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Abstract

This thesis is framed in the computer vision field, addressing a challenge related
to instance search. Instance search consists in searching for occurrences of a
certain visual instance on a large collection of visual content, and generating a
ranked list of results sorted according to their relevance to a user query. This
thesis builds up on existing work presented at the TRECVID Instance Search
Task in 2014, and explores the use of local deep learning features extracted from
object proposals. The performance of different deep learning architectures (at
both global and local scales) is evaluated, and a thorough comparison of them
is performed. Secondly, this thesis presents the guidelines to follow in order to
fine-tune a convolutional neural network for tasks such as image classification,
object detection and semantic segmentation. It does so with the final purpose
of fine tuning SDS, a CNN trained for both object detection and semantic
segmentation, with the recently released Microsoft COCO dataset.
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Chapter 1

Introduction

1.1 Motivation

Computer vision is nowadays one of the most challenging lines of research in the
wide field of artificial intelligence. One of the main reasons for this emergence is
the Big Data problem, i.e. the huge amount of digital content that is generated
every day. In the case of visual information, this trend has been highly motivated
by the popularization of digital photography and online repositories. In the last
decade, the arrival of smartphones have allowed people to take pictures and
upload them to the Internet in just a matter of seconds. However, generating
and storing these huge amount of data is useless if images are never seen or
used again by users after they are uploaded. For this reason, there is a need
to have tools which are able to automatically annotate them and retrieve them
effectively from these large repositories.

Historically, these tasks have always been handled with handcrafted algo-
rithms that provide image representations under the form of visual features.
Histograms of colors or edges, or point-based descriptors such as SIFT or SURF
have been central in computer vision during the first decade of 2000’s.

However, in the last few years a massive switch has been experienced to de-
scribe visual content, from the handcrafted features to applying machine learn-
ing techniques to the actual design of the descriptors. This massive trend is
popularly known as Deep Learning and is mainly based on Convolutional Neu-
ral Networks (CNN).

Deep learning features are at the core of the best solutions to most computer
vision problems, such as face verification, scene understanding, motion estima-
tion, saliency prediction or even sentiment analysis. It has also been introduced
in the retrieval field, i.e. searching for images stored in large repositories. Ac-
tually, the popularization of smartphones has especially raised the interest in
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retrieval for the case of a visual search, as many users will capture pictures of
an object, location or person with their cameras and use them to formulate a
query to a retrieval system.

This thesis addresses the visual search problem when the query is defined by
an specific object in a scene. In particular, my research is aligned with the work
that the Image Processing Group at the Universitat Politècnica de Catalunya
(UPC) is jointly pursuing with another team at the Dublin City University
(DCU). These two teams participated last Summer 2014 in the TRECVid In-
stance Search Challenge[19], a scientific challenge that faces a big data scenario:
given a large collection of videos, retrieve the video shots that contain an in-
stance of a given query (e.g. a non-smoking logo). The main goal of my project
has been exploring new solution for this task based on state of the art of deep
learning descriptors for objects. In this direction, my work compares the per-
formance of SDS [8] with the one using CaffeNet, with the goal of assessing the
importance of local information for such task. These results are compared with
another local technique using Fast R-CNN [6] descriptors, which only make use
of the bounding box information (no segments).

1.2 Thesis Outline

The thesis is structured as follows:

1. Chapter 2, ”State of Art”, reviews the related work released in the last few
years focused on deep learning applied to object detection and semantic
segmentation tasks.

2. Chapter 3, ”Requirements”, states the main contributions of this thesis.

3. Chapter 4, ”Design”, describes the stages followed during the development
of the project to reach the final goal.

4. Chapter 5, ”Implementation”, specifies the technologies used and explains
in more detail each one of the stages of the project.

5. Chapter 6, ”Results”, shows the results obtained for the different solutions
proposed

6. Chapter 7, ”Conclusions”, overviews the whole thesis and evaluates the
results obtained.
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Chapter 2

State of Art

The related work in this thesis is centered in three fields. Firstly, an overview
of the general studies on convolutional networks in computer vision is provided.
Secondly, related works to the object detection task are presented, since they are
the starting point of some methods present in the third part. Finally, the prob-
lem of semantic segmentation is reviewed because it is very similar in terms of
features to the instance search case addressed in this thesis. The three presented
parts offer the foundations upon which this thesis is supported.

2.1 Convolutional Neural Networks

Deep Learning visual systems are based on Convolutional Neural Networks
(CNN), a structure that provides a framework to solve computer vision prob-
lems. By iteratively feeding images into a CNN, it is able to learn features of
different hierarchical natures, as stated in [21].

Back in the 1990s, the concepts behind CNNs were already proposed by LeCun
et al. [12], but they eventually fell out of fashion due to their high computation
requirements and the popularization of Support Vector Machines (SVM). After
two decades, Krizhevsky et al. [11] brought CNNs back to life thanks to his
outstanding results at the ImageNet Large Scale Visual Recognition Challenge
(ILSVRC) in 2012. Since then, the interest in Convolutional Neural Networks
rekindled, and many researchers have succeeded at applying them in many other
computer vision tasks.

One of the reasons that explain the recent dive into deep learning is the
availability of large datasets with thousands or even millions of labeled examples
(e.g. ImageNet), that are required to train these networks. In addition, powerful
GPU implementations for deep neural networks have come out, such as NYU’s
OverFeat [17], Toronto’s cuda-convnet [11] or Berkeley’s Caffe [10].
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CNN Structure. Though the architecture of the networks varies depending
on the kind of problem it faces, most of them follow the same model. The typical
structure consists of several convolutional layers followed by a lower number of
fully connected layers. Figure 2.1 shows a basic CNN structure, where we see
that after each convolution there is also a pooling year, as well as a normalization
and a rectification one, though they do not appear in this scheme. The final
layer is by default a Softmax classifier, which provides an output vector of as
many dimensions as the number of classes (e.g. a network trained for classifying
ImageNet images will produce a 1000D output vector).

