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patricia.cabot@estudiantat.upc.edu

Xavier Giró Nieto
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Abstract

The end goal of Sign Language Translation is to either
produce spoken sentences from sign videos or generate sign
videos from their corresponding written transcriptions. In
this situation, this task has been address in multiple ap-
proaches in recent years. Moreover, it has been proved that
taking advantage of the sign gloss representations improves
substantially the model’s performance in this task.

Therefore, in this work we replicate the state-of-the-
art Transformer-based approach on the task and evaluate
it on the multimodal American Sign Language How2Sign
dataset. Furthermore, we provide baseline recognition and
translation results that represent an starting point to further
research on the topic.

In addition, we provide a new sentence-based alignment
for the How2Sign videos, as their current alignment was
with speech, which we have used to tackle the Sign Lan-
guage Translation task properly.

1. Introduction
Sign Language is the basic communication channel for

deaf people. It consists of manual articulations combined
with non-manual elements, such as facial expressions, body
poses or mouth motions [12]. Together, it results in a very
complex natural language1.

Contrary to common belief, each region developed and
currently uses its own Sign Language, which have been
listed to exist at least 150 different Sign Languages [6].

Furthermore, a Sign Language has its own linguistic sin-
gularities, such as grammar or semantics, as any other, and
are different from the language that may be spoken in the
region they belongs to. Hence, there is not a direct one-to-
one mapping from the signs to its spoken translation, as it
is more complex.

Additionally, there exist the gloss annotations. Glosses
are the direct transcription of Sign Language, that differ
from the spoken translation because they contain textual in-

1A natural language is any language that has evolved naturally in hu-
mans through use and repetition without conscious planning or premedita-
tion.

formation about the sign and may include words which do
not have an equivalent in the spoken language.

Unfortunately, communication for deaf communities
with the rest of the society is very difficult, due to their lack
of knowledge on Sign Languages. In this scenario, Auto-
matic Machine Translation for Sign Language appears to
be a practical solution and could have a significant benefi-
cial impact. In fact, the task of Sign Language Translation
(SLT) is divided into two goals: the first is to produce sign
videos given the spoken language [13], whereas the second
one is to generate written sentences from sign videos [2].

In the last years, researchers in the computer vision field
have focused more on Sign Language Recognition (SLR)
than in Sign Language Translation, a task that consists in
generating sequences of glosses from sign videos. However,
the recognition task may also be seen as an intermediate
step towards Machine Translation, a supervised assistance
that guides the training of translation models in a correct
way [1]. In fact, it has been proved that the joint training of
recognition and translation actually improves significantly
the models’ performance [2].

The main problem Sign Language Translation faces
is the lack of available parallel corpus of sign videos
and their aligned spoken transcriptions. Recently, some
Sign Language datasets have been published, such as
PHOENIX2014T [1] or How2Sign [5].

In this paper, we adapt the novel Transformer-based
model introduced by Camgoz et al. [2], an approach that
outperformed all the previous works in both tasks, recogni-
tion and translation, and provided state-of-the-art results.

The main contributions of this work can be summa-
rized in two statements: (1) We adapt the state-of-the-art
Sign Language Transformer model to How2Sign and pro-
vide baseline results that work as starting point for fu-
ture research on this setup; (2) We generate new sentence-
alignment for the sign videos from How2Sign, as the cur-
rent available alignment was with speech.

Finally, this paper is organised in the following way: In
Section 2, we summarise the work made by Camgoz et al.,
which is the foundation of this paper. In Section 3, we re-
produce the results obtained by the authors with the same
setup, by training the Sign Language Transformer model
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on PHOENIX2014T. In Section 4, we narrate the adaption
process of the model to train it with How2Sign. In Section
5, we provide the implementation and evaluation details,
the experiments results on How2Sign and compare our best
model to the reproduced results on PHOENIX2014T. Fi-
nally, in Section 7 we conclude our work by recapitulating
the outcome, enumerating the limitations we faced and pre-
senting future lines of work.

2. Related Work
Our research is essentially based on the work made by

Camgoz et al. [2], as we have adapted it to the How2Sign
dataset [5]. We address the machine translation task, and
secondly recognition, of Sign Language, which has been
researched for many years.

