

EFFICIENT EXPLORATION OF REGION HIERARCHIES

FOR SEMANTIC SEGMENTATION

A Degree Thesis
Submitted to the Faculty of the

Escola Tècnica d'Enginyeria de Telecomunicació de
Barcelona

Universitat Politècnica de Catalunya
by

Míriam Bellver Bueno

In partial fulfilment
of the requirements for the degree in

 SCIENCES AND TELECOMMUNICATION
TECHNOLOGIES ENGINEERING

Advisors
 Xavier Giró i Nieto

Carles Ventura

Barcelona, July 2015

 1

Abstract

The motivation of this work is the efficient exploration of hierarchical partitions for
semantic segmentation as a method for locating objects in images. While many efforts
have been focused on efficient image search in large-scale databases, few works have
addressed the problem of locating and recognizing objects efficiently within a given image.

My work considers as an input a hierarchical partition of an image that defines a set of
regions as candidate locations to contain an object. This approach will be compared to
other state of the art algorithms that extract object candidates for an image.

The final goal of this work is to semantically segment images efficiently by exploiting the
multiscale information provided by a hierarchical partition, maximizing the accuracy of the
segmentation when only a very few regions of the partition are analysed.

 2

Resum

La motivació d'aquest treball és l'exploració eficient d'un arbre jeràrquic per tal de
segmentar semànticament imatges com a mètode per reconèixer objectes. Molts treballs
han tractat la cerca eficient d'objectes en imatges des del punt de vista global de la
imatge en grans bases de dades, però no s'han dedicat tants esforços en resoldre el
problema de localitzar i reconèixer objectes eficientment dins la pròpia imatge.

Aquesta tesis treballa amb particions jeràrquiques d'una imatge que defineixen un
conjunt de regions candidates per contenir un objecte. Segmentar imatges utilitzant
aquestes regions es compararà amb els resultats obtinguts amb candidats objecte
extrets mitjançant altres algorismes de l'estat de l'art.

L'objectiu final és segmentar imatges semànticament de forma eficient aprofitant la
informació entre nivells de l'arbre jeràrquic, maximitzant la qualitat de la segmentació
quan només un conjunt molt reduït de zones de l'arbre són analitzades.

 3

Resumen

La motivación de este trabajo es explorar eficientemente un árbol jerárquico para
segmentar semánticamente imágenes como método para reconocer objetos. Muchos
trabajos han tratado la búsqueda eficiente de objetos en imágenes desde el punto de
vista global de la imagen en grandes bases de datos, pero no se han dedicado tantos
esfuerzos en resolver el problema de localizar y reconocer objetos dentro de la propia
imagen.

Esta tesis trabaja con particiones jerárquicas de una imagen que definen un conjunto de
regiones candidatas para contener un objeto. Segmentar imágenes utilizando estas
regiones se comparará con los resultados obtenidos a partir de candidatos de objeto
extraídos mediante otros algoritmos del estado del arte.

El objetivo final es segmentar imágenes semánticamente de forma eficiente
aprovechando la información entre niveles del árbol jerárquico, maximizando la calidad
de la segmentación cuando sólo un conjunto muy reducido de zonas del árbol son
analizadas.

 4

Acknowledgements

First of all I would like to thank my advisor Xavi for all his dedication to this work, how he
has made the impossible to gather all his students at least once a week so we could
comment and share our findings, and feel that researching is better done in community. I
also wanted to thank Carles for helping me in all the stages of the project, he has made
that things looked much easier, and it is all thanks to his supportive attitude. I also wanted
to thank Albert Gil and Josep Pujal for their technical support and for helping me in the
most terrible moments of the research, when nothing works.

Mostly I wanted to thank my family, my parents and sister, who have always been there
for me, being my best support. Finally I wanted to thank my partner for being always by
my side and making me better day after day.

 5

Revision history and approval record

Revision Date Purpose

0 6/07/2015 Document creation

1 6/07/2015 Document revision

2 9/07/2015 Document revision

DOCUMENT DISTRIBUTION LIST

 Name e-mail

 Míriam Bellver Bueno miriam.bellver@alu-etsetb.upc.edu

 Xavier Giró i Nieto xavier.giro@upc.edu

 Carles Ventura carles.ventura@upc.edu

Written by: Reviewed and approved by:

Date 9/07/2015 Date 9/07/2015

Name Míriam Bellver Bueno Name Xavier Giró i Nieto

Position Project Author Position Project Supervisor

 6

Table of contents

Abstract ... 1
Resum ... 2
Resumen ... 3
Acknowledgements .. 4
Revision history and approval record .. 5
Table of contents .. 6
List of Figures: ... 8
List of Tables: ... 11
1. Introduction .. 12

1.1. Statement of purpose .. 12
1.2. Work packages .. 13
1.3. Milestones .. 16
1.4. Gantt Diagram ... 17
1.5. Incidences .. 17

2. State of the art of the technology used or applied in this thesis: 18
2.1. Overview of the state of the art .. 18
2.2. Semantic Segmentation ... 18
2.3. Ultrametric Contour Map (UCM) .. 19
2.4. Constrained Parametric Min-Cuts (CPMC) ... 19
2.5. Second Order Pooling (O2P) ... 20
2.6. Simultaneous Detection and Segmentation .. 21

3. Methodology / project development: ... 22
3.1. Dataset: Pascal VOC ... 22
3.2. Metric: Accuracy Per Category (AAC) ... 22
3.3. Experimentation ... 23

3.3.1. Pipeline ... 23
3.3.2. Implementation .. 24

3.3.2.1. Class-agnostic exploration ... 26
3.3.2.2. Class-dependent exploration ... 28

4. Results .. 30
4.1. Results with O2P descriptors ... 30

4.1.1. Comparison of naive UCM and CPMC ... 30
4.1.2. Results obtained with smart explorations of UCM .. 31

4.1.2.1. Results of configurations based on UCM indexes ... 32
4.1.2.2. Results of configurations based on UCM costs ... 32
4.1.2.3. Results of configurations based on UCM indexes and costs 32
4.1.2.4. Results of top-down prediction configurations ... 33
4.1.2.5. Final comparison of CPMC and UCM using O2P descriptors 33

4.2. Results with SDS descriptors .. 33
4.2.1. Results of top-down prediction configurations .. 34
4.2.2. Results of configurations based on UCM costs .. 34

4.3. Visualization of regions selected ... 35
4.4. Comparison of computation time ... 36

 7

5. Budget .. 38
6. Conclusions and future development: .. 39
Bibliography: .. 40
Appendix I: Different configurations of Average Accuracy per Category vs. number
of regions .. 41
Appendix II: Example of an ucm and a dendrogram ... 61
Appendix III: Extended Abstract for WiCV in CVPR .. 62
Appendix IV: Post in Bitsearch blog about Semantic labelling of CPMC object
candidates ... 64
Glossary .. 66

 8

List of Figures:

Figure 1: Gantt diagram ... 17	

Figure 2: The second image is an object segmentation, labelling each object with a

different colour. The third image, however, corresponds to a semantic segmentation,
identifying that both objects in the image belong to the same class category. This
image belongs to PASCAL VOC dataset [14] ... 19	

Figure 3: Hierarchical segmentation and Ultrametric Contour Map (UCM). This image is
from [3]. ... 19	

Figure 4: This picture shows a list of CPMC object candidates ranked by its likelihood of
being an object. The image is from [5]. ... 20	

Figure 5: Pooling of SIFT descriptor in order to obtain an O2P region descriptor. This
picture is from [13]. .. 20	

Figure 6: Pipeline followed for the SDS task. The first CNN is for the bounding boxes
whereas the second is for the regions. The concatenation of the descriptors obtained
from both networks generates the final descriptor. ... 21	

Figure 7: This figure depicts the overlap between the predicted object and the ground
truth, and the nomenclature of the pixels to compute AAC. 22	

Figure 8: Pipeline of the experiments carried out in this thesis. 23	

Figure 9: The picture 2008_003876 of the PASCAL dataset of a plane and its

corresponding ucm, which shows the boundaries of the partition with different
weights. ... 25	

Figure 10: Merging sequence of the first fusions of 2008_003876 picture. For each row
the two first columns are the indexes of the nodes that merge, and the last column is
the index of the node generated. .. 25	

Figure 11: Dendrogram of 2008_003876 picture, whose y axis represents the costs, and
the x axis the indexes of the leaves. Also masks of the regions associated to different
nodes are shown. .. 26	

Figure 12: Nomenclature of the different costs and their relations depicted in a
dendrogram. .. 27	

Figure 13: Flow chart of the class-dependent exploration algorithm. 29	

Figure 14: Plot of Accuracy vs. number of regions with CPMC and naive UCM, whose

regions are sorted according their indexes, starting by the higher index and
descending until the first region. ... 30	

Figure 15: The plot of the left shows the two best configurations of UCM compared to
CPMC in a 150 regions sweep. The plot of the right shows a sweep of 15 regions of
the set of best configurations of UCM compared to CPMC. 31	

Figure 16: The plot of the left shows the two best configurations of UCM with SDS
compared to CPMC with SDS for a sweep of 150 regions. The plot of the right shows
a set of the best configurations using SDS for a 15 regions sweep. 33	

Figure 17: Regions and their associated indexes selected when using different
configurations of UCM for picture 2008_003876. .. 35	

 9

Figure 18: Regions and their associated indexes selected when using different
configurations of UCM for picture 2007_000042. .. 36	

Figure 19: Plot of CPMC performance for 150 regions. ... 41	

Figure 20: Configurations from 0 to 4, and random configuration. Plot with 15 regions. .. 42	

Figure 21: Configurations from 0 to 4, and random configuration. Plot with 25 regions. .. 43	

Figure 22: Configurations from 0 to 4, and random configuration. Plot with 150 regions. 43	

Figure 23: Configurations from 5 to 11. Plot of 15 regions. .. 46	

Figure 24: Configurations from 5 to 11. Plot of 25 regions. .. 46	

Figure 25: Configurations from 5 to 11. Plot of 150 regions. .. 47	

Figure 26: Configurations from 12 to 17. Plot of 15 regions. .. 47	

Figure 27: Configurations from 12 to 17. Plot of 25 regions. .. 48	

Figure 28: Configurations from 12 to 17. Plot of 150 regions. .. 48	

Figure 29: Configurations from 18 to 24. Plot of 15 regions. .. 49	

Figure 30: Configurations from 18 to 24. Plot of 25 regions. .. 49	

Figure 31: Configurations from 18 to 24. Plot of 150 regions. .. 50	

Figure 32: Best configurations that consider costs. Plot of 15 regions. 50	

Figure 33: Best configurations that consider costs. Plot of 25 regions. 51	

Figure 34: Best configurations that consider costs. Plot of 150 regions. 51	

Figure 35: Configurations from 25 to 27. Plot of 15 regions. .. 52	

Figure 36: Configurations from 25 to 27. Plot of 25 regions. .. 53	

Figure 37: Configurations from 25 to 27. Plot of 150 regions. .. 53	

Figure 38: Second derivative of regions' costs respect to their regions' indexes. 54	

Figure 39: Selected regions' indexes according this criterion. ... 54	

Figure 40: Configuration 28. Plot of 150 regions. ... 54	

Figure 41: Best configurations of UCM compared to CPMC. Plot of 15 regions. 55	

Figure 42: Best configurations of UCM compared to CPMC. Plot of 50 regions. 55	

Figure 43: Best configurations of UCM compared to CPMC. Plot of 150 regions. 56	

Figure 44: Two best configurations of UCM compared to CPMC. Plot of 15 regions. 56	

Figure 45: Plot of two best configuration of UCM compared to CPMC. Plot of 25 regions.

