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Abstract

A fully automatic technique for segmenting the liver and localizing its unhealthy tissues is a convenient
tool in order to diagnose hepatic diseases and also to assess the response to the according treatments. In this
thesis we propose a method to segment the liver and its lesions from Computed Tomography (CT) scans,
as well as other anatomical structures and organs of the human body. We have used Convolutional Neural
Networks (CNNs), that have proven good results in a variety of tasks, including medical imaging. The
network to segment the lesions consists of a cascaded architecture, which first focuses on the liver region in
order to segment the lesion. Moreover, we train a detector to localize the lesions and just keep those pixels
from the output of the segmentation network where a lesion is detected. The segmentation architecture is
based on DRIU [24], a Fully Convolutional Network (FCN) with side outputs that work at feature maps of
different resolutions, to finally benefit from the multi-scale information learned by different stages of the
network. Our pipeline is 2.5D, as the input of the network is a stack of consecutive slices of the CT scans.
We also study different methods to benefit from the liver segmentation in order to delineate the lesion. The
main focus of this work is to use the detector to localize the lesions, as we demonstrate that it helps to
remove false positives triggered by the segmentation network. The benefits of using a detector on top of the
segmentation is that the detector acquires a more global insight of the healthiness of a liver tissue compared
to the segmentation network, whose final output is pixel-wise and is not forced to take a global decision
over a whole liver patch. We show experiments with the LiTS dataset for the lesion and liver segmentation.
In order to prove the generality of the segmentation network, we also segment several anatomical structures
from the Visceral dataset.
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Chapter 1

Introduction

1.1 Motivation and Contributions

Segmenting the liver and its lesions on medical images helps oncologists to accurately diagnose liver cancer,
as well as to assess the treatment response of patients. Typically, doctors rely on manual segmentation
techniques in order to interpret the Contrast Tomography (CT) and Magnetic Resonance Imaging (MRI)
images. Automatic tools that is not as subjective and time-consuming has been widely studied in the recent
years. Liver lesion segmentation is a challenging task due to the low contrast between liver, lesions, and
also nearby organs. Other additional difficulties are the lesion size variability and the noise in CT scans.
Building a robust system that is able to beat these difficulties is still an open problem. Recently, methods
based on deep Convolutional Neural Networks (CNNs) have demonstrated to be robust to these challenges,
and have achieved the state of the art at this task.

In this thesis we study the performance of recent deep learning methods in biomedical image segmenta-
tion. Specifically, we adapt DRIU [24] for the challenging task of segmenting both the liver and lesion from
CT scans. DRIU is a Fully Convolutional Network (FCN) that has side outputs with supervision at different
convolutional stages. The different multi-scale side outputs are combined to generate the final output of the
network. This architecture has proven to be successful for the medical task of segmenting the blood ves-
sels and optical disk of eye fundus images, as well as for one-shot video object segmentation (OSVOS)[2]
in videos of natural images. We will focus on the liver and lesion segmentation in the framework of the
Liver Tumor Segmentation (LiTS) Challenge. The LiTS Challenge provides a dataset with liver and lesion
segmentations, but only assesses the lesion segmentation task. This challenge was first opened for a work-
shop of the International Symposium on Biomedical Imaging (ISBI) 2017 Conference that was held in April
2017. At the beginning of July the challenge was opened again, this time for a workshop of the Medical
Image Computing and Computer Assisted Interventions Conference (MICCAI) 2017 Conference. We will
also show results for the Visceral dataset to segment more anatomical structures in addition to the liver, as
well as multiple organs in one pass of the CNN.

The key aspects of the method are the following:

• We use a cascaded architecture. A first network is trained to segment the liver in order to focus on the
liver region at the time of segmenting the lesion.

• In order to deal with the classic problem of imbalanced data for medical applications, we test several
methods to balance the Binary Cross Entropy (BCE) loss used to train the network.
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CHAPTER 1. INTRODUCTION

• The input of the architecture is a stack of 3 consecutive slices of the CT volumes, which improves
accuracy compared to the baseline of considering a single slice.

• We study how to benefit from the liver segmentation in order to segment the lesion, resulting the best
method the one that does not back-propagate gradients through regions outside the liver at the time of
segmenting the lesion.

• A detector is added on top of the segmentation network in order to remove false positives triggered
by the segmentation network. We prove that the combination of using a detector and a segmentation
network improves the results over just using the segmentation network.

• As post-processing step, a 3D Conditional Random Field (3D-CRF) is applied to gain spatial coher-
ence for the liver and lesion predictions.

• The generality of the segmentation network is demonstrated by retraining it for several anatomical
structures from the Visceral Dataset.

The framework used for this project has been Tensorflow[25], starting from the open-source code of
One-shot Video Object Segmentation (OSVOS)[2].

1.2 Work plan

This project is a joint collaboration between the Computer Vision Lab of Eidgenössische Technische Hochschule
Zürich (ETH Zürich), the Image Processing Group of Universitat Politécnica de Catalunya (UPC) and the
Barcelona Supercomputing Center (BSC). We had regular meetings every week with the team from ETH
Zürich, and weekly video calls with the Barcelona team.

1.2.1 Work Packages

The different work packages for the project are defined as follows:

• WP 1: Definition of project

• WP 2: Research about state of the art

• WP 3: Datasets

• WP 4: Adaption of software

• WP 5: Experimentation on LiTS dataset

• WP 6: Experimentation on Visceral dataset

• WP 7: Participation in LiTS Challenge

• WP 8: Final Documentation

1.2.2 Milestones

The milestones of the project are listed in Table 1.1.

2



CHAPTER 1. INTRODUCTION

WP Milestone Date
1 Definition of project 15/02/2017
3 Dataset ready to be used 3/03/2017
4 Run the original code 15/03/2017
5 Do a baseline for our task with the original code 20/03/2017
5 Have a working cascaded architecture for lesion and liver segmentation 25/03/2017
5 Define final loss objective 7/04/2017
5 Use volume of CT scan 18/04/2017
5 Define a strategy that uses liver for lesion segmentation 10/05/2017
5 Have a working classifier for healthy/unhealthy tissues 25/05/2017
5 Have a working detector for healthy/unhealthy tissues 15/06/2017
6 Demonstrate generality of segmentation network with Visceral dataset 5/07/2017
7 Submit to LiTS Cahellenge 19/07/2017
8 Deliver report to ETH 31/07/2017
8 Oral defense in ETH 31/07/2017
8 Deliver report to UPC 20/08/2017
8 Oral defense in UPC 8/09/2017

Table 1.1: Milestones.

1.2.3 Gantt diagram

The Gantt diagram with the work packages and the different tasks can be seen in Figure 1.1.

1.2.4 Deviations from the initial plan

Throughout the project there had been small deviations from the initial plan, mainly of tasks that took longer
than expected. For instance there were some problems training the networks with the Dice loss, as well as
some problems when training the classifier for healthy/unhealthy tissues. Another deviation from the initial
plan was the date that the Challenge was supposed to end (21th July), as it was extended due to technical
problems of the platform. As a consequence, we did not have the last results until the end of July.