Sign Language Transformers. [2] In their work, the
authors introduce a state-of-the-art approach for Sign Lan-
guage recognition and translation in an end-to-end manner.
They present a novel architecture based on Transformers
[14], which is the current model used to address sequence-
to-sequence tasks.

In Fig. 1 it can be observed an overview of the archi-
tecture of a single Transformer layer, which follows the
encoder-decoder classic model. It is designed to generate
the English sentence translations from the sign language
videos, with intermediate gloss supervision.

Figure 1. Overview of the architecture of a single Sign Language
Transformer layer provided by the authors in their work [2]

On the left side of the image, one can find the encoder
model, named SLRT. It correspond to the Sign Language
Recognition Transformer. It receives as input the output of
the Spatial Embedding layer, which extracts the sign video
features from the raw frames. It is summed to the posi-
tional encoders[14], responsible of adding the temporal co-
herence of the frame sequence. The SLRT model follows
the classic encoder architecture, as can be seen in the fig-
ure, with a Self-Attention module, with all operations fol-
lowed by residual connections and a normalization step.

Its goal is to recognize and predict the glosses correspond-
ing to the input sign videos and, more importantly, learn
meaningful spatio-temporal representations for the further
sign language translation. In order to train the encoder,
they used the Connectionist Temporal Classification (CTC)
sequence-to-sequence learning loss function, instead of a
cross-entropy loss, as they mention it would require much
more precision in the gloss annotations, which is not com-
monly available.

On the right side of the image, one can find the de-
coder model, named SLTT. It corresponds to the Sing Lan-
guage Translation Transformer. It receives as input the
output of the Word Embedding layer, which computes a
one-hot-vector representation of the English transcriptions
into a dense space, and is summed to the positional en-
coders. The main goal is to generate English sentences
from the sign video representations. The SLTT model fol-
lows the classic autoregressive decoder architecture, as can
be seen in the figure, with a Masked Self-Attention module
and an Encoder-Decoder Attention module, with all oper-
ations followed by residual connections and a normaliza-
tion step. It is important to remark that in the Encoder-
Decoder Attention module, the spatio-temporal representa-
tions learned from the SLRT are combined with the repre-
sentations learned from the previous Masked Self-Attention
module from the decoder and, there, it learns the mapping
between the sign videos and the English transcriptions. In
order to train the decoder, they implemented a cross-entropy
loss for each word.

The network is trained by minimizing jointly the
weighted sum of the recognition and the translation loss
multiplied by two hyper-parameters.

They trained the model with the PHOENIX2014T [1], a
dataset which contains parallel sign language videos, gloss
annotations and their written translations, in the weather
forecast domain from the German TV. We give further de-
tails on the dataset in the following section.

Moreover, they specify the following protocols per-
formed to evaluate their model, stated in [1]:

- Sign2Text, which represents the end goal of translating
from a sign video to its spoken transcription, without any
intermediary representation.

- Gloss2Text, a text-to-text translation problem, which
consists in translating from the sign glosses to the written
sentences.

- Sign2Gloss2Text, which represents the current state-of-
the-art in Sign Language Transformers. It mainly consists
of recognizing the glosses from the sing videos and then
using them to predict the written transcriptions.

Additionally, the authors introduced two new evaluation
protocols:

- Sign2Gloss, which basically consists in sign language
recognition from sign videos to glosses.
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- Sign2(Gloss+Text), the main contribution of their work,
as it represents the joint learning of sign language recogni-
tion of glosses and translation to written sentences.

In conclusion, the work presented by Camgoz et al. in-
troduces a novel architecture based on Transformers for
learning jointly sign language recognition and translation
and provides state-of-the-art results for both tasks, outper-
forming previous models on the tasks.

3. Reproducibility of SLT

For the purpose of replicating the work with the
How2Sign dataset, we first reproduced their results with
their same setup.

3.1. PHOENIX2014T dataset

This dataset [1] gathers a collection of Sign Language
recordings from the weather forecast airings from the Ger-
man public TV-station, along with its written text and gloss
transcriptions.

The dataset version provided by the authors has the text,
gloss and sign video already aligned in a structured frame-
work.

