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Abstract 

The motivation of this work is the efficient exploration of hierarchical partitions for 
semantic segmentation as a method for locating objects in images. While many efforts 
have been focused on efficient image search in large-scale databases, few works have 
addressed the problem of locating and recognizing objects efficiently within a given image. 

My work considers as an input a hierarchical partition of an image that defines a set of 
regions as candidate locations to contain an object. This approach will be compared to 
other state of the art algorithms that extract object candidates for an image.  

The final goal of this work is to semantically segment images efficiently by exploiting the 
multiscale information provided by a hierarchical partition, maximizing the accuracy of the 
segmentation when only a very few regions of the partition are analysed.  
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Resum 

La motivació d'aquest treball és l'exploració eficient d'un arbre jeràrquic per tal de 
segmentar semànticament imatges com a mètode per reconèixer objectes. Molts treballs 
han tractat la cerca eficient d'objectes en imatges des del punt de vista global de la 
imatge en grans bases de dades, però no s'han dedicat tants esforços en resoldre el 
problema de localitzar i reconèixer objectes eficientment dins la pròpia imatge. 

Aquesta tesis treballa amb particions jeràrquiques d'una imatge que defineixen un 
conjunt de regions candidates per contenir un objecte. Segmentar imatges utilitzant 
aquestes regions es compararà amb els resultats obtinguts amb candidats objecte 
extrets mitjançant altres algorismes de l'estat de l'art. 

L'objectiu final és segmentar imatges semànticament de forma eficient aprofitant la 
informació entre nivells de l'arbre jeràrquic, maximitzant la qualitat de la segmentació 
quan només un conjunt molt reduït de zones de l'arbre són analitzades. 
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Resumen 

La motivación de este trabajo es explorar eficientemente un árbol jerárquico para 
segmentar semánticamente imágenes como método para reconocer objetos. Muchos 
trabajos han tratado la búsqueda eficiente de objetos en imágenes desde el punto de 
vista global de la imagen en grandes bases de datos, pero no se han dedicado tantos 
esfuerzos en resolver el problema de localizar y reconocer objetos dentro de la propia 
imagen. 

Esta tesis trabaja con particiones jerárquicas de una imagen que definen un conjunto de 
regiones candidatas para contener un objeto. Segmentar imágenes utilizando estas 
regiones se comparará con los resultados obtenidos a partir de candidatos de objeto 
extraídos mediante otros algoritmos del estado del arte. 

El objetivo final es segmentar imágenes semánticamente de forma eficiente 
aprovechando la información entre niveles del árbol jerárquico, maximizando la calidad 
de la segmentación cuando sólo un conjunto muy reducido de zonas del árbol son 
analizadas. 
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1. Introduction 

1.1. Statement of purpose 
 

This thesis intends to efficiently explore a hierarchical partition for semantically 
segment an image in order to locate its objects and boundaries. A semantic 
segmentation of an image aims at obtaining a reduced set of regions defined by 
precise boundaries, labelling each region by its class category.  The input of our 
algorithm is a set of object proposals that can be computed using different techniques. 

In this research, the different regions defined by a hierarchical partition [2, 3] are 
considered candidate locations to contain an object. Other approaches in the state of the 
art are techniques based on the generation of a ranked list of accurate segments [5, 
11] or bounding boxes [10] that are more likely to locally describe the objects of the 
image. Our work will compare the object proposals generated with the hierarchical 
partition with those from a popular baseline technique for object proposals: CPMC [5]. 

Efficient object recognition is essential for many computer vision applications such as 
object retrieval. The goal of this research is gaining efficiency at the expense of losing 
accuracy by means of using hierarchical partitions. Efficiency will be measured by 
the number of regions analysed and the computation time of each region by the 
algorithm at issue, whereas accuracy will determine the quality of the image semantic 
segmentation prediction compared to Ground-Truth. 

Considering the scope of this research, hierarchical partitions have the advantage that 
provide multiscale information, which is fundamental in order to guide an efficient 
exploration through the tree partition. However, techniques based on object 
candidates generate more accurate object proposals than the regions obtained from 
a hierarchical partition. 

Another goal of the project is to compare the performance achieved when describing the 
different types of object proposals with handcrafted features [12] or state of the art 
descriptors extracted from a convolutional neural network [8].  

This project aims at continuing the research that Xavier Giró, my advisor, started with his 
PhD Thesis, developing some of the ideas that arose during his research. Xavier Giró's 
thesis addressed Part-based Object Retrieval with Binary Partition Trees [1]. He 
guided a research about Binary Partition Trees [2], comparing the regions the algorithm 
generates to objects that have a semantic meaning. In order to retrieve objects from 
images he worked with Bag of Words aggregation [16], developing an efficient strategy 
to explore the binary tree partition. This strategy consisted of bottom-up extracting 
features of the hierarchical partition, so that a region was described by all the objects 
contained in the region and not only by the region itself. Using such descriptors, some 
branches of the tree could be discarded while trying to detect an object through a top-
down exploration of the tree. 

Following the steps of Xavier Giró, this work is based on developing an efficient strategy 
to semantically segment images taking advantage of the multiscale information that 
hierarchical partitions provide. For this research Ultrametric Contour Maps (UCM) [3] 
hierarchical partitions and Second Order Pooling (O2P) descriptors [4] will be 
combined in the first place. For the purpose of comparing hierarchical partitions regions 
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to object-candidates-based algorithms, Constrained Parametric Min-Cuts (CPMC) [5] 
object candidates will be tested. The software developed to perform this research draws 
from a source code of João Carreira [4, 5] that Carles Ventura, PhD candidate and 
coadvisor of this thesis, had already used for his research. The code computes semantic 
segmentations of images using CPMC object candidates [5] and O2P descriptors [4]. 
Carles Ventura has provided me this code and also a code to generate UCM partitions 
[3].  

To perform the final experiments of this project, we replaced the handcrafted O2P 
descriptors with SDS deep learning descriptors [6] extracted from convolutional 
neural networks [8]. Eduard Fontdevila BSc student has provided a code to extract 
these descriptors used in the framework of his BSc thesis [17]. 

All this research has been developed using Matlab and the Image Processing Group 
platform in UPC. 

1.2. Work packages 
In the following tables there are the work packages of this project. 

Project: Project Proposal  WP 1 

Major constituent: Documentation  

Short description: Planning and description of the project. 

 

 

 

Planned start date: 19/02/15 

Planned end date: 6/03/15 

Start event: 19/02/15 

End event: 6/03/15 

T1: Definition of the goal of the project. 