3
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Proyecto básico con Gantt y
dependencias

Page 1 of 1Exported on August 14, 2017 1:59:57 PM MEST
Figure 1.1: Gantt diagram
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Chapter 2

Related Work and State of the Art

In the recent years, deep Convolutional Neural Networks (CNNs) have significantly improved the perfor-
mance of computer vision systems for the tasks of image classification and object detection. Since AlexNet
[17], deeper and more complex networks have been proposed, with VGGNet [28] and ResNet [12] being
nowadays the reference base networks for multiple computer vision applications. VGGNet is composed by
a set of convolutional stages with pooling layers, which decrease the feature maps resolution and increment
the receptive field of the neurons. In this contracting path, deeper layers of the network learn more abstract
concepts compared to the local features learned at the first convolutional stages. In comparison to VGGNet,
ResNet adds shortcuts at each layer, which allows a better flow of the gradient through the network, solving
classical problems such as gradient vanishing for deep neural networks.

Starting from Image Classification, advances in deep learning have progressively been transferred to
solve other computer vision tasks, as boundary detection and segmentation [29] [23]. State of the art ar-
chitectures for dense predictions are based on Fully Convolutional Networks (FCN) [21]. Classic CNN
architectures used for Image Recognition consist of a contracting path composed by convolutional, pooling
and fully connected layers. FCNs just rely on convolutional and pooling layers, which allows to generate
segmentation maps for any input size with a single forward pass. In order to output a map with the initial
resolution of the image, two alternatives have been studied in the literature. The first one consists of adding
an expanding path based on deconvolutional or unpooling layers, which recovers spatial information by
merging features from different resolutions of the contracting path. Hence low-level details of major im-
portance in dense prediction can be preserved. DRIU [24], which is the baseline of this work, uses the first
alternative, and was designed to segment the optical disc and blood vessels of eye fundus images to assess
diagnosis of eye diseases. The second alternative consists of architectures that use dilated/atrous convolu-
tions [30] in order to increment the field of view, preserving a higher resolution of feature maps throughout
the network.

Segmentation of medical images is typically exploited to delineate different anatomical structures and
also for detecting unhealthy tissues, such as liver lesions. The recent successes of semantic segmentation
have also improved the accuracy in the medical field. Nevertheless, there are some characteristics of medical
images that are challenging for training CNNs and require of some modifications to the classical pipelines,
such as the imbalance of the labels for the data. There are various technologies that produce medical images;
computed tomography (CT), ultrasound, X-ray and magnetic resonance Imaging (MRI). These medical
images form 3D volumes, that can be processed using several methods. The most straight-forward is using
2D FCNs, such as DRIU [24], U-net [27] or DCAN [3], by considering each slice of the volume independent
of each other. Another approach consists on exploiting the 3D data by implementing a 3D-convolutional
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network approach, or an hybrid one (2D and 3D convolutions) [18], [19]. Another method is to combine
several tri-planar schemes, as [10]. There are also methods that capture the volume information using
Recurrent Neural Networks (RNNs) [4].

More concretely about liver and lesion segmentation, in the last years most of the methods were based
on statistical shape models, together with intensity distributions models [13] [14]. In fact some of the entries
of the LiTS challenge are based on statistical methods, such as [20], that proposes an unsupervised method
using phase separation between healthy liver and lesions. There is another group of approaches that rely on
classifiers and low-level segmentation, such as [15], that first detects the organ and the lesion is segmented
during a second stage using active contours.

Deep CNNs for these tasks have recently been proved successful, as they are robust to varying images,
which allows to build fully automatic liver and lesion segmentation systems. For liver segmentation, [8]
trains 3D FCNs with Conditional Random Fields as post-processing. In the same direction, [22] use 3D
CNNs and Graph Cut to refine segmentations of the liver. Regarding liver and lesion segmentation, the
authors of [6] train two FCNs, one to segment the liver, and then another one that works with the mask
of the liver in order to segment the lesion. One of the key features of their pipeline is a 3D - Conditional
Random Field as post-processing step, to add spatial coherence in all the dimensions of the input volume.
They use the formulation proposed in [16].

Some of the top entries of the ISBI - LiTS Challenge were also based on DCNNs. [11] were the winners
of the challenge. They trained a DCNN model that takes as input a stack of adjacent channels (2.5D) from
scratch, and use both long range (skip connections) and short range connections from residual blocks. They
also focus on the liver region by training a first network that outputs an approximate location of the liver. As
post-processing step, they do 3D connected component labeling. [1] used also residual networks, forming
a cascaded architecture which gradually refines the segmentation of the previous iteration. Another group
combines deep learning with classical classifiers, such as [5]. They use 2D U-net architecture with a random
forest classifier. First the liver is segmented using an ensemble of CNNs using the LiTS and an external
dataset. Then another network is used to segment the lesion, followed by connected components and finally
filtering the false positives with a forest classifier. Compared to all these approaches, we instead propose a
framework that uses detection to localize the lesions, removing possible false positive pixels triggered by
the segmentation network.
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Chapter 3

Detection-aided medical image
segmentation using deep learning

3.1 Baseline Architecture

Our approach is based on DRIU [24], an architecture for retinal image segmentation that segments the blood
vessels and optic disc on fundus images. The architecture uses VGG-16 [28] as the base network, removing
the last fully connected layers, so that the network consists on convolutions, activation functions and max
poolings. The base network is pre-trained with Imagenet [7] and consists of a set of convolutional stages,
each of them working at the same feature map resolution, and separated by the pooling layers. As the
network goes deeper, the information is coarser and the learned features are more related to semantics. On
the other hand, at the shallowest feature maps that work at a higher resolution, filters capture the most local
information. DRIU’s goal is to segment the optical disc and the blood vessels from fundus images. The
blood vessels are fine structures that can benefit from the shallow layers, as opposed to the optic disc that is
a coarser structure. To take advantage from the information learned at feature maps that work at different
resolutions, DRIU uses several side outputs with supervision. A side output is a set of convolutional layers
that are connected at the end of an specific convolutional stage from the base network. Each of these side
outputs specializes on different types of features, depending on the resolution at which the base network is
working on at the connection point. In DRIU, the feature maps produced by each side output are resized
and combined linearly to output the final result.

3.1.1 Cascaded architecture for liver and lesion segmentation

The medical segmentation network proposed in this work for the liver and lesion segmentation is based on
the same architecture as DRIU. In our case there are side outputs after every convolutional stage, and all of
them contribute to the multiscale output. The final architecture is depicted in Figure 3.1. It is a cascaded
architecture, which first segments the liver to focus on the region of interest in order to segment the lesion.
This two-step network leverages the imbalance of positive/negative pixels for the lesion segmentation, as
will be discussed in Section 3.2.1. The region of interest results from computing a fixed 3D bounding box
of the liver for the whole CT scan volume, and crop each slice with it. Consequently, all cropped ROIs of a
volume will have the same dimension. An illustration of this procedure is depicted in Figure 3.2.