 .. 57	

Figure 46: Plot of the two best configurations with UCM compared to CPMC. Plot of 150

regions. ... 57	

Figure 47: Best configurations of UCM compared to CPMC using SDS descriptors. Plot of

15 regions. .. 58	

Figure 48: Plot of best configurations of UCM compared to CPMC using SDS descriptors.

Plot of 25 regions. ... 58	

 10

Figure 49: Best configurations of UCM compared to CPMC using SDS descriptors. Plot of
150 regions. .. 59	

Figure 50: Two best configurations of UCM compared to CPMC using SDS descriptors.
Plot of 15 regions. ... 59	

Figure 51: Two best configurations of UCM compared to CPMC using SDS descriptors.
Plot of 25 regions. ... 60	

Figure 52: Two best configurations of UCM compared to CPMC using SDS descriptors.
Plot of 150 regions. ... 60	

Figure 53: The picture of the left corresponds to a picture of the PASCAL VOC dataset,
and the picture of the right is its ucm partition. .. 61	

Figure 54: Dendrogram of the tree partition generated from this same picture. 61	

 11

List of Tables:

Table 1: Comparison of AAC between CPMC and UCM for different regions budget. 30	

Table 2: Comparison of AAC between different configurations of UCM and CPMC for

different regions budget using O2P descriptors. ... 31	

Table 3: Comparison of AAC between different configurations of UCM and CPMC for

different regions budget using SDS descriptors. ... 34	

Table 4: Computation time of the set of object candidates of CPMC and the hierarchical

partition. .. 36	

Table 5: Computation time of the prediction of the final segmentation. 37	

Table 6: Total personal costs. .. 38	

Table 7: Total licenses costs .. 38	

 12

1. Introduction

1.1. Statement of purpose

This thesis intends to efficiently explore a hierarchical partition for semantically
segment an image in order to locate its objects and boundaries. A semantic
segmentation of an image aims at obtaining a reduced set of regions defined by
precise boundaries, labelling each region by its class category. The input of our
algorithm is a set of object proposals that can be computed using different techniques.

In this research, the different regions defined by a hierarchical partition [2, 3] are
considered candidate locations to contain an object. Other approaches in the state of the
art are techniques based on the generation of a ranked list of accurate segments [5,
11] or bounding boxes [10] that are more likely to locally describe the objects of the
image. Our work will compare the object proposals generated with the hierarchical
partition with those from a popular baseline technique for object proposals: CPMC [5].

Efficient object recognition is essential for many computer vision applications such as
object retrieval. The goal of this research is gaining efficiency at the expense of losing
accuracy by means of using hierarchical partitions. Efficiency will be measured by
the number of regions analysed and the computation time of each region by the
algorithm at issue, whereas accuracy will determine the quality of the image semantic
segmentation prediction compared to Ground-Truth.

Considering the scope of this research, hierarchical partitions have the advantage that
provide multiscale information, which is fundamental in order to guide an efficient
exploration through the tree partition. However, techniques based on object
candidates generate more accurate object proposals than the regions obtained from
a hierarchical partition.

Another goal of the project is to compare the performance achieved when describing the
different types of object proposals with handcrafted features [12] or state of the art
descriptors extracted from a convolutional neural network [8].

This project aims at continuing the research that Xavier Giró, my advisor, started with his
PhD Thesis, developing some of the ideas that arose during his research. Xavier Giró's
thesis addressed Part-based Object Retrieval with Binary Partition Trees [1]. He
guided a research about Binary Partition Trees [2], comparing the regions the algorithm
generates to objects that have a semantic meaning. In order to retrieve objects from
images he worked with Bag of Words aggregation [16], developing an efficient strategy
to explore the binary tree partition. This strategy consisted of bottom-up extracting
features of the hierarchical partition, so that a region was described by all the objects
contained in the region and not only by the region itself. Using such descriptors, some
branches of the tree could be discarded while trying to detect an object through a top-
down exploration of the tree.

Following the steps of Xavier Giró, this work is based on developing an efficient strategy
to semantically segment images taking advantage of the multiscale information that
hierarchical partitions provide. For this research Ultrametric Contour Maps (UCM) [3]
hierarchical partitions and Second Order Pooling (O2P) descriptors [4] will be
combined in the first place. For the purpose of comparing hierarchical partitions regions

 13

to object-candidates-based algorithms, Constrained Parametric Min-Cuts (CPMC) [5]
object candidates will be tested. The software developed to perform this research draws
from a source code of João Carreira [4, 5] that Carles Ventura, PhD candidate and
coadvisor of this thesis, had already used for his research. The code computes semantic
segmentations of images using CPMC object candidates [5] and O2P descriptors [4].
Carles Ventura has provided me this code and also a code to generate UCM partitions
[3].

To perform the final experiments of this project, we replaced the handcrafted O2P
descriptors with SDS deep learning descriptors [6] extracted from convolutional
neural networks [8]. Eduard Fontdevila BSc student has provided a code to extract
these descriptors used in the framework of his BSc thesis [17].

All this research has been developed using Matlab and the Image Processing Group
platform in UPC.

1.2. Work packages
In the following tables there are the work packages of this project.

Project: Project Proposal WP 1

Major constituent: Documentation

Short description: Planning and description of the project.

Planned start date: 19/02/15

Planned end date: 6/03/15

Start event: 19/02/15

End event: 6/03/15

T1: Definition of the goal of the project.

T2: Planning of the project

T3: Documentation about the project proposal

T4: Revision of the project proposal

T5: Validation of the project proposal

Deliverables:

Project
Proposal

Dates:

6/03/15

Project: Research about the state of the art WP 2

Major constituent: Documentation

Short description: Reading state of the art papers about semantic segmentation,
hierarchical partitions, object candidates and object recognition in images.

Planned start date: 9/02/15

Planned end date: 25/02/15

Start event: 9/02/15

End event: 25/02/15

T1: "Part-based Object Retrieval with Binary Partition Trees", Xavier Giró, Phd thesis

T2: "Object Recognition by Ranking Figure-Ground Hypotheses" ,Joao Carreira.

T3: "Segmentation as Selective Search for Object Recognition", Koen E. A. van de
Sande and Theo Gevers

Deliverables:

Blog posts
on Bitsearch
summing up
papers.

Dates:

Undefined.

 14

Project: Critical Revision WP 3

Major constituent: Documentation

Short description: Compiling the work carried out until that moment.

Planned start date: 1/04/15

Planned end date: 8/04/15

Start event: 13/04/15

End event: 24/04/15

T1: Compile all the work done during these first weeks.

T2: Write the critical revision following the template.

T3: Revision of critical revision.

T4: Validation of critical revision

T5: Deliver it in Atenea.

Deliverables:

Critical
Revision

Dates:

24/04/2015

Project: Adaptation of software WP 4

Major constituent: Software development

Short description: The goal of this package is adapting the already existing
programs in GPI to make measurements of efficiency depending on the
number of segments or object candidates analyzed.

Planned start date: 2/03/15

Planned end date: 13/04/15

Start event: 2/03/15

End event: 18/05/15

T1: Learn how to work with GPI servers.

T2: Understanding the code of Carles Ventura of CPMC object candidates.

T3: Adapting this software to calculate the accuracy of the segmentation
depending on the number of objects candidates analyzed.

T4: Understanding Carles Ventura's matlab code to work with UCM.

T5: Adapting UCM software to generate its masks and descriptors, and
generating a naive list of regions.

T6: Adapting Carles Ventura's software to make a selective search using UCM.

T7: Deliver the resulting codes to the Group of Image Processing with its
documentation.

Deliverables:

Resulting code and
documentation

Dates:

18/05/15

Project: Scientific publication redaction WP 5

Major constituent: Documentation

Short description: Writing a scientific publication for CVPR WiCV.

Planned start date: 23/03/15

Planned end date: 23/04/15

Start event: 23/03/15

End event: 23/04/15

 15

Project: Experimentation WP 6

Major constituent: Research and assessment of results

Short description: Perform the comparison between the efficiency achieved
using hierarchical partitions and the efficiency obtained with algorithms that
use object candidates such as CPMC. Also try to test the best configurations
using deep learning features.

Planned start date: 13/04/15

Planned end date: 15/06/15

Start event: 13/03/15

End event: 15/06/15

T1: Calculate accuracy per category using CPMC object candidates.

T2: Calculate accuracy per category using a naive list of UCM regions.

T3: Calculate accuracy per category using UCM regions and a efficient
exploration throughout the partition.

T4: Analyze results comparing in terms of accuracy and efficiency.

T5: Train the algorithm to use SDS features

T6: Test best configurations with SDS features.

T7: Think about further possible improvements.

T8: Prepare the results for the memory of the project.

Deliverables:

Part of this
experimentation
should be on the
Critical Revision
Document

Dates:

30/06/15

Project: Redaction of the memory and oral defence WP ref: 7

Major constituent: Documentation

Short description: Writing the final memory for the TFG and preparing the oral
defense.

Planned start date: 15/05/15

Planned end date: 15/07/15

Start event: 30/05/15

End event: 24/07/15

T1: Writing the memory

T2: Revision of memory

T3: Deliver the memory

T4: Prepare the oral defense

T5: Rehearsal of the presentation

T6: Doing the final presentation

Deliverables:

Final Memory of
the TFG

Dates:

Delivery of final
memory: 10/07/15

Oral defense:
20/07/15

T1: Writing publication for CVPR WiCV. Deliverables:

 Deliver publication.