T2: Planning of the project 

T3: Documentation about the project proposal 

T4: Revision of the project proposal 

T5: Validation of the project proposal 

Deliverables: 

Project 
Proposal 

Dates: 

6/03/15 

 

Project: Research about the state of the art WP 2 

Major constituent: Documentation  

Short description: Reading state of the art papers about semantic segmentation, 
hierarchical partitions, object candidates and object recognition in images. 

 

 

 

Planned start date: 9/02/15 

Planned end date: 25/02/15 

Start event: 9/02/15 

End event: 25/02/15 

T1: "Part-based Object Retrieval with Binary Partition Trees", Xavier Giró, Phd thesis 

T2: "Object Recognition by Ranking Figure-Ground Hypotheses" ,Joao Carreira. 

T3: "Segmentation as Selective Search for Object Recognition", Koen E. A. van de 
Sande and Theo Gevers 

Deliverables: 

Blog posts 
on Bitsearch 
summing up 
papers. 

Dates: 

Undefined. 
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Project: Critical Revision WP 3 

Major constituent: Documentation  

Short description: Compiling the work carried out until that moment. 

 

 

 

Planned start date: 1/04/15 

Planned end date: 8/04/15 

Start event: 13/04/15 

End event: 24/04/15 

T1: Compile all the work done during these first weeks. 

T2: Write the critical revision following the template. 

T3: Revision of critical revision. 

T4: Validation of critical revision 

T5: Deliver it in Atenea. 

Deliverables: 

Critical 
Revision 

Dates: 

24/04/2015 

 

 

Project: Adaptation of software WP 4 

Major constituent: Software development  

Short description: The goal of this package is adapting the already existing 
programs in GPI to make measurements of efficiency depending on the 
number of segments or object candidates analyzed. 

 

Planned start date: 2/03/15 

Planned end date: 13/04/15 

Start event: 2/03/15 

End event: 18/05/15 

T1: Learn how to work with GPI servers. 

T2: Understanding the code of Carles Ventura of CPMC object candidates. 

T3: Adapting this software to calculate the accuracy of the segmentation 
depending on the number of objects candidates analyzed. 

T4: Understanding Carles Ventura's matlab code to work with UCM. 

T5: Adapting UCM software to generate its masks and descriptors, and 
generating a naive list of regions. 

T6: Adapting Carles Ventura's software to make a selective search using UCM. 

T7: Deliver the resulting codes to the Group of Image Processing with its 
documentation. 

Deliverables: 

Resulting code and 
documentation 

Dates: 

18/05/15 

 

Project: Scientific publication redaction WP 5 

Major constituent: Documentation  

Short description: Writing a scientific publication for CVPR WiCV. 

 

Planned start date: 23/03/15 

Planned end date: 23/04/15 

Start event: 23/03/15 

End event: 23/04/15 
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Project: Experimentation WP 6 

Major constituent: Research and assessment of results  

Short description: Perform the comparison between the efficiency achieved 
using hierarchical partitions and the efficiency obtained with algorithms that 
use object candidates such as CPMC. Also try to test the best configurations 
using deep learning features. 

 

Planned start date: 13/04/15 

Planned end date: 15/06/15 

Start event: 13/03/15 

End event: 15/06/15 

T1: Calculate accuracy per category using CPMC object candidates. 

T2: Calculate accuracy per category using a naive list of UCM regions. 

T3: Calculate accuracy per category using UCM regions and a efficient 
exploration throughout the partition. 

T4: Analyze results comparing in terms of accuracy and efficiency. 

T5: Train the algorithm to use SDS features 

T6: Test best configurations with SDS features. 

T7: Think about further possible improvements. 

T8: Prepare the results for the memory of the project. 

Deliverables: 

Part of this 
experimentation 
should be on the 
Critical Revision 
Document 

Dates: 

30/06/15 

 

Project: Redaction of the memory and oral defence WP ref: 7 

Major constituent: Documentation  

Short description: Writing the final memory for the TFG and preparing the oral 
defense. 

 

Planned start date: 15/05/15 

Planned end date: 15/07/15 

Start event: 30/05/15 

End event: 24/07/15 

T1: Writing the memory 

T2: Revision of memory 

T3: Deliver the memory 

T4: Prepare the oral defense  

T5: Rehearsal of the presentation 

T6: Doing the final presentation 

 

Deliverables: 

Final Memory of 
the TFG 

Dates: 

Delivery of final 
memory: 10/07/15 

 

Oral defense: 
20/07/15 

 
 

T1: Writing publication for CVPR WiCV. Deliverables: 

  Deliver publication. 

Dates: 

23/04/15 
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1.3. Milestones 
In the following table the milestones of this project are listed: 

WP# Task# Short title Milestone / deliverable Date (week) 

1 1 Validation of Project 
Proposal 

Project Proposal 6/03/15 

2 2 Read Xavier Giró's PhD Understanding of the content 3th week 

2 3 Read papers about 
segmentation 

Research about state of the art 4th week 

4 4 Adapting CPMC code Obtain CPMC code that enables to 
determine segments used 

13/03/15 

3 5 Critical Revision Critical Revision deliverable 24/04/15 

4 4 Adapting UCM code Adapt code to study efficiency with 
UCM 

18/05/15 

 

5 5 Write scientific publication Deliver to CVPR for WiCV the  
publication. 

23/04/15 

6 6 Compare efficiency of 
different segmentation 
techniques 

Obtain results of the 
experimentation 

25/06/15  

6 7 Train the algorithm with SDS 
descriptors and check 
results 

Obtain results of the 
experimentation and compare them 
to other features 

30/06/15 

6 8 Further improvements Reflect about the results obtained. 30/06/15 

7 9 Write the memory of the 
project 

Deliverable of the final memory 10/07/15 

7 10 Rehearse the project 
presentation 

Rehearsal of the oral presentation  17/07/15 

7 11 Oral presentation of the 
project 

Oral presentation of the project 20/07/15 
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1.4. Gantt Diagram 

           

 
Figure 1: Gantt diagram 

1.5. Incidences 
Since the critical review submission, a few incidences have changed slightly the work 
packages, milestones and Gantt diagram.  

For instance, the WP5 tasks have changed, due that the extended abstract (Appendix 
III) submitted to Woman in Computer Vision (WiCV) workshop of International 
Conference on Computer Vision and Pattern Recognition (CVPR) was not accepted, 
and therefore no poster had to be prepared.  Moreover, it was originally planned a 
submission to the LSUN workshop of Computer Vision but we considered that the results 
we got on the date of submission were not promising enough yet. 

Regarding the WP6 of experimentation, a few tasks have been included, such as 
training and testing the algorithm with deep learning SDS descriptors in order to 
see whether they obtain better results. 