We decided to separate the problem into two independent modules: 1) segmenting the liver and 2)
segmenting the lesion. For the second task we used the ground truth masks of the liver to work on both

7



CHAPTER 3. DETECTION-AIDED MEDICAL IMAGE SEGMENTATION USING DEEP LEARNING

Liver Segmentation
1

Lesion Segmentation
3

Bounding box sampling
2

Figure 3.1: Architecture for the detection-aided medical image segmentation. The first stage consists on
segmenting the liver. Once we have the liver prediction, we place a 3D-bounding box around the liver, and
the different slices cropped by this bounding box are inputted to the lesion segmentation network and also
to the detector. The segmentation network for the lesion considers the cropped input image for delineating
the lesion. Afterwards, only those localizations that the detector agrees with the segmentation network that
there is a lesion are preserved.

modules in parallel.
Regarding the Visceral database, we do not use a cascaded architecture, and the whole image is the input

to segment the different organs.

3.2 Loss objective

Regarding the loss objective for training the segmentation network, we worked mainly with the Binary Cross
Entropy (BCE) loss. If y is the ground truth and ŷ is the predicted value, BCE loss is defined by Eq. 3.1. It
computes the binary cross entropy of the output of the network and the ground truth data per-pixel-wise.

Figure 3.2: This figure illustrates how from the initial 3D volume (gray box) we crop a 3D bounding box
around the liver (green box). Each slice of the green bounding box is inputted to the lesion segmentation
network, as well as to the detector in order to localize regions with lesions.
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L(y, ŷ) = −y log ŷ − (1− y) log(1− ŷ) (3.1)

For this loss we used the implementation of [2]. The BCE provides an individual loss per each pixel,
and losses coming from positive or negative pixels in the ground-truth can be distinguished. Consequently
we can balance differently the positive and negative loss.

3.2.1 Balancing the loss

One of the main challenges of biomedical datasets is that the data is imbalanced; typically more negative
samples are provided compared to positive ones. The LiTS dataset is imbalanced in terms of how many
images contain lesion, and also it is imbalanced inside an image, since in a positive image, the number of
positive lesion pixels compared to negative ones is very small.

In this situation the network parameters could easily fall in the local minimum of outputting all pixels of
an image as negative, as this is the majority case. To avoid this, we will balance the Binary Cross Entropy
loss (Eq. 3.2) with a variable w in order to give more importance to the loss related to the positive pixels in
the ground truth, compared to the one related to the negative pixels.

L(y, ŷ) = −(1− w) ∗ y log ŷ − w ∗ (1− y) log(1− ŷ) (3.2)

We considered two different methods:

• Per-volume balancing factor The metric that we use to assess the predicted segmentations is Dice
(Eq. 3.5). Thus, we aim to maximize this metric, which weights each volume equally. Therefore,
it seems logical to weight each slice depending on the volume it belongs to, guaranteeing that the
network does not learn more from volumes that are deeper, compared to shallower ones. For each
volume Vi, the weighting factor wi is equal to the number of positive samples divided by the number
of negative samples of the volume (Eq. 3.3).

wi,− =
|Positive Samples in Vi|
|Total Samples in Vi|

, wi,+ = 1− wi,− (3.3)

• General balancing factor considering only positive samples of each class After working with the
first weighting strategy, we observed that the weighting factor for a volume that does not contain any
lesion is 0, so nothing would be learned from it. This lead us to think of a global weighting factor
so that all volumes participated into the learning process. In this new formulation, all slices have the
same importance, regardless of the volume they belong to. Moreover, drawing inspiration from the
balancing scheme proposed in [9], the different weighting factors for each class will only consider
images that actually contain that class. The formulation is in Eq. 3.4.

w′+ =
|Positive Samples in V |

|Total Samples in positive images of V |
, w′− =

|Negative Samples in V |
|Total Samples in all images of V |

w+ =
w′+

w′− + w′+
, w− =

w′−
w′− + w′+

(3.4)
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In [26], the authors used a methodology to directly optimize for the Dice score (Eq. 3.5), as it is
differentiable (Eq. 3.6). It is an intuitive loss because it is the metric that is used to assess the segmentation,
and it has been proved to boost performance in their work. However, the loss is not as stable as the Binary
Cross Entropy (BCE) loss when there is a small amount of foreground pixels, as it is the case for lesion
segmentation. We used the Dice Loss to segment the liver, and although the results are similar, it lead to
reduced performance in our experiments.

D =
2
∑N

i yiŷi∑N
i y2i +

∑N
i ŷ2i

(3.5)

∂D

∂yj
= 2

[
ŷj(
∑N

i y2i +
∑N

i ŷ2i )− 2yj(
∑N

i yiŷi))

(
∑N

i y2i +
∑N

i ŷ2i )
2

]
(3.6)

3.3 Using context slices to exploit 3D information

Until now we have been dealing with the data as if each image was independent from the others, but actually
we have volumes of images that have spatial coherence. We could benefit from the redundancy among
consecutive images by inputting a volume to the network. Since we are training from the pre-trained weights
of Imagenet, the network expects a 3-channel input. We first tried to use these 3 channels to input three
consecutive slices and segment all of them simultaneously. At test time, we just keep the central slice from
the output volume. This scheme is depicted in Figure 3.3.

Figure 3.3: In the input of the network 3 consecutive slices are stacked, and at the output, the 3 slices are
segmented. This example belongs to the lesion, but the same is applied to the liver.

We also tried to input more slices modifying the filters of the first layer of VGG-16: the original filters
are 3x3x64 and should be modified to be 3xnx64, n being the depth of the input volume. In order to initialize
the new added filters, we copied the weights of the original pre-trained filter of VGG-16. Our experiments
show that inputting 3 consecutive slices yields better results than the baseline. However, inputting more than
3 slices lead to worse results.

3.4 Benefiting from liver segmentation in order to segment the lesion

In this section different strategies that benefit from the liver segmentation to segment the lesion will be
commented.
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3.4.1 No back-propagation through regions outside liver

The segmentation of the liver allows us to crop the region of interest in order to segment the lesion. Neverthe-
less, as we know that the lesion is always inside the liver, we can further benefit from the liver segmentation,
deciding not to back-propagate through those pixels that are predicted as non-liver. The benefits of this
strategy are twofold, 1) the network is just learning from the pixels that actually can belong to the target
class, and 2) the positive and negative pixels are more balanced, as the number of negative pixels is greatly
reduced. Although the problem becomes more balanced, we still add the balancing term, now just consider-
ing the pixels that belong to the liver class. Figure 3.4 depicts the scheme of this configuration. In order to
not back-propagate trough the pixels outside the liver, we just multiply the output of the lesion segmentation
network with the output of the liver segmentation network before back propagating the gradients.

Network 1 ∘Network 2

Network 1 Network 2

Network 1 Network 2 ∘

Figure 3.4: Scheme of just back propagating trough liver.

3.4.2 Multi-task: Segmenting the liver and lesion simultaneously

Instead of using the fixed liver masks predicted by another network, it could be useful to have a network that
learns how to segment the liver and the lesion at the same time. In this way, the segmentation network has
the information of the liver while it is segmenting the lesion.