Sign features. The sign information released to-
gether with the SLT code does not contain the raw video
frames, but the features extracted from a pretrained CNN
[7]. This network was pretrained for a sign language
recognition task with the PHOENIX2014T dataset, in a
CNN+LSTM+HMM configuration. Hence, when we repli-
cated the work with the How2Sign dataset, we also had to
extract the features from the sign videos beforehand.

3.2. Code modifications

In order to reproduce the experiment, we had to carry out
the following:

First, we prepared the environment for the task. As they
did not indicate the exact python version they were using,
we struggled configuring the versions of the required pack-
ages. Therefore, some of the final package versions differed
from the specified in the requirements.

Second, we modified the data path in the configuration
file. Additionally, we had another problem, as the available
version of the dataset in our server corresponded to an older
one.

3.3. Results

After configuring the setup, we trained the SLT model,
which took one hour approximately. The obtained results,
showed in Tab. 1, are similar to the ones provided by the
authors [2].

4. Adaptation to How2Sign

Once we managed to reproduce the author’s results, we
started adjusting it to our setup.

4.1. How2Sign dataset

How2Sign [5] represents one of the most complete
datasets in the Sign Language field. It is a multimodal and
multiview American Sign Language (ASL) dataset, which
consists of more than 80 hours of parallel corpora of sign
videos and their respective speech, English transcripts and
depth. Additionally, it provides with three hours of 3D pose
estimation.

Nevertheless, the corresponding gloss annotations are
not available and, hence, we worked without them. In their
place, we used the English text. That is to say, in the recog-
nition task, instead of predicting the gloss annotations, we
tried to predict the English transcriptions. This means that
the recognition and translation tasks are equivalent in this
setup. We have decided to fill the gloss part of the dataset
with the English sentence because we considered that it was
a better temporary solution than filling it with random or ar-
bitrary words, as this way the model could still learn some
meaningful spatio-temporal representations.

4.1.1 Datasets comparison

Apart from the language and other elements, here exists
three remarkable differences between the two datasets.

On the first hand, as stated previously, the
PHOENIX2014T dataset contains the gloss annota-
tion aligned with the video frames, while they are not
available for the How2Sign dataset and we replaced them
with the English sentences.

On the second hand, the volume of data available in
How2Sign cannot be compared to PHOENIX2014T. The
total number of entries in the first is 33116, whereas in the
second is 8256. That is to say, there are four times more
entries in How2Sign.

On the third hand, How2Sign includes data from a wide
range of domains, while the PHOENIX2014T only includes
entries from the weather forecast domain. For instance, the
number of unique words in the first is 24703, whereas in
the second is 2889. Hence, this difference will impact the
model’s performance, due to the large gap between both
frameworks.

In conclusion, for both the volume and the domain
of data, we expected to obtain more general and re-
alistic results for the task than the ones obtained with
PHOENIX2014T, even though the sign glosses were not
available for our setup.
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DEV TEST
Sign2(Gloss+Text) Task WER BLEU-1 BLEU-2 BLEU-3 BLEU-4 WER BLEU-1 BLEU-2 BLEU-3 BLEU-4

Authors’ best results on Recog. 24.61 46.56 34.03 26.83 22.12 24.49 47.20 34.46 26.75 21.80
Authors’ best results on Trans. 24.98 47.26 34.40 27.05 22.38 26.16 46.61 33.73 26.19 21.32

Our results (Recog. + Trans.) 48.92 44.30 31.47 24.35 19.88 48.06 44.62 31.80 24.40 19.79
Table 1. Comparison between the authors’ results and our results obtained with the same setup.

4.2. Re-alignment

As explained previously, How2Sign contains the speech
and English transcripts corresponding to the sign videos.
Then, the current generated alignment of the video frames
was with the speech and not with the text, as there was a de-
lay between the two modalities. That is to say, there was an
incorrect alignment of the videos and the sentences. There-
fore, we first solved this problem and re-aligned the video
frames with the English transcripts. In Fig. 2, there is a
visual example of both alignments, given a sign video.

Figure 2. Example of the difference between the alignment based
on speech or on sentence.

In their work [4], Duarte et al. highlight the impor-
tance of this change of framework, from speech-alignment
to sentence-alignment, using the new re-alignment we gen-
erated. Moreover, they provide a quantitative comparison
and show the improvement in the models performance when
working with sentence-alignment.