Figure 2.1: CNN main structure

Understanding CNNs. Despite their impressive results, it is still unclear
why CNNs perform so well and how they can be optimally designed. With the
aim of delving into this mystery, Chatfield et al. [2] presented a methodological
study on a few configurations. In his work he tested fine-tuning, that is, an
adaptation of a previously trained CNN to a novel domain. This is achieved
by modifying the network last layer and extending its training from the already
learned model weights. Also, Chatfield et al. replaced the classic Softmax
classifier at the output of the CNN with a SVM trained on the layer before the
last one. Finally, Chatfield also explored the effect of a dimensionality reduction
on the dimensions of the features. Surprisingly, even a reduction from 4096D to
128D would imply a loss of only 2%.

Zeiler et al. [21] introduced a novel technique using a Deconvolutional Network
[22] to visualize the feature activations on the ImageNet validation set. This
way, the hierarchical nature of the features in each layer of a CNN was revealed
leading to the conclusion that, while lower layers focus on edges, corners and
textures, the upper ones capture more class-specific information, as figure 2.2
shows.

In the same line, Girshick et al. [7] performed an ablation study to understand
which layers are critical for detection tasks, such as Pascal VOC [5]. The study
revealed that features from fc7 generalize worse than features from fc6, which
means that the 29% of the CNN’s parameters can be removed without degrading
the results. Furthermore, if fc6 is also removed, the results remain still quite
good, concluding that much of the CNN’s representational power comes from
the convolutional layers, not from the fully connected ones.
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Figure 2.2: Each row corresponds to the evolution of the layer’s strongest ac-
tivation given random subset of features. First and second layers’ activations
correspond to textures and edges, while the upper ones show more detailed,
class-specific information. Also, note that upper layers only develop after a
high number of epochs.

2.2 Object Detection

Object detection is the process of finding instances of a specific category in an
image. Object detection can be used in many real applications such as image
retrieval or surveillance. Many works have been released setting the state-of-
the art in object detection by using deep learning descriptors generated with
convolutional neural networks.

One of the most explored ways to face the challenge of object detection is using
region proposals, also known as object candidates. These algorithms automat-
ically generate a list of regions in the image which are candidate to represent
an object, ranked from the highest to a lowest confidence and, in many cases,
introducing diversity in the ranking. The regions provided by such algorithms
can be used to generate a large amount of samples to train CNNs and, at test
time, provide a reduced amount of locations in the image for analysis. MCG
[1], Bing [4] and Selective Search [20] are some of the most commonly used
techniques to generate object proposals.

2.2.1 Object Detection Networks

2.2.1.1 R-CNN

Girshick et al. [7] presented the technique combining object candidates and
CNNs. In that case, object candidates were not pixel-wise segments but bound-
ing boxes. Given an input image, a large number of region proposals are ex-
tracted using the Selective Search [20] method. After that, features from each
region are extracted using a CNN to finally classify them using class-specific
linear SVMs.

The CNN they used was a fine-tuned version of the popular AlexNet archi-
tecture [11] used for image classification. The network was trained on Pascal
objects, which were generated from a training set of images using Selective
Search. The object proposals with an intersection over union (IoU) higher than
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a specified threshold were considered positives, remaining as negatives the rest
of them.

Although R-CNN highly increased the state of the art for object detection, it
is a very slow method, since each object proposal independently travels through
the whole network to obtain its classification score.

2.2.1.2 Spatial Pyramid Pooling

With the aim of enhancing the R-CNN method in terms of speed and accuracy,
He et al. proposed to compute the feature maps from the whole image only once
to finally pool the features in arbitrary regions [9]. Thus, repeatedly computing
the convolutional features for each region was avoided. This was achieved by
replacing the last pooling layer of the convolutional stage with a spatial pyramid
pooling layer, as illustrated in figure 2.3. Then, the convolutional layers are only
trained using the whole image, and the selective search proposals are only used
at the very end, and their features are pooled using the pyramid layer. This
method yields a speedup of over one hundred times over R-CNN and is able to
generate a fixed-length output regardless of the input image size.

Figure 2.3: The spatial bins that form each grid have sizes proportional to the
image size, providing fixed-length vectors which are fed to the fully connected
layers

2.2.1.3 Fast R-CNN

With the R-CNN background and following the SPP method, Girshick proposed
a faster version of its original work, which he called ”Fast R-CNN” [6]. Unlike
SPP, this new framework permitted all network layers to be updated during
training, achieving remarkably better results on object detection with very deep
networks like VGG16 [18]. Unlike SPP or R-CNN, Fast R-CNN did not use
SVMs to train bounding box regressors or classification scores, but trained those
functions at the same time directly during the network training, using a multi
task loss.
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2.3 Semantic Segmentation

The instance search problem addressed in this thesis can be understood as
detecting and recognizing an object that is described by a region in a query
image. Traditionally, solutions to instance search have discarded the precise
pixel-wise information provided by regions and addressed the problem from a
more global perspective, typically targeting the whole video frame as the basic
work unit or, more recently, adopting a bounding-boxed representation of the
object as a post-filtering stage. This classic strategy has been motivated by
the large amount of storage and computation resources associated to a retrieval
problem, as the one formulated in TRECVID Instance Search. However, in our
work we aim at exploring a richer representation of the object, even if this is
only used to re-rank a first list of shots generated by another faster approach.
For this reason, this section of the State of the Art focuses on how objects are
detected and recognized in the task of semantic segmentation.

The semantic segmentation task consists in assigning a category label to all
pixels in an image (see Figure 2.4). This is already a challenging problem, yet it
has a main limitation: semantic segmentation results show which objects appear
in the image, but do not provide information about the number of instances of
each object.

Figure 2.4: (Left) original image (Center) object segmentation, where instances
of the same object are differentiated (Right) semantic segmentation output,
which lacks information about the number of instances. As all of them are
labeled with the same category, they are filled with the same color.

The scientific community addressing the problem of semantic segmentation
developed a common evaluation platform that allows a fair comparison of the
techniques. This benchmark was proposed in the framework of the Pascal Visual
Object Challenge (VOC), containing a dataset of annotated images and a metric
based on the Pascal Index, also known as Intersection over Union (IoU).

