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Universitat Politècnica de Catalunya

In partial fulfillment
of the requirements for the degree in

TELECOMMUNICATIONS SYSTEMS ENGINEERING

Author: Alberto Bozal
Advisor: Xavier Giró-i-Nieto

Universitat Politècnica de Catalunya (UPC)
2016 - 2017



Abstract

This thesis explores the semantic classification of images based processing of electroencephalo-
gram (EEG) signals generated by the viewer’s brain. The work extends an existing solution by
exploring the gains obtained when the parameters of the classifier are adapted to the user. Firstly,
we developed an universal end-to-end model based on deep learning that extracts features from
the EEG raw signals predicts the semantic content of the image between 40 possible classes from
the ImageNet dataset. Our main contribution aims at adapting this universal model to new users,
in order to build a personalized model based on the minimum feedback from the new user. We
explored different deep learning architectures and hyperparameters to obtain a better accuracy
than the baseline by Spampinato et al (CVPR 2017). We achieve a result of 89.03 % and 90.34
% of the universal and personalized model respectively.The developed software and models are
publicly available at https://github.com/Albocal/EEG-Signals-using-LSTM.

1

https://github.com/Albocal/EEG-Signals-using-LSTM


Resum

Aquesta tesi explora la classificació semàntica d’imatges basat en el processament de senyals
de electroncefalograma (EEG) generades pel cervell de l’espectador. El treball estén una solució
existent explorant la ganacia obtinguda quan els paràmetres del classificador són adaptats a
l’usuari. En primer lloc, desenvolupem un model universal d’extrem a extrem basat en el Deep
Learning que extreu caracteŕıstiques dels senyals raw EEG i prediu el contingut semàntic de la
imatge entre 40 classes possibles del conjunt de dades ImageNet. La nostra principal contribució
té com a objectiu l’adaptació d’aquest model universal als nous usuaris, amb la finalitat de
construir un model personalitzat basat en la retroalimentació ḿınima del nou usuari. Explorem
diferents arquitectures d’aprenentatge profund i hiperparámetros per obtenir una major precisió
que baseline de Spampinato (CVPR 2017). Aconseguim un resultat de 89.03 % i 90.34 % del
model universal i personalitzat respectivament. El programa i els models desenvolupats estan
disponibles públicament en https://github.com/albocal/eeg-signals-using-lstm.
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Resumen

Esta tesis explora la clasificación semántica de imágenes basado en el procesamiento de señales
de electroncefalograma (EEG) generadas por el cerebro del espectador. El trabajo extiende una
solución existente explorando la ganacia obtenida cuando los parámetros del clasificador son
adaptados al usuario. En primer lugar, desarrollamos un modelo universal de extremo a extremo
basado en el Deep Learning que extrae caracteŕısticas de las señales raw EEG i predice el contenido
semántico de la imagen entre 40 clases posibles del conjunto de datos ImageNet. Nuestra principal
contribución tiene como objetivo la adaptación de este modelo universal a los nuevos usuarios,
con el fin de construir un modelo personalizado basado en la retroalimentación ḿınima del
nuevo usuario. Exploramos diferentes arquitecturas de aprendizaje profundo e hiperparámetros
para obtener una mayor precisión que el baseline de Spampinato (CVPR 2017). Alcanzamos
un resultado de 89.03 % y 90.34 % del modelo universal y personalizado respectivamente. El
software y los modelos desarrollados están disponibles públicamente en https://github.com/

Albocal/EEG-Signals-using-LSTM.
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Chapter 1

Introduction

1.1 Statement of purpose

This thesis aims at improving the communications between humans and machines through
the brain. Brain Computer Interfaces (BCI) read the activity generated by the brain and this
is interpreted by a machine [13]. There are different technologies to read brain signals, but the
most common is using the electroencephalograms (EEG).

To explore the EEG signals, we are going to use machine learning techniques, deep learning
specifically. Deep learning is a discipline which has become extremely popular in the last years.
It consist of using artificial neural networks (NN) to learned feature representations optimized for
a certain task.