The other work packages remain the same, considering a slight change of dates due the 
two incidences previously explained. 
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2. State of the art of the technology used or applied in this 
thesis: 

2.1. Overview of the state of the art 
The traditional local analysis of an image is based on scanning with a sliding window 
different locations and scales of an image. This exhaustive approach was combined with 
an efficient feature extraction in the classic work by Viola and Jones [7] and is also at 
the core of popular convolutional neural networks [8]. 

An alternative to exhaustive search is using class-agnostic image processing to estimate 
the most feasible locations in an image to contain an object. A first family of solutions is 
based on the saliency maps [9], which typically assign to each pixel a likelihood value 
that predicts the user attention. These solutions though do not directly provide a region of 
support for the object. 

A different approach aims at reducing the amount of possible locations for an object by 
clustering the pixels with a segmentation algorithm. In these cases, a reduced set of 
regions is automatically defined with precise boundaries. However, flat segmentations 
tend to focus their analysis at a certain spatial scale, which is not rich enough when the 
size of the object is unknown. As an alternative, hierarchical segmentations [2, 3] 
provide a nested set of regions that capture a broad range of scales.  

A last group of techniques are based on generating a ranked list of object candidates in 
the image, whether as bounding boxes [10] or accurate segments [3, 5, 11]. These 
techniques try to model the generic appearance of an object so that class-specific 
detectors are trained on them.  

This thesis compares the hierarchical segmentations generated by Ultrametric 
Contours Map (UCM) [3] with a popular technique that uses object candidates, 
Constrained Parametric Min-Cuts (CPMC) [5]. The features that will describe both the 
regions of the UCM [3] hierarchical partition and the object candidates of the CPMC [5] 
are Average Pooling of SIFTs (O2P) [4] and SDS [6]. The following sections aim at 
further developing these concepts that will be relevant for this research. 

2.2. Semantic Segmentation 
Semantic segmentations are an approach to solve the object recognition task. In a 
semantic segmentation every pixel of the image is labelled by its object class category. 
The result is an image divided into segments that correspond to the objects of the scene. 
In the following example we can see the difference between object segmentation and 
semantic segmentation. 
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Figure 2:  The second image is an object segmentation, labelling each object with a different colour. 
The third image, however, corresponds to a semantic segmentation, identifying that both objects in 

the image belong to the same class category. This image belongs to PASCAL VOC dataset [14] 

In an object segmentation the algorithm detects and segments objects in an image 
without classifying their class category. In a semantic segmentation each pixel is labelled 
by its class category, without distinguishing the different instances of the class that may 
appear in the image. In the above example the object segmentation identifies two objects 
whereas the semantic segmentation provides information only of the semantic class 
associated to the pixels. By combining the object and semantic segmentation it is 
possible to both distinguish the amount of object instances and their associated semantic 
classes. The evaluation of our system focuses on the semantic segmentation of the 
image, although in our case we could also provide its object segmentation. 

2.3. Ultrametric Contour Map (UCM) 
An Ultrametric Contour Map [3] is a hierarchical partition which is generated by a 
graph-based region merging algorithm, that iteratively fuses pairs of similar regions, i.e. 
the two adjacent regions separated by the minimum weight boundary, starting from a fine 
partition at a super pixel level.  

The base level of the hierarchical partition is formed by those regions that are more easily 
merged. On the other hand the upper levels of the partition are formed by those nodes 
that are more difficult to generate because they are more dissimilar.  

 
Figure 3: Hierarchical segmentation and Ultrametric Contour Map (UCM). This image is from [3]. 

2.4. Constrained Parametric Min-Cuts (CPMC) 
CPMC [5, 15] generates a ranked list of object candidates without previous knowledge of 
the objects contained in the image. This is achieved by solving a sequence of 
Constrained Parametric Min-Cuts. In order to initialize the algorithm, some pixels 
should be considered as background and others as foreground. Once made this 
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selection, a sequence of Min-Cuts [5,15] will segment the image into a set of accurate 
regions, which should be filtered and regrouped so that regions not accurate enough or 
redundant are discarded. 

Finally these object candidates are scored and sorted depending on the likelihood that 
each region is an object. A learning scoring function for each object category is used 
to obtain the score. Finally we obtain a list of ranked object candidates according to their 
likelihood of being an actual object.  

 
Figure 4: This picture shows a list of CPMC object candidates ranked by its likelihood of being an 

object. The image is from [5]. 

2.5. Second Order Pooling (O2P)  
Scale-invariant feature transform (SIFT) [12] is an algorithm that detects and describes 
local features in images. It provides a feature description in terms of texture and contours. 
SIFT local features are extracted over square patches centered at image locations with a 
certain pixel width.  

Pooling is the procedure that produces a global description of an image region. Second 
Order Pooling [4, 13] is a pooling technique that obtains second-order statistics by 
computing the outer products of SIFT local features. In order to do the final aggregation 
there are two different types of pooling: 

• Average Pooling: Averaging the second order SIFT's. 
• Max Pooling: Selecting the maximum element for each position of the matrix 

among all second order SIFT's. 

The aggregated matrix is two-dimensional and symmetric, so half of the matrix contains 
all the information of the matrix. To reshape this two-dimensional descriptor into a single 
vector, half of the aggregated matrix is zigzag scanned [13]. 

 
Figure 5: Pooling of SIFT descriptor in order to obtain an O2P region descriptor. This picture is from 

[13]. 
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2.6. Simultaneous Detection and Segmentation 
Simultaneous detection and segmentation (SDS) [6] solves the task of detecting 
objects of a certain class category of an image and labelling the pixels that belong to 
such class. The SDS algorithm consists of first generating region object proposals, for 
which Multiscale Combinatorial Grouping (MCG) [11] object proposals are used.  

MCG [11] generates accurate object candidates from the combination of regions that 
UCM hierarchical partition [3] generates. Their approach consists of extracting features 
of these object proposals using a convolutional neural network (CNN) [8]* that extracts 
features from both the bounding box as well as the region of the object candidate. Two 
networks, one for the bounding boxes and another for the regions, are fine-tuned* and 
jointly trained to obtain descriptors tailored for the semantic segmentation task on 
the Pascal VOC dataset [14]. After that, a SVM* is trained to obtain for each object 
candidate a score that captures the confidence of belonging to each object class 
category. 

 

 
Figure 6: Pipeline followed for the SDS task. The first CNN is for the bounding boxes whereas the 

second is for the regions. The concatenation of the descriptors obtained from both networks 
generates the final descriptor. 