While all best performing techniques currently rely on convolutional neural
networks, there exist two main approaches to the problem. The first one consists
on obtaining a list of generic object candidates using an external algorithm,
which are later semantically labeled with a CNN and combined to generate
the segmentation in the image. On the other hand, other works consider the
image as a whole and design a CNN that labels all pixels simultaneously, taking
special consideration about the spatial correlations of these labels within the
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image. This second family employs fully convolutional networks.

An important limitation related to the task of segmentation is the lack of im-
ages with pixel-level annotations. In contrast, it is easy to obtain large datasets
with images labeled at both image and object-level (bounding boxes). Inter-
esting research has been done in order to achieve good results while dealing
with this situation. Papandreou et al. [15] studied several methods to train a
CNN using combinations of different image annotations. They concluded that, a
semi-supervised training mixing a low number of pixel-level labeled images and
a much higher number of image-level annotations produces quite good results.

2.3.1 Semantic Segmentation Networks

2.3.1.1 Simultaneous Detection and Segmentation (SDS)

The Simultaneous Detection and Segmentation (SDS) system proposed by Har-
iharan et al. [8] from Berkeley University has been the main reference model
in our work, so the method is described in more detail than others to facilitate
the understanding of future sections.

The principles of R-CNN were basically extended to region-based object can-
didates by [7], Hariharan et al. [8], obtaining in September 2014 the best per-
formance in the Pascal VOC Challenge for semantic segmentation.

For the feature extraction, they also introduced significant changes. A two-
branch network architecture was proposed (figure 2.5). The first branch is fine-
tuned on bounding boxes of MCG candidates, while the second one is fine-tuned
only on the regions themselves, i.e. the background masked out.

Figure 2.5: SDS Pipeline

Given an image, it is necessary to generate around 2000 region candidates
(Figure 2.6). There are many methods that one can use to obtain region pro-
posals, but they differ on the kind of output they produce, which can be either
bounding boxes or/and segments. The SDS system is interested in obtaining
segments, so Multiscale Combinatorial Grouping [1] is the one chosen by the au-
thors to perform such task, as other methods like Selective Search [20] produce
bounding boxes only.
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Figure 2.6: Proposals generation scheme

Feature extraction for boxes and regions

A convolutional neural network is used addressing this part of the pipeline
and a novel architecture with two branches, also called pathways, is presented:

1. The first branch extracts features from the bounding box of a given object
candidate.

2. The second branch extracts the features from only the region itself, i. e.
subtracting the background.

Before passing through the CNN, each box and region is padded, cropped
and warped to a square, as the network requires a fixed size. For both box
and region networks, a set of features is extracted from the penultimate fully
connected layer, leaving the last one (Softmax classifier) unused. The features
from both branches of the network are finally concatenated and produce the
resulting feature vector that will be used at the classification stage (Figure 2.7).

Given the architecture explained above, Hariharan et al. proposes three dif-
ferent strategies for fine tuning and extracting features:

Strategy A: Used as baseline: both branches (networks) are fine-tuned on
bounding boxes. Thus, extracting features from the region foreground in
the second pathway is suboptimal.

Strategy B: The second branch is fine-tuned on regions, but as the two net-
works are trained separately (like in A) it is still not the best solution.

Strategy C: Both networks are trained as a whole. It achieves the best results
(Table 2.1)

Taking this into account, for the development of this project we will use only
network C to extract features.
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Figure 2.7: Two-branch network architecture. (1) Input of the network, which
is every object candidate generated at the first step . (2) Branch that extracts
a set of features from the bounding box containing the object. (3) Branch that
performs the feature extraction from only the region. (4) Concatenation of the
two set of features

A B C
mean AP 42.9 47.0 47.7

Table 2.1: Results on average precision (AP), based on segmentation overlap,
on VOC2012 val. Results are %

Classification of Object Candidates

Once we have the feature vectors for all the training boxes, a linear SVM
is trained in order to classify each region. Firstly, an initial SVM is trained
considering the following:

• Ground truth boxes are used as positives.

• Regions that overlap by less than a 20% with the ground truth are used
as negatives.

Once the training is done, a new positive set is re-estimated:

• For each ground truth region, the highest scoring MCG candidate that
overlaps by more than 50% is picked.

• Ground truth regions for which no such candidate exists, i. e. there is
not a single candidate overlapping by more than 50%, are discarded.

After the new positive set is completed, the SVM is retrained. This process
is found to provide better results than the first training.

Segmentation Refinement
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Finally, a refinement for each region is performed (Figure 2.8). The reason
yields in the fact that the region candidates obtained at the very beginning of
the pipeline are created by a bottom-up process which makes no use of category-
specific shape information. Thus, region proposals are prone to undershooting
and overshooting.

Figure 2.8: Left: original image. Center: region before refinement. Observe the
undershooting (parts of the object missing) and the overshooting (random/weird
stuff that is included despite not being part of the object). Right: refined region

As the relevance of this last step is only remarkable when facing segmentation
tasks, we will skip it in our project.

2.3.1.2 Solutions based on Fully Convolutional Networks

Despite the good results obtained with SDS, which uses object candidates, other
works have shown that directly feeding the whole image into the network is
enough to produce state-of-the-art results and even improve them.

It must firstly be noticed an important difference between these techniques
and the ones based on object candidates. While fully convolutional networks
actually succeed in providing a pixel-wise labeling of the image, they fail into
distinguishing among the different instances of an object category. So, for ex-
ample, an image depicting a crowd of people may be correctly labeled at the
pixel level as person by a fully convolutional network, but it will not be able to
count the amount of persons.