4.3. Dataset cleaning

As a consequence to the new alignment between the
videos and the sentences, it resulted that some sentences had
a starting and ending points out of range in the number of
frames that conformed a video. This resulted in empty ten-
sors, which cannot be used in our task. Thus, we chose to re-
move them from the final dataset that we trained our model
on, even though some further processing will be needed to
correct these inconsistencies.

4.4. I3D feature extraction

As mentioned in previous sections, the SLT model is not
trained with raw sign videos, but with extracted features that

function as Spatial Embeddings (SE). In Fig. 1, this corre-
sponds to the first layer the video frames are feed to and its
output is the input to the Encoder Transformer (SLRT).

Our first approach was to try to compute our sign fea-
tures with the same configuration that Camgoz et al. used.
However, the exact architecture (CNN+LSTM+HMM) [8]
was not specified in their work and neither was the code
published. Hence, we studied other approaches.

Then, we used the sign video Embeddings represented
as an I3D neural network architecture [3] from [5] to extract
the features, which were trained in a Sign Language Video
Retrieval task with How2Sign.

5. Results and comparison

Following, we show the results obtained from the differ-
ent experiments with our setup. First, we give a description
of the implementation and evaluation details. Then, we nar-
rate the process we have followed to optimize the desired
final model, illustrating it with the intermediate results from
the different experiments. Finally, we compare our best
results with the reproduced results with PHOENIX2014T,
which have been already reported in Tab. 1.

Even so, it is important to remark that these results are
provisional, as they were not obtained until the model con-
verged, but after 24 hours, which was the time limit to run
an execution in our servers.

5.1. Implementation and evaluation details

As we are using mostly the same configuration than the
authors [2], most of the implementation details coincide
with the ones specified in their work.

The model design corresponds to the work developed
by Camgoz et al., Sign Language Tranformers2, released
in September 2020.

The architecture is based on Transformers[14] and uni-
fies both the recognition and the translation tasks into a sin-
gle model, which the authors showed that improved the per-
formance. However, as in our setup the recognition task
is performed with the English sentences, and not with the
gloss annotations, we diminished its importance and fo-
cused mainly in the translation results.

The evaluation metrics also coincide with the ones used
by the authors [2]. For the recognition task we use the Word

2https://github.com/neccam/slt
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Error Rate (WER) [8] and for the translation task, we use
the BLEU [10] scores (with n-grams from 1 to 4). Both are
the most common metrics to measure the performance of
speech recognition and automatic translation systems. Ad-
ditionally, the environment is also configured to output the
ROUGE [9] and CHRF [11] metrics for the translation task,
although we considered to focus on the firstly mentioned in
order to assess our models’ performance.

5.1.1 Model adjustment

Although most of the model configuration remained un-
touched, in order to replicate the experiments with our
setup, we had to modify some details.

More precisely, we changed the batch size and the val-
idation frequency parameters. This is due to the fact that
the volume of data for our experiment requires much more
GPU memory and the time consumption in the validation
step takes an amount of time that cannot be spent at the same
number of iterations as with the authors’ setup. Hence, we
changed both the batch size to 16 and the validation fre-
quency to 1000.

Furthermore, we also modified the validation step. After
the training of a model finishes (either because the model
converges or because the execution reaches its time limit,
as in our case), there is an additional feature to evaluate
at inference time. There, first it performs an iterative pro-
cess to find the best beam search decoding parameter, with
widths from 1 to 10, for both the recognition and the trans-
lation tasks on the validation dataset and, when it finishes,
it performs the beam search decoding with the best param-
eters on the test dataset. However, as the recognition beam
search size increases, the more time consumption it takes.
Hence, in our case it did not finish the iterative decoding
after 24 hours of execution. To address this difficulty, we
decided to perform this iteration only over the translation
beam search decoding and set the highest possible width
value to the recognition beam search.

5.2. Model’s optimization

Once we had a trainable model, we started researching
on the optimal configuration, in order to validate whether
the setup provided by the authors was the most suitable for
our dataset or it required some modifications. Thus, we exe-
cuted several experiments and evaluated their performance.