 

 

 

 

 

 

 

 

                                                
* CNN, fine-tuning and SVM are described at the glossary. 
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3. Methodology / project development:  

3.1. Dataset: Pascal VOC 
This research is assessed on the segmentation challenge of the Pascal Visual Object 
Classes Challenges (PASCAL) benchmark [14]. PASCAL VOC is a network of 
excellence in the research field of computer vision that provides standardised image data 
sets for object class recognition and also runs challenges assessing performance on 
recognition tasks from a number of visual object classes in realistic scenes. This work is 
based on the segmentation challenge that PASCAL VOC provides, which is defined as 
following: 

"Generating pixel-wise segmentations giving the class of the object visible at each pixel, 
or "background" otherwise." 

The segmentation challenge aims at detecting and segmenting 20 classes of 
objects. The data set of PASCAL that was given to accomplish this challenge consists of 

• 1112 training images 
• 1111 validating images 
• Testing images 

The segmentation challenge provides a set of training images to train the algorithm and 
a set of validating images to test its performance before submitting the task. The final 
assessment of the algorithm on the challenge is computed using the testing images that 
only PASCAL possesses. 

3.2. Metric: Accuracy Per Category (AAC) 
The segmentation accuracy is measured as the Intersection over Union (IoU) metric of 
the predicted segmentation and the Ground-Truth, averaged across all object classes 
and the background. In this work we will refer to this measure Average Accuracy per 
Category (AAC) [15].  

 

 
Figure 7: This figure depicts the overlap between the predicted object and the ground truth, and the 

nomenclature of the pixels to compute AAC. 
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3.3. Experimentation 
Now that the dataset and the metric used to assess performance have been defined, this 
section will address the experiments performed during this thesis. 

3.3.1. Pipeline 

 
Figure 8:  Pipeline of the experiments carried out in this thesis. 

Figure 8 illustrates the pipeline of the experiments. The goal of this research is achieving 
an efficient semantic segmentation in terms of the number of object proposals 
analysed and the accuracy obtained.  Firstly we have a dataset partition for training and 
another for testing the performance of the algorithm. PASCAL [14] already provides a 
train and validation partitions to accomplish this role, with their corresponding ground 
truths that allow both training and assessment. 

In the training phase, we aim at generating an algorithm that semantically segments our 
images. For every image of the training set, we generate a set of object candidates. Two 
algorithms will be used to obtain object candidates: CPMC [5], based on the idea of 
generating regions that define objects of the image, and UCM [3] which generates a 
hierarchical partition, whose regions will be considered object candidates. The second 
step is extracting the features of these regions. For the first experiments in this work, O2P 
[4] descriptors will be used. Features extracted from the SDS [6] architecture will also be 
tested at the final stage of the experimentation. 

The next step is training a linear support vector regressor (SVR) [4] for each object 
class category to predict the overlap between an object candidate and the object that 
defines each class category. In the training phase we aim at obtaining a model that 
determines each object class category, so we will obtain as many models as object class 
categories we are dealing with. With the Ground-Truth object segments for every class 
category and the object candidates with higher overlap with the Ground-Truth, we 
train an SVR for each class category.   

Once all the SVRs are trained, we will be able to obtain for every object proposal a vector 
whose elements are related to the likelihood of that object to belong to each object 
class category. These vector elements are the soft-decisions obtained from every SVR 
classifiers, and capture the confidence values of belonging to each category.  
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Once the algorithm is trained, it is time to test it. For testing first we obtain the object 
candidates for those images from the test dataset and extract their features. The 
algorithm outputs the predicted confidence values of each object candidate with the 
different object class categories, and predicts a semantic segmentation from the 
different confidence values and the estimation of objects contained in an image, 
which for PASCAL VOC dataset is 2.2 objects per image. The segmentation obtained is 
assessed using the AAC metric. 

3.3.2. Implementation 
This research has used as starting point the source code of João Carreira [15] in 
MATLAB, which segments images using 150 CPMC object candidates and O2P features 
[4]. The code also assesses the segmentation accuracy with AAC. For the purpose of 
measuring efficiency in terms of the number of regions analysed using different 
types of object candidates and descriptors, the following changes were required: 

• Enable to set the number of object candidates, so we can later compare 
efficiency and assess AAC vs. number of object candidates. 

• Enable the algorithm to use UCM regions as object candidates and extract their 
features.  

• By default CPMC object candidates are sorted by their likelihood of being an 
object. This work has researched several alternative approaches for UCM, trying 
to find which regions of the hierarchical partition are more likely objects, so 
the calculation of different orders of these regions following different criterions 
should be coded. Also the code needed to be adapted to efficiently calculate 
AAC vs. number of object candidates of different orders of the same regions. 

• Extract SDS [6] descriptors for UCM different configurations and CPMC and train 
the algorithm using such descriptors. The code to extract SDS descriptors has to 
be adapted to extract CPMC and UCM regions, due that it was originally designed 
for MCG [11] regions.  

The core of this research has been testing different methods for sorting UCM regions 
and assessing AAC depending on the number of regions analysed. Notice that the 
number of regions analysed is the budget of regions introduced into the segmentation 
algorithm. If a budget of 5 regions is considered, it means that we introduce 5 regions into 
the segmentation algorithm, and the algorithm decides which regions to select in order to 
better semantically segment the image, considering that the average number of objects of 
an image of the PASCAL VOC data set is of 2,2 objects, a pretrained value kept in our 
work to allow a fair comparison with the CPMC-based solution of [15]. 

First of all some general features of the UCM hierarchical partitions structure should be 
highlighted: 

• A UCM tree has a total of (2*(number of leaves) -1) nodes. 
• Each region of the partition is represented by an index. The highest index is the 

root node, and the lowest indexes correspond to the leaves. 
• The structure that stores the hierarchical partition contains two important files   
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  1.  a file of the image size that contains the contours of the image and the 
weight of these contours.  

 
Figure 9: The picture 2008_003876 of the PASCAL dataset of a plane and its corresponding ucm, 

which shows the boundaries of the partition with different weights. 

  2.  a merging sequence, i.e. the sequence of fusions between nodes that 
 defines the hierarchical partition.  

 
Figure 10: Merging sequence of the first fusions of 2008_003876 picture. For each row the two first 

columns are the indexes of the nodes that merge, and the last column is the index of the node 
generated. 

• The UCM hierarchical partition can be represented with a dendrogram that not 
only represents the fusions between regions, but also the costs of each fusion, 
which correspond to the height of the node in the dendrogram. Notice that the 
regions are created depending on their fusion cost value, so that the costs of the 
created regions always increase. The range of the costs' values is of [0,1]. For 
instance, a dendrogram of the UCM hierarchical partition of an image of PASCAL 
data set is depicted in Figure 11 from below. For an easier visualization leaves 
costs are zero, but as our tree is pruned as it is explained below, the actual 
leaves costs are not zero. 