The loss in this case is the sum of the Binary Cross Entropy losses related to the lesion and liver respec-
tively. As both classes are not exclusive, we consider them independent of each other, so the network can
decide that a pixel belongs to both classes without any restriction.

3.4.3 Multi-task with no back-propagation through liver

We also tried to use both strategies at the same time. The network can learn to segment the liver and
lesion simultaneously, and using the on-line result of the liver to decide through which pixels not to back
propagate for segmenting the lesion. In this case the weighting factor for the loss related to the lesion also
only considers the pixels that are inside the liver. The final loss is also the sum of the Binary Cross Entropy
losses related to each class.

3.5 Lesion Detection

We observed that our network lacked the ability to get a global view of the image, which is helpful to see if
there is a lesion or not. As a consequence, some false positives were triggered in almost all images. In order
to remove them, we must know in which locations of the image there is an actual lesion, so that we just keep
those locations after segmenting the whole input image.
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Network 1 ∘Network 2

Network 1 Network 2

Network 1 Network 2 ∘

Figure 3.5: Scheme of predicting liver and lesion at the same time. The output of the network are two
channels, one for the liver and another for the lesion.

Network 1 ∘Network 2

Network 1 Network 2

Network 1 Network 2 ∘

Figure 3.6: Scheme of predicting liver and lesion at the same time. In order to back propagate gradients for
the lesion segmentation, first the liver prediction is multiplied by the lesion prediction.

As a first approach, we trained a classifier that labels the whole image as positive or negative. Later, we
trained a detector that works at a lower scale and indicates which locations contain a lesion.

3.5.1 Image labeling of images with and without lesion

The first test that we did consists on training an image-level classifier that predicts whether a slice has a
lesion or not. This classifier will learn more global features compared to the segmentation pipeline. In order
to train such a classifier, we worked with the images cropped around the liver. We have a total of 18576
samples for the 131 volumes. We divide the data into 80/20 training and validation splits. We augment data
using two different flips and two different rotations, so we increase our dataset by a factor of 4.

We tried two different configurations, one with VGG-16 and the other with Resnet-50, using the pre-
trained weights of Imagenet. In both configurations, we removed the classification layer for Imagenet, and
we add our classification layer of a single neuron. The network is trained with the Binary Cross Entropy
loss. All images are resized to 224x224 at the input of the network, and the batches are of 32 balanced
samples.
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Train Test
Positive Samples 127K 87K
Negative Samples 9300K 3000K

Table 3.1: Samples after data augmentation for detection

3.5.2 Detection of lesion in a sliding-window fashion

Considering that the classification strategy was a proof of concept to estimate if a CNN could identify a
lesion from a global scale, we reduce the scale with a detection pipeline of sliding windows capable of
generating finer locations for the liver lesions. In particular, we place bounding boxes in the liver region
and then label them as positive or negative, as illustrated in Figure 3.7. The condition in order to place a
bounding box is that it overlaps at least 25% with the liver. We use windows of 50x50 pixels, considering
a positive observation if there are at least 50 pixels of lesion inside the box. The stride is 50 pixels, and 15
pixels of margin are added to every side of the window to provide additional context, so that each window
is finally of size 80x80. The batches are of 64, and are also balanced. The data augmentation in this case
is more intensive, as in total we multiply the data by 8, with several flips and rotations. In total the number
of samples is depicted in Table 3.1. We consider bounding boxes of a single scale, as in this type of images
the concept of scale is not as in natural images, where actually there are big and small objects located at
different planes from the camera. In this case, all images are taken at the same global scale, and the lesions
by themselves are not instances, but tissues without a defined shape, so defining a scale is not trivial. We
chose the dimension of our bounding boxes considering that it should be big enough to cover all lesion
tissues with an added context.

Figure 3.7: Bounding boxes are placed on the liver region, and then labeled as positive or negative for the
lesion detection task.

3.6 3D - Conditional Random Fields (3D-CRF)

As a final post-processing step, we add a 3D - Fully Connected Conditional Random Field. A 3D-CRF is a
statistical modeling technique applied for structured predictions. CRFs model the conditional distribution of
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the output prediction considering all the input at once. The final labels are assigned given the soft predictions
outputted by the segmentation network as a maximum a posteriori (MAP) inference in a dense CRF. The
model considers both the spatial coherence and also the appearance in terms of the intensity values of the
input volume. This 3D-CRF that we use is Fully Connected, so it establishes pairwise potentials on all pairs
of pixels in the image, maximizing label agreement between similar pixels. We used the implementation
of [6] that uses the 3D-CRF formulation of [16], which states that for a Graph G = (V,V) with vertices
i ∈ V for each voxel in the image and edges eij ∈ E = {(i, j)∀i, j ∈ V s.t. i < j} between all vertices
of the graph. The energy function is Eq. 3.7, where x is the label of each vertex. The unary potentials are
in Eq 3.8, being I the intensity of the input volume. The pairwise potentials are defined in Eq 3.9, where
µ(xi, xj) = 1(xi 6= xj) is the Potts function, |pi − pj | is the spatial distance between voxels and |Ii − Ij | is
the intensity difference.

E(x) =
∑
i∈V

φi(xi) +
∑

(i,j)∈E

φij(xi, xj) (3.7)

φi(xi) = −logP (xi|I) (3.8)

φi(xi, xj) = µ(xi, xj)

(
wposexp

(
−|pi − pj |

2

2σ2pos

)
+ wbilexp

(
−|pi − pj |

2

2σ2bil
− |pi − pj |

2

2σ2int

))
(3.9)

Depending on the parameters wpos, wbil, σpos, σbil, σint the effect of the pairwise terms and their effec-
tive range can be tuned. We tried several combinations for the lesion and liver segmentation, choosing a
smaller range for the lesion post-processing, due to the reduced size of lesions compared to liver.
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Chapter 4

Experimental Validation

In this section the different experiments and results will be commented on. The first subsection comments
on the results of the LiTS dataset, whereas the second one the results of the Visceral Dataset.

4.1 Datasets

4.1.1 LiTS

The database of the LITS challenge consists on 131 CT training scans. Each scan is encoded in a differ-
ent NifTI (Neuroimaging Informatics Technology Initiative) file, which is a data format typically used for
biomedical images encoding. The file extension is .nii, which encodes a single volume, combining data and
metadata. There are several libraries to encode and decode this type of files. We used a Matlab library. The
test set of the LITS challenge consists of 70 additional CT scans.

The training set of the challenge contains 58,638 images in total. Each volume has a different depth,
which ranges from 74 to 987 slices. We did our own partition, keeping 80% from the original training set
for our training, and 20% for validation.

First of all we analyzed the data to decide which was the required pre-processing. The histograms of the
pixel intensities of the images, the liver and the lesion can be seen in Figures 4.1, 4.2 and 4.3 respectively.

