 30 h/week 6,000 e

Junior engineer 1 8,00 e/h 4 h/week 800 e

Senior engineer 2 20,00 e/h 4 h/week 4,000 e

Total 10,800 e

Table 5.1: Budget of the project
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Chapter 6

Conclusions

The main objective of this project was to improve the baseline configuration we submitted
in the ChaLearn Challenge of Culural Event Recognition at CVPR 2015. Our submission was
awarded with the second prize in a recognized scientific venue and our work highlighted in the
front page of our ETSETB TelecomBCN school 1. Compared to that baseline, the contributions
reported in this thesis have improved performance in around 5-7 points. For this reason, I consider
that the main goal of the thesis has been accomplished and I am already looking forward to submit
our new results in the next edition of the challenge in September 2015.

Reaching this point though has not been a straight line but full of turns and dead ends. At
first, we wanted to take advantage of the Flickr images analyzing why they did not help. We
realized that the Flickr images are noisier than the datasets provided by ChaLearn, so we tried a
denoising method. We were able to obtain a cleaner Flickr dataset by filtering it with the model
obtained from ChaLearn images. Unfortunately, the performance did not improve. But thanks
to those experiments, we noticed the importance of the method you follow and the order during
the fine-tuning, and the Flickr dataset finally helped us to improve the score by swapping the
order in which we were using the clean and the noisy dataset.

Then, we tried improving the discriminative capability of the network applying fracking. In
this case we reached some gain than in denoising, but it still was very little.

Furthermore, we wanted to find the optimum number of layers to fine-tune, so we tried some
combinations with the later layers, and we realized that fine-tuning only the last three layers gave
the best results. Thus we concluded that, for the first layers, it is better to keep the the weights
learned from a very large dataset such as ImageNet.

As an unexpected result, we realize that fine-tuning one convnet for each class increases the
score, at least with our type of data. We plan to study this result with more attention in the
future, as this was an experiment run during the later stage of this thesis.

As a future work, we want to mix our solutions with a fine-tuned network with PLACES, the
model used by the winners of the challenge, and compare the results with the ones obtained
in this project. Additionally, we want to repeat the ensemble of binary experiment, trying to
balance the data with some data augmentation, or by balancing the batches.

1https://www.etsetb.upc.edu/mason-share/notif/2806.html
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Chapter 7

Appendices

As appendices we can found our paper presented in the CVPR 2015 [27], and the diploma of
the 2nd prize received.
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Abstract

This paper presents our contribution to the ChaLearn
Challenge 2015 on Cultural Event Classification. The chal-
lenge in this task is to automatically classify images from
50 different cultural events. Our solution is based on the
combination of visual features extracted from convolutional
neural networks with temporal information using a hierar-
chical classifier scheme. We extract visual features from
the last three fully connected layers of both CaffeNet (pre-
trained with ImageNet) and our fine tuned version for the
ChaLearn challenge. We propose a late fusion strategy that
trains a separate low-level SVM on each of the extracted
neural codes. The class predictions of the low-level SVMs
form the input to a higher level SVM, which gives the final
event scores. We achieve our best result by adding a tem-
poral refinement step into our classification scheme, which
is applied directly to the output of each low-level SVM. Our
approach penalizes high classification scores based on vi-
sual features when their time stamp does not match well an
event-specific temporal distribution learned from the train-
ing and validation data. Our system achieved the second
best result in the ChaLearn Challenge 2015 on Cultural
Event Classification with a mean average precision of 0.767
on the test set.

1. Motivation

Cultural heritage is broadly considered a value to be pre-
served through generations. From small town museums to
worldwide organizations like UNESCO, all of them aim at
keeping, studying and promoting the value of culture. Their
professionals are traditionally interested in accessing large
amounts of multimedia data in rich queries which can ben-
efit from image processing techniques. For example, one of
the first visual search engines ever, IBM’s QBIC [9], was
showcased for painting retrieval from the Hermitage Mu-

Figure 1. Examples of images depicting cultural events.

seum in Saint Petersburg (Russia).
A cultural expression which is typically not found in

a museum are social events. Every society has created
through years collective cultural events celebrated with cer-
tain temporal periodicity, commonly yearly. These festiv-
ities may widely spread geographically, like the Chinese
New Year’s or Indian Holi Festival, or much more local-
ized like the Carnival in Rio de Janeiro or the Castellers
(human towers) in Catalonia. An image example for each
of these four cultural events is presented in Figure 1. All of
them have a deep cultural and identity nature that motivates
a large amount of people to repeat very particular behavioral
patterns.