 



 

 26 

 
Figure 11: Dendrogram of 2008_003876 picture, whose y axis represents the costs, and the x axis the 

indexes of the leaves. Also masks of the regions associated to different nodes are shown. 

Now some specific traits of the UCM hierarchical partitions used for this research 
should be highlighted in order to later better understand the configurations: 

• First a fully-grown tree, i.e. the complete tree that UCM algorithm creates, is 
computed with an approximated number of 1500 nodes. 

• Afterwards the tree is pruned, i.e. substitutes some subtrees for leaves 
depending on the number of nodes that we want to use. In particular we have 
selected a tree of 151 nodes (75 leaves) in order to compare results to 150 
CPMC object candidates. Notice that a tree of 150 nodes is impossible to 
generate because the total amount of nodes must be an odd number (2*(number 
of leaves) -1). 

Different configurations of UCM refer to different strategies of picking the different 
regions of the partition in order to later segment the image. The criterions of the order of 
the different configurations considered in this research have been the following. 

3.3.2.1. Class-agnostic exploration 
Hierarchical partitions are generated by iteratively clustering regions of pixels with 
similar characteristics, starting from a fine partition. The merging sequence is then 
determined by the similarity between regions. If two adjacent regions are really dissimilar, 
it is said that a strong boundary separates them, and that the cost associated to such 
pair of regions is high. This information is stored in a file as stated in 3.3.2. 

The first approach to sort the regions of the hierarchical partition is based on the 
assumption that an object is homogeneous in comparison to the background of the 
image. For this reason it makes sense to think that fusions that add content to an 
homogeneous object may have similar costs, whereas the fusion cost of the merging 
between the object and the background will be higher because they are more 
dissimilar. 

Configurations based on indexes: The indexes of the nodes of a hierarchical partition 
determine when each region has been created. The first regions created are associated 
to the lowest fusion costs and to the lowest indexes. Consecutive indexes are associated 



 

 27 

to regions that share similar costs. If the descendants of a node differ in the number of 
index mean that though they are adjacent, they have been created in different moments 
of the hierarchical partition generation, so that their costs are also different. If they are 
adjacent but their costs are different it means that probably they are dissimilar regions, 
because their creation was characterized by different boundaries costs, so the regions 
can be associated to different objects. This argumentation has lead to think that objects 
can be found in regions associated to indexes that differ from the indexes of their 
adjacent regions.   

In order to find these regions, the basic idea followed in the different configurations 
proposed by this thesis, is a top-down approach that descends through the nodes 
related to higher indexes, which in general are the ones more similar to their ancestors, 
but consider their sibling as object candidate because they are the regions associated to 
more distinct indexes. The different configurations derived from this idea are further 
explained in the Appendix I. 

Configurations based on costs: A second research line addressed in this thesis is the 
exploration of the UCM based on the costs of the merges instead of the index of the 
merging sequence. The indexes give an insight of which regions are associated to higher 
costs compared to other regions, but not of the costs values themselves. We can use the 
costs values to further explore the same intuitions that guided the study based on indexes. 
First of all a clear notation should be established. The dendrogram in Figure 12 
introduces the terminology used: 

 
Figure 12: Nomenclature of the different costs and their relations depicted in a dendrogram. 

A major part of the configurations calculate derivatives of the costs related to a node. If 
node 8 in the previous picture is the one we want to analyse, it is interesting to know the 
differences between its father and descendants costs. A first approach is the following set 
of first derivatives. 

𝑐 = 𝑥 − 𝑦 

𝑎 = 𝑦 − 𝑧 

𝑏 =   𝑦 − 𝑘 

Notice that we are not normalizing by any value these derivatives, but we could normalize 
either by the first operand or the second one. If it is considered that normalization is not 
required is because it is meaningful for us the distance of a single fusion, so we would 
normalize all these derivatives by a unit. 

These first derivatives give insight of the differences of costs between consecutive 
regions in the partition. Another interesting approach is the second derivative, which 
takes into consideration all three levels of the node in the hierarchy. By computing the 

Consider this tree of 9 nodes. We are going to analyse the 
node with index number 8: 

x : cost of the parent node 
y : cost of the node 
z,k : costs of the descendants 
a :y-z difference of fusion cost between node and one of its descendants 
b :y-k difference of fusion cost between node and one of its descendants 
c :x-y difference of fusion cost between father and node to analyse 
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second derivative an insight of how the differences between costs change can be 
apprehended. More possibilities could be contemplated, but for this research the 
following second derivatives have been considered: 

𝑐   −   𝑚𝑖𝑛(𝑎, 𝑏) 

𝑐   −   𝑚𝑎𝑥(𝑎, 𝑏) 

In the Appendix I there is a table with all the configurations considered, not only the ones 
that consider the derivatives criterion, but also a set of configurations that mixes 
configurations based on indexes with configurations based on costs.  

All configurations sort the regions depending on the values obtained with these 
derivatives or other functions. In concrete, in the appendix all the configurations are 
defined by the function that is being maximized.  

3.3.2.2. Class-dependent exploration 
This last approach differs from the two previous because it is not class-agnostic. The 
criterion to select which regions to analyse first considers the outputs of the SVR for each 
object class category, i.e. the predicted overlap with every object of the different 
categories.  

As the scope of this work is developing an efficient strategy, it is interesting that the 
decision of the classifier for a region gives us information of what region to analyse next, 
so that a sequence of smartly selected regions is defined. 

Xavier Giró developed an efficient strategy to explore a hierarchical partition during his 
PhD thesis using Bag of Words Descriptors [1]. The strategy consisted of a top-down 
approach that uses a detector and a classifier in order to recognize objects in images. 
The detector detects which objects are contained in every region, so that en efficient 
exploration can be performed. At the same time a classifier on the region analysed 
determines whether the region itself is the object we are seeking or not.  

In the framework of the problem that we are dealing with in this work, we are trying to 
recognize the 20 object classes from Pascal. A first approach would be using the SVR 
outputs for each region to decide how to explore the tree. The proposed top-down 
exploration algorithm is the following: 

 1.  The algorithm starts always at the root node. It is not necessary to know the 
confidence vector for this node, because we are always going to start with it. 

 2. Consider its two descendants regions, and obtain the SVR's outputs for both. 
For any of the classes we are considering, the one that has a higher confidence value 
is the one we are considering in order to descend. We store its sibling into a queue, 
because we are going to analyse it later. 