We observed that there were many pixels that had the intensity value of -1024, due to a particularity
of the CT image. This value belongs to the background, and does not provide any meaningful information
for our segmentation task. We tried two types of processing, both based on min-max normalization (Eq.
4.1), being zi the normalized volume, and xi the input volume. The first pre-processing we tried consists
in clipping to the maximum/minimum value the pixels outside the range (-1000, 1000), whereas the second
type of processing does the same for the range (-150, 250) of the original images, as we observed that liver
and lesions belong to this limited range.

zi =
xi −min(x)

max(x)−min(x)
(4.1)

4.1.2 Visceral

The Visceral dataset is composed of 20 different volumes in different modalities, with annotations for several
organs, as the liver, and other structures of the human body, as the aorta artery. We use Visceral dataset to test
the generality of the segmentation network. As the number of volumes is lower than in LiTS, we keep 90%

15



CHAPTER 4. EXPERIMENTAL VALIDATION

Figure 4.1: Pixel intensity histogram of images from LiTS dataset.

Figure 4.2: The pixel intensity histogram
for the liver.

Figure 4.3: The pixel intensity histogram
for the lesion.

of the data for training and 10% for validation. There are some volumes that do not have the annotations for
all organs. In our experiments, we just worked with the 15 structures that were annotated in all volumes.

Following the same criteria as for the LiTS dataset, we study the histograms of the pixel intensities from
the images and also from the different organs(Figures 4.4 and 4.5). In this case, we observe that the organs
cover all the range, so we work in the range (-1000, 1000).

4.2 Metrics

The main metric that will be used to assess the results in this work is the Dice, which is the same as the
F1-score. For the following experiments, we will refer to two different variants of Dice score. First, the
average Dice across volumes, which is the metric assessed in the LiTS challenge. We will refer to this
metric as Dice. Then, in order to draw the precision recall curves, we worked with the Dice computed from
averaging the precisions and recalls. We will refer to this metric as Dice(P̄ , R̄).
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Figure 4.4: The pixel intensity histogram
of images from Visceral dataset.

Figure 4.5: The pixel intensity histogram
of the organs analyzed from the Visceral
dataset.

4.3 Experiments on LiTS dataset

Regarding the LiTS dataset challenge, we present results for the lesion and the liver segmentation. For the
configurations of lesion segmentation, we first crop the volume-wise bounding box around the liver from
the ground truth to train the different models.

4.3.1 Data Preparation

We first wanted to experiment the implications of working with the range of values that belong to the
liver region instead of using a wider range. In Table 4.1 we observe that when limiting the range the
performance of the lesion segmentation improves, whereas for the liver the difference is not that significant.
This experiment was tested with the per-volume balancing approach to weight the binary cross entropy loss.

4.3.2 Balancing the Binary Cross Entropy Loss

We analyzed different methods to balance the binary cross entropy loss commented in Section 3.2.1 and
their performance is compared in Table 4.2. We first experimented with the Per-volume balancing method
explained in Section 3.2.1. As it can be seen in the Precision-Recall Curve in Figure 4.6, this approach
yielded too many false positives. We tried to tune the formulation of the balanced cross entropy, by doing
the following change: w+ = w+ − α and w− = w− + α, just to verify that by giving more importance
to the loss related to the negative pixels we could reduce the number of false positives. We empirically
defined α to be 0.15, which improved the results. We also tested the General balancing method, which is
slice independent and only considers for balancing a certain class the images that contain that class. This

Lesion Liver
Processing (-1000,1000) 0.300 0.939
Processing (-250, 150) 0.318 0.942

Table 4.1: Average Dice across volumes for the two processing techniques.
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Lesion Liver
Dice Dice(P̄ , R̄) Dice Dice(P̄ , R̄)

BCE - Per-Volume balancing 0.3181 0.3610 0.9420 0.9435
BCE - Tuned Per-volume balancing 0.3293 0.3796 0.9542 0.9549
BCE - General balancing 0.3433 0.3824 0.9505 0.9511
Dice Loss - - 0.9391 0.9402

Table 4.2: Dice for Lesion and Liver using losses.

is the method that yields the best result for the lesion. As can be seen in Table 4.2, on the liver the best
result is achieved with the tuned version of the Per-volume balancing weighting, but still, we prefer using
the General balancing method as it does not depend on an empirically chosen parameter dependent on the
database. We also trained a network to segment the liver using the Dice Loss, but this resulted in lower Dice.
For the lesion we did not achieve a stable training using the Dice Loss.

Figure 4.6: Precision- Recall Curves for different balancing methods for the lesion.

4.3.3 Using context slices to exploit 3D information

To benefit from the redundancy between consecutive slices, we segment several consecutive slices at the
same time, as commented in Section in Section 3.3. At test time only the central slice is kept. The results
for different number of slices can be seen in Table 4.3. The best result is when feeding 3 consecutive slices.
Inputting 6 different slices also improves the result compared to the baseline, but 3 slices is still the optimal.
As we tested inputting more slices, the results worsened. We also tried to input 3 consecutive slices for the
liver segmentation, and it also improved as can be seen in Table 4.4. The Precision-Recall curve for both the
liver and the lesion are in Figures 4.7 and 4.8.
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1 slice 3 slices 6 slices 9 slices
Dice 0.3433 0.3596 0.3496 0.3259
Dice(P̄ , R̄) 0.3824 0.4070 0.3908 0.3641

Table 4.3: Comparison of inputting several consecutive slices for the lesion.

Baseline 3 slices
Dice 0.9505 0.9574
Dice(P̄ , R̄) 0.9511 0.9579

Table 4.4: Results for the liver segmentation.

Figure 4.7: Precision- Recall Curves when
the input is a different number of slices for
the liver.

Figure 4.8: Precision- Recall Curves when
the input is a different number of slices for
the lesion.
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Lesion
Dice Dice(P̄ , R̄)

3 slices (baseline) 0.3596 0.4070
3 slices + Masking 0.3600 0.4086
3 slices + Masking + BP trough liver 0.3791 0.4296
3 slices + Multi-task 0.3878 0.4149
3 slices + Masking + Multi-task 0.3858 0.4156
3 slices + Masking + Multi-task + BP trough liver 0.3826 0.4155

Table 4.5: Different methods to benefit from liver segmentation.

4.3.4 Using the liver for segmenting the lesion

In this section we will comment the results on the different strategies presented in Section 3.3. In Table 4.5
we show results for the different methods tested to benefit from the liver information in order to segment the
lesion. The baseline consists of using 3 slices at the input.

The Masking option refers considering only as candidates for lesion does pixels predicted as belonging
to the liver. The BP through liver configuration refers to training the network by back-propagting only
through pixels that belong to the liver, which also entails that at test time the lesion segmentation will also
be masked by the predicted liver.We observe that back-propagating through the liver significantly improves
the result to just masking with the liver at test time. We believe this is due to the training being done on
relevant pixels of the image.