Given a baseline model, we modified two of its param-
eters: the number of Transformer layers and the number of
heads. Its baseline values were 3 and 8, respectively. There-
fore, by increasing or decreasing the model’s size, our goal
was to increment its potential without overfitting at the same
time. That is to say, we searched for the best model’s com-
bination of parameters. It is important to emphasise that we
mainly focused on the translation metrics (BLEU), as it is

the task we are addressing in this work.
First, we explored the impact of the number of Trans-

former layers. It can be observed in Tab. 2 that the best per-
formance is obtained with 2 layers. This result differs from
the baseline, where the number of layers was 3. Neverthe-
less, we can notice in Fig. 3 how the Translation Loss for the
model with 2 layers starts increasing after 5 epochs, along
with other experiments, whereas the model with 3 layers
maintains a decreasing tendency throughout all the epochs.
Furthermore, in Fig. 4 it can be observed that the evolution
during the training for the experiment with 3 layers shows
the best development, as it reaches very similar scores to the
experiment with 2 layers, but with 4 epochs less. Hence,
even though the experiment with 3 layers did not obtain the
highest results, we considered we should not disparage this
option. For this reason, from this point the following ex-
periments were all built with 2 and 3 Transformer layers,
separately.

DEV TEST
# Layers # Epochs WER BLEU-1 BLEU-4 WER BLEU-1 BLEU-4

1 8 99.35 15.37 1.65 99.52 15.31 1.55
2 14 99.18 15.92 1.95 99.33 15.61 1.89
3 10 99.40 15.95 1.75 99.55 15.33 1.76
4 12 99.32 15.70 1.73 99.40 15.17 1.82
5 5 99.42 10.59 1.11 99.61 10.59 1.08
6 7 99.40 15.32 1.31 99.60 15.68 1.26

Table 2. Effect of the number of Transformer layers.

Figure 3. Translation Loss for validation at each epoch based on
the number of Transformer layers.

On the one hand, we researched the impact of modify-
ing the number of heads with 3 layers. In Tab. 3 it can be
observed that the performance with 4 heads is outstanding
compared to all the previous experiments. This result differs
from the baseline, where the number of heads is 8. More-
over, the evolution of the BLEU-4 score during the training
shown in Fig. 5 supports this assumption, as the growth of
the model with 4 heads undoubtedly exceeds the other two.
Thus, the optimal number of heads for 3 layers is 4.

On the other hand, we investigated the effect of the num-
ber of heads with 2 layers, as in the previous tests when
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Figure 4. BLEU-4 metric for validation at each epoch based on the
number of Transformer layers.

DEV TEST
# Heads # Epochs WER BLEU-1 BLEU-4 WER BLEU-1 BLEU-4

4 13 98.02 17.73 2.24 98.40 17.40 2.21
8 10 99.40 15.95 1.75 99.55 15.33 1.76

16 13 99.42 13.71 1.63 99.63 13.87 1.44

Table 3. Effect of the number of heads with 3 layers.

Figure 5. BLEU-4 metric for validation at each epoch based on the
number of heads with 3 layers.

comparing the number of layers, this setup obtained the best
scores. In Tab. 4, we can observe that the best performance
corresponds again to the experiment with 8 heads. There-
fore, the optimal number of heads for 2 layers is 8.

DEV TEST
# Heads # Epochs WER BLEU-1 BLEU-4 WER BLEU-1 BLEU-4

4 12 99.35 14.80 1.76 99.48 14.75 1.79
8 14 99.18 15.92 1.95 99.33 15.61 1.89

16 8 99.60 12.04 1.50 99.69 11.75 1.51

Table 4. Effect of the number of heads with 2 layers.

Following, we compared the results obtained by the two
experiments with best performance: the model with 3 lay-
ers and 4 heads and the model with 2 layers and 8 heads.
First, when comparing their scores from Tab. 3 and Tab. 4,
one can observe that the first configuration (3 layers and 4
heads) obtained considerably better results. For instance,
there is a difference of 0.29 and 0.32 in the BLEU-4 met-
ric on the validation and test, respectively. That is to say,

the model with 3 layers and 4 heads is, without a doubt, the
optimal. Furthermore, Fig. 6 shows that the tendency in the
evolution of the BLEU-4 metric for this experiment is far
more prominent than with the other experiment. And, addi-
tionally, in Fig. 7 it can be seen that the experiment with 2
layers and 8 heads has an increasing tendency in the Trans-
lation Loss, which could result in worse results in future
training, whereas the Translation Loss for the model with 3
layers and 4 heads is nearly constantly decreasing.