The study and promotion of such events has also bene-
fited from the technological advances that have popularized
the acquisition, storage and distribution of large amounts of
multimedia data. Cultural events across the globe are at the
tip of a click, improving both the access of culture lovers to
rich visual documents, but also their touristic power or even
exportation to new geographical areas.

However, as in any classic multimedia retrieval problem,
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while the acquisition and storage of visual content is a pop-
ular practice among event attendees, their proper annotation
is not. While both personal collections and public reposito-
ries contain a growing amount of visual data about cultural
events, most of it is not easily available due to the almost
non-existent semantic metadata. Only a minority of photo
and video uploaders will add the simplest form of annota-
tion, a tag or a title, while most users will just store their
visual content with no further processing. Current solutions
will mostly rely in on temporal and geolocation metadata
attached by the capture devices, but also these sources are
unreliable for different reasons, such as erroneous set up of
the internal clock of the cameras, or the metadata removal
policy applied in many photo sharing sites to guarantee pri-
vacy.

Cultural event recognition is a challenging retrieval task
because of its strong semantic dimension. The goal of cul-
tural event recognition is not only to find images with sim-
ilar content, but further to find images that are semantically
related to a particular type of event. Images of the same
cultural event may also be visually different. Thus, major
research questions in this context are, (i) if content-based
features are able to represent the cultural dimension of an
event and (ii) if robust visual models for cultural events can
be learned from a given set of images.

In our work, we addressed the cultural event recogni-
tion problem in photos by combining the visual features ex-
tracted from convolutional neural networks (convnets) with
metadata (time stamps) of the photos in the hierarchical fu-
sion scheme shown in Figure 2. The main contributions of
our paper are:

• Late fusion of the neural codes from both the fine-
tuned and non-fine-tuned fully connected layers of the
CaffeNet [15] convnet.

• Generation of spline-based temporal models for cul-
tural events based on photo metadata crawled from the
web.

• Temporal event modeling to refine visual-based classi-
fication as well as noisy data augmentation.

This paper is structured as follows. Section 2 overviews
the related work, especially in the field of social event de-
tection and classification. Section 3 describes a temporal
modeling of the cultural events which has been applied both
on the image classification and data augmentation strategies
presented in Section 4 and Section 5, respectively. Exper-
iments on the ChaLearn Cultural Event Dataset [2] are re-
ported in Section 6 and conclusions drawn in Section 7.

This work was awarded with the 2nd prize in the
ChaLearn Challenge 2015 on Cultural Event Classification.

Our source code, features and models are publicly available
online1.

2. Related work

The automatic event recognition on photo and video col-
lections has been broadly addressed from a multimedia per-
spective, further than just the visual one. Typically, visual
content is accompanied by descriptive metadata such as a
time stamp from the camera or an uploading site, a geolo-
cation from a GPS receiver or some text in terms of a tag,
a title or description is available. This additional contex-
tual data for a photo is highly informative to recognize the
depicted semantics.

Previous work on social events has shown that tem-
poral information provides strong clues for event cluster-
ing [27]. In the context of cultural event recognition, we
consider temporal information a rather “asymmetric clue”
where time provides an indicator to rather reject a given hy-
pothesis than to support it. On the one hand, given a pre-
diction (e.g. based on visual information) for a photo for a
particular event, we can use temporal information, i.e. the
capture date of the photo, to easily reject this hypothesis if
the capture date does not coincide with the predicted event.
In this case temporal information represents a strong clue.
On the other hand, cultural events may take place at the
same time. As a consequence, the coincidence of a cap-
tured date with the predicted event in this case represents
just a weak clue. We take this “asymmetric nature” in our
temporal refinement scheme (see Section 4.3) into account.

Temporal information has further been exploited for
event classification by Mattive et al. [18]. The authors
define a two-level hierarchy of events and sub-events which
are automatically classified based on their visual informa-
tion described as a Bag of Visual Words. All photos are
first classified visually. Next, the authors refine the classifi-
cation by enforcing temporal coherence in the classification
for each event and sub-event which considerably improved
the purely visual classification.