Brain Computer Interfaces seem futuristic, however they have started being explored by the
industry for mass consumption. One of the most important companies based on the Internet,
Facebook, has announced research lines on EEG reading. In the 2017 Facebook Developer
Conference(F8), Mark Zuckerberg was talking about numerous applications of the understanding
EEG signals: ”We’re talking about decoding those words. A silent speech interface - one with all
the speed and flexibility of voice.” or ”We’re working on a system that will let you type straight
from your brain about five times faster than you can type on your phone today.” Elon Musk
who known by many as an innovator and visionary of the 21st century, is a South African-born
Canadian-American business magnate, investor, engineer, and inventor. He is another admirer
of BCI, wanting to create a brain implant to improve his efficiency doing his own life, it is similar
to a cyborg1.

BCI have already nowadays a large extension of applications in helping handicapped people
to better communicate or control some damaged organs [17].

Next steps may address virtual reality, with video games where you could play directly with
your brain instead of your hands [3]. Medicine could be improved as well if we would understand
better how our brain works, so mental diseases could have better treatments.

In our work, we will focus on the specific task of analysing the EEG signals generated in
the brain when an image is seen, so that the type of object represented in the image can be
distinguished. In particular, we extend the work in [14] by improving the performance and
exploring how to quickly personalize a model to a new user.

1https://www.theguardian.com/technology/2017/mar/28/elon-musk-merge-brains-computers-neuralink
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Figure 1.1: Universal model Diagram

Deep learning provides different approaches to solve this classification problem, as simple as a
Multi Layer Neural Network (MLNN) or more complex as Convolutional Neural Networks (CNN).
We will use a Long Short Term Memory networks (LSTM), that is one of the best models for
temporal sequences.

Figure 1.2: Personalized model Diagram

The main objectives of this project are:

• Create an end-to-end model with an accuracy similar to [14].

12



• Try different solutions and parameters to increase model’s accuracy.

• Contribute a solution of the diversity, using a personalized solution.

• Prove the scalability of the personalized model.

1.2 Requirements and specifications

This thesis is used to get closer to state of art of Deep learning processing EEG signals. It is
a research project.

Exploring EEG signals, the requirements of this project are the following:

• Create generic model, obtaining a high accuracy

• Create a personalized architecture versatile, simple and faster to fight the diversity of
different persons.

• Evaluate the personalized model, finding its benefits and problems.

The specifications are the following:

• Build the software using a Python2 language

• Use a deep learning framework for project, Keras3. It can run upon Theano4 or TensorFlow5

backends.

• Create a Github repository to share the project Open Source

1.3 Methods and procedures

This thesis analyses EEG signals using deep learning. For this reason, the Keras software
framework is adopted, which is run in the computational servers of the Image Processing Group
(GPI) at the Universitat Politecnica de Catalunya (UPC). These servers were run by a Slurm
workload manager6 whose functionality was to distribute the available computational resources
between GPUS users.

1.4 Work Plan

This project has followed the established work plan, with a few exceptions and modifications
explained in the section 1.5.

2https://www.python.org/
3https://keras.io/
4http://deeplearning.net/software/theano/
5https://www.tensorflow.org/
6https://slurm.schedmd.com/
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1.4.1 Work Packages

• WP 1: Documentation

• WP 2: State of the art

• WP 3: Software

• WP 4: Datasets

• WP 5: Experiments

• WP 6: Oral communication

1.4.2 Gantt Diagram

Figure 1.3: Gantt Diagram of the Degree Thesis

1.5 Incidents and Modification

This research thesis was constantly growing and adapting to the new results. In a first phase,
the development of a universal model that obtains a high accuracy was the main goal. However,
as the project advanced, we identified the practical limitation of such approach and focus on the
specific problem of adapting the universal to a new user, which better captures the real world
application of these technologies.

14



Chapter 2

State of the art

2.1 Image analysis from EEG signals

Analysing images from EEG readings with classic machine learning has been previously explored
by different works, but using deep learning [5] is still in its early days. The work in [6] tries to
detect objects but with a black background, a similar problem to ours but with a more simple
problem. The work in [2] is about image classification but only with airplanes with the difficulty
of these images being shown at a high frame rate. The work in [18] adapts a general model to a
individual users. The goal in his work is create a personalized of a SVM model for different user.
Our thesis has the same goal, but addresses the same problem using a deep learning approache.

Other works, less related to ours, do not analyse the raw EEG signal but try to detect a P300
signal [4, 7]. P300 is a 300 ms latency way which is related with the process of decision making.
ERP (event related potentials) includes the search of p300 signal.

The system in [11] that allows the possibility of move a robotic arm with the brain. In it, 13
users learn how to use the robotic arm only from their brain activity.