Another configuration that we tried is the Multi-task approach, which consisted on learning to segment
the liver and the lesion simultaneously. It also resulted better than the baseline, even without masking, which
indicates that what the network learns for segmenting the liver is beneficial for segmenting the lesion as well.
Finally we tested imposing no back-propagation trough those pixels that during multi-task were predicted
as liver. Although the approach was better than the baseline, the two strategies separately achieve the best
results, each of them in a different metric, as can be seen in Table 4.5. In Figure 4.9 there are some examples
that depict how both strategies work. We observe that both multi-task and back-propagation through liver
strategy are able to detect more lesions compared to the baseline, and that the borders are more precise. The
back-propagation strategy shows better results. In the Appendix there are more visualizations for smaller
lesions.

4.3.5 Training a Lesion Detector

In this section we will show the results obtained when adding the detection (Section 3.5) on top of the
segmentation in order to remove false positives triggered by the segmentation network.

We first train a classifier of lesion/non-lesion image. We tested the two different configurations intro-
duced in Section 3.5, one with VGG-16 and another one with Resnet-50. Table 4.6 and Figure 4.10 depict
how Resnet-50 network outperforms the results over the VGG-16 configuration.

The preliminary results on image classification motivated us to train a detector that works at a lower
scale, so we train a lesion detector based on Resnet-50. The Precision-Recall Curve we obtain can be seen
in Figure 4.11 and the maximum F-score, Precision and Recall, are in Table 4.7.
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Figure 4.9: The first column is the baseline (3 slices in the input), the second one is doing multi task, and the
third is only back propagating through the liver. The blue lines are the liver ground-truth, the red lines are
the lesion ground-truth, the yellow lines are the predicted liver and the green lines are the predicted lesion.

4.3.6 Removing False Positives using the Lesion Detector

We want to check how does the detector help the segmentation network. From the best two configurations we
have, the one that does the multi-task of segmenting the liver and the lesion simultaneously (Section 3.4.2),
and the one that only back-propagates through the liver (Section 3.4.1), we sample bounding boxes around
the liver region and predict whether those localizations belong to an unhealthy tissue. From the output of
the segmentation network, we simply keep those localizations that are detected as having a lesion in it. In
Table 4.8 we can observe the results. Applying the detector improves the dice score for both strategies. The
detector indicates which windows of the image contain lesion, so we just keep those windows for the final
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Precision Recall F-score Optimal th
VGG-16 0.6169 0.8259 0.7063 0.014
Resnet-50 0.7807 0.7417 0.7607 0.31

Table 4.6: Performance of the Image Classifier on

Figure 4.10: Precision-Recall curve for the
classification.

Figure 4.11: Precision-Recall curve for the
detection.

Precision Recall F-score Optimal th
0.8698 0.8790 0.8698 0.019

Table 4.7: Image Window detections performance
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Figure 4.12: In this Figure several CT slices are depicted. The blue bounding boxes are the windows detected
as having a lesion. All positive pixels at the output of the segmentation network will be removed if they are
not detected for the detector as well.

segmentation. The Precision-Recall Curve is illustrated in Figure 4.13, where it is shown that the detection
improves for both configurations. In Figure 4.12 some examples of how the detector performs are depicted.
This detector is useful to remove small regions that are false positives as is depicted in several visualizations
added in the Appendix.

To conclude, the final best configuration is then the one that only back-propagates through the liver and
uses the detector to remove false positives.

Volume-wise crops from predicted liver

All the results until now have been computed using the volume-wise crop from the ground-truth, but we need
to calculate the volume-wise crops from the predicted liver, and segment the lesion again. We developed
a simple strategy which considers the number of positive pixels obtained at each slice, and fits it into a
Gaussian. Details of the algorithm are in the Appendix. In the second column of Table 4.8 there are the
results when using the predicted liver for computing the crops. We observe that the performance decreases
slightly, as expected.
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Lesion - Crop Lesion - Crop (test)
Dice Dice(P̄ , R̄) Dice Dice(P̄ , R̄)

Multi-task 0.3878 0.4149 0.3782 0.4078
Multi-task + Masking 0.3858 0.4156 0.3787 0.4092
Multi-task + Detector 0.4046 0.4278 0.3989 0.4226
BP through liver + Masking 0.3791 0.4296 0.3791 0.4296
BP through liver + Masking + Detector 0.4120 0.4474 0.4079 0.4437

Table 4.8: Results when filtering the segmentation mask with a lesion detector

Figure 4.13: Precision Recall Curve after removing negative detections.

4.3.7 3D Conditional Random Fields

At the end of our pipeline we decide to apply a 3D Conditional Random Fields (Section 3.6), using the
implementation provided by the authors of [6]. At the input of the 3D-CRF model, we introduce the soft
prediction outputted by the network and the preprocessed volume. We work with 3D-CRFs for two reasons.
First, the 3D-CRF will help our method to gain spatial coherence. Second, we want to verify if actually our
detector adds performance even when applying a heavy post-processing such as a 3D Conditional Random
Fields. We take the best configurations we have and apply the Conditional Random Field on top. In Table
4.9 we can see the results. We notice that from both baselines considered in this table, the multi-task and
the BP through liver, the 3D-CRF improves results, although not as much as the detector does. Then, we
compute how are the results if we use both the detector and the 3D-CRF, and we observe that this leads to
a highest Dice score, so both detector and 3D-CRF boost performance in the pipeline. In Table 4.10 the
3D-CRF is applied on the liver segmentation, also yielding better results. In Figure 4.14 some examples of
how does the CRF improve the results after the detector are shown.
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Dice Dice(P̄ , R̄)
Multi-task 0.3878 0.4149
Multi-task + 3D-CRF 0.4004 0.4254
Multi-task + Detector 0.4046 0.4278
Multi-task + Detector + 3D-CRF 0.4299 0.4473
BP through liver 0.3791 0.4296
BP through liver + 3D-CRF 0.4027 0.4424
BP through liver + Detector 0.4120 0.4474
BP through liver + Detector + 3D-CRF 0.4278 0.4582

Table 4.9: Results of lesion after applying 3D-CRF

Dice Dice(P̄ , R̄)
Liver 0.9511 0.9579
Liver + 3D-CRF 0.9620 0.9621

Table 4.10: Results when added 3D-CRF to liver

Sub 1 Sub 2 Sub 3 Top Entry Sub Liver Top entry Liver
Dice per case 0.54 0.57 0.59 0.68 0.94 0.96
Dice global 0.72 0.72 0.74 0.79 0.95 0.96
VOE 0.40 0.39 0.37 0.34 0.11 0.08
RVD 0.37 0.34 0.24 0.16 0.01 0.01
ASSD 1.51 1.43 1.36 1.02 2.90 1.24
MSD 9.63 9.28 8.27 7.12 90.24 26.56
RMSD 2.26 2.17 2.04 1.66 7.90 2.66
Precision 0.02 0.06 0.04 0.12 - -
Recall 0.19 0.18 0.22 0.30 - -
Jaccard 0.60 0.61 0.63 - - -
Dice 0.75 0.75 0.77 - - -

Table 4.11: Results obtained at MICCAI LiTS Challenge. The three first columns are the three different
submissions we did during the MICCAI round. The 4th column is the best result in the LiTS Challenge,
although we still do not know the identity of the team or the procedure they followed. The top entry
gets better results in all the metrics. In bold we marked the best result for the lesion from our different
configurations. The Jaccard and the Dice are metrics just given when doing the submission, so we can not
know these two metric for the other entries except for ours. In the last two columns there are the results for
the liver, with our submission and the top entry. In this case the Challenge platform does not provide the
Precision, Recall, Jaccard and Dice, and that is why those cells are not fulfilled.

