
Multimodal 3D Hand Pose Enhancement for Sign Language

Álvaro Budria
alvaro.francesc.budria@estudiantat.upc.edu

Laia Tarrés
laia.tarres@upc.edu

Xavier Giró
xavier.giro@upc.edu

Abstract

The application of recent deep learning breakthroughs
to the domain of sign language has yielded very promising
results. However, sign language processing systems depend
on large amounts of labeled high-quality data to work prop-
erly. Current hand pose estimation methods are often unre-
liable and do not always produce estimations with enough
quality. To mitigate this issue, we explore the applicabil-
ity of the novel Body2Hands method for the obtainment of
high-quality hand pose estimations.

1. Introduction
It is estimated that for over 460 million people world-

wide, sign languages are the primary means of communi-
cation. Although sign languages are used by millions of
people everyday to communicate, the vast majority of com-
munications technologies nowadays are designed to support
spoken or written language, but not sign languages.

There have been recent works in sign language process-
ing [1, 7, 15, 18] showing that modern machine learning
architectures can help break down these barriers for sign
language users.

However, these systems depend on the existence of large
volumes of labeled high-quality sign language data for
achieving their objectives. Directly processing raw sign lan-
guage video data is too time-consuming and resource ex-
pensive to be reasonably feasible in most settings. For this
reason, instead of dealing with raw video data, one usually
extracts the keypoints (i.e. the relevant body points, face
landmarks and other bodily features) from the video frames.
This keypoint representation makes systems more robust
to changes in background and variability among signers.
Moreover, the standard procedure for obtaining the key-
point representation of sign language speakers is based on
pose detection systems such as OpenPose [2] and Medi-
aPipe [8], which are often unreliable and tend to introduce
noise into the data.

This motivates the introduction of systems for postpro-
cessing pose detectors’ estimations. In this work we explore
the applicability of the novel Body2Hands [9] method on

the domain of sign language, for the obtainment of higher
quality hand pose estimations, with the aim of improving
upon the current pose extraction systems.

2. Related Work
2.1. Body2Hands

Body2Hands [9] is a recently proposed method for gen-
erating convincing conversational hand gesture given the
speaker’s arms. More precisely, given a sequence of body
poses in rotational form B = {bt}Tt=1, Body2Hands pro-
duces a sequence of hand poses H = {ht}Tt=1:

H = G(B). (1)

2.1.1 Setup and Model Architecture

Body2Hands adopts a generative adversarial framework for
generating the hand motion.

The generator G is a fully-convolutional 1D encoder-
decoder network. More precisely, the model follows a U-
Net [12] architecture, with two layers at the encoder and
two at the decoder. The task of generating hand poses is set
as a regression task via an L1 loss:

LL1
= ∥Ĥ− G(B)∥1. (2)

To produce more realistic movement and avoid blend-
ing different modes of motion, the authors introduce an ad-
versarial discriminator D. They also introduce a function
∆ to compute the deltas between consecutive poses (i.e.
[h2 − h1, ..., hT − hT−1]). The discriminator D maximizes
the following objective while the generator G minimizes it:

LGAN (G,D) = EH[logD(∆(H))] + EB[log 1−∆(B)].
(3)

The full objective is thus

min
G

max
D
LGAN (G,D) + λLL1(G). (4)

2.1.2 Leveraging Body Pose Priors

As presented in [9], this GAN can be extended by using
additional hand images as input to the model:

1

H = K(Ih,B), (5)

where Ih is a series of hand images cropped around the left
and right hand regions of the input video. For our experi-
ments, we extracted hand crops from the How2Sign dataset
and then utilized a ResNet-50 as feature extractor, following
the procedure described in Body2Hands.

2.1.3 Leveraging Text Priors

We modified the architecture of the model to also accept a
single vector embedding as input:

H = K(T,B), (6)

where T is a vector embedding summarizing the text asso-
ciated with sequences B and H. In our experiments, we
leveraged text embeddings obtained with the text encoder
of the novel CLIP model [11].

2.2. How2Sign Dataset

How2Sign [4] is a large-scale collection of multimodal
and multiview sign language videos in American Sign Lan-
guage (ASL) for over 2500 instructional videos selected
from the existing How2 dataset [14].