Mentioned in the introduction, there are some studies related with mental issues as detection
of epilepsy or compression better the diseases in [17].

The study of airplanes [2] works exploring ways to improves the extraction of features using
frequency-bands. In this work [9] is based on Deep Learning applications for EEG signals works
too on this, using frequency bands features extraction. However raw data are a new possibility
for processing EEG signals.

2.2 Processing EEG signals with Deep Learning techniques

Exploring EEG signals using deep learning we can find [10, 19] related with emotion recogni-
tion. So, they use different techniques, one of them is [10] shows a video which it is labeled with
the emotion felt in each time lapse by the users. The other study in [19] is about the emotion
when you are listening music.

The work in [12] the extraction features using deep learning for uses on more traditional
machine learning techniques. This is another way that is exploring due to the old systems works
pretty well to do decision and the problems are in process the data.

All studies appeal to different Deep Learning techniques depending on the dataset and their
finality. Simple architectures as stack of dense layers or Deep belief networks in [19]. When it
uses the dataset in frequency band is common the Convolutional Neural Network (CNN). The
work in [2] plots the frequency responses and processes the resulting information as an image.
Others works incorporate the spatial distribution of the sensors over the skull, creating a image

15



of the electrode values [1].

The work in [15] explores the use of EEG signals directly with raw data. Using Deep Learning
they can learn how to extract features without frequency transformations. The most useful Deep
Learning architecture is LSTM for time lapses as this dataset.

Our work is greatly influenced by a recent work by Concetto Spampinato et al [14], which will
be presented in July 2017 in the IEEE Conference on Computer Vision and Pattern Recognition
(h5-index=140). The dataset collected in that work has been used in this thesis for all experi-
ments. The paper [14] presents two approaches, one is an image classification task between 40
classes from ImageNet, while the second task is transfer learning experiment to classify images
using features from an EEG manifold. They use the raw data to classify the EEG signals using
LSTM. They test some models, and the best is a stack of LSTMs with 128 neurons.

16



Chapter 3

Methodology

3.1 Development Framework

3.1.1 Deep Learning Libraries

Deep learning development is highly dependent on the software framework chosen to develop
the project. There exist different frameworks available with open source license: TensorFlow,
caffe/caffe2, Theano, Pytorch and Keras. The first option was TensorFlow, an open-source
software library for deep learning created and maintained by Google. However, its programming
require a high level of detail that was not necessary for this thesis. Caffe/Caffe2 are focus on
production and industry, but not as much for researche. Caffe2 was very new and the related
information still short. Another two interesting frameworks were Pytorch and Theano. PyTorch
is growing up and becoming very popular among researchers. PyTorch is an interface of Torch,
which is programmed with lua, also PyTorch is a relationship with C/C++ code that is used on
most libraries for scientific computations. As TensorFlow, PyTorch has a slow learning curve.
Theano was used by me in another project and it did make me not feel comfortable working with
this.

The final decision was use Keras. It is high level language, getting an advantage to create a
precompiled models. Usual functions like padding or dropping are included. Using Keras, we had
to choose the backend between Theano and TensorFlow, and we opted for the later.

3.1.2 Synchronized environment with server

To develop the project correctly, we had to choose the Integrated Development Environment
(IDE). Pycharm with student license was the selected option. The settings presents many possi-
bilities, we had to configure all to run and debug the project. Configuring the Project Interpreter
remotely we were saving some compatibility problems of libraries. Deployment also has been
configured sending the files before of run.

3.1.3 Github

In order to control the changes, the issues or restore any version, we decided to use Version
Control System (VCS). The most common VCS is Git, it allows to have two branches one for
each architecture, the general and the personalized model.

For our Git repository we decide use Github. Github allows free repositories in exchange of
offer the code open source taking the possibility of whoever can use the code. We use Github
repository in this project.
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3.1.4 GPI Computation Server

The Image Processing Group (GPI) at UPC provided the necessary CPUs and GPUs to train
our models. Training deep learning models typically require high amounts of time and resources.
We used Tmux to maintain an open session, while it was being trained. Tmux is a terminal
multiplexer, giving the possibility of has more than one terminals open at the same time remotely
on the server. Even using the GPI servers, we had a big bottleneck in the computations. One
simulation could be delay 1 day or even 4 days during periods of high demands of GPUs.