A similar approach is applied by Bossard et al. [3], ex-
ploiting temporal information to define events as a sequence
of sub-events. The authors exploit the temporal ordering of
photos and model events as a series of sub-events by a Hid-
den Markov Model (HMM) to improve the classification.

A very similar problem to Cultural Event Recognition,
namely “Social Event Classification”, was formulated in
the MediaEval Social Event Detection benchmark in 2013
[21, 20]. The provided dataset contained 57,165 images
from Instagram together with available contextual meta-
data (time, location and tags) provided by the API. The
classification task considered a first decision level between

1https://imatge.upc.edu/web/resources/
cultural-event-recognition-computer-vision-software
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Figure 2. Global architecture of the proposed system.

event and non-event and, in the case of event, eight seman-
tic classes were defined to be distinguished: concert, con-
ference, exhibition, fashion, protest, sports, theatre/dance,
other. The results over all participants showed that the clas-
sification performance strongly benefits from multimodal
processing combining content and contextual information.
Pure contextual processing as proposed in [26] and [11]
and yielded the weakest results. The remaining participants
proposed to add visual analysis to the contextual process-
ing. CERTH-ITI [23] combined pLSA on the 1,000 most
frequent tags with a dense sampling of SIFT visual fea-
tures, which were later coded with VLAD. They observed a
complementary role between visual and textual modalities.
Brenner and Izquierdo [4] combined textual features with
the global GIST visual descriptor, which is capable of cap-
turing the spatial composition of the scene. The best perfor-
mance in the Social Event Classification task was achieved
by [19]. They combine processing of textual photo de-
scriptions with the work from [18] for visual processing,
based on bag of visual words aggregated in different fash-
ions through events. Their results showed that visual in-
formation is the best option to discriminate between event
/ non-event and that textual information is more reliable to
discriminate between different event types.

In terms of benchmarking, a popular strategy is to re-
trieve additional data to extend the training dataset. The
authors of [22], for example, retrieved images from Flickr
to build unigram language models of the requested event
types and locations in order to enable a more robust match-
ing with the user-provided query. We explored a similar ap-
proach in for cultural event recognition. Results, however
showed that extending the training set this did not improve
results but made them even worse.

3. Temporal models

Cultural events usually occur at a regular basis and thus
have a repetitive nature. For example, “St. Patrick’s day”
always takes place on March, 17, “La Tomatina” is always
scheduled for the last week of August, and the “Carneval
of Rio” usually takes place at some time in February and
lasts for one week. More complex temporal patterns exist,
for example, for cultural events coupled to the lunar calen-
der which changes slightly each year. An example is the
“Maslenitsa” event in Russia is which is scheduled for the
eighth week before Eastern Orthodox Easter.

The temporal patterns associated with cultural events are
a valuable clue for their recognition. A photo captured, for
example, in December will very unlikely (except for erro-
neous date information) show a celebration of St. Patrick’s
day. While temporal information alone is not sufficient to
assign the correct event (many events may take place con-
currently), we hypothesize that temporal information pro-
vides strong clues that can improve cultural event recogni-
tion.

To start with temporal processing, first temporal models
have to be extracted from the data. Temporal models for
cultural events can be either generated manually in advance
or extracted automatically from metadata of related media.
We propose a fully automatic approach to extract temporal
models for cultural events. The input to our approach is a set
of capture dates for media items that are related to a given
event. Capture dates may be, for example, extracted from
social media sites like Flickr or from the metadata embed-
ded in the photos (e.g. EXIF information). In a first step, we
extract the day and month of the capture dates and convert
them into a number d between 1 and 365, encoding the day
in the year when the photo was taken. From these numbers,
we compute a temporal distribution T (d) of all available
capture dates. Assuming that a cultural event takes place

3
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(a) Maslenitsa (b) Timkat

Figure 3. Temporal spline models for the “Maslenitsa” and the
“Timkat” event: (a) for normally distributed data the model be-
comes approximately Gaussian-shaped; (b) the uncertainty of the
distribution is reflected in the temporal model.

annually, it is straight-forward to model the temporal distri-
bution with a Gaussian model. Gaussian modeling works
well when a sufficient number of timestamps exists. For
sparse data, however, with a few timestamps only, the dis-
tribution is likely to become non-Gaussian and thus model
fitting fails in generating accurate models. Additionally, the
timestamps of photos are often erroneous (or overwritten by
certain applications) yielding strong deviations of the ideal
distribution. To take the variability that is present in the data
into account, a more flexible model is required. We model
the distribution t(d) by a piecewise cubic smoothing spline
[7]. To generate the final model T , we evaluate the spline
over the entire temporal domain and normalize it between 0
and 1. Given a photo i with a certain timestamp di, the fit-
ted temporal model Tc(di) provides a score sc that the photo
refers to the associated event c. The flexible spline model
enables the modeling of sparse and non-Gaussian distribu-
tions and further to model events with more complex than
annual occurrence patterns.