 3. Now we store into the queue the two descendants of the node analysed in the 
previous step.  

 4. We check which element of the queue has a higher confidence value for any 
of the classes. The algorithm is going to descend through this node if the class that 
scores the maximum punctuation is a different one than the previous class considered, 
and in case the previous class considered is the same there are two options: 

• The node analysed previously was its ancestor. In this case we check the 
score, and if it is lower than in the previous iteration, the algorithm does not 
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descend through this node in order to avoid exploring a branch when the 
object at issue has already been found on that branch. The algorithm checks 
the nodes in the queue until a proper node is found. If no proper node is 
found, the one with higher overlap is analysed. 

• The node analysed previously was not its ancestor. In this case the 
algorithm descends through that node. 

 5. We keep repeating the 3 and 4 steps until all nodes have been analysed. 

The following Figure 13 depicts the flow chart of the algorithm previously explained. 

 

 

Figure 13: Flow chart of the class-dependent exploration algorithm. 
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4. Results 

In this section the best results obtained from all the configurations tested are illustrated. 
All the plots depict the AAC obtained when using a budget of a certain number of 
regions. At the Appendix I there is an explanation and also different plots for each 
configuration tested using the different criterions.  

4.1. Results with O2P descriptors 

4.1.1. Comparison of naive UCM and CPMC  
In Figure 14 and Table 1 we are going to analyse the results obtained with O2P 
descriptors when no smart exploration is performed. 

 
Figure 14: Plot of Accuracy vs. number of regions with CPMC and naive UCM, whose regions are 
sorted according their indexes, starting by the higher index and descending until the first region. 

AAC 5 regions 15 regions Maximum 

CPMC 19.4995 27.6783 35.5921 

UCM 17.1496 21.8057 25.6645 
 

Table 1: Comparison of AAC between CPMC and UCM for different regions budget. 

The first interesting fact perceived from Figure 14 from above is the difference between 
the trends of the UCM and CPMC curves. The CPMC curve is mainly increasing 
whereas the UCM curve decreases after around 25 regions. This is plausible because 
of the intrinsic properties of the regions generated by a hierarchical partition. The different 
regions linked to the nodes of a hierarchical partition belong to different levels of the 
partition associated to different regions sizes. As the budget of regions available 
increases the SVRs output better scores for small regions although they are not the 
actual object of the image, so that an over segmentation can affect the classifier 
decisions leading to a decreasing accuracy in the final segmentation. This fact is not 
present with CPMC regions because they do not present the hierarchical properties.  

The configuration of UCM plotted in the Figure 14 corresponds to a naive order of UCM. 
It picks the UCM regions according to their indexes in a descending manner. A first 
conclusion about this curve is that the regions of UCM that really make a difference in 
terms of accuracy are the ones associated to higher indexes, i.e. the ones that belong to 
the highest levels of the hierarchy. This is highly related to the regions size, since those 
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nodes are linked to the biggest regions, and it is reasonable to think that if the budget of 
regions is very small it is advisable to select the regions associated to the highest 
nodes. Notice that in the CPMC configuration the first zones are also the ones that 
increase more dramatically the accuracy, but this is because the regions are sorted 
depending on the likelihood that the regions are objects in the image. 

As the scope of this project is to develop an efficient strategy to segment images, we are 
going to concentrate on the lower amount of number of regions. For the top 5 and top 15 
zones, CPMC outperforms the results obtained with the naive UCM configuration as 
depicted in Table 1. It is also quite outstanding that CPMC maximum accuracy is much 
higher to the one obtained with UCM.  

4.1.2. Results obtained with smart explorations of UCM 
Many configurations of UCM regions have been tested based on the different criterion 
exposed in this thesis in order to guide an efficient exploration through the tree 
partition. The best results achieved with O2P descriptors are depicted in Figure 15 and 
Table 2. 

 
Figure 15: The plot of the left shows the two best configurations of UCM compared to CPMC in a 150 
regions sweep. The plot of the right shows a sweep of 15 regions of the set of best configurations of 

UCM compared to CPMC. 

Configuration 3 regions 5 regions 15 regions Maximum Method 

Max queue 14.1210 16.7512 22.1611 26.4423 UCM index 

𝑐 −𝑚𝑖𝑛  (𝑎, 𝑏) ∗ 𝑦 15.6977 19.6139 24.2172 25.1349 UCM cost 

𝑐   +    𝑎 − 𝑏 ∗ 𝑦 16.2680 18.2270 22.3265 25.4995 UCM cost 

Second derivative 
according nodes 
creation 

16.4387 18.8192 21.5547 25.3733 UCM index and cost 

SVR 16.5685 18.4662 22.6758 24.2867 Top-down prediction 

CPMC 15.4528 19.4995 27.6783 37.5921 Object Candidates 

 

Table 2: Comparison of AAC between different configurations of UCM and CPMC for different regions 
budget using O2P descriptors. 
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4.1.2.1. Results of configurations based on UCM indexes 
One of the best results is obtained by the configuration max queue that only considers 
the indexes of the merging sequence ((-) in Figure 15). This configuration is a top-
down approach that follows the argumentation previously in this report explained, that 
objects in a hierarchical partition might be found in regions associated to indexes 
that differ from the indexes of their adjacent regions. The exploration guided through 
the tree starts at the root node and descends through the nodes with highest indexes, 
that are the ones that have been created later and are consequently more alike to their 
ancestors regions. However, we analyse their siblings, because they have been created 
earlier and are consequently more different compared to their ancestors. Once a 
leave is reached, the next node to descend through is the one through which the 
algorithm has not descended yet and is associated to a higher index, so it has been 
created later, and analyse its sibling who has been created earlier compared to its 
ancestor. Regions of the higher levels of the hierarchy and more different to their 
adjacent regions are the first selected. 

4.1.2.2. Results of configurations based on UCM costs 
The best configuration of UCM is the one that maximizes a second derivative that 
captures how the differences of costs change considering the three levels of the 
hierarchy related to a node ((-) in Figure 15). The three levels are the node's ancestor, 
the node itself and its descendants. If we represent a node by the index i, the 
configuration seeks those regions that maximize the following: 

𝑚𝑎𝑥!   ((𝑐! −𝑚𝑖𝑛  (𝑎! , 𝑏!)) ∗ 𝑦!)=    𝑚𝑎𝑥! 𝑐! −𝑚𝑎𝑥!(𝑚𝑖𝑛  (𝑎! , 𝑏!)) ∗𝑚𝑎𝑥! 𝑦!  = 

= (𝑚𝑎𝑥! 𝑐!   +   𝑚𝑖𝑛!(𝑚𝑖𝑛  (𝑎! , 𝑏!))) ∗𝑚𝑎𝑥! 𝑦!      ∀! 