Dates:

23/04/15

 16

1.3. Milestones
In the following table the milestones of this project are listed:

WP# Task# Short title Milestone / deliverable Date (week)

1 1 Validation of Project
Proposal

Project Proposal 6/03/15

2 2 Read Xavier Giró's PhD Understanding of the content 3th week

2 3 Read papers about
segmentation

Research about state of the art 4th week

4 4 Adapting CPMC code Obtain CPMC code that enables to
determine segments used

13/03/15

3 5 Critical Revision Critical Revision deliverable 24/04/15

4 4 Adapting UCM code Adapt code to study efficiency with
UCM

18/05/15

5 5 Write scientific publication Deliver to CVPR for WiCV the
publication.

23/04/15

6 6 Compare efficiency of
different segmentation
techniques

Obtain results of the
experimentation

25/06/15

6 7 Train the algorithm with SDS
descriptors and check
results

Obtain results of the
experimentation and compare them
to other features

30/06/15

6 8 Further improvements Reflect about the results obtained. 30/06/15

7 9 Write the memory of the
project

Deliverable of the final memory 10/07/15

7 10 Rehearse the project
presentation

Rehearsal of the oral presentation 17/07/15

7 11 Oral presentation of the
project

Oral presentation of the project 20/07/15

 17

1.4. Gantt Diagram

Figure 1: Gantt diagram

1.5. Incidences
Since the critical review submission, a few incidences have changed slightly the work
packages, milestones and Gantt diagram.

For instance, the WP5 tasks have changed, due that the extended abstract (Appendix
III) submitted to Woman in Computer Vision (WiCV) workshop of International
Conference on Computer Vision and Pattern Recognition (CVPR) was not accepted,
and therefore no poster had to be prepared. Moreover, it was originally planned a
submission to the LSUN workshop of Computer Vision but we considered that the results
we got on the date of submission were not promising enough yet.

Regarding the WP6 of experimentation, a few tasks have been included, such as
training and testing the algorithm with deep learning SDS descriptors in order to
see whether they obtain better results.

The other work packages remain the same, considering a slight change of dates due the
two incidences previously explained.

 18

2. State of the art of the technology used or applied in this
thesis:

2.1. Overview of the state of the art
The traditional local analysis of an image is based on scanning with a sliding window
different locations and scales of an image. This exhaustive approach was combined with
an efficient feature extraction in the classic work by Viola and Jones [7] and is also at
the core of popular convolutional neural networks [8].

An alternative to exhaustive search is using class-agnostic image processing to estimate
the most feasible locations in an image to contain an object. A first family of solutions is
based on the saliency maps [9], which typically assign to each pixel a likelihood value
that predicts the user attention. These solutions though do not directly provide a region of
support for the object.

A different approach aims at reducing the amount of possible locations for an object by
clustering the pixels with a segmentation algorithm. In these cases, a reduced set of
regions is automatically defined with precise boundaries. However, flat segmentations
tend to focus their analysis at a certain spatial scale, which is not rich enough when the
size of the object is unknown. As an alternative, hierarchical segmentations [2, 3]
provide a nested set of regions that capture a broad range of scales.

A last group of techniques are based on generating a ranked list of object candidates in
the image, whether as bounding boxes [10] or accurate segments [3, 5, 11]. These
techniques try to model the generic appearance of an object so that class-specific
detectors are trained on them.

This thesis compares the hierarchical segmentations generated by Ultrametric
Contours Map (UCM) [3] with a popular technique that uses object candidates,
Constrained Parametric Min-Cuts (CPMC) [5]. The features that will describe both the
regions of the UCM [3] hierarchical partition and the object candidates of the CPMC [5]
are Average Pooling of SIFTs (O2P) [4] and SDS [6]. The following sections aim at
further developing these concepts that will be relevant for this research.

2.2. Semantic Segmentation
Semantic segmentations are an approach to solve the object recognition task. In a
semantic segmentation every pixel of the image is labelled by its object class category.
The result is an image divided into segments that correspond to the objects of the scene.
In the following example we can see the difference between object segmentation and
semantic segmentation.

 19

Figure 2: The second image is an object segmentation, labelling each object with a different colour.
The third image, however, corresponds to a semantic segmentation, identifying that both objects in

the image belong to the same class category. This image belongs to PASCAL VOC dataset [14]

In an object segmentation the algorithm detects and segments objects in an image
without classifying their class category. In a semantic segmentation each pixel is labelled
by its class category, without distinguishing the different instances of the class that may
appear in the image. In the above example the object segmentation identifies two objects
whereas the semantic segmentation provides information only of the semantic class
associated to the pixels. By combining the object and semantic segmentation it is
possible to both distinguish the amount of object instances and their associated semantic
classes. The evaluation of our system focuses on the semantic segmentation of the
image, although in our case we could also provide its object segmentation.

2.3. Ultrametric Contour Map (UCM)
An Ultrametric Contour Map [3] is a hierarchical partition which is generated by a
graph-based region merging algorithm, that iteratively fuses pairs of similar regions, i.e.
the two adjacent regions separated by the minimum weight boundary, starting from a fine
partition at a super pixel level.

The base level of the hierarchical partition is formed by those regions that are more easily
merged. On the other hand the upper levels of the partition are formed by those nodes
that are more difficult to generate because they are more dissimilar.

Figure 3: Hierarchical segmentation and Ultrametric Contour Map (UCM). This image is from [3].

2.4. Constrained Parametric Min-Cuts (CPMC)
CPMC [5, 15] generates a ranked list of object candidates without previous knowledge of
the objects contained in the image. This is achieved by solving a sequence of
Constrained Parametric Min-Cuts. In order to initialize the algorithm, some pixels
should be considered as background and others as foreground. Once made this

 20

selection, a sequence of Min-Cuts [5,15] will segment the image into a set of accurate
regions, which should be filtered and regrouped so that regions not accurate enough or
redundant are discarded.

Finally these object candidates are scored and sorted depending on the likelihood that
each region is an object. A learning scoring function for each object category is used
to obtain the score. Finally we obtain a list of ranked object candidates according to their
likelihood of being an actual object.

Figure 4: This picture shows a list of CPMC object candidates ranked by its likelihood of being an

object. The image is from [5].

2.5. Second Order Pooling (O2P)
Scale-invariant feature transform (SIFT) [12] is an algorithm that detects and describes
local features in images. It provides a feature description in terms of texture and contours.
SIFT local features are extracted over square patches centered at image locations with a
certain pixel width.

Pooling is the procedure that produces a global description of an image region. Second
Order Pooling [4, 13] is a pooling technique that obtains second-order statistics by
computing the outer products of SIFT local features. In order to do the final aggregation
there are two different types of pooling:

• Average Pooling: Averaging the second order SIFT's.
• Max Pooling: Selecting the maximum element for each position of the matrix

among all second order SIFT's.

The aggregated matrix is two-dimensional and symmetric, so half of the matrix contains
all the information of the matrix. To reshape this two-dimensional descriptor into a single
vector, half of the aggregated matrix is zigzag scanned [13].

Figure 5: Pooling of SIFT descriptor in order to obtain an O2P region descriptor. This picture is from

[13].

 21

2.6. Simultaneous Detection and Segmentation
Simultaneous detection and segmentation (SDS) [6] solves the task of detecting
objects of a certain class category of an image and labelling the pixels that belong to
such class. The SDS algorithm consists of first generating region object proposals, for
which Multiscale Combinatorial Grouping (MCG) [11] object proposals are used.

MCG [11] generates accurate object candidates from the combination of regions that
UCM hierarchical partition [3] generates. Their approach consists of extracting features
of these object proposals using a convolutional neural network (CNN) [8]* that extracts
features from both the bounding box as well as the region of the object candidate. Two
networks, one for the bounding boxes and another for the regions, are fine-tuned* and
jointly trained to obtain descriptors tailored for the semantic segmentation task on
the Pascal VOC dataset [14]. After that, a SVM* is trained to obtain for each object
candidate a score that captures the confidence of belonging to each object class
category.

Figure 6: Pipeline followed for the SDS task. The first CNN is for the bounding boxes whereas the

second is for the regions. The concatenation of the descriptors obtained from both networks
generates the final descriptor.

* CNN, fine-tuning and SVM are described at the glossary.

 22

3. Methodology / project development:

3.1. Dataset: Pascal VOC
This research is assessed on the segmentation challenge of the Pascal Visual Object
Classes Challenges (PASCAL) benchmark [14]. PASCAL VOC is a network of
excellence in the research field of computer vision that provides standardised image data
sets for object class recognition and also runs challenges assessing performance on
recognition tasks from a number of visual object classes in realistic scenes. This work is
based on the segmentation challenge that PASCAL VOC provides, which is defined as
following:

"Generating pixel-wise segmentations giving the class of the object visible at each pixel,
or "background" otherwise."

The segmentation challenge aims at detecting and segmenting 20 classes of
objects. The data set of PASCAL that was given to accomplish this challenge consists of

• 1112 training images
• 1111 validating images
• Testing images

The segmentation challenge provides a set of training images to train the algorithm and
a set of validating images to test its performance before submitting the task. The final
assessment of the algorithm on the challenge is computed using the testing images that
only PASCAL possesses.

3.2. Metric: Accuracy Per Category (AAC)
The segmentation accuracy is measured as the Intersection over Union (IoU) metric of
the predicted segmentation and the Ground-Truth, averaged across all object classes
and the background. In this work we will refer to this measure Average Accuracy per
Category (AAC) [15].

Figure 7: This figure depicts the overlap between the predicted object and the ground truth, and the

nomenclature of the pixels to compute AAC.

 23

3.3. Experimentation
Now that the dataset and the metric used to assess performance have been defined, this
section will address the experiments performed during this thesis.

3.3.1. Pipeline

Figure 8: Pipeline of the experiments carried out in this thesis.

Figure 8 illustrates the pipeline of the experiments. The goal of this research is achieving
an efficient semantic segmentation in terms of the number of object proposals
analysed and the accuracy obtained. Firstly we have a dataset partition for training and
another for testing the performance of the algorithm. PASCAL [14] already provides a
train and validation partitions to accomplish this role, with their corresponding ground
truths that allow both training and assessment.

In the training phase, we aim at generating an algorithm that semantically segments our
images. For every image of the training set, we generate a set of object candidates. Two
algorithms will be used to obtain object candidates: CPMC [5], based on the idea of
generating regions that define objects of the image, and UCM [3] which generates a
hierarchical partition, whose regions will be considered object candidates. The second
step is extracting the features of these regions. For the first experiments in this work, O2P
[4] descriptors will be used. Features extracted from the SDS [6] architecture will also be
tested at the final stage of the experimentation.

The next step is training a linear support vector regressor (SVR) [4] for each object
class category to predict the overlap between an object candidate and the object that
defines each class category. In the training phase we aim at obtaining a model that
determines each object class category, so we will obtain as many models as object class
categories we are dealing with. With the Ground-Truth object segments for every class
category and the object candidates with higher overlap with the Ground-Truth, we
train an SVR for each class category.