Figure 3 shows temporal models for two example events.
The “Maslenitsa” (3(a)) takes place between mid of Febru-
ary and mid of March (approx. days 46-74). This corre-
sponds well with the timestamps extracted from the related
media items, resulting in a near Gaussian-shaped model.
The “Timkat” event always takes place on January 19. This
is accurately detected by the model, which has its peak at
day 19. The photos related to this event, however, have
timestamps that are distributed across the entire year. This
property of the underlying data is reflected in the model,
giving low but non-zero scores to photos with timestamps
other than the actual event date.

Figure 4 shows the temporal models extracted from the
training and validation data for all 50 classes. We observe
that each model (row) exhibits one strong peak which repre-
sents the most likely date of the event. Some models contain
additional smaller side-peaks learned from the training data
which reflect the uncertainty contained in the training data.
The events are distributed over the entire year, some events
occur at the same time.

Figure 4. Automatically generated temporal models for each event
class. For each event we observe a typical pattern of recording
dates exhibiting one strong peak. The colors range from dark blue
(0) to red (1).

The generated temporal models can be used to refine de-
cisions made during classification (see Section 4.3) as well
as for the filtering of additional data collections to reduce
noise in the training data (see Section 5.2).

4. Image Classification
The automatic recognition of a cultural event from a

photo is addressed in this paper with the system architec-
ture presented in Figure 2. We propose combining the vi-
sual features obtained at the fully connected layers of two
versions of the same Caffenet convolutional neural network:
the original one and a modified version fine-tuned with pho-
tos captured at cultural events. A low-level SVM classi-
fier is trained for each visual feature, and its scores refined
with the temporal model described in Section 3. Finally, the
temporally modified classification scores are fused in a final
high-level SVM to obtain the final classification for a given
test image.

4.1. Feature extraction

Deep convolutional neural networks (convnets) have re-
cently become popular in computer vision, since they have
dramatically advanced the state-of-the-art in tasks such as
image classification [16], retrieval [1] or object detection
[10, 12]

Convnets are typically defined as a hierarchical struc-
ture of a repetitive pattern of three hidden layers: (a) a
local convolutional filtering (bidimensional in the case of
images), (b) a non-linear operation, (commonly Rectified
Linear Units - ReLU) and (c) a spatial local pooling (typi-
cally a max operator). The resulting data structure is called
a feature map and, in the case of images, they correspond
to 2D signals. The deepest layers in the convnet do not fol-
low this pattern anymore but consist of fully connected (FC)
layers: every value (neuron) in the fully connected layer is
connected to all neurons from the previous layers through
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some weights. As these fully connected layers do not ap-
ply any spatial constrain anymore, they are represented as
single dimensional vectors, further referred in this paper as
neural codes [1].

The amount of layers is a design parameter that, in the
literature, may vary from three [17] to nineteen [24]. Some
studies [28] indicate that the first layers capture finer pat-
terns, while the deeper the level, the more complex patterns
are modeled. However, there is no clear answer yet about
how to find the optimal architecture to solve a particular vi-
sual recognition problem. The design of convnets is still
mainly based on trial-and-error process and the expertise of
the designer. In our work we have adopted the public imple-
mentation of CaffeNet [15], which was inspired by AlexNet
[16]. This convnet is defined by 8 layers, being the last 3 of
them fully connected. In our work we have considered the
neural codes in these layers (FC6, FC7 and FC8) to visually
represent the image content.