Fully Convolutional Networks Long et al. [14] from Berkeley University
demonstrated that CNNs by themselves are capable to exceed state-of-the-art
results in semantic segmentation and introduced the term of ”Fully Convolu-
tional” networks. This architecture converts the fully connected layers into
convolutional layers, while the last classifier layer is removed. Thus, the output
is a bi-dimensional feature map, instead of a single vector. Then, a 1 × 1 con-
volution with channel dimension 21 was appended at the end to predict scores
for each of the PASCAL classes (including the background) at each of the fea-
ture map location. Finally, the dense prediction (semantic segmentation) of
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the input image is obtained by assigning to each pixel the label of the class
with the highest score. This approach dramatically improved previous results
in semantic segmentation, outperforming R-CNN and SDS.

DeepLab-CRF Following the concept of Fully Convolutional Networks [14],
Chen et al. presented their ”DeepLab” system [3] to significantly boost state-
of-the-art on segmentation by localizing segment boundaries and produce more
accurate outputs. As in [14], they convert a convolutional network into a fully
convolutional one. Finally, the output map is up-sampled by bi-linear inter-
polation and a fully connected Conditional Random Field (CRF) is applied to
refine the segmentation result. With his ”DeepLab” system, Chen achieved the
top result in the Pascal VOC 2012 at the moment this thesis was carried out.
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Chapter 3

Requirements

During Summer of 2014, a team composed by researchers in Universitat Politècnica
de Catalunya and Insight Centre of data Analytics of the Dublin City University
took part in the TRECVid Instance Search Challenge. The main goal of this
challenge is to build systems that are able to retrieve the video shots from a
large video collection in which an instance of a specific category appears. There
are 30 different categories, which can be either people, locations or objects.
The DCU-UPC team addressed the problem by combining object candidates
and off-the-shelf descriptors generated with CaffeNet (a slight modification of
AlexNet), the convolutional neural network that Krizhevsky used in [11]. As
the goal of the task was finding specific objects, it made sense to use algorithms
to produce region proposals for each image.

The first problem of their system was that, although they wanted to describe
objects, task that perhaps required a local solution, they used CaffeNet, which
had been trained at global scale (to solve the ILSVRC). In this direction, my
first contribution to improve their results is switching from the global CaffeNet
to a convolutional neural network trained at local level. In this line, we have
focused on the work released by Hariharan et al.: Simultaneous Detection and
Segmentation [19]. In September of 2014, their system, which used a CNN
trained at local scale, was at the top of the Pascal VOC detection task.

Taking into account the 1,000 ImageNet categories and its 1 million images
training set, SDS was fine-tuned on a relatively small dataset, Pascal, which has

˜6k training images and only 20 categories. Therefore, my second contribution
aims at retraining the SDS network in a much larger annotated dataset: Mi-
crosoft COCO [13]. This new dataset has more than 80k training images and
80 classes.
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Chapter 4

Design

This chapter describes the stages followed during the development of the project
in order to achieve the final goal. The work has been divided in two main
tasks: (a) fine-tuning the SDS network with the object masks contained in the
Microsoft COCO dataset, and (b) assessing the available locally oriented CNN
descriptors for the instance search task defined by TRECVID.

This chapter firstly presents the different datasets that were used during this
project. Then, it introduces the design of the fine tuning experiments and the
application of local descriptors to the TRECVID Instance Search task.

4.1 Datasets

4.1.1 Pascal Visual Object Classes

For the first stage of the fine-tuning part the Pascal dataset of 2012 was used.
This dataset is commonly used for object detection and semantic segmentation
tasks, and has the following features:

• It includes images of 20 different object categories.

• It is multi-label (i.e. an image may be labeled with more than one cate-
gory).

• It is divided in 5717 training images, 5823 validation images and 5585 test
images.

• It provides ground truth at pixel and bounding box level regarding object
instances and object classes.

14



4.1.2 Microsoft COCO

The Microsoft COCO (Common Objects in Context) dataset was chosen to
fine-tune the SDS network in order to generate better descriptors addressing
the instance search task, as it is a much larger dataset with more images and
categories in comparison to Pascal. Figure 4.1 shows two examples of images in
the dataset and the provided ground truth for them, at pixel level.

This dataset has the following features:

• It contains 80 object categories.

• It is multi-label.

• It is divided in 82783 training images, 40504 validation images and 40775
test images.

• It provides ground truth for all images at pixel and bounding box level.

Figure 4.1: Two examples of Microsoft COCO images and their ground truth
at pixel level.

4.1.3 TRECVID Instance Search

For the second part of the project, which consists in assessing the local CNN
descriptors for the TRECVID Instance Search task, the TRECVID Instance
Search dataset was used. This dataset is composed by a collection of videos
from the sitcom Eastenders which are divided in shots, from which keyframes
were extracted (with a frame rate of 1/4 fps).

The goal of this task is to rank the shots according to their similarity to
different visual queries, which can be either be objects, locations or people.
Every year they provide 30 different queries, which are represented by four
images that contain it, along with pixel wise ground truth about where the
instance is located in the image (see figure 4.2 for an example).
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Due to the complexity and size of the target dataset (it contains more than
400.000 shots), for this work we have selected a subset of the provided data,
which is composed by 13.386 shots (23.613 frames).

Figure 4.2: Example of the provided information for one of the TRECVID
queries.

4.2 Fine-tuning CNNs

4.2.1 Adaptation of CaffeNet to global Pascal VOC

CaffeNet is a convolutional neural network trained to extract features at global
scale, for instance, for image classification tasks such as the ImageNet Large
Scale Visual Recognition Challenge. As previousy stated, one of our contribu-
tions is switching to a CNN that extracts features at local scale, as the TRECVid
task focuses on particular objects, not on the whole image. In order to achieve
such target, this section presents a primary step to become familiar with the
Caffe software [10], the framework employed to extract features from a convo-
lutional neural network.

The task addressed as a first step was classifying Pascal images using CaffeNet.
In order to do this, it is necessary to fine tune the network, by modifying the last
layer (the one prior to the softmax layer) accordingly to the number of classes
of our dataset. Thus, in this experiment we adapt CaffeNet, which is originally
trained on the 1,000 ImageNet classes, to the 20 categories of Pascal. In order
to complete this task, it was necessary to adapt the annotations provided by
Pascal to a readable format for Caffe.