This second derivative demonstrates that best results are achieved by regions whose 
cost is similar to the cost of one of its descendants but really dissimilar to its ancestor's 
cost. This supports the theory that an object can be found in nodes whose costs 
compared to their descendants are similar because an homogeneous region was 
being created, but whose father's cost is really dissimilar because it is associated to 
the fusion with the background of the object. This has lead to think about 
configurations that maximize the difference between the two descendants' costs, 
since configurations like 𝑚𝑎𝑥!   (𝑚𝑎𝑥  (𝑎! , 𝑏!))  and its variants (can be seen on the 
appendix) yield also good results. Maybe implementing 𝑚𝑎𝑥!   (𝑚𝑎𝑥  (𝑎! , 𝑏!))  and 
𝑚𝑖𝑛!(𝑚𝑖𝑛  (𝑎! , 𝑏!)) is the combination that we are seeking. Following this idea 𝑚𝑎𝑥!    𝑐!   +
  +   𝑎! − 𝑏! ∗ 𝑦! has been tested with very good results ((-) in Figure 15 on the right), 
though 𝑚𝑎𝑥!    𝑐! −𝑚𝑖𝑛  (𝑎! , 𝑏!) ∗ 𝑦! still is the best. 

4.1.2.3. Results of configurations based on UCM indexes and costs 
Other configurations have resulted quite successful, such as the one explained in the 
appendix that calculates the second derivative of the costs with respect to the 
indexing of the nodes ((-) in Figure 15). The indexes are related to the regions creation, 
and the regions creation depends on the costs values, so that the regions costs with 
respect to their indexes are always increasing. However, the costs values increments can 
change, and this second derivative detects those nodes whose costs are much 
different in comparison to those nodes created in similar moments during the 
hierarchical partition generation. This criterion performs well because regions, mainly 
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of the nodes associated to higher indexes, are created consecutively due that there 
remain only a few last regions to merge, so the same argument followed in 𝑚𝑎𝑥!    𝑐! −
𝑚𝑖𝑛  (𝑎! , 𝑏!)  ((-) in Figure 15) is valid for this configuration. 

4.1.2.4. Results of top-down prediction configurations 
Another interesting criterion that obtains very good results especially when using a few 
regions, is the one based on the per-class prediction ((-) in Figure 15 on the right and  (-
) on the left). The criterion follows a top-down approach and descends through those 
nodes that score a higher overlap prediction with any of the 20 PASCAL classes. 

The main issue here is that the SVR's are trained to detect whether a region belongs 
to a class, but not to detect whether that region contains a certain object, so it is 
already quite surprising that the configuration works well, and gives us a clue that 
following this research line and using a detector in order to determine which objects are 
contained in a region could be really promising in order to guide an efficient exploration of 
the partition. 

4.1.2.5. Final comparison of CPMC and UCM using O2P descriptors 
Finally it is quite outstanding that CPMC configuration outperforms all UCM 
configurations from 5 regions and above. CPMC object candidates are created from 
the merging and filtering of regions that the parametric min-cuts produce, resulting in a 
set of accurate segments. UCM segments conversely are the straight regions 
obtained from the hierarchical partitions, which are not created with the purpose of 
becoming object candidates but regions that share similar characteristics in the image.  

4.2. Results with SDS descriptors 
The best configurations obtained with UCM and O2P descriptors have also been tested 
using SDS deep learning descriptors [6]. The results are depicted in Figure 16 and 
Table 3. 

 
Figure 16: The plot of the left shows the two best configurations of UCM with SDS compared to CPMC 

with SDS for a sweep of 150 regions. The plot of the right shows a set of the best configurations 
using SDS for a 15 regions sweep. 
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Configuration 3 regions 5 regions 15 regions Maximum Method 

Max queue 16.6154 20.2263 27.8129 35.6149 UCM index 

𝑐 −𝑚𝑖𝑛  (𝑎, 𝑏) ∗ 𝑦 22.6603 27.5581 32.2131 34.3101 UCM cost 

𝑐   +    𝑎 − 𝑏 ∗ 𝑦 25.6244 28.1885 32.3963 34.6870 UCM cost 

Second derivative 
according nodes creation 

24.4298 27.1347 31.4007 34.4783 UCM index and cost 

Prediction 26.7601 29.5846 32.4771 34.2708 Top-down prediction 

CPMC 18.8319 24.6160 36.6310 45.8890 Object Candidates 

 

Table 3: Comparison of AAC between different configurations of UCM and CPMC for different regions 
budget using SDS descriptors. 

SDS descriptors perform much better than O2P, all configurations yield better results 
using these descriptors. The best results obtained with these descriptors are discussed in 
the following sections. 

4.2.1. Results of top-down prediction configurations 
The results reflect that the best configuration for an efficient exploration with SDS 
descriptors is the one that considers the per-class prediction ((-) in Figure 16 on the 
right and (-) on the left), which drastically outperforms CPMC for a few regions budget.  
This supports even more the improvement of SDS descriptors compared to O2P, due that 
using the classifiers decisions to explore the tree partition results quite efficient compared 
to other techniques only based on costs of the tree partition. Another proof is that the 
curves of UCM using SDS do not decrease once they saturate, because the classifier 
does not make wrong decisions even when small regions associated to low levels of the 
hierarchy are considered. 

4.2.2. Results of configurations based on UCM costs 

The second best configuration in this case is 𝑚𝑎𝑥!    𝑐!     +    𝑎! − 𝑏! ∗ 𝑦! , ((-) in Figure 16 
on the right and (-) on the left) which reinforces the intuition grasped while experimenting 
with O2P, that regions that best fit objects in the image could be the ones whose cost is 
different from their ancestors' costs, and whose descendants' costs are dissimilar 
between each other, being one similar to the node's cost and the other pretty dissimilar. 
An explanation of why the nodes whose descendants have these characteristics yield 
good results could be that real objects are not homogeneous, they posses parts that 
are homogeneous but probably parts that are not. The fusion of two nodes, one being 
the most homogeneous part of the object with a node that is the less homogeneous part 
of the object, would have a cost of these characteristics, due that the first region would 
have a similar cost to the node's cost, and the second region, the one that is more 
dissimilar, would have a much different cost. 
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4.3. Visualization of regions selected 
Figure 17 and Figure 18 below allow a better visualization of the object proposals 
selected for each UCM configuration. Notice that the confidence values in order to 
descend through the partition for the prediction configuration are the ones obtained with 
SDS descriptors. 

                                                  (𝑐   +    𝑎 − 𝑏 ∗ 𝑦)                              (𝑐 −𝑚𝑖𝑛(𝑎, 𝑏)) ∗ 𝑦                        𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛  𝑐𝑜𝑛𝑓𝑖𝑔 

 

Figure 17: Regions and their associated indexes selected when using different configurations of UCM 
for picture 2008_003876. 