Apart from defining a convnet architecture, it is neces-
sary to learn the parameters that govern the behaviour of the
filters in each layer. These parameters are obtained through
a learning process that replaces the classic handcrafted de-
sign of visual features. This way, the visual features are
optimized for the specific problems that one wants to solve.
Training a convnet is achieved through backpropagation, a
high-computational effort that has been recently boosted by
the affordable costs of GPUs. In addition to the computa-
tional requirements, a large amount of annotated data is also
necessary. Similarly to the strategy adopted in the design of
the convnet, we have also used the publicly available fil-
ter parameters of CaffeNet [15], which had been trained for
1,000 semantic classes from the ImageNet dataset [8].

The cultural event recognition dataset aimed in this paper
is different from the one used to train CaffeNet, both in the
type of images and in the classification labels. In addition,
the amount of photos of annotated cultural events available
in this work is much smaller than the large amount of im-
ages available in ImageNet. We have addressed the situation
by also considering the possibility of fine tuning CaffeNet,
that is, providing additional training data to an existing con-
vnet which had been trained for a similar problem. This
way, the network parameters are not randomly initialized,
as in a training from scratch, but are already adjusted to a
solution which is assumed to be similar to the desired one.
Previous works [10, 12, 6] have proved that fine-tuning [13]
is an efficient and valid solution to address these type of sit-
uations. In the experiments reported in Section 6 we have
used feature vectors from both the original CaffeNet and its
fine-tuned version.

4.2. Hierarchical fusion

The classification approach applied in our work is using
the neural codes extracted from the convnets as features to

train an classifier (Support Vector Machines, SVMs, in our
case), as proposed in [6]. As we do not know a priori which
network layer are most suitable for our task, we decide to
combine several layers using a late fusion strategy.

The neural codes obtained from different networks and
different layers may have strongly different dimensionality
(e.g. from 4,096 to 50 in our setup). During the fusion of
these features we have to take care that features with higher
dimensionality do not dominate the features with lower di-
mensionality. Thus, we adopted a hierarchical classification
scheme to late fuse the information from the different fea-
tures in a balanced way [25].

At the lower level of the hierarchy we train separate
multi-class SVMs (using one-against-one strategy [14]) for
each type of neural code. We neglect the final predictions
of the SVM and retrieve the probabilities of each sample
for each class. The probabilities obtained by all lower-level
SVMs form the input to the higher hierarchy level.

The higher hierarchy level consists of an SVM that takes
to probabilistic output of the lower-level SVMs as input.
This assures that all input features are weighted equally in
the final decision step. The higher-level SVM is trained di-
rectly from the probabilities and outputs a prediction for the
most likely event. Again we reject the binary prediction and
retrieve the probabilities for each event as the final output.

4.3. Temporal Refinement

While visual features can easily be extracted from each
image, the availability of temporal information depends on
the existence of suitable metadata. Thus, temporal informa-
tion must in general be considered to be a sparsely available
feature. Due to its sparse nature, we propose to integrate
temporal information into the classification process by re-
fining the classifier outputs. This allows us to selectively
incorporate the information only for those images where
temporal information is available.

The basis for temporal refinement are the temporal mod-
els introduced in Section 3. The models Tc with c =
1, . . . , C and C the number of classes, represent for each
event class c and each day of the year d, a score s repre-
senting the probability of a photo captured in a given day
to belong to the event: s = Tc(d). For a given image with
index i, we first extract the day of the year di from its cap-
ture date and use it as an index to retrieve the scores from
the temporal models of all event classes: sc = Tc(di), with
s = {s1, . . . , sC}.

Given a set of probabilities Pi for image i obtained from
a classifier, the refinement of these probabilities is per-
formed as follows. First, we compute the difference be-
tween the probabilities and the temporal scores: di = Pi−s.
Next, we distinguish between two different cases:

(I) di(c) < 0: Negative differences mean that the prob-
ability for a given class predicted by the classifier is less
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than the temporal score for this class. This case may eas-
ily happen as several events may occur at the same time
as the photo was taken. The temporal models indicate that
several events may be likely. Thus, the temporal informa-
tion provides only a weak clue that is not discriminative. To
handle this case, we decide to trust the class probabilities
by the classifier and to ignore the temporal scores by setting
d = max(d, 0).

(II) di(c) > 0. In this case the temporal score is lower
than the estimate of the classifier. Here, the temporal score
provides a strong clue that indicates an inaccurate predic-
tion of the classifier. In this case, we use the difference
di(c) to re-weight the class probability.