Once all the SVRs are trained, we will be able to obtain for every object proposal a vector
whose elements are related to the likelihood of that object to belong to each object
class category. These vector elements are the soft-decisions obtained from every SVR
classifiers, and capture the confidence values of belonging to each category.

 24

Once the algorithm is trained, it is time to test it. For testing first we obtain the object
candidates for those images from the test dataset and extract their features. The
algorithm outputs the predicted confidence values of each object candidate with the
different object class categories, and predicts a semantic segmentation from the
different confidence values and the estimation of objects contained in an image,
which for PASCAL VOC dataset is 2.2 objects per image. The segmentation obtained is
assessed using the AAC metric.

3.3.2. Implementation
This research has used as starting point the source code of João Carreira [15] in
MATLAB, which segments images using 150 CPMC object candidates and O2P features
[4]. The code also assesses the segmentation accuracy with AAC. For the purpose of
measuring efficiency in terms of the number of regions analysed using different
types of object candidates and descriptors, the following changes were required:

• Enable to set the number of object candidates, so we can later compare
efficiency and assess AAC vs. number of object candidates.

• Enable the algorithm to use UCM regions as object candidates and extract their
features.

• By default CPMC object candidates are sorted by their likelihood of being an
object. This work has researched several alternative approaches for UCM, trying
to find which regions of the hierarchical partition are more likely objects, so
the calculation of different orders of these regions following different criterions
should be coded. Also the code needed to be adapted to efficiently calculate
AAC vs. number of object candidates of different orders of the same regions.

• Extract SDS [6] descriptors for UCM different configurations and CPMC and train
the algorithm using such descriptors. The code to extract SDS descriptors has to
be adapted to extract CPMC and UCM regions, due that it was originally designed
for MCG [11] regions.

The core of this research has been testing different methods for sorting UCM regions
and assessing AAC depending on the number of regions analysed. Notice that the
number of regions analysed is the budget of regions introduced into the segmentation
algorithm. If a budget of 5 regions is considered, it means that we introduce 5 regions into
the segmentation algorithm, and the algorithm decides which regions to select in order to
better semantically segment the image, considering that the average number of objects of
an image of the PASCAL VOC data set is of 2,2 objects, a pretrained value kept in our
work to allow a fair comparison with the CPMC-based solution of [15].

First of all some general features of the UCM hierarchical partitions structure should be
highlighted:

• A UCM tree has a total of (2*(number of leaves) -1) nodes.
• Each region of the partition is represented by an index. The highest index is the

root node, and the lowest indexes correspond to the leaves.
• The structure that stores the hierarchical partition contains two important files

 25

 1. a file of the image size that contains the contours of the image and the
weight of these contours.

Figure 9: The picture 2008_003876 of the PASCAL dataset of a plane and its corresponding ucm,

which shows the boundaries of the partition with different weights.

 2. a merging sequence, i.e. the sequence of fusions between nodes that
 defines the hierarchical partition.

Figure 10: Merging sequence of the first fusions of 2008_003876 picture. For each row the two first

columns are the indexes of the nodes that merge, and the last column is the index of the node
generated.

• The UCM hierarchical partition can be represented with a dendrogram that not
only represents the fusions between regions, but also the costs of each fusion,
which correspond to the height of the node in the dendrogram. Notice that the
regions are created depending on their fusion cost value, so that the costs of the
created regions always increase. The range of the costs' values is of [0,1]. For
instance, a dendrogram of the UCM hierarchical partition of an image of PASCAL
data set is depicted in Figure 11 from below. For an easier visualization leaves
costs are zero, but as our tree is pruned as it is explained below, the actual
leaves costs are not zero.

 26

Figure 11: Dendrogram of 2008_003876 picture, whose y axis represents the costs, and the x axis the

indexes of the leaves. Also masks of the regions associated to different nodes are shown.

Now some specific traits of the UCM hierarchical partitions used for this research
should be highlighted in order to later better understand the configurations:

• First a fully-grown tree, i.e. the complete tree that UCM algorithm creates, is
computed with an approximated number of 1500 nodes.

• Afterwards the tree is pruned, i.e. substitutes some subtrees for leaves
depending on the number of nodes that we want to use. In particular we have
selected a tree of 151 nodes (75 leaves) in order to compare results to 150
CPMC object candidates. Notice that a tree of 150 nodes is impossible to
generate because the total amount of nodes must be an odd number (2*(number
of leaves) -1).

Different configurations of UCM refer to different strategies of picking the different
regions of the partition in order to later segment the image. The criterions of the order of
the different configurations considered in this research have been the following.

3.3.2.1. Class-agnostic exploration
Hierarchical partitions are generated by iteratively clustering regions of pixels with
similar characteristics, starting from a fine partition. The merging sequence is then
determined by the similarity between regions. If two adjacent regions are really dissimilar,
it is said that a strong boundary separates them, and that the cost associated to such
pair of regions is high. This information is stored in a file as stated in 3.3.2.

The first approach to sort the regions of the hierarchical partition is based on the
assumption that an object is homogeneous in comparison to the background of the
image. For this reason it makes sense to think that fusions that add content to an
homogeneous object may have similar costs, whereas the fusion cost of the merging
between the object and the background will be higher because they are more
dissimilar.

Configurations based on indexes: The indexes of the nodes of a hierarchical partition
determine when each region has been created. The first regions created are associated
to the lowest fusion costs and to the lowest indexes. Consecutive indexes are associated

 27

to regions that share similar costs. If the descendants of a node differ in the number of
index mean that though they are adjacent, they have been created in different moments
of the hierarchical partition generation, so that their costs are also different. If they are
adjacent but their costs are different it means that probably they are dissimilar regions,
because their creation was characterized by different boundaries costs, so the regions
can be associated to different objects. This argumentation has lead to think that objects
can be found in regions associated to indexes that differ from the indexes of their
adjacent regions.

In order to find these regions, the basic idea followed in the different configurations
proposed by this thesis, is a top-down approach that descends through the nodes
related to higher indexes, which in general are the ones more similar to their ancestors,
but consider their sibling as object candidate because they are the regions associated to
more distinct indexes. The different configurations derived from this idea are further
explained in the Appendix I.

Configurations based on costs: A second research line addressed in this thesis is the
exploration of the UCM based on the costs of the merges instead of the index of the
merging sequence. The indexes give an insight of which regions are associated to higher
costs compared to other regions, but not of the costs values themselves. We can use the
costs values to further explore the same intuitions that guided the study based on indexes.
First of all a clear notation should be established. The dendrogram in Figure 12
introduces the terminology used:

Figure 12: Nomenclature of the different costs and their relations depicted in a dendrogram.

A major part of the configurations calculate derivatives of the costs related to a node. If
node 8 in the previous picture is the one we want to analyse, it is interesting to know the
differences between its father and descendants costs. A first approach is the following set
of first derivatives.

𝑐 = 𝑥 − 𝑦

𝑎 = 𝑦 − 𝑧

𝑏 = 𝑦 − 𝑘

Notice that we are not normalizing by any value these derivatives, but we could normalize
either by the first operand or the second one. If it is considered that normalization is not
required is because it is meaningful for us the distance of a single fusion, so we would
normalize all these derivatives by a unit.

These first derivatives give insight of the differences of costs between consecutive
regions in the partition. Another interesting approach is the second derivative, which
takes into consideration all three levels of the node in the hierarchy. By computing the

Consider this tree of 9 nodes. We are going to analyse the
node with index number 8:

x : cost of the parent node
y : cost of the node
z,k : costs of the descendants
a :y-z difference of fusion cost between node and one of its descendants
b :y-k difference of fusion cost between node and one of its descendants
c :x-y difference of fusion cost between father and node to analyse

 28

second derivative an insight of how the differences between costs change can be
apprehended. More possibilities could be contemplated, but for this research the
following second derivatives have been considered:

𝑐 − 𝑚𝑖𝑛(𝑎, 𝑏)

𝑐 − 𝑚𝑎𝑥(𝑎, 𝑏)

In the Appendix I there is a table with all the configurations considered, not only the ones
that consider the derivatives criterion, but also a set of configurations that mixes
configurations based on indexes with configurations based on costs.

All configurations sort the regions depending on the values obtained with these
derivatives or other functions. In concrete, in the appendix all the configurations are
defined by the function that is being maximized.

3.3.2.2. Class-dependent exploration
This last approach differs from the two previous because it is not class-agnostic. The
criterion to select which regions to analyse first considers the outputs of the SVR for each
object class category, i.e. the predicted overlap with every object of the different
categories.

As the scope of this work is developing an efficient strategy, it is interesting that the
decision of the classifier for a region gives us information of what region to analyse next,
so that a sequence of smartly selected regions is defined.

Xavier Giró developed an efficient strategy to explore a hierarchical partition during his
PhD thesis using Bag of Words Descriptors [1]. The strategy consisted of a top-down
approach that uses a detector and a classifier in order to recognize objects in images.
The detector detects which objects are contained in every region, so that en efficient
exploration can be performed. At the same time a classifier on the region analysed
determines whether the region itself is the object we are seeking or not.

In the framework of the problem that we are dealing with in this work, we are trying to
recognize the 20 object classes from Pascal. A first approach would be using the SVR
outputs for each region to decide how to explore the tree. The proposed top-down
exploration algorithm is the following:

 1. The algorithm starts always at the root node. It is not necessary to know the
confidence vector for this node, because we are always going to start with it.

 2. Consider its two descendants regions, and obtain the SVR's outputs for both.
For any of the classes we are considering, the one that has a higher confidence value
is the one we are considering in order to descend. We store its sibling into a queue,
because we are going to analyse it later.

 3. Now we store into the queue the two descendants of the node analysed in the
previous step.

 4. We check which element of the queue has a higher confidence value for any
of the classes. The algorithm is going to descend through this node if the class that
scores the maximum punctuation is a different one than the previous class considered,
and in case the previous class considered is the same there are two options:

• The node analysed previously was its ancestor. In this case we check the
score, and if it is lower than in the previous iteration, the algorithm does not

 29

descend through this node in order to avoid exploring a branch when the
object at issue has already been found on that branch. The algorithm checks
the nodes in the queue until a proper node is found. If no proper node is
found, the one with higher overlap is analysed.

• The node analysed previously was not its ancestor. In this case the
algorithm descends through that node.

 5. We keep repeating the 3 and 4 steps until all nodes have been analysed.

The following Figure 13 depicts the flow chart of the algorithm previously explained.

Figure 13: Flow chart of the class-dependent exploration algorithm.

 30

4. Results

In this section the best results obtained from all the configurations tested are illustrated.
All the plots depict the AAC obtained when using a budget of a certain number of
regions. At the Appendix I there is an explanation and also different plots for each
configuration tested using the different criterions.