How2Sign consists of more than 80 hours of American
Sign Language videos, with sentence-level alignment for
more than 35k sentences. It features a vocabulary of 16k
English words that represent more than two thousand in-
structional videos from a broad range of categories. The
dataset comes with a rich set of annotations including cat-
egory labels, text annotations, as well automatically ex-
tracted 2D keypoints for more than 6M frames.

We made extensive use of the How2Sign dataset, and
chose it for all of our experiments, due to the quality of its
pose estimations, its extensive transcriptions to English, and
its category annotations.

3. Skeletal Model and Data Representation
A key aspect that makes sign language processing a

difficult endeavor, is gathering and representing sign lan-
guage data. Here we present the data representations we
have used. We focus specifically on how to represent the
body/skeleton of a speaker.

The How2Sign dataset [4] provides videos along with
the 2-dimensional coordinates of the speakers’ body joints
or keypoints, which were obtained with OpenPose [2].
Therefore we can directly use these 2D keypoints to rep-
resent the joints of the speaker’s skeleton. In this case,
we would represent the speaker’s body at a certain time
frame t as a vector of coordinates of the form xt =
(x0, y0, x1, y1, ..., x49, y49). The speaker’s kinematic tree

has a total of 50 keypoints (21 for each hand, 3 for each
arm, and 2 for the neck).

This 2D representation, however, is not rich enough, and
not quite suitable for sign language, where occlusions and
changes in angle are frequent. To alleviate this issue, we
made use of a lifting method specifically designed for sign
language processing which converts 2D keypoints to sensi-
ble 3D representations.

3.1. Lifting From 2D to 3D

In [17] a method was proposed for lifting sequences
of 2D sign-language keypoints to 3D coordinates. This
method makes use of several invariants in the human body
to obtain quality 3D representations. We changed the pre-
specified kinematic tree to our own custom one, adapting it
to the data from the How2Sign dataset.

Figure 1. Kinematic structure. Body view.

Figure 2. Kinematic structure. Hands view.

3.2. From Cartesian to Rotational Representation

Although this 3D Cartesian representation allows han-
dling occlusions and different camera angles much more ef-
fectively, it suffers from sensitivity to scale and length of the
speaker’s limbs. To obtain a representation that is invariant
to changes in scale, we decided to follow [9] and [16], by
converting the Cartesian coordinates to a 6D rotational rep-
resentation [19] called R6D. In essence, with a rotational

2

representation such as axis-angle or R6D, we represent a
body joint as its rotation with respect to its parent joint.

The conversion process involves a number of steps de-
scribed in Algorithm 1. Since we compute the rotation of
a joint against its parent, we perform the conversion by
traversing a kinematic tree (ours is described in Figures 1
and 2). It is necessary to define a root bone, from which to
start the traversal. We set the root bone to be the neck, since
it is a very non-informative body part of a signer and it is
therefore safe to assume it remains fixed.

For each triplet of joints, we compute vectors u⃗ and v⃗,
representing the parent bone and the ”rotated” one, respec-
tively. Then, we obtain the axis â and angle θ by which the
rotation from the parent to the child joints is achieved. Vec-
tor θâ is the axis-angle representation of the central joint
w.r.t to its parent joint. From this, we can easily obtain
its rotation matrix and its R6D representation (which cor-
responds to vectorizing the first two columns of the rotation
matrix).

3.3. From Rotational Representation to Cartesian

We can easily invert this process to obtain Cartesian co-
ordinates from an axis-angle representation. However, we
need to know beforehand the kinematic tree, the root bone,
and the bone length that were used for the initial conver-
sion. If this is known, we can leverage the parent bone of
the current joint and Rodrigues’ rotation formula [10] to
reconstruct the position of the next joint in the kinematic
tree, given its parent and its rotation. The full process is
described in Algorithm 2.