3.2 Dataset

Dataset is a very important part for machine learning projects as they model the problem to
be solved. In this thesis one of the big challenges was finding a good dataset. During the search
period, we considered the different datasets shown in Table 5.1.

First
author

Year Publication Application Dataset
Subjects/
Samples

Layers
used

URL

Bashiva. 2016 ICLR
Repeated
char

EEGLearn1 13 / 2670
CONV
LSTM

Slides
GPI2

Lawhern 2016
IEEE Trans-
actions

P300 Kaggle3 16 / 80 CNN Preprint4

Spampi. 2016 CVPR 2017
Image clas-
sification

PRIVATE 6 / 12000 LSTM Preprint5

Stober 2016 -
Emotional
Music

OpenMIIR6 10 / 120 CNN Preprint7

Table 3.1: Collection of Datasets related paper. More Datasets can be found in BNCI
Horitzons20208

As previously state, the selected dataset was the one provided by Dr Spampinato [14]. During
its acquisition 10-20 electrode were employed using a 128 channels brain cap. The subjects were
stimulated with images while EEG signals were recording. The dataset consist in EEG signals
of 6 subjects, 40 classes of ImageNet(dog, cat, etc.9). Every class has 50 samples images. One

-1http://bnci-horizon-2020.eu/database/data-sets\unskip\penalty\@M\vrulewidth\z@height\z@

depth\dpff
0https://github.com/pbashivan/EEGLearn
1https://www.slideshare.net/xavigiro/learning-representations-from-eeg-with-deep-recurrent-convolutional-neural-networks
2https://www.kaggle.com/c/inria-bci-challenge
3https://arxiv.org/abs/1611.08024
4https://arxiv.org/abs/1609.00344
5https://github.com/sstober/openmiir
6https://arxiv.org/abs/1511.04306
7http://bnci-horizon-2020.eu/database/data-sets\unskip\penalty\@M\vrulewidth\z@height\z@

depth\dpff
8http://bnci-horizon-2020.eu/database/data-sets\unskip\penalty\@M\vrulewidth\z@height\z@

depth\dpff
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sample EEG signal of one image has 128 raw channels. The time showing every images was half
second. Due to some issues subjects 1 and 2 have only 30 image classes of ImageNet.

Dataset partition was 80% Train Dataset, 10% validation Dataset and 10 Test Dataset. This
partition of the dataset follows the same proportion as the ones used in [14] to facilitate the
comparison of results.

Number of classes 40

Number of images per class 50

Number of subjects 4

Time for each image 500ms

Total of samples 8000

Table 3.2: Information Dataset 1.

Number of classes 30

Number of images per class 50

Number of subjects 2

Time for each image 500ms

Total of samples 3000

Table 3.3: Information Dataset 2.

The dataset was delivered as a Matlab file, which is not the best option when working in
Python. In order to organize one-file-sample and improving the optimization, we decide to created
a HDF5 dictionary. HDF5 is a data model, library, and file format for storing and managing data
with a high compatibility with python and it is commonly used in research. Inside this HDF5 file,
the classes were the top selection followed by each unique image ID and finish with the subjects.

Level 0 Level 1 Level 2 Length

ID CLASS - - 40

−→ ID IMAGE - 50

−→ −→ ID SUBJECT 4 / 6

Table 3.4: Information Dictionary Dataset DHF5.

missile, mitten, bike, tent, pajama, parachute, pool, radio, camera, gun, shoe, banana, pizza, daisy and bolete
(fungus)
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Figure 3.1: Dense layer architecture Figure 3.2: Dropout example

3.3 Deep Neural Networks

3.3.1 DENSE layer

A Dense layer, Fully-Connected neural network layer, is the most simple model in deep Learn-
ing. All architectures are based on this idea.

This architecture consist in a only one layer of neurons. As Figure 3.1 each neuron has a bias,
a constant number that initialized randomly. The connections between neurons are the weights,
each connection has a value that it will be changing when the network is fitting. A DENSE layer
is a layer of neurons which each neuron is connected with all other neurons of the previous layer.

Hn = Hn−1 ∗Wt +B (3.1)

The operation is based on all weights of connections have to be multiplied with all previous
values of previous layer of neurons and after that it has to be added the bias.