This first experiment posed the main challenge of the task, as the Pascal
dataset is multi-label, which means that an image may contain instances of
more than one category. In the official Caffe website1 there is information
about how to fine-tune a network with images that have only one label but

1http://caffe.berkeleyvision.org/gathered/examples/finetune_flickr_style.html
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not for multi-labeled ones, which arose some question about how to deal and
address the adaptation. However, as the interest at this point of the project
was just getting used to the process of fine-tuning networks, a simple approach
was proposed to deal with the multi-label problem: from all the possible labels
an image may have, only one of them was picked.

To fine-tune a network, these steps were followed:

1. Preparing the data to a format acceptable by Caffe. In this case the
format was a text file with an image path and its corresponding label per
line. At the end of this step we obtained two text files: one for all the
training images with their labels, and another for the validation subset.

2. Modifying the network architecture to fit the new dataset, i. e. setting
the last layer output vector dimensionality to 20 instead of 1,000.

3. Specifying the dataset for both the training and the validation steps
in the definition file of the network, by determining the path to the text
files generated at the first step, which indicate the paths to the images to
use to train and validate the network.

4. Defining training parameters such as the number of iterations and the
learning rate. Several factors were taken into account when setting the
number of iterations during the training stage:

iterationstrain =
epochs× training samples

batch size

where:

• epochs refers to the number of times that each image passes through
the network. When training, it usually has values between 50 and
100.

• training samples is the total number of training images.

• batch size is the number of images that are fed at once to the network.

5. Defining validation parameters. In this case only the test iterations
parameter is modified:

iterationsval =
validation samples

batch size

6. Launching fine-tuning with a specific Caffe command, which takes as
input: (a) the solver file including the parameters and definition of the
network and (b) the initialization CaffeNet weights.

4.2.2 Adaptation of SDS to local Microsoft COCO

Fine tuning CaffeNet with Pascal images was an introductory step before ad-
dressing the main challenge in this thesis. So far, with the experiments carried
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out, we learned how to fine-tune a convolutional neural network at global scale.
But now the procedure changes quite a bit, due to the kind of data that the
network receives: patches of the image instead of the whole image.

Therefore, at this point we have to use algorithms that generate object can-
didates for each image and label them as one of the categories of our dataset
(or as background). Then, these labeled patches are fed to the SDS network
as positive and negative examples for each class. This requires an adaptation
of the format of the annotations provided by Microsoft COCO to a data struc-
ture acceptable by the software published by the SDS authors. There are two
challenges to address: the actual format used for data storage to describe the
bounding boxes and regions, but also switching from the 20 Pascal VOC classes
to the 80 categories defined in Microsoft COCO.

The first task was addressed by intensively exploring the object candidates
used on the original SDS code, which had been extracted from the Pascal
dataset. The following chapter gives details on how this part was solved.

Once all the annotations from MS COCO were converted into the correct
format for SDS, the next step was switching from the 20 Pascal VOC classes
to the 80 categories defined in Microsoft COCO. Although we had experience
fine-tuning (see subsection 4.1.1), doing the same with the SDS network was
not straightforward, as in this case the fine-tuning needed to be performed at
local-scale. In the ”Implementation” chapter the variations that fine-tuning at
local-scale introduces are explained. The main difference is found in the text
file that is delivered to Caffe, which has a new format and needs to be generated
in a different way.

When the text files were already prepared, the fine-tuning of the SDS net-
work on Microsoft COCO was launched, but it failed due to some internal code
problems which were out of our scope. Thus, the actual fine-tuning remains on
stand by as future work.

4.3 Exploring local CNNs for Instance Search

As stated in the ”Requirements” chapter, switching from a global network like
CaffeNet to a CNN trained at local level was expected to improve the results
obtained by the UPC-DCU team. In this line, locally-trained networks were
used to extract deep local descriptors, which were later used to describe and
rank the images in the TRECVID Instance Search task.

The pipeline followed to address this task is illustrated in figure 4.3.

Query set / Target Database. The query set consisted of 4 example
images for each query, i.e. a total of 120 query images. The target database
were 13386 shots which contained a total number of 23613 frames
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Figure 4.3: The basic pipeline for an image retrieval system.

Representation. We have 3 different CNN networks, which led to 3 different
feature representations for our images:

1. Global CaffeNet descriptors, extracted from the penultimate fully con-
nected layer

2. Local Fast R-CNN descriptors

3. Local SDS descriptors

Feature matching. The euclidean distance is the metric used to compare
the query features with the database features

Ranking. Finally, a ranking listing the top 1000 shots (i.e. the 1000 with
lower euclidean distance with respect to the query) for each query was gener-
ated.
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Chapter 5

Implementation

5.1 Software

For all the procedures involving feature extraction using convolutional neural
networks, the Caffe framework [10] was used. To exploit all its potential, GPUs
are required. In our case the GPUs1 from the UPC computing service accom-
plished that purpose.

The code to prepare the Pascal annotations to be suitable for the CaffeNet
fine-tuning was written in Python and based on the documentation that Amaia
Salvador prepared for her paper at the CVPR ChaLearn Looking at People
Workshop 2015 [16].

All the SDS code, as well as the scripts that needed to be written to adapt
it to the COCO and the TRECVID datasets were developed in Matlab. The
MCG candidates from Microsoft COCO required for fine-tuning at local scale
were computed and stored by Jordi Pont, who was in fact one of the authors of
the Multiscale Combinatorial Grouping [1] work.

Regarding the experiments with Fast R-CNN, the code and selective search
object proposals were generated and provided by Amaia Salvador.

1Nvidia’s Tesla K20m, Titan Black, GTX980 and Titan Z
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5.2 Fine-tuning CNNs

5.2.1 Adaptation of CaffeNet to global Pascal VOC

5.2.1.1 Data preparation

The first step was preparing all the data so that Caffe was able read it. The
input to the network needs to be a text file with a path to the image an its
corresponding label (see Figure 5.1).