Algorithm 1 Conversion from Cartesian 3D to axis-angle
representaton
Require: K ▷ the kinematic structure
Require: xyz ▷ a vector (x1, y1, z1, ..., xn, yn, zn)

1: aa← {}
2: for iBone in K do
3: idJ , idE , idB ← K[iBone]
4: ▷ A bone has J and E as joints. B is J’s parent
5: J ← xyz[idJ ∗ 3 : idJ ∗ 3 + 3]
6: E ← xyz[idE ∗ 3 : idE ∗ 3 + 3]
7: B ← xyz[idB ∗ 3 : idB ∗ 3 + 3]
8: u⃗← J −B
9: v⃗ ← E − J

10: θ ← arccos u⃗·v⃗
∥u∥∥v∥ ▷ rotation angle

11: â← u⃗×v⃗
∥u∥∥v⃗∥ ▷ axis of rotation

12: append θâ to aa
13: end for
14: return aa

Algorithm 2 Conversion from axis-angle to Cartesian 3D
representaton
Require: K ▷ the kinematic structure
Require: aa ▷ a vector (x1, y1, z1, ..., xn, yn, zn)
Require: J , B ▷ joints belonging to root bone
Require: L ▷ bone lengths

1: xyz ← {}
2: append J , B to xyz ▷ root is already in 3D
3: i← 0
4: for iBone in K do
5: idJ , idE , idB ← K[iBone]
6: J ← xyz[idJ ∗ 3 : idJ ∗ 3 + 3]
7: B ← xyz[idB ∗ 3 : idB ∗ 3 + 3]
8: u⃗← J−B

∥J−B∥
9: θ ← ∥aa[i ∗ 3 : i ∗ 3 + 3]∥

10: â← 1
θ · aa[i ∗ 3 : i ∗ 3 + 3]

11: i← i+ 1
12: ▷ Rodrigues’ formula
13: v⃗ ← u⃗ cos θ + (â× u⃗) sin θ + â(â · û)(1− cos θ)
14: ▷ retrieve the next joint from the current one
15: E ← J + L[iBone]v⃗
16: append E to xyz
17: end for
18: return xyz

4. Experimental Results
4.1. Transferring Body2Hands to Sign Language

We were interested in assessing whether off-the-shelf
methods from other domains may be useful in the domain
of sign language. In particular, we tested the method called
Body2Hands [9], which was initially designed for generat-
ing hand poses in conversational settings. We directly ap-
plied it on the domain of sign language. Without modifying
the model’s architecture in any way, we trained it on the
How2Sign dataset (after having previously converted the
data from 2D to R6D).

4.1.1 Conditioning on Text

The How2Sign dataset contains text annotations at sentence
level for each of the clips. Note the text is not completely
aligned with each of the signer’s poses. However, the corre-
spondance between a clip and its textual sentence is avail-
able in the dataset. We leverage this information to condi-
tion the model on the sentence-level textual information.

The initial Body2Hands model allows conditioning on
image embeddings by concatenating T image embeddings
(one per frame) to the T pose embeddings, along dimen-
sion Q of the pose embeddings. This is not suitable for
text, as we do not posses information at the frame level.
To alleviate this issue, we adapted the model architecture to

3

input train val test
body pose 2.36 2.38 2.39
body pose + text embedding 2.37 2.38 2.38
body pose + image crops 2.30 2.39 2.37

Table 1. L1 error obtained by each model configuration.

be able to receive textual information as input. Instead of
concatenating the features to the input of the model’s gen-
erator, we concatenate the sentence embedding to the latent
representation produced at the bottleneck of the generator’s
encoder-decoder structure.

Regarding the text embeddings, we obtained them by
feeding the sentence-level textual information to a pre-
trained text encoder. In particular, we used the text encoder
of the novel CLIP [11] model, which generates a vector of
size 512 for each given input sentence.

4.1.2 Conditioning on Images

We also leverage the capability of the Body2Hands model
to receive image features as input. No modification to the
model’s architecture was needed for this.

Hand crops of the signer’s left and right hands were ex-
tracted, thus obtaining 2×T crops per clip. To generate the
image feature representations, we used a ResNet-50 [5] net-
work pretrained on ImageNet [3]. For each frame in a clip,
we extracted a vector feature representation, thus obtaining
2×T vectors per clip. The Body2Hands model then reduces
their dimensionality so that later they can be concatenated
along the pose embeddings before entering the generator
module.

4.1.3 Experiments

We assess whether the model can be successfully applied
to sign language data by training and testing it on the
How2Sign dataset. We also check the impact that the hand
prior and the text prior may have on the model’s generative
power.