3.3.2 Long Short Term Memory (LSTM)

Given the nature of a temporal sequence of the EEG data, we adopted as a deep neural network
the Keras implementation of the Long Short Term Memory network (LSTM) [8]. LSTMs are a
type of Recurrent Neural Network (RNN) with some gating mechanisms that reduce the problem
of exploding and vanishing gradients common in the vanilla RNNs.

The recurrency states are described by:
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ft = σ(Wf · [ht−1,xt] + bf )

it = σ(Wi · [ht−1,xt] + bi)

C̃t = tanh(WC · [ht−1,xt] + bC)

Ct = ft ∗Ct−1 + it ∗ C̃t

ot = σ(Wo · [ht−1,xt] + bo)

ht = ot ∗ tanh(Ct)

(3.2)

Figure 3.3: LSTM behavior example

In Figure 3.3, the top line Ct corresponds to the memory of the model. Firstly, a sigmoid
decide if it is necessary to forget the previous step. Continue calculating the update of the cell
adding a value. This value is the result of a sigmoid which decides if has to be updated and the
value of tanh of a neural network. Finally the last sigmoid decide the output of the LSTM.

3.3.3 Training the model

Training a deep learning model is computationally complicated. There are many internal hyper
parameters: number epoch, number batches, loss, optimizers, etc. We try different epoch and
batches, doing different trials. The loss function in our case was categorical cross entropy, a
common choice when classifying between different classes.

Dropout is a technique to do no over-fit. It is used in our model so we explain the main idea
using the Figure 3.2. Imagine that you have the output layer, this layer can be 40 neurons, it is
an example. When you put dropout, you are deactivating the ratio number, dropout, between 0
to 1. Dropout 0.5 of 40 neurons means that you are receiving in the next layer only 20 neurons.
However, you are not disabling always the same neurons, it is random. Doing Dropout you are
creating a more robust model. Dropout is commonly used in architectures with many parameters
to be learned.

The optimizer is the method to use the loss and calculate the new possible value. There are
a lot of optimizers, but testing all the possible optimizers requires too much time. We follow the
results in [16] for LSTMS to limit the search to two optimizers: adam and rmsprop.

3.4 Universal model

The universal model consists in a similar model to the one in [14]. We stack two LSTMs
and at the end, we added a Dense layer using the Softmax function to activate the final result.
The final predictions are encoded with one-hot which is used for the classifications outputs. It is
based on the idea which if you are classifying between dogs, cats or horses, you can only choose
one result; the result can not be a dog and horse at the same time.

The dataset uses a 200 samples window instead of 500ms (time of the full sample). Each EEG
signal recording has a 128 channels electrodes for each millisecond. Our final input dataset is a
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vector of [128,200]. We take this idea from [14], where using all dataset of one sample obtains
worse accuracy than using evolved.

We started working in a first model whose layers were decreasing in number of output neurons
(Figure 3.4).

Figure 3.4: Universal model initial architecture

We decided to change the architecture due to poor results. We gave the important function
to the Dense layer. Creating a model that increase the number parameters, due to inside LSTMs
contains a vector [128,200] and the output of LSTM is only one layer (Figure 3.5).

Figure 3.5: Universal model final architecture

This architecture has some hyper-parameters. We decided by trial an error to use 20-30 epoch
and 200 samples per batch. We added also a early stopping: if we were training a model and
the validation accuracy did not increase in 3 epochs, it stooped the training.

Previously, we explained the windows size. So, if we have 500ms and we only choose 200
ms (200 samples). What samples we have to choose? Based on [14], the first 50 samples were
ignored due to the possibility of interferences with previous displayed image. We select two
possibilities, the first possibility is taking the 200 samples with an offset of 50 ms; and the second
also based on [14], taking the 200 last samples. For the simplicity, we prefer use a 250ms offset.
To sum up, we have two options: 50-250ms and 250-450ms.
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3.5 Personalized model

After some experiments we realized that, depending of the subject, the accuracy of the model
could present a high variance.

In this thesis we want contribute a new approach, a personalized model. This solution focuses
on the topic of diversity of users. Our dataset depends of who is watching the images. This new
approach consist of personalizing the universal model for different subjects, obtaining one model
optimized for each new subject.

In machine learning, transfer learning refers to using a model for a different but related problem.
In deep learning the transfer learning is commonly used for save time training an architecture
that has already been trained to a similar problem. Using the fine-tune technique is possible to
reuse a neural network without retraining all its parameters. For example, by changing the last
layers and adapting them to your problem. In our case, we tested the accuracy of how many
layers we have to freeze.