Sub 1 3-slices, BP through liver
Sub 2 3-slices, BP through liver + Detector
Sub 3 3-slices, BP through liver + Detector + 3D-CRF
Sub Liver 3-slices, 3D-CRF

Table 4.12: Legend of the architecture for each submission of MICCAI LiTS Challenge.
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Figure 4.14: First row are the results after the detector. These images show mistakes, where both the detector
and the segmentation network fail. 3D-CRF can help to remove false positives considering both the spatial
coherence of the volume and the appearance. The second row depicts the same examples, this time applying
3D-CRF for the liver and for the lesion. Some small mistaken lesions are removed by the 3D-CRF.

4.3.8 LiTS competition

This section overviews our participation in LiTS competition. First of all, we should highlight that during
the development of this thesis, there have been two different openings of the challenge. The first one
was for the workshop of International Symposium on Biomedical Imaging Conference (ISBI) 2017, and
then the challenge opened again for a workshop of Medical Image Computing and Computer Assisted
Interventions Conference (MICCAI) 2017. The configuration that we submitted for the ISBI-LiTS challenge
was the baseline of using a cascaded architecture, the Per-volume balancing scheme and masking the lesion
prediction with the predicted liver. We obtained 0.41 of Dice score, far from the top entry of the leader board
which had a 0.67 of Dice score.

In the MICCAI Challenge we sent several submissions. The results we obtained are presented in Table
4.11. The challenge will close the submission period on 28th July, 2017. The architecture for each of the
submissions is summarized in Table 4.12 and the legend for the metrics is in Table 4.13. The first observation
is that the results for the lesion in the on-line validation set are higher than the ones in our own validation
set. The opposite happens with the liver segmentation. One first explanation is that our own validation set
is very small and maybe it is not enough to actually assess the different algorithms. Another explanation
could be the amount of volumes without lesion. In our own validation dataset, there is a considerable
number of such volumes that lead to 0 Dice score if there is any false positive pixel. Moreover, in volumes
where there is no lesion, segmenting the liver is easier because the texture of the liver is more even. Even
with this considerable gap in performance between the on-line validation set and our own partition, there
is coherence in the results. The balancing strategy, 2.5D approach, preprocessing of the volumes and and
only back propagating through liver improved our result from 0.41 to 0.54. Applying the detector improved
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Dice per case Average Dice across volumes
Dice global The dice if all volumes are considered as a single one
VOE Volumetric Overlap Error
VOE Volumetric Overlap Error
RVD Relative Volume Difference
ASSD Average Symmetric Surface Distance
MSD Maximum Symmetric Surface Distance
RMSD Root Mean Square Symmetric Surface Distance
Precision Precision at 50% overlap
Recall Recall at 50% overlap
Jaccard The Jaccard index slice per slice
Dice The Dice index slice per slice

Table 4.13: Legend of the different metrics of LiTS Challenge.

Baseline Multi-task 3 slices Multi-task 3 slices
Dice Dice(P̄ , R̄) Dice Dice(P̄ , R̄) Dice Dice(P̄ , R̄) Dice Dice(P̄ , R̄)

Liver 0.94207 0.9422 0.93832 0.9386 0.94429 0.9444 0.93152 0.9317
R. Kidney 0.88806 0.8890 0.89002 0.8901 0.88841 0.8890 0.81785 0.8179
Spleen 0.93444 0.9350 0.92784 0.9294 0.92552 0.9267 0.89254 0.9841
R. lung 0.97638 0.9764 0.97628 0.9763 0.97714 0.9772 0.96862 0.9687
Aorta 0.8105 0.8128 0.82177 0.8243 0.84794 0.8500 0.78149 0.7835
Sternum 0.78841 0.7885 0.75305 0.7539 0.80071 0.8009 0.70812 0.7088
R. rectus 0.61692 0.6321 0.56126 0.5816 0.66068 0.6861 0.47048 0.53189

Table 4.14: Visceral Results for several organs. The multi-task approaches are trained for 15 organs, but
here we just show results for 7 organs, that are the ones for which we also trained specialized networks.

it up to 0.57, and finally with the 3D-CRF we got the final result of 0.59, so we can say that from our
baseline we improved from 0.41 to 0.59, which is a 44% of improvement. The challenge is still open at
the time of writing this report, and the top score entry has a 0.68 of Dice score. We notice that there is
still a significant gap between our approach and the top entry, but we think that the different techniques
that improved our result could also be applicable to other pipelines, more importantly the fact of using the
detector in combination to the segmentation network in order to have the best of both worlds, a network that
is trained at a local scale, and a detector that works at global scale and learns to generalize from a bigger
liver tissue.

4.4 Experiments on the Visceral dataset

We also trained several models on the Visceral dataset in order to test how our segmentation network per-
forms in general for biomedical images.

First, we train networks that are specialized in a single organ. From Table 4.14, the first column shows
the results of this configuration. It consists on using the DRIU network, inputting a single slice at a time,
and balancing with the General balancing method that we defined. Experimenting with the LiTS dataset, we
saw that learning where the liver is at the same time as learning the lesion, improved the results. This same
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Figure 4.15: These are 6 slice examples. The different organs (15 in total) have their prediction masked in
different colors, that can be seen in the legend at the right of the Figure. The ground truth for all the organs
is in red.

idea should happen with anatomical structures from CT scans: the more the network understands, the better
it will distinguish the different parts.

Also, having a model for each organ is not practical if you seek a multi-organ segmentation, as you need
several forwards passes. Then, a single network that is able to delineate multiple structures would be very
practical, so this is exactly what we try. Our network will output as many channels as structures we are
predicting, a total of 15. The results of this second configuration are in the second column of the Table, and
we observe that the performance is quite similar to the first configuration, and even better for some organs
such as the right kidney or the aorta.

Then we want to check if segmenting several slices simultaneously also helps in this problem. The
results are in the third column, and we observe that indeed for most organs this is the best configuration.

Finally, we train a single network that tries to segment 3 slices of each organ at the same time. As
we are working with 15 organs, the final number of channels is 45. This last configuration lead to worse
performance, we think it may be because the number of output channels is quite big compared to the number
of filters learned at the side outputs, which could act as a bottleneck. In Figure 4.15 some examples of how
does the multi-task approach work for segmenting 15 different organs are depicted.
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Chapter 5

Budget

In this section the budget to perform this project is estimated. It is important to highlight that this project is
software-based, so there is not a final physical product created. Moreover, there is no aim in selling the final
outcome of this thesis, so there will be no analysis in this matters.