We thus train the model on three different settings,
namely, with body pose only as input, with body pose plus
text embedding and with body pose plus image embeddings.
We use a batch size of 256, with Adam as optimizer and
with a learning rate of 10−4. As described in [9], we train
with an adversarial loss every third epoch, and without, for
all other epochs. Training time is 2 hours on a single GPU
for 200 epochs.

Figure 3. Left: hand poses generated with off-the-shelf
Body2Hands model. Right: original poses from How2Sign
dataset.

Table 1 reports the reconstruction error (i.e. the L1 dis-
tance) between the generated hand pose and the GT pose.
Notice that the error on the train set is very similar to that
obtained on the test and validation sets. Figure 3 shows
how the model is not generating any meaningful gestures.
Rather, it suffers from a common phenomenon in GANs
called mode collapse, which is due mainly to a lack of rep-
resentation power in the generative model.

Neither conditioning on the text nor on the hand crops
yields improved results, therefore a different architecture
will be needed for the model to work.

4.2. Assessing generative power through unmasking
task

Since directly transferring the Body2Hands model to the
sign language domain did not yield very good results, we
became interested in evaluating the model’s capacity, in or-
der to determine how difficult the task at hand is and what
kind of model may be adequate to solve it. More precisely,
we were interested in knowing at which point the model
falls into model collapse, that is, at which point the model
stops generating a rich variety of poses and starts perma-
nently generating the median pose.

Our approach was characterized by using as input not
only the arms, but also the hands, while also masking some
of the fingers. The model then must reconstruct the masked
finger(s) from the arms and the non-masked fingers.

4.2.1 Experiments

We experimented with masking a different amount of fin-
gers, from 1 to 5. Table 2 shows the reconstruction error, as
well as the error per reconstructed finger, against the num-
ber of masked fingers. Although the error per masked finger
decreases as we increase the number of masked fingers, the

4

masked fingers val error (val error) / (masked finger) (test error) (test error) / (masked finger)
1 0.320 0.320 0.324 0.324
2 0.331 0.166 0.330 0.165
3 0.338 0.113 0.341 0.114
4 0.382 0.096 0.381 0.096
5 0.418 0.084 0.411 0.082

Table 2. L1 reconstruction error against number of masked fingers.

overall quality of the reconstruction becomes worse, with
fingers being less expressive and mobile. In Figure 4 we
see how masking a single finger results in a reconstruction
that is indistinguishable from the ground truth pose. Fig-
ure 5 contrasts with that: masking a whole hand results in
a reconstruction that is inexpressive and inadequate in the
context of sign language processing.

We did not find a specific number of masked fingers from
which the model falls into permanently predicting the me-
dian pose; on the contrary, it seems that there is a gradual
decrease in the quality of the reconstructed fingers as the
number of masked ones increases. It must be noted, how-
ever, that those fingers that are not masked, are reasonably
reconstructed by the model. So while the model has a hard
time extrapolating fingers from the rest of the speaker’s arm
sand hands, it can nonetheless recover the non-masked in-
puts, and even remove some of the noise present in the in-
puts.

The conclusion is that the Body2Hands model does not
have enough capacity to deal with the task of generating
sign language poses. Nevertheless, the fact that the model
can reconstruct one or two fingers with quality indicates
that the model could potentially be used for enhancing se-
quences and removing noise that might be present in them.
We explore this approach in the next section.

Figure 4. Two samples of reconstructed poses, having previously
masked just 1 finger. On the left, the hand with the reconstructed
finger; on the right, the ground truth. The model can adequately
reconstruct a finger, given its context.

Figure 5. Two samples of reconstructed poses, having previously
masked 5 fingers (a whole hand). On the left, the reconstructed
hand; on the right, the ground truth. Notice how the model does
not have enough capacity to reconstructed an entire masked hand.

4.3. Hand Pose Enhancement

A severe problem that hinders the performance of sign
language processing systems is the difficulty of obtaining
clean, usable data. The main sources of noise are the pose
detection algorithms (e.g. OpenPose [2]) and the mecha-
nisms for lifting data to 3D coordinates. In Figure 7, on the
right, we can see an example of a non-realistic hand-shape
that was produced after lifting it to 3D. Examples such as
this one are bound to have a negative impact on a model’s
performance. This motivates the necessity of devising sys-
tems that allow to remove noise and inconsistencies in the
poses.