Figure 5.1: Example of the text file that needs Caffe

Pascal is a multi-label dataset, so the ”problem” of assigning just one label
per image had to be addressed. To do that, a Python dictionary was used. This
data structure stores elements formed by a key and a value. The path of the
image was considered to be the key while the label the value. The point was
that a key can not be repeated in a dictionary, so each image would appear only
once in the text file, with only one label, avoiding thus the multi-label trouble.

The script that performed such task received a text file with all the image
names and their corresponding labels. Reading the file line by line, it created a
new dictionary entry by assigning the image name to the key and the label to the
value. If an image already existed in the dictionary, its value was overwritten.
Therefore, at the end only one label per image was assigned, which was the
pursued goal.

For this experiment, a partition of the train set of Pascal was performed to
generate two new subsets of train and validation. Thus, the real validation set
remained available to test the network once fine-tuned.

5.2.1.2 Network definition

The next step was modifying the CaffeNet architecture to adapt it to the 20
categories of Pascal. In this case only the last layer was changed, which is the
most common practice when fine-tuning. Thus, the output of the last layer
was switched from size 1,000 to 20. Note that the name of the layer had to be
changed as well; otherwise, it would not be trained from scratch, which was the
main purpose. In figure ... is shown only the definition file part that changed.

Along with these modifications, the text files generated in the previous sub-
section needed also to be specified and replace the ones written by default.
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Figure 5.2: (left) original architecture, (right) in red, the modifications intro-
duced

5.2.1.3 Fine-tuning parameters

The last stage was specifying the parameters that the network should follow
during the fine-tuning:

• epochs was set to 75, a mid value between 50 and 100, which are typical
when training

• training samples = 4104

• validation samples = 1717

• batch size train = 256

• batch size val = 50

Taking this numbers and the definitions presented in the ”Design” chapter
into account, the resulting number of iterations for the training stage was ap-
proximately 1,200 and the network would be tested every 35 iterations to let
the user know whether the fine-tuning is providing good results or not.

5.2.1.4 Fine-tuning

. At this point, an already implemented train method from Caffe was called.
This command takes the specified training set in the definition file with its
corresponding labels and starts retraining the network.
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5.2.2 Adaptation of SDS to local Microsoft COCO

5.2.2.1 Data preparation

With the local fine-tuning being the new scenario, the steps to fine-tune the SDS
network followed the same pattern that the global case, but with a remarkable
difference when preparing the data. In this case, the text file did not have the
imagepath− label format anymore, but the following one:

Figure 5.3: Window file format

where:

• image index is the ID of image.

• img path are actually 3 lines, the first one containing an absolute path to
the actual image, and the other two being paths to different pre-computed
superpixel representations of the image.

• channels is the image color depth (typically 3).

• height and width are the image dimensions.

• num windows is the number of object candidates computed for the current
image.

• class index is the class label.

• overlap is the overlap between the current object candidate (extracted
using MCG) and its corresponding ground truth mask.

• x1, y1, x2, y2 are the bounding box spatial coordinates.

• n is the number of object candidate out of the total.

An example of a text file generated with this format is shown in figure 5.4.

The first step to generate these text files was knowing the exact format of the
object candidates used originally on SDS. By looking into them it was revealed
that the MCG candidates for each image were defined by a structure with 4
parameters:
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Figure 5.4: Part of the window file generated for the SDS fine-tuning on COCO.
Observe (a) the image dimensions, 480×640, (b) the number of object candidates
(2008) and (c) the class from the first object with its overlap and bounding box
coordinates. Note that at the very end of the line there is the number indicating
the number of the object candidate out of the total

• Bounding boxes: a matrix of N×4, where N is the number of candidates
previously extracted from the image, and 4 corresponds to the spatial
coordinates that define the bounding box (up, left, down, right).

• Superpixels: a label matrix containing the superpixel partition of the
image.

• Labels: a cell array that contains the superpixel labels that form each of
the candidates.

• Scores: a N × 1 vector that contains the scores of each of the ranked
candidates ranging from 0 to 1 (where 1 means the highest chance of one
region containing and object).

Since the precomputed candidates that we had from the whole COCO dataset
had been obtained also using MCG, their format was the same as the one de-
scribed above, yet the annotations from COCO were different from the Pascal
ones.

The Pascal ground truth annotations are directly stored as a matrix with
the same size as its corresponding image, where each pixel value is assigned
depending on the class region it belongs to.

Instead, the Microsoft COCO annotations are stored using large JSON files
that contain all the information for all the images of the dataset. In order to be
able to read this information, a Matlab API is provided on the official COCO
website2 . Perhaps the most noticeable feature of the COCO annotations is the
way the segmentation of all the objects in each image is stored. Depending on
the kind of annotation, it may be either stored as a polygonal segmentation or
encoded via Run-Length Encoding (RLE).

2http://mscoco.org/dataset/#download
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Taking into account this background, the main goal was converting the COCO
annotations into the same format as Pascal, using the provided Matlab API.
At this point, the inaccuracy of the COCO annotations became noticeable for
two main reasons: (1) the polygonal segmentation provides not very precise
boundaries and (2) some annotations overlap, i. e. a pixel may be labeled as
two different objects (Figure 5.5).

Figure 5.5: Note (a) the polygonal segmentation, which provides a not very
accurate annotation and (b) how two annotated regions overlap

Specially the second statement posed some misunderstanding during the con-
version of the COCO annotations. At this point the goal was getting the mask
of each region and adding it to a zeroed matrix which had the same size as
the corresponding image. The pixel values of the next region mask should be
the same as the previous mask plus one, and so on. That algorithm worked
well assuming that there was not overlapping between regions: each new region
would fill only pixels with 0 value in the main matrix. However, if two regions
overlap in one pixel, the value of that pixel would be the value of the region 1
plus the value of the region 2. That new value would not have any category
assigned, leading to errors afterwards. That issue was solved by adding to the
main matrix only those region pixels that would fall onto a zeroed cell.

Once this matter was clarified the window files were generated. To generate
them, the previous step of obtaining the meta information of the object candi-
dates’ of each image had to be done, which took about a week of processing time
to be completed. Note that we were extracting information from 2,000 region
candidates per image and we had over 120k images (training set + validation
set).