One important part of the budget comes from the personals costs. There has been a junior engineer
working as a full-time worker for the master thesis, and weekly meetings have been held with the supervi-
sors, that will be counted as senior engineers. In Table 5.1 we can see the total personal costs, that are a total
of 19440 e. The software has been developed in python and Matlab. Matlab requires of a license, whose
amortization for the months that we have used is are in Table 5.2. This sums 250 e.

In order to develop this project the GPU cluster of the ETH has been used. To approximate the cost of
usage of this hardware, we can check how much would it cost to get such service from the Amazon Web
services (AWS) at their cloud computing service. The time that we have been running jobs in the cluster is
approximately of 4 months. During this time, on average 2 jobs have been running all day, each of them in
a GPU with 12GB of RAM. The most similar resource that AWS provides is the p2.xlarge, which costs 0.9
USD/hour, a total of 21,6 USD/day. The total cost, estimating that we had two of these jobs continuously
running during 4 months (approximately 120 days), would be of 5184 USD. The equivalent is of 4,397.90
e(with the conversion 1 USD = 0.848 eat the date 14/08/2017). Adding the different costs, the total budget
for the project results of 24087.9 e.

Number Wage Hours / week Total weeks Total
Junior Engineer 1 8 e/ hour 40 h 27 8640 e
Senior Engineer 4 20 e/ hour 5 h 27 10800 e

Table 5.1: Total personal costs

Number of Licenses Price / Year Months of project Amortization/Month Total
1 500 e 6 months 41.67 e/ month 250 e

Table 5.2: Software Licenses cost
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Chapter 6

Discussion and Conclusions

In this work we have proposed an algorithm for segmenting the liver and its lesions using a segmentation
network and a detector. We have studied how to exploit the characteristics of the provided data, using the
depth information at the input of the network, and taking advantage of the liver segmentation prediction in
order to segment the lesion. Also, we have segmented more anatomical structures with the segmentation
network, proving that the side outputs with supervision for generating a multi-scale output is an architecture
that can be used for segmenting quite diverse structures.

Our experimentation validates that, first, using 2.5D with pre-trained weights is feasible using the same
number of channels as the original network, 3 in our case. Additional slices at the network’s input lead to
worse performance, which indicates that actually the power of the pre-trained weights is important for the
architecture, and such kind of modifications really affected the overall performance. This just confirms that
pre-trained models are strong and can be used for many different applications. However, in the related work,
there are successful 2.5D approaches training a network from scratch. New architectures that are appearing
lately do not require as much data as it used to some years ago, hence training from scratch a network that
fits more our task is something that should also be taken into consideration in order to gain design flexibility.

With our experimentation it has also been demonstrated that using the liver for learning the lesion is
quite beneficial. The best approach is the one that only learns from pixels of the liver, which suggests that
limiting the samples from which the algorithm learns to just relevant samples, or difficult ones, is favorable
to the problem. This strategy is familiar to using “Attention” mechanisms, as there is a location selected
(the liver) from which to learn and this improves the learned representations for the lesion. One of the most
challenging issues of the lesion segmentation, is to learn properly from positive and negative pixels, due to
the imbalance of samples. Limiting the learning to some samples leverages this problem, but we still think
that there is room of improvement of how to make the network learn properly from the pixels, as we noticed
that any change in the balancing term of the Binary Cross Entropy loss affected the results significantly.

The most important conclusion is the trade-off between fine localization that the segmentation network
can achieve, and the generalization that the detector learns. As the output of the segmentation network is
pixel-wise, it tends to trigger false positive pixels, as it is not forced to take more global decisions whether
there is lesion or not from a wider perspective. This, on the other hand, is what the detector learns, to just
decide if a complete patch is healthy or not, not caring about the possible exact shape of the lesion. Having
both techniques analyzing the input image yields a better overall result.

Nevertheless, results in the challenge indicate that our method is still far from state of the art results.
Our dice score is of 0.59, what would situate us in the 5th best result with the 4th highest Dice score in
the ISBI Challenge, being 0.67 the best result achieved for that round of the challenge. In the future it
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would be interesting to have a pipeline that is completely end-to-end and does not require computationally
demanding post-processing steps or network ensembles that nowadays seem essential to get competitive
results. However, we do believe that the different improvements that we achieved compared to our baseline
could be applied to other pipelines.

As future work, an architecture that does detection and segmentation all together would be more effi-
cient, and we are sure that one task will benefit from the other. Inspired by the state of the art detection
pipelines for image detection that also perform segmentation, only back propagating from those regions
that the detector decides should lead to better performance. It is still challenging how to define bounding
boxes or localizations for medical tissues, as there is not a concept of an instance as it happens with natural
images. The other challenge would be how to define the balancing terms in order to learn properly. The
optimal situation would be to remove any balancing term, and being able to chose the locations of the image
whose total distribution is already balanced.
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Appendix A

Additional material

This appendix has two different sections. First, the algorithm to define bounding boxes from the predicted
liver will be explained. Then, more visualizations for the method are illustrated.

A.1 From predicted liver to bounding box

We explain in this section how to obtain 3D bounding boxes from the predicted liver. First of all, from the
predicted liver masks, we compute how many positive pixels there are per each slice of a volume. We plot it,
and observe that it resembles a Gaussian function. Then, we do a fitting of a Gaussian, so that an estimated
mean and variance is obtained. In Figure A.1 we can see an example of the Gaussian fitting. We can use
this fitting to remove false positives, considering that all slices above and below a certain σ may not contain
any lesion. In order to decide which sigma to choose, we both consider the liver and the lesion. The false
positives and false negatives are plotted in Figure A.2. Finally, considering the number of false negative
slices for lesion mainly, which is our target, we decide σ to be 3.0, so at a cost of a few false negatives, we
remove a considerable number of false positive slices.

A.2 Visualizations

In this section, additional visualizations to understand the method are depicted.

A.2.1 Visualizations of how benefiting from liver helps to segment the lesion

In Figure A.3 we can observe how the the different methods that benefit from the liver segmentation work.
These examples depict small lesions, and how applying these strategies helps to delineate these type of
lesions.

A.2.2 Using the detector to remove false positives

In Figure A.4 there are some examples of false positives triggered by the segmentation network that are
removed after applying the detector, as it is illustrated in Figure A.5.
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Figure A.1: Gaussian fitting of predicted masks for volume 125.

Figure A.2: Analysis of selection of sigma.

A.2.3 Visualizations of the final configuration

Some results for the final configuration are illustrated in A.6.
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Figure A.3: Zooming to see details in smaller lesions. Each row is a different example from a different
volume. Blue lines indicate liver ground-truth, red lines are lesion ground-truth, yellow lines is the predicted
liver and green lines is the predicted lesion. The first column is the baseline (3 slices each time in the input),
the second column is using the multitask approach, and the third one when there is just back propagation
through the liver.
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Figure A.4: False positive examples. Each image is a different example, where some fake lesions are
predicted by the segmentation network.
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Figure A.5: These examples are the same as in the Figure A.4, but after the detector. Light blue bounding
boxes denote the detections of the detector network. We observe that this network does not detect lesions in
locations where the segmentation network failed, so false positives are removed.
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Figure A.6: Examples of last configuration.
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