In light of the results obtained with the masking experi-
ments presented in the previous section, we decided to carry
the idea further by having the model reconstruct both hands
entirely. Our hypotheses is that the model acts as a regular-
izer, keeping only the most important features in the data,
while discarding the noise.

Initially, we carried out a qualitative evaluation of our
procedure, since reconstruction error is not an adequate
measure in this case (due to the fact that we do not intend to
reconstruct the poses, but to clean them).

We experimented with different inputs and outputs (see
below for more details). In general, the model manages
to filter out the most prominent noise, producing smoother
hand poses. However, it presents the drawback that it also

5

tends to erase significant hand gestures that are relevant for
sign language.

After a qualitative evaluation of the results, we decided
that using the hand poses both as input and as output yields
the best results in terms of noise removal.

To obtain a more quantitative evaluation of our approach,
we decided to evaluate it against a topic detection task,
which we present in the next section. For this section, we
limit ourselves to presenting a more qualitative assessment
of the enhancement mechanism under L1 reconstruction
loss.

4.3.1 Experiments

We experimented with utilizing different kinds of inputs for
filtering out the noise in the hand poses. Thus, we tried
utilizing as input to our model several other sources of data,
besides the hand poses, namely, the arm poses, the hand
crop images, and both at the same time.

We begin by exploring the possibility of enhancing the
hand poses with the help of the body poses, thus having
arm and hand poses as input, and just hand poses as outputs.
Figure 6 shows an example of an improved sign language
sequence. Notice that obviously wrong and noisy poses,
such as those of the right hand in the 1st and 3rd frames, are
fairly cleaner in the post-processed sequence.

Figure 6. Left: enhanced poses. Right: original poses
For this sequence, body poses and hand poses were used as input.

In line with the results obtained during our masking ex-
periments presented in the previous section, we found no
improvement in terms of quality of the outputs when in-
cluding also as input the image hand crop features. We can
conclude that the model at hand does not make appropriate
use of the visual features that it may receive and input and

therefore a different architecture is needed for leveraging
those features.

Figure 7. Left: enhanced poses. Right: original poses
For this sequence, only hand poses were used as input.

On the other hand, with hands only as input the results
were ever so slightly better, compared to using multiple in-
puts. Figure 7 shows a sequence post-processed in this
way. We hypothesize that by using additional inputs such as
the arms or the hand crop image features, we are exceeding
the capacity of the model, and that by limiting ourselves to
the hand poses, we make more efficient use of the model’s
learning power.

5. Topic Detection

As mentioned above, the motivation for tackling the
topic detection task on the How2Sign dataset is to provide a
surrogate task by which to evaluate whether the hand pose
enhancement method described in the previous section is
an effective strategy. This task allows us to provide a more
quantitative evaluation of the results.

There are 9 different categories in the data, and there is
a notable class imbalance, with the most frequent class ac-
counting for over 20% of the samples in the validation set.
While we have not applied any resampling techniques to ad-
dress this issue, it is necessary to take it into account when
interpreting the models’ performance.

6

Figure 8. Bar chart representing the proportion each class repre-
sents in the validation set. There is a noticeable class imbalance.

By default, data in the dataset is available at sentence-
level, that is, each sequence of keypoints X = {xt}Tt=1

(with xt = (x1, y1, x2, y2, ..., x32, y32)) has a textual sen-
tence associated. There are 31128 such sentence-level se-
quences for training, 1741 for validation, and 2322 for test-
ing. However, we can group sentence-level sequences based
on the original video they were extracted from, which re-
sults in 2192 sequences for training, 115 for validation and
149 for testing.

At first glance, sentence-level information seemed too
limited for being classified. For instance, a sentence such
as ”I’m not going to use a lot, I’m going to use very very
little.” could very well be categorized both as belonging to
”Games” and to ”Food and Drinks”. A wider context is
needed for the classification task. We confirmed this hy-
potheses by classifying sentence-level embeddings obtained
with BERT. Therefore, we performed the rest of our experi-
ments on video-level data (derived from grouping sentence-
level data), which is rich enough for tackling the topic de-
tection task.