Figure 3.6: Personalized model architecture

An advantage of using fine-tuning is that the training part is much faster than training from
scratch. In this case, we are only training one dense layer, adapting this layer for the specific
subject.

As the dataset is too small to create a generalized model and test it with unknown subjects.
So, we had created 6 models, each model without one. We will evaluate this models with the
held-out subject.
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Chapter 4

Results

In this chapter, the proposed models are evaluated and compared.

4.1 Training results: losses and confusion matrix

The accuracy and loss plots related with the final model are in Figures 4.1 and 4.2. Observing
the two figures, there are multiple peaks of accuracy, but we obtain the model by saving the
model weights at the largest peak.

Figure 4.3 contains the probability distribution among classes. It was a simple method to know
if all errors were in the same classes and the probability on each class was distributed uniform or
there are classes less probable and others more.

Observing the Figure 4.3 the classification is good, all predicted and real classes are near.
However the errors are intensive at two classes, for these situations the graph was painted.

Another method used to study the behavior of the model is through the confusion matrixs in
Figures 4.4 and 4.5. We also added an average of the probability matrix of each class obtained
in Softmax output in Figure 4.6.

Figure 4.1: Accuracy curve in final model Figure 4.2: Loss curve in final model
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Figure 4.3: Classes distribution: Real vs predicted Samples at left and Probability distribution at
right

Observing this last Figures 4.4, 4.5 and 4.6. We can understand better the errors among
the classes. The results of the three figures are spectacular. Using the two first figures you can
know the accuracy and the distribution of the classes clearly. Adding the last figure, you can
understand the real behavior of the model, the real possibilities before of the model choose the
output result. With the model we expect a good results but we never expected this results, the
average probability of correct output is 0.9.

Figure 4.4: Confusion Matrix of samples

Figure 4.5: Normalized Confusion Matrix Figure 4.6: Probability Matrix at Softmax
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4.2 Quantitative results: Universal Model

We evaluated the universal model classifying among 40 classes. We compared our four best
results in Table 4.1 with the ones in [14].

Model Classes Train Acc Val Acc Test Acc

UNIVERSAL-Adam o50 40 71.50 % 80.17 % 76.79 %

UNIVERSAL-Rmsprop o50 40 89.28 % 89.51 % 87.63 %

UNIVERSAL-Adam o250 40 74.49 % 79.32 % 75.38 %

UNIVERSAL-Rmsprop o250 40 91.06 % 91.50 % 89.03 %

Spampinatto [14] 40 - % 85.4 % 82.9 %

Table 4.1: Results of Universal model 40 classes. Offset 50 vs 250 and Adam vs Rsmprop

The results in [14] used an adam optimizer, but we also tried with the rmsprop, obtaining a
better accuracy. We can see that using and offset of 250 we obtain better accuracy than offset of
50. Furthermore, if we add the Rmsprop optimizer our accuracy increased considerably obtaining
the best model at Table 4.1.

The Dataset’s problems, our dataset dataset are divided in 2 parts: 4 subjects with 40 images
classes and 2 subjects with 30 images classes, the personalized model was based on 30 classes
having 6 subjects instead of 4 subjects. In order to compare the universal and the personalized
model, we have to calculate the accuracy of universal for 30 classes, contained in Table 4.2.

Model Classes Train Acc Val Acc Test Acc

UNIVERSAL-Adam o50 30 76.55 % 73.80 % 72.00 %

UNIVERSAL-Rmsprop o50 30 87.6 % 88.54 % 87.98 %

UNIVERSAL-Adam o250 30 77.72 % 77.46 % 74.04 %

UNIVERSAL-Rmsprop o250 30 89.50 % 91.06 % 89.80 %

Table 4.2: Results of Universal model 30 classes. Offset 50 vs 250 and Adam vs Rsmprop

4.3 Quantitative results: Personalized Model

The results for personalized model are evaluated using N-fold cross validation. We will use
the 6 universal models with a held-out subject to test our model. In this case, we have to choose
how many layers we want to fine-tune (Table 4.3).