Figure 6. Comparison of the BLEU-4 metric for validation at each
epoch for the experiment with 2 layers with 8 heads and the exper-
iment with 3 layers and 4 heads.

Figure 7. Comparison of the Translation Loss for validation at each
epoch for the experiment with 2 layers with 8 heads and the exper-
iment with 3 layers and 4 heads.

Finally, we compared our best results on the How2Sign
datasets with the results we obtained when reproducing
the authors’ setup with PHOENIX2014T, already shown
in Tab. 1. We display this comparison in Tab. 5. There,
we observe that the results obtained with our setup (with
How2Sign) are nothing alike the results obtained with
PHOENIX2014T. There are some explanations we consid-
ered for this outcome:

First, the PHOENIX2014T dataset is restricted to a very
specific domain, the weather forecast. Hence, it is easier
for the model to guess the translation of a sign video, as
the solution space is much smaller (the number of unique
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DEV TEST
[Recog. and Trans.] Tasks WER BLEU-1 BLEU-2 BLEU-3 BLEU-4 WER BLEU-1 BLEU-2 BLEU-3 BLEU-4

Reproduced results with PHX 48.92 44.30 31.47 24.35 19.88 48.06 44.62 31.80 24.40 19.79
Our bests results with H2S 98.02 17.73 7.94 4.13 2.24 98.40 17.40 7.69 3.97 2.21

Table 5. Comparison between our reproduced results with PHOENIX2014T and out best results with How2Sign.

words in How2Sign is approximetely 10 times larger than
in PHOENIX2014T).

Second, non of the models trained with How2Sign con-
verged after 24 hours. That is to say, they did not reach
its optimal performance, whereas the model trained with
PHOENIX2014T took fewer time to train (around one hour
and a half) and it converged. This means that the difference
between the scores should decrease if we retrained our mod-
els until they converged, which in fact is one of our future
lines of work.

Additionally, in [4], Duarte et al. mention they mod-
elled the Sign Laguage Transformer approach from [2] with
the sign video Embeddings they trained for the Retrieval
task on How2Sign, the same features we use in this work.
They kept all the model parameters identical to the base-
line and the BLEU results obtained coincide with ours: 1.74
and 17.08 for BLEU-4 and BLEU-1, respectively. Our re-
sults on the baseline were 1.76 and 15.33 for BLEU-4 and
BLEU-1 on the test. Hence, this similarity on the perfor-
mance gives solidity to our results.

6. Conclusions and Future Work

In this work, we described the process of adapting the
Sign Language Transformer model to our setup. This work
mainly addresses two fundamental tasks: recognition and
translation of sign language videos, learned jointly.

We trained the model with the multimodal American
Sign Language dataset, How2Sign. It represents a much
more complete and extensive dataset in the Sign Language
field than PHOENIX2014T, the one used by the original au-
thors. Moreover, we took advantage of the I3D features
computed with the How2Sign video frames for a Retrieval
task and used them as Spatial Embeddings.

Therefore, with this work we provide a first view of the
results one can obtain with this approach, which we plan to
improve in the future.

Nevertheless, there are several limitations we have faced
during the development of our research that should be ad-
dressed:

On the first hand, we already mentioned that the servers
we work on have a time limit of 24 hours and, as a result,
non of the models we trained actually converged. As the en-
vironment is already designed to train from the checkpoints,
we plan to continue our research by retraining our current
models until they converge. As a consequence, they should
improve their performance considerably.

On the second hand, the annotation glosses are not avail-
able, hence the recognition task itself cannot in fact be ful-
filled. This represents a major problem, due to the fact that
the original authors show that the joint learning of the trans-
lation and recognition tasks improves substantially the per-
formance.

On the third hand, in this work we have modified some
parameters from the baseline model. However, apart from
those we focused on, there are other parameters such as
the several learning rates or the dropout value that could
be modified to upgrade the model. Therefore, another step
should be to modify other parameters.
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