The weights wi are defined as wi = max(d, 0) + 1. The
final re-weighting of the probabilities Pi is performed by
computing P̃i = Pi/wi. In case (I) the temporal scores do
not change the original predictions of the classifier. In case
(II) the scores are penalized by a fraction that is propor-
tional to the disagreement between the temporal scores and
the prediction of the classifier.

5. Data Augmentation

The experiments described in Section 6 were conducted
with the ChaLearn Cultural Event Recognition dataset [2],
which was created by downloading photos from Google Im-
ages and Bing search engines. Previous works [16, 28, 6]
have reported gains when applying some sort of data aug-
mentation strategy.

We have explored two paths for data augmentation: ar-
tificial transformations on the test images and an extension
of the training dataset by downloading additional data from
Flickr.

5.1. Image transformations

A simple and classic method for data augmentation is to
artificially generate transformations of the test image and
fuse the classification scores obtained in each transforma-
tion. We adopted the default image transformations asso-
ciated to CaffeNet [15], this is an horizontal mirroring and
5 crops in the input image (four corners and center). The
resulting neural codes associated to each fully connected
layer were fused by averaging the 10 feature vectors gener-
ated with the 10 image transformations.

5.2. External data download

We decided to extend the amount of training data to fine-
tune our convnet, as discussed in Section 4.1. By doing this,
we expected to reduce the generalization error of the learned
model by having examples coming from a wider origin of
sources.

The creators of the ChaLearn Cultural Event Recogni-
tion dataset [2] described each of the 50 considered events

with pairs of title and geographical location; such as Car-
nival Rio-Brazil, Obon-Japan or Harbin Ice and Snow
Festival-China. This information allows generating queries
on other databases to obtained an additional set of labeled
data.

Our chosen source for the augmented data was the Flickr
photo repository. Its public API allows to query its large
database of photos and filter the obtained results by tags,
textual data search and geographical location. We generated
3 sets of images from Flickr, each of them introducing a
higher degree of refinement:

90k set: Around 90,000 photos retrieved by matching the
provided event title on the Flickr tags and content
metadata fields.

21k set: The query from the 90k set was combined with a
GPS filtering based on the provided country.

9k set: The query from the 21k set was further with manu-
ally selected terms from the Wikipedia articles related
to the event. In addition, the Flickr query also tog-
gled on an interestingness flag which improved the di-
versity of images in terms of users and dates. Other-
wise, Flickr would provide a list sorted by upload date,
which will probably contain many similar images from
a reduced set of users.

The temporal models Tc presented in Section 3 were also
used to improve the likelihood that a downloaded photo ac-
tually belongs to a certain event. Given a media item i re-
trieved for a given event class c, we extract the day of cap-
ture di from its metadata and retrieve the score sc = Tc(di)
from the respective temporal model. Next, we threshold the
score to remove items that are unlikely under the temporal
model. To assure a high precision of the filtered media col-
lection, the threshold should be set to a rather high value,
e.g. 0.9. Figure 5 gives two examples of media collections
retrieved for particular events. We provide the distribution
of capture dates with the pre-trained temporal models.

The Flickr IDs of this augmented dataset filtered by min-
imum temporal scores have been published in JSON format
from the URL indicated in Section 1.

6. Experiments
6.1. Cultural Event Recognition dataset

The Cultural Event Recognition dataset [2] depicts 50
important cultural events all over the world. In all the im-
age categories, garments, human poses, objects and context
do constitute the possible cues to be exploited for recog-
nizing the events, while preserving the inherent inter- and
intra-class variability of this type of images. The dataset is
divided in three partitions: 5,875 images for training, 2,332
for validation and 3,569 for test.
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(a) Desfile de Silleteros

(b) Carnival of Venice

Figure 5. Two examples of retrieved image collections from Flickr
and their temporal distribution. (a) the retrieved images match
well the pre-trained temporal model. (b) the temporal distribution
shows numerous outliers which are considered unlikely given the
temporal model. The proposed threshold-based filtering removes
those items.

6.2. Experimental setup

We employ two different convnets as input (see Sec-
tion 4.1): the original CaffeNet trained on 1,000 Imagenet
classes, and a fine-tuned version of CaffeNet trained during
60 epochs on the 50 classes defined in the Chalearn Cul-
tural Recognition Dataset. Fine-tuning of the convnet was
performed in two stages: in a first one the training partition
was used to train and the validation partition to estimate the
training loss and allow the network to learn. In a second
stage, the two partitions were switched so that the network
had to learn the optimal features from all the available la-
beled data.