Continue evaluating the personalized model, we have to train the different models missing
one different user in each model in Table 4.4. We had chosen fine-tune only the last layer. It is
a universal model but prepared to do the n-fold cross validation for testing in each subject.
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Model Frozen layers Train Acc Val Acc Test Acc

Personalized Model 1 0/3 90.57 % 92.13 % 90.31 %

Personalized Model 2 1/3 86.45 % 89.89 % 89.80 %

Personalized Model 3 2/3 92.00 % 92.13 % 91.33 %

Table 4.3: Results of Fine-Tune. Freezing: None vs 1 LSTM vs 2 LTSMs

Model T Classes
Train
Acc

Val Acc Test Acc

MODEL-R o250 Subjects-(N6) 1, 2, 3, 4, 5 91.07 % 91.24 % 91.7 %

MODEL-R o250 Subjects-(N5) 1, 2, 3, 4, 6 91.68 % 92.45 % 86.12 %

MODEL-R o250 Subjects-(N4) 1, 2, 3, 5, 6 90.13 % 93.35 % 88.57 %

MODEL-R o250 Subjects-(N3) 1, 2, 4, 5, 6 91.45 % 90.33 % 87.89 %

MODEL-R o250 Subjects-(N2) 1, 3, 4, 5, 6 89.13 % 88.22 % 85.71 %

MODEL-R o250 Subjects-(N1) 2, 3, 4, 5, 6 94.16 % 96.98 % 95.24 %

Table 4.4: Results of the universal models for testing Personalized.

We need the results in Table 4.4 to test the personalized model. Something strange is that
we can see without Subject 1 and 6 we have obtained better accuracy. Then, we are going to
use this universal models to test the different Personalized Models.

The results in Figure 4.7 and Table 4.5 show the evolution when you add a new subject to
the model. Firstly, we can see the generalization of the predecessors subjects, random choice is
100/30 = 3.33 %, 3 of 6 models pass this accuracy, but Subjects 1 and 2 are different. The
results of Personalized-FT1 and Personalized-FT2 do not follow the curve of the others. In [14],
10 classes among these subjects were rejected due to recording problems. It is possible that these
two subjects had more noise that the others.

We are going to consider the averages in Table 4.6 respect Figure 4.7 as a results of our
model. Observing the AVERAGE FT3-6, we can see clearly that all subjects are related a little
bit. This can not be taking as true because we are ignoring two personalized models, subject 1
and 2.

Model Samples / class - TEST Accuracy %

- 0 5 10 15 20 25 30

Personalized-FT6 9.33 50.00 66.00 78.00 86.67 88.67 92.00

Personalized-FT5 2.67 61.33 80.67 89.33 92.67 93.33 92.67

Personalized-FT4 4.67 56.67 72.67 84.67 90.67 90.00 94.67

Personalized-FT3 6.67 45.33 58.67 84.00 89.33 89.33 91.33

Personalized-FT2 1.33 33.33 66.00 75.33 78.67 83.33 84.67

Personalized-FT1 2.67 50.00 73.33 77.33 75.33 82.67 86.67

Table 4.5: Results of Personalized models using Dataset with 30 classes. Test it with 150 samples
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Figure 4.7: Plot of Personalized models using Dataset with 30 classes. Test it with 150 samples

Result Samples / class - Accuracy %

- 0 5 10 15 20 25 30

AVERAGE 4.56 49.44 69.56 81.44 85.56 87.89 90.34

AVERAGE FT3-6 5.84 53.33 69.50 84.00 89.84 90.33 92.67

Table 4.6: Average Results of Personalized models using Dataset with 30 classes.

Observing both average results in Table 4.6, AVERAGE and AVERAGE FT3-6, we can see the
improve over the universal model of 30 classes. The maximum accuracy in universal model was
89.80 % in Table 4.2. We obtain 90.34 % or 92.67 % depending if we consider the subjects 1
and 2 or not, respectively.

4.3.1 Statistical significance on Personalized Model

We want to show accurate numbers about how our personalized works. Trying to be rigorous,
the results of all personalized models will be tested. The personalized model results are going
to test with statistical significance. The idea is know if the results are related with all trials or
there are any kind of disagreement between them. We will use the p-value to know if exit the
possibility of rejection the results due to null hypothesis. Rejecting the null hypothesis we have
to obtain a p-value less than 0.05.

Calculating p-value we use a Tool from independent Treatment (ANOVA) and we obtain a
result of p-value=4,79642E-13. According to this result, our results are statistically significant.
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Chapter 5

Budget

This thesis has been a research. It can not offer any type of service or product to sell it. We
can divide this budget in two important parts: hardware/computational usage and staffs.