4.1. Results with O2P descriptors

4.1.1. Comparison of naive UCM and CPMC
In Figure 14 and Table 1 we are going to analyse the results obtained with O2P
descriptors when no smart exploration is performed.

Figure 14: Plot of Accuracy vs. number of regions with CPMC and naive UCM, whose regions are
sorted according their indexes, starting by the higher index and descending until the first region.

AAC 5 regions 15 regions Maximum

CPMC 19.4995 27.6783 35.5921

UCM 17.1496 21.8057 25.6645

Table 1: Comparison of AAC between CPMC and UCM for different regions budget.

The first interesting fact perceived from Figure 14 from above is the difference between
the trends of the UCM and CPMC curves. The CPMC curve is mainly increasing
whereas the UCM curve decreases after around 25 regions. This is plausible because
of the intrinsic properties of the regions generated by a hierarchical partition. The different
regions linked to the nodes of a hierarchical partition belong to different levels of the
partition associated to different regions sizes. As the budget of regions available
increases the SVRs output better scores for small regions although they are not the
actual object of the image, so that an over segmentation can affect the classifier
decisions leading to a decreasing accuracy in the final segmentation. This fact is not
present with CPMC regions because they do not present the hierarchical properties.

The configuration of UCM plotted in the Figure 14 corresponds to a naive order of UCM.
It picks the UCM regions according to their indexes in a descending manner. A first
conclusion about this curve is that the regions of UCM that really make a difference in
terms of accuracy are the ones associated to higher indexes, i.e. the ones that belong to
the highest levels of the hierarchy. This is highly related to the regions size, since those

 31

nodes are linked to the biggest regions, and it is reasonable to think that if the budget of
regions is very small it is advisable to select the regions associated to the highest
nodes. Notice that in the CPMC configuration the first zones are also the ones that
increase more dramatically the accuracy, but this is because the regions are sorted
depending on the likelihood that the regions are objects in the image.

As the scope of this project is to develop an efficient strategy to segment images, we are
going to concentrate on the lower amount of number of regions. For the top 5 and top 15
zones, CPMC outperforms the results obtained with the naive UCM configuration as
depicted in Table 1. It is also quite outstanding that CPMC maximum accuracy is much
higher to the one obtained with UCM.

4.1.2. Results obtained with smart explorations of UCM
Many configurations of UCM regions have been tested based on the different criterion
exposed in this thesis in order to guide an efficient exploration through the tree
partition. The best results achieved with O2P descriptors are depicted in Figure 15 and
Table 2.

Figure 15: The plot of the left shows the two best configurations of UCM compared to CPMC in a 150
regions sweep. The plot of the right shows a sweep of 15 regions of the set of best configurations of

UCM compared to CPMC.

Configuration 3 regions 5 regions 15 regions Maximum Method

Max queue 14.1210 16.7512 22.1611 26.4423 UCM index

𝑐 −𝑚𝑖𝑛 (𝑎, 𝑏) ∗ 𝑦 15.6977 19.6139 24.2172 25.1349 UCM cost

𝑐 + 𝑎 − 𝑏 ∗ 𝑦 16.2680 18.2270 22.3265 25.4995 UCM cost

Second derivative
according nodes
creation

16.4387 18.8192 21.5547 25.3733 UCM index and cost

SVR 16.5685 18.4662 22.6758 24.2867 Top-down prediction

CPMC 15.4528 19.4995 27.6783 37.5921 Object Candidates

Table 2: Comparison of AAC between different configurations of UCM and CPMC for different regions
budget using O2P descriptors.

 32

4.1.2.1. Results of configurations based on UCM indexes
One of the best results is obtained by the configuration max queue that only considers
the indexes of the merging sequence ((-) in Figure 15). This configuration is a top-
down approach that follows the argumentation previously in this report explained, that
objects in a hierarchical partition might be found in regions associated to indexes
that differ from the indexes of their adjacent regions. The exploration guided through
the tree starts at the root node and descends through the nodes with highest indexes,
that are the ones that have been created later and are consequently more alike to their
ancestors regions. However, we analyse their siblings, because they have been created
earlier and are consequently more different compared to their ancestors. Once a
leave is reached, the next node to descend through is the one through which the
algorithm has not descended yet and is associated to a higher index, so it has been
created later, and analyse its sibling who has been created earlier compared to its
ancestor. Regions of the higher levels of the hierarchy and more different to their
adjacent regions are the first selected.

4.1.2.2. Results of configurations based on UCM costs
The best configuration of UCM is the one that maximizes a second derivative that
captures how the differences of costs change considering the three levels of the
hierarchy related to a node ((-) in Figure 15). The three levels are the node's ancestor,
the node itself and its descendants. If we represent a node by the index i, the
configuration seeks those regions that maximize the following:

𝑚𝑎𝑥! ((𝑐! −𝑚𝑖𝑛 (𝑎! , 𝑏!)) ∗ 𝑦!)= 𝑚𝑎𝑥! 𝑐! −𝑚𝑎𝑥!(𝑚𝑖𝑛 (𝑎! , 𝑏!)) ∗𝑚𝑎𝑥! 𝑦! =

= (𝑚𝑎𝑥! 𝑐! + 𝑚𝑖𝑛!(𝑚𝑖𝑛 (𝑎! , 𝑏!))) ∗𝑚𝑎𝑥! 𝑦! ∀!

This second derivative demonstrates that best results are achieved by regions whose
cost is similar to the cost of one of its descendants but really dissimilar to its ancestor's
cost. This supports the theory that an object can be found in nodes whose costs
compared to their descendants are similar because an homogeneous region was
being created, but whose father's cost is really dissimilar because it is associated to
the fusion with the background of the object. This has lead to think about
configurations that maximize the difference between the two descendants' costs,
since configurations like 𝑚𝑎𝑥! (𝑚𝑎𝑥 (𝑎! , 𝑏!)) and its variants (can be seen on the
appendix) yield also good results. Maybe implementing 𝑚𝑎𝑥! (𝑚𝑎𝑥 (𝑎! , 𝑏!)) and
𝑚𝑖𝑛!(𝑚𝑖𝑛 (𝑎! , 𝑏!)) is the combination that we are seeking. Following this idea 𝑚𝑎𝑥! 𝑐! +
 + 𝑎! − 𝑏! ∗ 𝑦! has been tested with very good results ((-) in Figure 15 on the right),
though 𝑚𝑎𝑥! 𝑐! −𝑚𝑖𝑛 (𝑎! , 𝑏!) ∗ 𝑦! still is the best.

4.1.2.3. Results of configurations based on UCM indexes and costs
Other configurations have resulted quite successful, such as the one explained in the
appendix that calculates the second derivative of the costs with respect to the
indexing of the nodes ((-) in Figure 15). The indexes are related to the regions creation,
and the regions creation depends on the costs values, so that the regions costs with
respect to their indexes are always increasing. However, the costs values increments can
change, and this second derivative detects those nodes whose costs are much
different in comparison to those nodes created in similar moments during the
hierarchical partition generation. This criterion performs well because regions, mainly

 33

of the nodes associated to higher indexes, are created consecutively due that there
remain only a few last regions to merge, so the same argument followed in 𝑚𝑎𝑥! 𝑐! −
𝑚𝑖𝑛 (𝑎! , 𝑏!) ((-) in Figure 15) is valid for this configuration.

4.1.2.4. Results of top-down prediction configurations
Another interesting criterion that obtains very good results especially when using a few
regions, is the one based on the per-class prediction ((-) in Figure 15 on the right and (-
) on the left). The criterion follows a top-down approach and descends through those
nodes that score a higher overlap prediction with any of the 20 PASCAL classes.

The main issue here is that the SVR's are trained to detect whether a region belongs
to a class, but not to detect whether that region contains a certain object, so it is
already quite surprising that the configuration works well, and gives us a clue that
following this research line and using a detector in order to determine which objects are
contained in a region could be really promising in order to guide an efficient exploration of
the partition.

4.1.2.5. Final comparison of CPMC and UCM using O2P descriptors
Finally it is quite outstanding that CPMC configuration outperforms all UCM
configurations from 5 regions and above. CPMC object candidates are created from
the merging and filtering of regions that the parametric min-cuts produce, resulting in a
set of accurate segments. UCM segments conversely are the straight regions
obtained from the hierarchical partitions, which are not created with the purpose of
becoming object candidates but regions that share similar characteristics in the image.

4.2. Results with SDS descriptors
The best configurations obtained with UCM and O2P descriptors have also been tested
using SDS deep learning descriptors [6]. The results are depicted in Figure 16 and
Table 3.

Figure 16: The plot of the left shows the two best configurations of UCM with SDS compared to CPMC

with SDS for a sweep of 150 regions. The plot of the right shows a set of the best configurations
using SDS for a 15 regions sweep.

 34

Configuration 3 regions 5 regions 15 regions Maximum Method

Max queue 16.6154 20.2263 27.8129 35.6149 UCM index

𝑐 −𝑚𝑖𝑛 (𝑎, 𝑏) ∗ 𝑦 22.6603 27.5581 32.2131 34.3101 UCM cost

𝑐 + 𝑎 − 𝑏 ∗ 𝑦 25.6244 28.1885 32.3963 34.6870 UCM cost

Second derivative
according nodes creation

24.4298 27.1347 31.4007 34.4783 UCM index and cost

Prediction 26.7601 29.5846 32.4771 34.2708 Top-down prediction

CPMC 18.8319 24.6160 36.6310 45.8890 Object Candidates

Table 3: Comparison of AAC between different configurations of UCM and CPMC for different regions
budget using SDS descriptors.

SDS descriptors perform much better than O2P, all configurations yield better results
using these descriptors. The best results obtained with these descriptors are discussed in
the following sections.

4.2.1. Results of top-down prediction configurations
The results reflect that the best configuration for an efficient exploration with SDS
descriptors is the one that considers the per-class prediction ((-) in Figure 16 on the
right and (-) on the left), which drastically outperforms CPMC for a few regions budget.
This supports even more the improvement of SDS descriptors compared to O2P, due that
using the classifiers decisions to explore the tree partition results quite efficient compared
to other techniques only based on costs of the tree partition. Another proof is that the
curves of UCM using SDS do not decrease once they saturate, because the classifier
does not make wrong decisions even when small regions associated to low levels of the
hierarchy are considered.