Our experimental results confirm that the textual infor-
mation is rich enough for the task of topic detection, and can
be solved, using text, with established NLP models such as
BERT. On the other hand, we found that performing topic
detection directly with keypoints is not as straightforward.
We did not manage to solve it with this modality of data,
and leave it as future work.

5.1. Modeling Setup

For this task, we dealt with two different kinds of data,
namely, text and sign language represented as poses. For
this reason, we have leveraged two different processing
pipelines.

For dealing with sequences of poses, we chose the long-
established LSTM [6] model, which is well-known for deal-
ing with sequential data. As shown in Figure 9, we feed a
pose to the LSTM cell at each time step, and use the hidden

state hT of the LSTM cell at the last time step T as input to
a single-layer MLP that outputs the classification result.

Figure 9. Topic detection setup for processing sign language se-
quences.

To deal with the textual data, we adopted a standard pro-
cedure in the domain of natural language processing. We
feed BERT either a sequence of tokens (a sentence or a
whole paragraph), and it outputs a rich representation in
the form of a vector embedding. We then use this embed-
ding as input to our multi-layer perceptron classifier [13]
(MLP). The BERT feature extractor remains frozen with its
pretrained weights, and only the classifier’s weights are up-
dated.

Figure 10. Schematic view of the embedding extraction and clas-
sification process for textual data. We extract textual embeddings
from a pretrained transformer, BERT, which we then feed to a
trainable MLP classifier.

5.2. Experiments

5.2.1 Classifying sentences

We begin by exploring whether sentence-level data (i.e. sin-
gle sentences) contain enough information for solving a
standard text classification task with transformers.

As we can see in Figure 11, sentence-level data does not
carry enough information for accurately detecting its topic,
even for a standard procedure with state-of-the-art trans-
formers. Therefore, we concluded that we needed to ag-
gregate data to video-level, i.e. to concatenate sentences be-
longing to the same video into a single text or sequence of
poses.

7

Figure 11. Accuracy curves on training and validation sets for clas-
sification on sentence-level textual data.

5.2.2 Classifying paragraphs

To make the topic classification task feasible, we aggregated
data into paragraphs belonging to the same original video.
In order to have a baseline against which to compare the
results obtained by using sequences of poses as input to our
model, we first tackled the task with textual data.

Figure 12. Accuracy curves obtained by using 2D sign language
poses as input. In this case, the LSTM model struggles to learn
any representations.

We performed hyperparameter tuning on the model de-
scribed in Figure 10 to obtain the best possible accuracy on
the validation set. The best combination resulted in a valida-
tion accuracy of 77%. This implies that the topic detection
task on the How2Sign dataset is solvable, at least by using
textual data as input.

Next, we asked ourselves whether 2D data is sufficiently
rich to be used as inputs for solving the classification task,
so we tried feeding 2D non-lifted poses to our model de-
scribed in Figure 9.

Figure 13. Overfit train, predict the majority class in val. Filtering
prevents overfitting.

As shown in Figure 12, 2D keypoints are not suitable for
sign-language processing, since they do not even allow for
overfitting on the train set.

Finally, we tackled the R6D data, both non-filtered and
filtered, since our initial goal with the topic detection task
was to assess whether filtered data was better than non-
filtered data.

Therefore, we trained our LSTM model with filtered
poses in R6D, and with non-filtered poses also, in order to
compare the model’s performance depending on the data.

In Figure 13 we can see that, while post processed data
achieves a slightly better accuracy on the validation set,
there is no substantial improvement overall. The most no-
ticeable difference is that the model tends to overfit the
training set more easily with non-postprocessed data.

6. Discussion
Current hand pose estimation methods are often unreli-

able and do not always produce quality pose estimations. In
this work, we address this issue by exploring a method for
obtaining higher-quality hand pose estimations in the do-
main of sign language. We focus on the recently proposed
Body2Hands, initially designed for conversational settings,
and transfer it to the domain of sign language. We deter-
mine that it is not usable as an off-the-shelf method for our
purpose. Moreover, we also indicate that it is not adequate
for generating unseen sign language hand poses. Never-
theless, we show through a qualitative assessment that our
method for hand-pose enhancement obtains promising re-
sults. Despite the fact that it does not yield improved results
on the surrogate topic detection task, we believe a more
powerful model architecture, different to an LSTM, such
as transformers will be needed to properly tackle the topic
detection task and thus obtain a fair assessment of our hand-
pose enhancement method.