5.2.2.2 Network definition

The process followed here was the same as the one explained in the Pascal
fine-tuning, but changing the num output parameter of the definition file of the
network to 81 (80+1) instead of 20, as 80 is the number of categories of Microsoft
COCO and we had to take into account an extra ”background” category for all
those objects not belonging to any class. The name of the layer was set to
”fc8 coco”.
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5.2.2.3 Fine-tuning

During the fine-tuning many problems appeared due to errors coming from the
author’s code that were out of our scope. Therefore, the fine-tuning of the SDS
network on COCO remains on stand by.

5.3 Exploring local CNNs for Instance Search

The steps below were followed to address the Instance Search task:

1. Extracting the query descriptors. We had 30 queries, each one with
4 example images, and the feature vector provided by the SDS network is
8192D. Thus, the descriptor obtained for each image had a size of 1×8192,
which was then saved to disk.

2. Stacking the query descriptors to produce a 120 × 8192 matrix con-
taining all the features extracted from the queries.

3. Extracting each frame’s features and computing the euclidean dis-
tance between it and the query descriptors matrix. Note that for this part
only 100 object candidates were picked from each image, to reduce the
computational cost. Table 5.1 shows a study comparing the the comput-
ing time required to extract an SDS descriptor for an image depending on
the number of object proposals.

number of
candidates

computing time (s)

2000 32
1000 17
500 10
200 6
100 3
50 2,5

Table 5.1: Study comparing the invested computing time depending in the
number of object candidates

As this part of extracting each frame’s descriptors and computing the
distances would have taken about a day on a single GPU, we used 3
GPUs to reduce the time to 8 hours.

4. Pooling distances for frames. After getting the euclidean distance,
the mean over all queries and the minimum distance over all the object
candidates is acquired. At this point, the minimum distance between the
current frame descriptor and each one of the 30 classes is obtained, as well
as the object candidate that produced such distance. Only the resulting
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distances array and the corresponding object candidates are stored to
avoid disk space problems.

5. Pooling distances of frames in the same shot. Since the final goal of
the TRECVID task is ranking the shots that are most likely to contain the
query, it is necessary to average the distances obtained for all the frames
of the shot, to get a single distance array that contains the minimum
distance between the shot and each query

6. Generating the final ranking by sorting the shots according to their
distance to each query. So the ranking will list, for each query,the top
1000 shots that are most likely to retrieve such query.

7. Visualizing the results to get a better understanding of what the system
is doing. For each query, the top 12 shots are displayed, as well as the
bounding box containing the object candidate that has matched the query
descriptor the most.

To improve the results obtained following the pipeline described above, a re-
ranking technique was performed. For each query a new ranking was generated
listing all the shots, instead of only the top 1000. Then, this new ranking was
compared to the ranking of the same query obtained last summer by the UPC-
DCU team using the global CaffeNet. Finally, only those shots appearing in
both rankings were kept. An example of that re-ranking is shown in the figure
below:

Figure 5.6: (column 1) CaffeNet top ranking, (column 2) SDS ranking and
(column 3) final ranking, which is composed by the shots in column 2 that
appear in column 1.
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Chapter 6

Experimental Results

6.1 Results on Pascal fine-tuning

We evaluate the fine tuned network on two image subsets: (1) the Pascal vali-
dation subset of 1717 images that was selected to use to evaluate the network
during training and (2) the real validation set of 5823 images. We will refer to
the first validation set as v1717 and to the second one as v5823.

The results, evaluated using the classification accuracy (see Table 6.1), differ
quite a lot depending on the image set that is used.

v1717 v5823
accuracy (%) 59,31 4,14

Table 6.1: Results after fine-tuning on Pascal

The huge dissimilarity between the results required to be studied in detail.
The first analysis focused on the number of images each class had, to reveal if
the bad result was caused by a problem of unbalanced data. A histogram for
each set of images (train, v1717 and v5823) was generated providing the results
shown in figure 6.1.

It is really noticeable that the small validation set has a histogram almost
exact as the one obtained for the training set. However, the histogram of the
big validation set has a very different shape in comparison to the others. From
this results we could extract a first conclusion: the difference in performance
could be due to the unbalanced data, and the CNN was not trained enough for
some specific categories.

The f − score measure for each class was also computed and plotted on a
graphic to get more information (figure 6.2). Looking at category 10, for in-
stance, which was the one with more images, it can be observed that most of
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Figure 6.1: Histogram of the training set and the two validation sets. In blue,
the training set. In red, the small validation subset (v1717) and in green the
big validation set (v5823). The amount of images per class is represented in %
to provide a better visualization

its images were not correctly classified as its f − score is very low. A similar
behavior can be observed for most of the categories.

Along with this information, it was also stated that having images with mul-
tiple labels could have affected the results, since two images where the same
objects appear could be labeled differently by the approach explained in section
4.2.1.

After this discussion, and having carefully analyzed the results, as the purpose
of this step was only to get used to fine-tuning networks, it was decided not to
continue exploring the reason of such bad results on the big validation set, and
move forward to the next experiments.

6.2 Results on TRECVID

This section shows the results on the TRECVID subset using features from
Object Detection CNNs. We compare the approach based on CaffeNet Fast
R-CNN (trained on bounding boxes) and SDS (trained on bounding boxes and
segments).

In figure 6.3 we compare the results obtained by using descriptors extracted
from 3 different networks.

1. CaffeNet, which provides global descriptors

2. Fast R-CNN, which provides local descriptors

3. SDS, which provides local descriptors
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Figure 6.2: F-score for each category. (blue) v1717, (red) v5823

Results show that neither Fast R-CNN nor SDS improved last summer’s base-
line. Only for some queries the results were better when using local networks.
Specifically, SDS improved CaffeNet for 7 queries, while Fast R-CNN achieved
it for 9. In terms of average precision over all queries, the SDS network slightly
improved the Fast R-CNN results, and the re-ranking approach enhanced the
results in both cases.