4.2.2. Results of configurations based on UCM costs

The second best configuration in this case is 𝑚𝑎𝑥! 𝑐! + 𝑎! − 𝑏! ∗ 𝑦! , ((-) in Figure 16
on the right and (-) on the left) which reinforces the intuition grasped while experimenting
with O2P, that regions that best fit objects in the image could be the ones whose cost is
different from their ancestors' costs, and whose descendants' costs are dissimilar
between each other, being one similar to the node's cost and the other pretty dissimilar.
An explanation of why the nodes whose descendants have these characteristics yield
good results could be that real objects are not homogeneous, they posses parts that
are homogeneous but probably parts that are not. The fusion of two nodes, one being
the most homogeneous part of the object with a node that is the less homogeneous part
of the object, would have a cost of these characteristics, due that the first region would
have a similar cost to the node's cost, and the second region, the one that is more
dissimilar, would have a much different cost.

 35

4.3. Visualization of regions selected
Figure 17 and Figure 18 below allow a better visualization of the object proposals
selected for each UCM configuration. Notice that the confidence values in order to
descend through the partition for the prediction configuration are the ones obtained with
SDS descriptors.

 (𝑐 + 𝑎 − 𝑏 ∗ 𝑦) (𝑐 −𝑚𝑖𝑛(𝑎, 𝑏)) ∗ 𝑦 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝑐𝑜𝑛𝑓𝑖𝑔

Figure 17: Regions and their associated indexes selected when using different configurations of UCM
for picture 2008_003876.

This example in Figure 17 corresponds to an image whose contours match nearly
complete objects, as in this case the plane of the picture. Regions 150 or 147 are really
good object candidates, and the three configurations find one of these regions. In fact the
three configurations select in the first place a region that is really appropriate.

On the other hand, partitions of other images such as the one for 2007_000042 are not
that ideal, as depicted in Figure 18.

 36

 (𝑐 + 𝑎 − 𝑏 ∗ 𝑦) (𝑐 −𝑚𝑖𝑛(𝑎, 𝑏)) ∗ 𝑦 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝑐𝑜𝑛𝑓𝑖𝑔

Figure 18: Regions and their associated indexes selected when using different configurations of UCM
for picture 2007_000042.

The whole dendrogram and ucm of image 2007_000042 are in the Appendix II. In this
case a strong contour separates into two the main objects in the image, the trains, and
for this reason the object candidates generated are not very useful. None of these
object candidates would yield good results because they all include lots of pixels that
belong to the background, or some part of the trains is missing. Maybe the best
regions would be 142 and 145, and the three configurations find at least one of such
candidates.

4.4. Comparison of computation time
Finally, a comparison in terms of time of computation is important as the scope of the
project is finding an efficient strategy. The times of computation stated in the article [5]
and [13] for CPMC and UCM hierarchical partitions are illustrated in Table 4.

 CPMC 150 regions UCM hierarchical partition

Computation Time 250 s/ image 24.4 ± 3.6 / image

Table 4: Computation time of the set of object candidates of CPMC and the hierarchical partition.

 37

So computing the CPMC regions is much slower compared to the creation of a UCM
hierarchical partition. Moreover, if we reduce the computation time of the prediction by
using just a few regions budget, the total computation time is reduced. An approximate
estimation based on the experimentation performed during this project is in Table 5.

Computation Time Prediction with 5 regions Prediction with 15 regions Prediction with 150 regions

Set of 1111 images 1 min 50 s 2 min 30 s 3 min 30 s

Image ≈0.001647 s / image ≈0.00225 s/ image ≈0.00315 s/ image

Table 5: Computation time of the prediction of the final segmentation.

The second row is just an approximation, because fixed times independent of the number
of images are not known.

 38

5. Budget

The budget of the project consists of the wages of a junior engineer and two senior
engineers, as stated below.

 Number Wage Hours / week Total
weeks

Total

Junior Engineer 1 8 € / hour 30 h 20 4800 €

Senior Engineer 2 20 € / hour 10 h 20 8000 €

Table 6: Total personal costs.

 The project has been performed with Matlab. Its license cost and amortization are stated
below:

Number of
Licenses

Price / Year Months of
project

Amortization/
Month

Total
Amortization

Total

1 500 € 5 months 41.67 € /
month

208.33 € 291.67 €

Table 7: Total licenses costs

So the total cost of the project is of 13.091,67 €.

 39

6. Conclusions and future development:

The initial aim of this thesis was finding an efficient strategy to semantically segment
images using hierarchical partitions, trying to achieve the maximum accuracy possible
when only disposing of a few regions budget.

Although UCM segments are not that accurate in comparison with CPMC object
candidates, the intrinsic multiscale information of the hierarchical partitions provides a
wide range of possibilities to efficiently explore the partition and detect those nodes
that more probably are objects in the image at issue.

Results have shown that for the PASCAL data set the nodes of the best regions are
associated to the nodes of the higher levels of the hierarchy, due their size. Moreover,
adjacent regions that have been created in different moments of the hierarchical
partition generation, and therefore associated to dissimilar indexes, yield better results.
Following the same idea, regions associated to similar costs compared to one of their
descendants but very dissimilar costs compared to their ancestors, prove good
performance.

These findings support the idea that a region that is a good candidate for being an object
is generated with a series of fusions of regions that have similar costs, since if we
are assuming an object is homogeneous, or at least more homogeneous than comparing
it with the background of the image, the costs of adding homogeneous parts to an object
should be similar because the boundaries that define the fusions have similar weights.
Furthermore, a region is potentially a good object candidate if the merging with an
adjacent region is characterized by a strong boundary, and therefore both regions
share a high cost fusion, because of the lack of homogeneity between the object and its
background.

An attribute of these regions that has not been explicitly considered and could be
interesting for further researching is the diversity between regions. Two regions may be
good object candidates but if they are redundant with each other and we only dispose of
a few regions budget, it would be more desirable to discard duplicative object
proposals.

A configuration that has obtained indeed promising results, is the one that descends
through the tree depending on the estimated overlap of the regions with the objects
pursued. Though the SVRs have been trained to predict whether a region is an object
and not to predict the objects it contains, the results have been good enough to think
that applying a detector of the objects contained in an image in order to discard
branches of a tree, and also implementing a classifier to detect whether an object
belongs to a certain class category, is the next step to follow this research.

Another improvement would be using MCG object candidates, which are generated
from the regions of the UCM partition. The computation time of such candidates is
minimal compared to CPMC, and the hierarchical partition of the UCM could allow the
efficient exploration addressed in this research. Also, the candidates are much more
accurate than the straight regions obtained directly from the UCM, due that the object
proposals are generated from the combination of different regions of the partition.

 40

Bibliography:

[1] Giró i Nieto, X. (2012). Part-based object retrieval with binary partition trees.
[2] Salembier, P., & Garrido, L. (2000). Binary partition tree as an efficient representation for image

processing, segmentation, and information retrieval. Image Processing, IEEE Transactions on, 9(4), 561-
576.

[3] Arbelaez, P. (2006, June). Boundary extraction in natural images using ultrametric contour maps. In
Computer Vision and Pattern Recognition Workshop, 2006. CVPRW'06. Conference on (pp. 182-182).
IEEE.

[4] Carreira, J., Caseiro, R., Batista, J., & Sminchisescu, C. (2012). Semantic segmentation with second-
order pooling. In Computer Vision–ECCV 2012 (pp. 430-443). Springer Berlin Heidelberg.

[5] Carreira, J., & Sminchisescu, C. (2012). Cpmc: Automatic object segmentation using constrained
parametric min-cuts. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 34(7), 1312-1328.

[6] Hariharan, B., Arbeláez, P., Girshick, R., & Malik, J. (2014). Simultaneous detection and segmentation.
In Computer Vision–ECCV 2014 (pp. 297-312). Springer International Publishing.

[7] Viola, P., & Jones, M. (2001). Rapid object detection using a boosted cascade of simple features. In
Computer Vision and Pattern Recognition, 2001. CVPR 2001. Proceedings of the 2001 IEEE Computer
Society Conference on (Vol. 1, pp. I-511). IEEE.

[8] Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional
neural networks. In Advances in neural information processing systems (pp. 1097-1105).

[9] Itti, L., Koch, C., & Niebur, E. (1998). A model of saliency-based visual attention for rapid scene analysis.
IEEE Transactions on Pattern Analysis & Machine Intelligence, (11), 1254-1259.

[10] Van de Sande, K. E., Uijlings, J. R., Gevers, T., & Smeulders, A. W. (2011, November). Segmentation as
selective search for object recognition. In Computer Vision (ICCV), 2011 IEEE International Conference
on (pp. 1879-1886). IEEE.

[11] Arbelaez, P., Pont-Tuset, J., Barron, J., Marques, F., & Malik, J. (2014, June). Multiscale combinatorial
grouping. In Computer Vision and Pattern Recognition (CVPR), 2014 IEEE Conference on (pp. 328-335).
IEEE.

[12] Lindeberg, T. (2012). Scale invariant feature transform. Scholarpedia, 7(5), 10491
[13] Carreira, J., Caseiro, R., Batista, J., & Sminchisescu, C. (2015). Free-form region description with

second-order pooling..
[14] Everingham, M., Van Gool, L., Williams, C. K., Winn, J., & Zisserman, A. (2010). The pascal visual object

classes (voc) challenge. International journal of computer vision, 88(2), 303-338.
[15] Carreira, J., Li, F., & Sminchisescu, C. (2012). Object recognition by sequential figure-ground ranking.

International journal of computer vision, 98(3), 243-262.
[16] Lavoué, G. (2012). Combination of bag-of-words descriptors for robust partial shape retrieval. The Visual

Computer, 28(9), 931-942.
[17] Fontdevila-Bosh, E. (2015). Region-oriented Convolutional Networks for Object Retrieval.

 41

Appendix I: Different configurations of Average Accuracy per
Category vs. number of regions

This appendix contains the explanations and plots of the different configurations tested.
For each configuration an explanation, a code, and different plots are exposed. By default
all configurations use O2P descriptors.

Configurations CPMC

Default The first object candidate is the one that more likely is an object
of the image, up to 150 object candidates.

Figure 19: Plot of CPMC performance for 150 regions.

Configurations UCM

0. Baseline

Random Random permutation of the 151 regions

1. Based on indexes

Name Explanation Code

Increasing indexes The masks from 1 to 151 0

Decreasing indexes The masks from 151 to 1 1

FIFO Starting from the root node, descending through the
highest node and analysing its sibling. At the same time

2

 42

storing in a FIFO queue the node analysed. When a
leave is reached, pull first element in the queue and
descend through it.

Notes: Top-down approach

LIFO Starting from the root node, descending through the
highest node and analysing its sibling. At the same time
storing in a LIFO queue the node analysed. When a
leave is reached, pull last element in the queue and
descend through it.

Notes: Top-down approach

3

MAX queue Starting from the root node, descending through the
highest node and analysing its sibling. At the same time
storing in a queue the node analysed. When a leave is
reached, pull maximum element in the queue and
descend through it.