From both convnets we extracted neural codes from lay-
ers FC6 and FC7 (each of 4,096 dimensions), as well as FC8
(the top layer with a softmax classifier), which has 1000 di-
mensions for the original CaffeNet and 50 for the fine-tuned
network. Both feature extraction and fine tuning have been
performed using the Caffe [15] deep learning framework.

As presented in Section 4.2, a classifier was trained for
each of the 6 neural codes, in addition to the one used for
late fusion. The implementation of Libsvm library [5] of the
linear SVM was used, with parameter C = 1 determined
by cross validation and grid search and probabilistic output
switched on.

Each image was scored for each of the 50 considered cul-
tural events and results were measured by a precision/recall
curve, whose area under the curve was used to estimate the
average precision (AP). Numerical results are averaged over
the 50 events to obtain the mean average precision (mAP).

FC6 FC7 FC8
Raw layer 0,6832 0,6669 0,6079
+ temporal refinement 0,6893 0,6730 0,6152

Table 1. Results on single layer raw neural codes.

Fine-tunned FC6-FC7-FC8 0,6919
+ raw FC6-FC7-FC8 0,7038
+ temporal refinement 0,7357

Table 2. Results on fine-tuned and fused multi-layer codes.

More details about the evaluation process can be found in
[2].

6.3. Results on the validation dataset

A first experimentation was performed to assess the im-
pact of temporal refinement on the default CaffeNet, that is,
with no fine-tunning. Results in Table 1 indicate diverse
performance among the fully connected layers, being FC6
the one with a highest score. Temporal refinement slightly
increases the mAP consistently in all layers.

The preliminary results were further extended to com-
pare the performance of the three neural codes (FC6, FC7
and FC8) when temporally refined and finally comple-
mented with the features from the original CaffeNet. The
results shown in Table 2 indicate a higher impact of tem-
poral refinement than in the case of single layers, and an
unexpected gain by adding the raw neural codes from Caf-
feNet.

Our experimentation on the additional data downloaded
from Flickr was unsuccessful. The selected dataset was the
9k Flickr one with a restrictive threshold of 0.9 on the tem-
poral score. With this procedure we selected 5,492 images,
which were added as training samples for fine tuning. We
compare the impact of adding this data into training only on
the softmax classifier at the last layer of CaffeNet, obtaining
a drop in the mAP from 0.5821 to 0.4547 when adding the
additional images to the already fine-tuned network. We hy-
pothesize that the visual nature of the images downloaded
from Flickr differs from the one of the data crawled from
Google and Bing by the creators of the ChaLearn dataset.
A visual inspection on the augmented dataset did not pro-
vide any hints that could expalin this behaviour.

6.4. Results on the test dataset

The best configuration obtained with the validation
dataset was used on the test dataset to participate in the
ChaLearn 2015 challenge. Our submission was scored by
the organizers with a mAP of 0, 767, the second best perfor-
mance among the seven teams which completed the submis-
sion, out of the 42 participants who had initially registered
on the challenge website.
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7. Conclusions
The presented work proves the high potential of the vi-

sual information for cultural event recognition. This result
is especially sounding when contrasted with many of the
conclusions made in the MediaEval Social Event Detec-
tion task [20], where it was frequently observed that visual
information was less reliable than contextual metadata for
event clustering. This difference may be caused by the very
salient and distinctive visual features that often make cul-
tural events attractive and unique. The dominant green in
Saint Patrick’s parades, the vivid colors from the Holi Fes-
tivals or the skull icons from the Dia de los Muertos

In our experimentation the temporal refinement has pro-
vided modest gain. We think this may be caused by the low
portion of images with available EXIF metadata, around
24% according to our estimations. In addition, we were
also surprised by the loss introduced by the Flickr data aug-
mentations. We plan to look at this problem more closely
and figure out the difference between the ChaLearn dataset
and ours.

Finally, it must be noticed that the quantitative values
around 0.7 may be misleading, as in this dataset every im-
age belonged to one of the 50 cultural events. Further edi-
tions of the ChaLearn challenge may also introduce the no
event class as in MediaEval SED 2013 [21] to, this way, bet-
ter reproduce a realistic scenario where the event retrieval is
performed in the wild.
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