5.1 Server Budget

The server used in this thesis was provided by GPI. The hardware will be mentioned to
understand its magnitude. The server has some nodes but we used only one “c8” which consist
in CPU: Intel Xeon 2.6GHz 16 cores (2600e), 120 GB RAM (1600e) and 1/8 GPUs: GTX Titan
X(1200ewe used only one GPU).

The computation time had be approximately 12h/day since we started the thesis. To calculate
more approximately the real cost we can calculate the could instances servers. Amazon Web
Services has a g2.8xlarge EC2 which is similar to our specifications, using 60GB of ram and 4
GPUs each with 4 RAM. The cost per hour is 2,808e. We used 12 h/day, total cost at day
is 33,69 e. We spend 60 days approximately using the computing resources, thus giving an
approximate cost of 2021,4 e.

5.2 Staff budget

In this thesis, the salary is the most important because it is a research. The team consist in
a senior engineer as the advisor and myself as junior engineer. Since we started the thesis, it’s
been 24 weeks, mentioned in Gantt Diagram.

Weeks Wage/hour Dedication Total

Junior engineer 24 12 e/h
25
hour/week

7200 e

Senior engineer 24 25 e/h
2
hour/week

1200 e

8400 e

Table 5.1: Salary Budget
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Chapter 6

Conclusions

The main goal was process EEG signals with Deep Learning techniques. BCI is far to works
perfectly, however there are some studies which partially works in its application.

We have presented two main contributions. In one hand we outperform the accuracy of [14].
We have been classified an EEG signals of displayed images among 40 classes of ImageNet with
an accuracy of 89.90% using a end-to-end model.

In the other hand, we contribute with a new approach differentiating the subjects. We have
take into account that each person works different and we created a model that it takes care the
diversity of the subjects doing a modification of the first model for each subject, the personalized
model.

Our personalized model has the befits of be versatile and it is faster to train than the general-
ized model. We also have obtained a better accuracy achieving 90.34 - 92.67 %(depending if we
take into account the possibility of reject some users which it do not have the same behavior).

We analyze the results of personalized model against null hypothesis. According the analysis
our result of personalized model are statistically significant.
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Chapter 7

Appendices

7.1 Evolution of Personalized model at Fine-tunning

7.1.1 Training 0 Samples per class (Subject 6)

Figure 7.1: Confusion Matrix Samples (0 samples / class)

Figure 7.2: Confusion Matrix Normalized (0
samples / class)

Figure 7.3: Probability Matrix of Classes (0 sam-
ples / class)
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7.1.2 Training 5 Samples per class (Subject 6)

Figure 7.4: Confusion Matrix Samples (5 samples / class)

Figure 7.5: Confusion Matrix Normalized (5
samples / class)

Figure 7.6: Probability Matrix of Classes (5 sam-
ples / class)

7.1.3 Training 10 Samples per class (Subject 6)

Figure 7.7: Confusion Matrix Samples (10 samples / class)

Figure 7.8: Confusion Matrix Normalized (10
samples / class)

Figure 7.9: Probability Matrix of Classes (10
samples / class)
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7.1.4 Training 15 Samples per class (Subject 6)

Figure 7.10: Confusion Matrix Samples (15 samples / class)

Figure 7.11: Confusion Matrix Normalized (15
samples / class)

Figure 7.12: Probability Matrix of Classes (15
samples / class)

7.1.5 Training 20 Samples per class (Subject 6)

Figure 7.13: Confusion Matrix Samples (10 samples / class)

Figure 7.14: Confusion Matrix Normalized (20
samples / class)

Figure 7.15: Probability Matrix of Classes (20
samples / class)
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7.1.6 Training 25 Samples per class (Subject 6)

Figure 7.16: Confusion Matrix Samples (25 samples / class)

Figure 7.17: Confusion Matrix Normalized (25
samples / class)

Figure 7.18: Probability Matrix of Classes (25
samples / class)

7.1.7 Training 30 Samples per class (Subject 6)

Figure 7.19: Confusion Matrix Samples (30 samples / class)

Figure 7.20: Confusion Matrix Normalized (30
samples / class)

Figure 7.21: Probability Matrix of Classes (30
samples / class)
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