Notes: Top-down approach

4

Figure 20: Configurations from 0 to 4, and random configuration. Plot with 15 regions.

 43

Figure 21: Configurations from 0 to 4, and random configuration. Plot with 25 regions.

Figure 22: Configurations from 0 to 4, and random configuration. Plot with 150 regions.

 44

2. Based on Costs

Name Explanation Code

𝑚𝑎𝑥!(𝑐!) Maximize c, i.e. the difference between the
cost of the father and the cost of the node.

5

𝑚𝑎𝑥!(𝑐! − (𝑎! + 𝑏!)) Maximizing the difference between the
father' cost and the cost of the node, and
minimizing the differences of the node and
its siblings' costs.

6

𝑚𝑎𝑥!
𝑐!

𝑎!× 𝑏!
 Maximizing the difference between the

father' cost and the cost of the node, and
minimizing the differences of the node and
its siblings' costs.

7

𝑚𝑎𝑥!(𝑚𝑎𝑥(𝑎! , 𝑏!)) Maximizing the maximum distance between
the cost of the node and the cost one of its
descendants.

8

𝑚𝑎𝑥!
𝑚𝑎𝑥(𝑎! , 𝑏!)

𝑐!

Maximizing the maximum distance between
the cost of the node and the cost of one of
its descendants and minimizing the
difference between the cost of the father
and the cost of the node.

9

𝑚𝑎𝑥!(𝑚𝑎𝑥(𝑎! , 𝑏!) × 𝑐!) Maximizing the maximum distance between
the cost of the node and the cost of one of
its descendants and maximizing the
difference between the cost of the father
and the cost of the node.

10

𝑚𝑎𝑥!(𝑚𝑖𝑛(𝑎! , 𝑏!)) Maximizing the minimum distance between
the cost of the node and the cost of one of
its descendants.

11

𝑚𝑎𝑥!
 𝑥!
𝑦!

 Maximizing the ratio between the cost of the
father and the cost of the node.

12

𝑚𝑎𝑥!
 𝑥! × 𝑘! × 𝑧!

𝑦!!

Maximizing the ratio between the cost of the
father and the cost of the node, multiplied
by the ratio of the cost of a descendant' cost
and the cost of the node, and multiplied by
the same factor for the other sibling.

13

𝑚𝑎𝑥!(𝑐! −𝑚𝑖𝑛(𝑎! , 𝑏!)) Maximizing the difference between the cost
of the father and the cost of the node and
minimizing the minimum difference between

14

 45

the node and either of its siblings.

𝑚𝑎𝑥!
𝑐! −𝑚𝑖𝑛(𝑎! , 𝑏!)

𝑦!

Maximizing the difference between the cost
of the father and the cost of the node and
minimizing the minimum difference between
the node and either of its siblings, divided
by the node cost.

15

𝑚𝑎𝑥!((𝑐! −𝑚𝑖𝑛(𝑎! , 𝑏!))×𝑦!) Maximizing the difference between the cost
of the father and the cost of the node and
minimizing the minimum difference between
the node and either of its siblings, multiplied
by the node cost.

16

𝑚𝑎𝑥!
𝑐!
𝑦!
 −𝑚𝑖𝑛

𝑎!
𝑧!
 ,
𝑏!
𝑘!

Second derivative, as in previous
configuration, normalizing by second
operand of every first derivative.

17

𝑚𝑎𝑥!
𝑐!
𝑦!
 −𝑚𝑖𝑛

𝑎!
𝑧!
 ,
𝑏!
𝑘!

×𝑦!
Second derivative, as in previous
configuration, normalizing by second
operand of every first derivative, multiplied
by the cost of the node.

18

𝑚𝑎𝑥! 𝑚𝑖𝑛
𝑎!
𝑧!
 ,
𝑏!
𝑘!

Maximizing the minimum first derivative
normalized by the second operand.

19

𝑚𝑎𝑥! 𝑚𝑎𝑥
𝑎!
𝑧!
 ,
𝑏!
𝑘!

Maximizing the maximum first derivative
normalized by the second operand.

20

𝑚𝑎𝑥!(𝑚𝑎𝑥(𝑎! , 𝑏!) × 𝑦!) Maximizing the maximum first derivative
multiplied by the node cost.

21

𝑚𝑎𝑥!(𝑐! + 𝑎! − 𝑏!)

Maximizing the sum of the first derivative
with the father and the absolute difference
of the first derivatives with the siblings.

22

𝑚𝑎𝑥!((𝑐! + 𝑎! − 𝑏!) × 𝑦!)

Maximizing the sum of the first derivative
with the father and the absolute difference
of the first derivatives with the siblings,
multiplied by the cost of the node.

23

𝑚𝑎𝑥!((𝑎! − 𝑏!) × 𝑦!)

Maximizing the absolute difference of the
first derivatives with the siblings, multiplied
by the cost of the node

24

 46

Figure 23: Configurations from 5 to 11. Plot of 15 regions.

Figure 24: Configurations from 5 to 11. Plot of 25 regions.

 47

Figure 25: Configurations from 5 to 11. Plot of 150 regions.

Figure 26: Configurations from 12 to 17. Plot of 15 regions.

 48

Figure 27: Configurations from 12 to 17. Plot of 25 regions.

Figure 28: Configurations from 12 to 17. Plot of 150 regions.

 49

Figure 29: Configurations from 18 to 24. Plot of 15 regions.

Figure 30: Configurations from 18 to 24. Plot of 25 regions.

 50

Figure 31: Configurations from 18 to 24. Plot of 150 regions.

The best configurations of all that consider costs are plotted in the plots below. These
configurations are 16, 23, 21 and 10.

Figure 32: Best configurations that consider costs. Plot of 15 regions.

 51

Figure 33: Best configurations that consider costs. Plot of 25 regions.

Figure 34: Best configurations that consider costs. Plot of 150 regions.

 52

3. Mix of indexes and costs

Once the previous configurations have been tested, a mixture of both criteria can be
considered.

Top-down approach with
(𝑐 −𝑚𝑖𝑛(𝑎, 𝑏)) ∗ 𝑦 only when a
leave is reached

This approach mixes both criteria exposed
previously, costs and indexes. From root
node, the algorithm decides to descend
through the descendant whose index is
maximum. When a leave node is reached,
the algorithm descend through the sibling
whose (𝑐 −𝑚𝑖𝑛(𝑎, 𝑏)) ∗ 𝑦 is maximum.

25

First derivative of the consecutive
fusions' costs

The first derivative of the costs of the
consecutives regions generated in the
hierarchical partition is computed.

26

Second derivative of the
consecutive fusions' costs

The second derivative of the costs respect
to their indexes, so that the differences
between costs of regions merged
consecutively are analysed. This does
not mean that consecutive merged regions
have a hierarchical relation.

27

Figure 35: Configurations from 25 to 27. Plot of 15 regions.

 53

Figure 36: Configurations from 25 to 27. Plot of 25 regions.

Figure 37: Configurations from 25 to 27. Plot of 150 regions.

 54

The second derivative of the consecutive fusions' costs of the image 2008_003876 of
PASCAL VOC and indexes of the regions analysed:

Figure 38: Second derivative of regions' costs respect to their regions' indexes.

Figure 39: Selected regions' indexes according this criterion.

3. By Prediction

Prediction Top-down approach, descend through the branch
which has better prediction for any of the classes

28

Figure 40: Configuration 28. Plot of 150 regions.

 55

Now a set of plots of the best configurations of UCM compared to CPMC using O2P will
be plotted. The best configurations using UCM are 16, 23, 28, 4 and 27.

Figure 41: Best configurations of UCM compared to CPMC. Plot of 15 regions.

Figure 42: Best configurations of UCM compared to CPMC. Plot of 50 regions.

 56

Figure 43: Best configurations of UCM compared to CPMC. Plot of 150 regions.

Now only the two best configurations of UCM compared to CPMC using o2p will be
plotted. These two configurations are 16 and 28.

Figure 44: Two best configurations of UCM compared to CPMC. Plot of 15 regions.

 57

Figure 45: Plot of two best configuration of UCM compared to CPMC. Plot of 25 regions.

Figure 46: Plot of the two best configurations with UCM compared to CPMC. Plot of 150 regions.

 58

• SDS descriptors

In the plots from below the best configurations of UCM compared to CPMC using SDS
descriptors will be plotted. These configurations are the same as when using o2p.

Figure 47: Best configurations of UCM compared to CPMC using SDS descriptors. Plot of 15 regions.

Figure 48: Plot of best configurations of UCM compared to CPMC using SDS descriptors. Plot of 25
regions.

 59

Figure 49: Best configurations of UCM compared to CPMC using SDS descriptors. Plot of 150 regions.

Now only the two best configurations of UCM compared to CPMC using o2p will be
plotted. These two configurations are 23 and 28.

Figure 50: Two best configurations of UCM compared to CPMC using SDS descriptors. Plot of 15
regions.

 60

Figure 51: Two best configurations of UCM compared to CPMC using SDS descriptors. Plot of 25
regions.

Figure 52: Two best configurations of UCM compared to CPMC using SDS descriptors. Plot of 150
regions.

 61

Appendix II: Example of an ucm and a dendrogram

In the report there's an example of a picture of the PASCAL VOC data set ucm partition
and dendrogram with a set of masks associated to different nodes of the partition. In the
following example a picture of the same data set whose partition generation is not that
ideal illustrated. Notice that in this case the trains of the image have a strong contour that
confuses the algorithm and separates the trains into two different parts really separated in
the tree as depicted in the dendrogram.

Figure 53: The picture of the left corresponds to a picture of the PASCAL VOC dataset, and the

picture of the right is its ucm partition.

Figure 54: Dendrogram of the tree partition generated from this same picture.

 62

Appendix III: Extended Abstract for WiCV in CVPR

Efficient Intra-image Search for Object Recognition

Mı́riam Bellver
Universitat Politecnica de Catalunya (UPC)

Jordi Girona 1-3, 08034 Barcelona
miriam.bellver@alu-etsetb.upc.edu

1. Motivation

The motivation of this work is the exploration of hier-
archical image partitions for an efficient object recognition
within an image. While many efforts have been focused on
efficient image search in large scale databases, few works
have addressed the problem of locating and recognizing ob-
ject in the large amount of pixels contained in an image.
My work considers as an input a multiscale and hierarchical
partition of an image that defines a set of regions as candi-
date locations to contain an object. Given this partition, two
problems are addressed in my research: (a) a bottom-up fea-
ture extraction to describe the regions in the hierarchy and,
(b) a top-down intra-image search to detect and recognize
objects at a local scale. This work is an extension on my
advisor’s Phd thesis [5].