Figures 6.4 and 6.5 show the top 12 rankings of both SDS and Fast-RCNN
for queries 9073 and 9086, for which SDS beat both CaffeNet and Fast R-CNN.
It can be observed that the query object is correctly found in the frames using
both techniques, but SDS localizes it better than Fast R-CNN, whose bounding
boxes appear not to be very accurate. An explanation to that fact could be
the algorithm used to extract the object candidates. Fast R-CNN uses Selective
Search, which generates bounding boxes, while SDS is based on MCG, which
generates segments. Thus, SDS may be able to mark the shape of the query
better than Fast R-CNN.

On the other hand, it is also interesting to look at those queries for which the
results were bad. For instance, the query 9088, which refers to a specific person.
In figure 6.6 is shown that both SDS and Fast R-CNN retrieved shots where
persons appear, but as they were not the query person, the shot was not valid.
Clearly, both networks have been trained to detect persons, but they have not
been trained to detect that person.
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Figure 6.3: Average Precision for each one of the queries using CaffeNet, Fast
R-CNN and SDS.
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Figure 6.4: Qualitative results for query 9073. The first row includes the exam-
ple images with the localization of the query. Then, the second section contains
the top ranking using SDS, and the third one shows the same using Fast R-CNN.
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Figure 6.5: Qualitative results for query 9086. The first row includes the exam-
ple images with the localization of the query. Then, the second section contains
the top ranking using SDS, and the third one shows the same using Fast R-CNN.
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Figure 6.6: Qualitative results for query 9088. The first row includes the exam-
ple images with the localization of the query. Then, the second section contains
the top ranking using SDS, and the third one shows the same using Fast R-CNN.
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Chapter 7

Conclusions

This thesis has first presented guidelines on how to fine-tune convolutional neu-
ral networks using Caffe for the tasks of classification and object detection.
Although the final results of fine-tuning SDS could not be obtained due to
technical issues, all the necessary steps prior to running the fine-tuning were
presented and rigorously analyzed.

The second contribution of this thesis has been exploring new solutions to im-
prove the results obtained by the UPC-DCU team for last summer’s TRECVID
Instance Search by using local deep learning descriptors.

The contribution of this work was reproducing their experiments but switching
from the global CaffeNet to a convolutional neural network trained at local level.
Despite that the local approach improved the results for some queries, the overall
performance decreased. Many factors can explain this results. First of all, and
perhaps the most important one: although the local networks that were used
had been trained on objects, they had not been trained on the objects that they
had to retrieve. This statement can be clearly supported with figure 6.6. The
network detected a person, but not the desired person. Moreover, picking only
100 candidates per image decreased the likelihood of finding the query object.
The fact that both SDS and Fast R-CNN networks did not improve the baseline
CaffeNet results reinforces the idea that the descriptors they provided were not
discriminative enough for the TRECVID classes, which are rather complex.

7.1 Future Work

For all these reasons, future work should aim at fine-tuning SDS with Microsoft
COCO, and assessing its performance on the TRECVID dataset. It would
be expected to find a significant gain when the network is trained for more
(yet unrelated) classes, since the network would be more generic and robust.
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Additionally, fine tuning SDS with TRECVID images should also be considered.
Despite the lack of training data (only 4 images per query are provided in
the dataset), using overlapping object candidates as well would increase the
amount of data for fine tuning and could potentially boost the performance of
our retrieval system.

When dealing with big datasets such as TRECVID, one needs to worry about
the processing time as much as about performance. We have observed that SDS
is very slow, and thus unfeasible to use with large datasets. However, many
works have shown remarkable speedup for Object Detection Networks (such as
Fast R-CNN or SPP), by learning convolutional layers on full images only and
pooling features for the regions at the end of the network. In this direction, the
same strategy could be applied to SDS, which would allow for a faster feature
extraction. This way, the limitation on the amount of object proposals to use
would not be necessary anymore, and one could expect to achieve much better
results in less time.
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[8] Bharath Hariharan, Pablo Arbeláez, Ross Girshick, and Jitendra Malik. Si-
multaneous detection and segmentation. In Computer Vision–ECCV 2014,
pages 297–312. Springer, 2014.

[9] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Spatial pyramid
pooling in deep convolutional networks for visual recognition. In Computer
Vision–ECCV 2014, pages 346–361. Springer, 2014.

[10] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan
Long, Ross Girshick, Sergio Guadarrama, and Trevor Darrell. Caffe: Con-
volutional architecture for fast feature embedding. In Proceedings of the
ACM International Conference on Multimedia, pages 675–678. ACM, 2014.

37



[11] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet clas-
sification with deep convolutional neural networks. In Advances in neural
information processing systems, pages 1097–1105, 2012.

[12] Yann LeCun, Bernhard Boser, John S Denker, Donnie Henderson,
Richard E Howard, Wayne Hubbard, and Lawrence D Jackel. Backprop-
agation applied to handwritten zip code recognition. Neural computation,
1(4):541–551, 1989.

[13] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona,
Deva Ramanan, Piotr Dollár, and C Lawrence Zitnick. Microsoft coco:
Common objects in context. In Computer Vision–ECCV 2014, pages 740–
755. Springer, 2014.

[14] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional
networks for semantic segmentation. arXiv preprint arXiv:1411.4038, 2014.

[15] George Papandreou, Liang-Chieh Chen, Kevin Murphy, and Alan L Yuille.
Weakly-and semi-supervised learning of a dcnn for semantic image segmen-
tation. arXiv preprint arXiv:1502.02734, 2015.

[16] Amaia Salvador, Matthias Zeppelzauer, Daniel Manchon-Vizuete, Andrea
Calafell, and Xavier Giro-i Nieto. Cultural event recognition with visual
convnets and temporal models. In Computer Vision and Pattern Recogni-
tion Workshops (CVPRW), 2015 IEEE Conference on. IEEE, 2015.

[17] Pierre Sermanet, David Eigen, Xiang Zhang, Michaël Mathieu, Rob Fer-
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