8

References
[1] Necati Cihan Camgoz, Simon Hadfield, Oscar Koller, Her-

mann Ney, and Richard Bowden. Neural sign language trans-
lation. In 2018 IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 7784–7793, 2018.

[2] Z. Cao, G. Hidalgo Martinez, T. Simon, S. Wei, and Y. A.
Sheikh. Openpose: Realtime multi-person 2d pose estima-
tion using part affinity fields. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 2019.

[3] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In 2009 IEEE Conference on Computer Vision and
Pattern Recognition, pages 248–255, 2009.

[4] Amanda Duarte, Shruti Palaskar, Lucas Ventura, Deepti
Ghadiyaram, Kenneth DeHaan, Florian Metze, Jordi Torres,
and Xavier Giro-i Nieto. How2Sign: A Large-scale Mul-
timodal Dataset for Continuous American Sign Language.
In Conference on Computer Vision and Pattern Recognition
(CVPR), 2021.

[5] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep residual learning for image recognition. CoRR,
abs/1512.03385, 2015.

[6] Sepp Hochreiter and Jürgen Schmidhuber. Long Short-Term
Memory. Neural Computation, 9(8):1735–1780, 11 1997.

[7] Sang-Ki Ko, Chang Jo Kim, Hyedong Jung, and
Choong Sang Cho. Neural sign language translation based
on human keypoint estimation. CoRR, abs/1811.11436,
2018.

[8] Camillo Lugaresi, Jiuqiang Tang, Hadon Nash, Chris Mc-
Clanahan, Esha Uboweja, Michael Hays, Fan Zhang, Chuo-
Ling Chang, Ming Guang Yong, Juhyun Lee, Wan-Teh
Chang, Wei Hua, Manfred Georg, and Matthias Grundmann.
Mediapipe: A framework for building perception pipelines.
CoRR, abs/1906.08172, 2019.

[9] Evonne Ng, Shiry Ginosar, Trevor Darrell, and Hanbyul Joo.
Body2hands: Learning to infer 3d hands from conversational
gesture body dynamics. Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
11865–11874, 2021.

[10] Rodrigues’ rotation formula (wikipedia). https:
//en.wikipedia.org/wiki/Rodrigues’
_rotation_formula.

[11] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen
Krueger, and Ilya Sutskever. Learning transferable vi-
sual models from natural language supervision. CoRR,
abs/2103.00020, 2021.

[12] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net:
Convolutional networks for biomedical image segmentation.
CoRR, abs/1505.04597, 2015.

[13] Frank Rosenblatt. Principles of Neurodynamics: Perceptrons
and the Theory of Brain Mechanisms. In Spartan Books,
Washington DC, 1961.

[14] Ramon Sanabria, Ozan Caglayan, Shruti Palaskar, Desmond
Elliott, Loı̈c Barrault, Lucia Specia, and Florian Metze.

How2: A large-scale dataset for multimodal language un-
derstanding. CoRR, abs/1811.00347, 2018.

[15] Ben Saunders, Necati Cihan Camgöz, and Richard Bowden.
Progressive transformers for end-to-end sign language pro-
duction. CoRR, abs/2004.14874, 2020.

[16] Donglai Xiang, Hanbyul Joo, and Yaser Sheikh. Monocu-
lar total capture: Posing face, body, and hands in the wild.
CoRR, abs/1812.01598, 2018.

[17] Jan Zelinka and Jakub Kanis. Neural sign language synthe-
sis: Words are our glosses. Proceedings of the IEEE/CVF
Winter Conference on Applications of Computer Vision,
pages 3395–3403, 2020.

[18] Jan Zelinka, Jakub Kanis, and Petr Salajka. NN-Based Czech
Sign Language Synthesis, pages 559–568. 07 2019.

[19] Yi Zhou, Connelly Barnes, Jingwan Lu, Jimei Yang, and Hao
Li. On the continuity of rotation representations in neural
networks. CoRR, abs/1812.07035, 2018.

9

https://en.wikipedia.org/wiki/Rodrigues'_rotation_formula
https://en.wikipedia.org/wiki/Rodrigues'_rotation_formula
https://en.wikipedia.org/wiki/Rodrigues'_rotation_formula