2. Related Work

The traditional local analysis of an image is based on
scanning with a sliding window different locations and
scales of an image. This exhaustive approach was com-
bined with an efficient feature extraction in the classic work
by Viola and Jones [14] and is also at the core of popular
convolutional neural networks (convnets) [11, 10].

An alternative to exhaustive search is using class-
agnostic image processing to estimate the most feasible lo-
cations in an image to contain an object. A first family of
solutions is based on the saliency maps [9], which typically
assign to each pixel a likelihood value that predicts the user
attention. These solutions though do not directly provide a
region of support for the object.

A different approach aims at reducing the amount of pos-
sible locations for an object by clustering the pixels with a
segmentation algorithm. In these cases, a reduced set of
regions are automatically defined with precise boundaries.
However, flat segmentations typically focus their analysis
at a certain spatial scale, which is not rich enough when the
size of the object is unknown. As an alternative, hierarchi-
cal segmentations [12, 1] provide a nested set of regions
that capture a broad range of scales.

A last group of techniques are based on generating a
ranked list of object candidates in the image, whether as
bounding boxes [13] or accurate segments [4, 2]. These
techniques try to model the generic appearance of an object
so that class-specific detectors are trained on them. For ex-
ample, selective search boxes [13] were trained on convnets
in [6], CPMC regions were used to extract O2P features in
[3], or MCG boxes and segments [2] were also processed
by convnets in [7].

My work aims at comparing the performance of hierar-
chical partitions when compared with object candidate ap-
proaches in terms of efficiency, both during feature extrac-
tion and intra-image search.

3. Bottom-up feature extraction
Hierarchical partitions are excellent structures to prop-

agate features from the finer to the coarser regions. Each
node in the hierarchy represents not only a region but the
smaller region it contains, that is, the ones defined in the
hierarchy below.

We aim at exploring two approaches for efficient feature
extraction. The first one is based on the O2P features pro-
posed in [3]. They are based on an average or max pooling
of the SIFT features densely generated from a region.

In addition, we also aim at extending the efficient fea-
ture extraction on convnets for spatial pyramids presented
in [8], where the arbitrary partition used would be replaced
by UCMs [1].

4. Top-down intra-image search
The top-down intra-image search is performed by train-

ing and assessing in each node two different classifiers. The
first classifier will aim at estimating if an instance of the
modeled class is contained in the region under analysis.
This classifier will drive an efficient search as all regions
in the discarded sub-trees will be discarded. A second clas-
sifier will actually aim at assessing whether the region un-
der analysis actually represents an instance of the modeled
class.

1

 63

Figure 1. Accuracy per Category in CPMC depending on number
of object candidates.

Given that in many cases the regions defined in the hi-
erarchical partitions do not perfectly match the object but
a part of them, when a high confidence is achieved on a
region, unions with neighbouring regions will also be as-
sessed for detection.

5. Experiments

In the interest of assessing the strategy defined through
this abstract, a series of experiments are programmed to
compare its performance to state of the art techniques with
the benchmark defined by PASCAL VOC project and based
in the Matlab implementation published in [3]. This will
enable us to compare the Average Accuracy per Cate-
gory (AAC) obtained by different algorithms using different
numbers of object candidates, since this is the key to assess
efficiency.

The first experiment in Figure 1 tests how the number
of object candidates used to segment images with CPMC
affects the accuracy obtained. The results prove that though
increasing the number of object candidates raises the quality
of the semantic segmentation, the quality is mainly achieved
with the first candidates of the sorted list given by CPMC.

6. Conclusions

Further experiments will compare CPMC to UCM parti-
tions. First a naive order of the UCM regions will be tested,
and then UCM regions will be smartly sorted considering
which branches should be discarded in order to drive an ef-
ficient search through the tree.

Our expectations are that a top-down intra-image search
in hierarchical partitions could be beneficial in terms of ef-
ficiency without substantially affecting the accuracy.

References
[1] P. Arbelaez. Boundary extraction in natural images using

ultrametric contour maps. In Computer Vision and Pattern

Recognition Workshop, 2006. CVPRW’06. Conference on,
pages 182–182. IEEE, 2006.

[2] P. Arbelaez, J. Pont-Tuset, J. Barron, F. Marques, and J. Ma-
lik. Multiscale combinatorial grouping. In Computer Vision

and Pattern Recognition (CVPR), 2014 IEEE Conference on,
pages 328–335. IEEE, 2014.

[3] J. Carreira, R. Caseiro, J. Batista, and C. Sminchisescu. Se-
mantic segmentation with second-order pooling. In Com-

puter Vision–ECCV 2012, pages 430–443. Springer, 2012.
[4] J. Carreira and C. Sminchisescu. Cpmc: Automatic object

segmentation using constrained parametric min-cuts. Pattern

Analysis and Machine Intelligence, IEEE Transactions on,
34(7):1312–1328, 2012.

[5] X. Giró i Nieto et al. Part-based object retrieval with binary
partition trees. 2012.

[6] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich fea-
ture hierarchies for accurate object detection and semantic
segmentation. In Computer Vision and Pattern Recognition

(CVPR), 2014 IEEE Conference on, pages 580–587. IEEE,
2014.

[7] B. Hariharan, P. Arbeláez, R. Girshick, and J. Malik. Simul-
taneous detection and segmentation. In Computer Vision–

ECCV 2014, pages 297–312. Springer, 2014.
[8] K. He, X. Zhang, S. Ren, and J. Sun. Spatial pyramid pooling

in deep convolutional networks for visual recognition. arXiv

preprint arXiv:1406.4729, 2014.
[9] L. Itti, C. Koch, and E. Niebur. A model of saliency-based

visual attention for rapid scene analysis. IEEE Transactions

on pattern analysis and machine intelligence, 20(11):1254–
1259, 1998.

[10] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet
classification with deep convolutional neural networks. In
Advances in neural information processing systems, pages
1097–1105, 2012.

[11] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E.
Howard, W. Hubbard, and L. D. Jackel. Backpropagation
applied to handwritten zip code recognition. Neural compu-

tation, 1(4):541–551, 1989.
[12] P. Salembier and L. Garrido. Binary partition tree as an effi-

cient representation for image processing, segmentation, and
information retrieval. Image Processing, IEEE Transactions

on, 9(4):561–576, 2000.
[13] K. E. Van de Sande, J. R. Uijlings, T. Gevers, and A. W.

Smeulders. Segmentation as selective search for object
recognition. In Computer Vision (ICCV), 2011 IEEE Inter-

national Conference on, pages 1879–1886. IEEE, 2011.
[14] P. Viola and M. Jones. Rapid object detection using a boosted

cascade of simple features. In Computer Vision and Pattern

Recognition, 2001. CVPR 2001. Proceedings of the 2001

IEEE Computer Society Conference on, volume 1, pages I–
511. IEEE, 2001.

2

 64

Appendix IV: Post in Bitsearch blog about Semantic labelling of
CPMC object candidates

This blog reviews how the work of Joao Carreira et al in "Semantic Segmentation with
Second-Order Pooling" (ECCV 2012) uses object candidates to generate a semantic
segmentation of an image. In order to differentiate between object segmentation and
semantic segmentation, we present the present example in Figure 1 extracted from the
examples provided by PASCAL.

 Figure 1: Object segmentation and class segmentation that are different

Figure 1 shows the object segmentation of an image that contains two buses. As the
class category for both objects is the same, when performing object segmentation we
obtain two different objects, but if we perform a class or semantic segmentation, the
result is two objects tagged by the same category, for this reason colored with the same
color.

Some works aiming at the automatic segmentation of objects from images have adopted
a pipeline based on object candidates. These candidates correspond to segments in the
image which may potentially represent a semantic object. The output of these algorithms
is typically a list of a predefined amount of object regions, ranked according to the
confidence of representing a semantic object. For example, Constrained Parametric Min-
Cuts - CPMC (Carreira 2010) or Multiscale Combinatorial Grouping-MCG (Arbelaez
2014) are two examples of such techniques. Figure 2 shows an example of the CPMC
object candidates proposed by Carreira.

Figure 2: Ranked list of object candidates with CPMC

The process of generating a class segmentation from the object candidates of an image
is explained in detail by Joao Carreira in Object Recognition by Sequential Figure-Ground

 65

Ranking. The pipeline of this process in presented in Figure 3.

Figure 3: Semantic segmentation pipeline

First of all, a set of object candidates are generated, which is explained in detail in our
previous post "Object Candidates with Constrained Parametric Min-Cuts". Next step is
ranking object candidates by means of a class independent scoring system, which
detects segments with object-like regularities. After that, a confidence score for each
class is computed over each object candidate. This prediction is generated after training
a regressor with those object candidates from the training set with a high overlap with the
labelled regions in the ground truth. The object candidates are ranked based on their
maximum score obtained on any of the 20 classes. Finally, a confidence threshold is
learned from the training dataset to maximize the final evaluation metric. This threshold is
applied on each test image to keep only those object candidates with a higher score.
Finally, the class segmentation is obtained by painting the kept candidates with their
highest class label in increasing order. Figure 4 shows two different object candidates
generated from a very tricky image depicting two buses. For each object candidate, the
likelihood that this candidate belongs to a certain class is predicted. The object
candidates are ranked based on their segment score and, by learning a threshold on that
score, only the top candidates would be kept.

Figure 4: Sorting object candidates

 66

Glossary

Ground-Truth: Annotations of the training set of a dataset.

Handcrafted features: Features that describe images using techniques developed by
humans. In contrast learned features are features learned using machine learning.

Min-Cut: In graph theory, a minimum cut of a graph is a cut whose cut set has the
smallest number of edges or smallest sum of weights possible.

LSUN: Large-scale Scene Understanding Challenge.

WiCV: Women in Computer Vision Workshop.

CVPR: Premier annual Computer Vision event.

CNN: Convolutional Neural Network. A CNN is similar to a neural network, i.e. a family of
statistical models inspired by biological neural networks that are configured to recognize
patterns or to classify data through a learning process. CNN architectures are adapted for
images, so that certain characteristics of images are encoded in the same architecture.

Fine-tuning: Fine-tuning is the technique that fine-tunes the CNN weights using the in-
domain data.

SVM: Support Vector Machines are supervised learning methods that can be applied to
classification or regression.

SVR: Support Vector Regression is the version of SVM for regression.

Dendrogram: It is a tree diagram used to illustrate the arrangement of the clusters
produced by hierarchical clustering.

Pruned tree: A tree whose size has been reduced by removing sections of the tree.

Fully-grown tree: A tree that is not pruned.

Leave: A leave of a tree partition is a node that has no descendants.

Root node: The root node is the node from which all the tree partition is developed.

Top - down approach: A top-down approach is an approach that descends through the
partition starting at the root node.

LIFO: Last In First Out.

FIFO: First In First Out.