This example in Figure 17 corresponds to an image whose contours match nearly 
complete objects, as in this case the plane of the picture. Regions 150 or 147 are really 
good object candidates, and the three configurations find one of these regions. In fact the 
three configurations select in the first place a region that is really appropriate.  

On the other hand, partitions of other images such as the one for 2007_000042 are not 
that ideal, as depicted in Figure 18. 
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                                  (𝑐   +    𝑎 − 𝑏 ∗ 𝑦)                                                (𝑐 −𝑚𝑖𝑛(𝑎, 𝑏)) ∗ 𝑦                                    𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛  𝑐𝑜𝑛𝑓𝑖𝑔 

 

Figure 18: Regions and their associated indexes selected when using different configurations of UCM 
for picture 2007_000042. 

The whole dendrogram and ucm of image 2007_000042 are in the Appendix II. In this 
case a strong contour separates into two the main objects in the image, the trains, and 
for this reason the object candidates generated are not very useful. None of these 
object candidates would yield good results because they all include lots of pixels that 
belong to the background, or some part of the trains is missing. Maybe the best 
regions would be 142 and 145, and the three configurations find at least one of such 
candidates. 

4.4. Comparison of computation time 
Finally, a comparison in terms of time of computation is important as the scope of the 
project is finding an efficient strategy. The times of computation stated in the article [5] 
and [13] for CPMC and UCM hierarchical partitions are illustrated in Table 4. 

 

 CPMC 150 regions UCM hierarchical partition 

Computation Time 250 s/ image 24.4 ± 3.6 / image 
 

Table 4: Computation time of the set of object candidates of CPMC and the hierarchical partition. 
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So computing the CPMC regions is much slower compared to the creation of a UCM 
hierarchical partition.  Moreover, if we reduce the computation time of the prediction by 
using just a few regions budget, the total computation time is reduced. An approximate 
estimation based on the experimentation performed during this project is in Table 5. 

Computation Time Prediction with 5 regions Prediction with 15 regions Prediction with 150 regions 

Set of 1111 images 1 min 50 s  2 min 30 s  3 min 30 s 

Image ≈0.001647 s / image ≈0.00225 s/ image ≈0.00315 s/ image  
 

Table 5: Computation time of the prediction of the final segmentation. 

The second row is just an approximation, because fixed times independent of the number 
of images are not known. 
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5. Budget 

The budget of the project consists of the wages of a junior engineer and two senior 
engineers, as stated below. 

  Number Wage Hours / week Total 
weeks 

Total 

Junior Engineer 1 8 € / hour 30 h 20  4800 € 

Senior Engineer 2 20 € / hour 10 h 20 8000 € 

 

Table 6: Total personal costs. 

 The project has been performed with Matlab. Its license cost and amortization are stated 
below: 

Number of 
Licenses 

Price / Year Months of 
project 

Amortization/ 
Month 

Total 
Amortization 

Total 

1 500 € 5 months 41.67 € / 
month 

208.33 € 291.67 € 

 

Table 7: Total licenses costs 

So the total cost of the project is of 13.091,67 €. 
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6. Conclusions and future development:  

The initial aim of this thesis was finding an efficient strategy to semantically segment 
images using hierarchical partitions, trying to achieve the maximum accuracy possible 
when only disposing of a few regions budget.  

Although UCM segments are not that accurate in comparison with CPMC object 
candidates, the intrinsic multiscale information of the hierarchical partitions provides a 
wide range of possibilities to efficiently explore the partition and detect those nodes 
that more probably are objects in the image at issue. 

Results have shown that for the PASCAL data set the nodes of the best regions are 
associated to the nodes of the higher levels of the hierarchy, due their size. Moreover, 
adjacent regions that have been created in different moments of the hierarchical 
partition generation, and therefore associated to dissimilar indexes, yield better results. 
Following the same idea, regions associated to similar costs compared to one of their 
descendants but very dissimilar costs compared to their ancestors, prove good 
performance.  

These findings support the idea that a region that is a good candidate for being an object 
is generated with a series of fusions of regions that have similar costs, since if we 
are assuming an object is homogeneous, or at least more homogeneous than comparing 
it with the background of the image, the costs of adding homogeneous parts to an object 
should be similar because the boundaries that define the fusions have similar weights. 
Furthermore, a region is potentially a good object candidate if the merging with an 
adjacent region is characterized by a strong boundary, and therefore both regions 
share a high cost fusion, because of the lack of homogeneity between the object and its 
background.  

An attribute of these regions that has not been explicitly considered and could be 
interesting for further researching is the diversity between regions. Two regions may be 
good object candidates but if they are redundant with each other and we only dispose of 
a few regions budget, it would be more desirable to discard duplicative object 
proposals.  

A configuration that has obtained indeed promising results, is the one that descends 
through the tree depending on the estimated overlap of the regions with the objects 
pursued. Though the SVRs have been trained to predict whether a region is an object 
and not to predict the objects it contains, the results have been good enough to think 
that applying a detector of the objects contained in an image in order to discard 
branches of a tree, and also implementing a classifier to detect whether an object 
belongs to a certain class category, is the next step to follow this research.  

Another improvement would be using MCG object candidates, which are generated 
from the regions of the UCM partition. The computation time of such candidates is 
minimal compared to CPMC, and the hierarchical partition of the UCM could allow the 
efficient exploration addressed in this research. Also, the candidates are much more 
accurate than the straight regions obtained directly from the UCM, due that the object 
proposals are generated from the combination of different regions of the partition. 
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Appendix I: Different configurations of Average Accuracy per 
Category vs. number of regions 

This appendix contains the explanations and plots of the different configurations tested. 
For each configuration an explanation, a code, and different plots are exposed. By default 
all configurations use O2P descriptors. 

Configurations CPMC 

Default  The first object candidate is the one that more likely is an object 
of the image, up to 150 object candidates. 

 

 
Figure 19: Plot of CPMC performance for 150 regions. 

Configurations UCM 

0. Baseline 

Random  Random permutation of the 151 regions 

 

1. Based on indexes 

Name Explanation Code 

Increasing indexes The masks from 1 to 151 0 

Decreasing indexes The masks from 151 to 1 1 

FIFO Starting from the root node, descending through the 
highest node and analysing its sibling. At the same time 

2 
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storing in a FIFO queue the node analysed. When a 
leave is reached, pull first element in the queue and 
descend through it. 

Notes: Top-down approach 

LIFO Starting from the root node, descending through the 
highest node and analysing its sibling. At the same time 
storing in a LIFO queue the node analysed. When a 
leave is reached, pull last element in the queue and 
descend through it. 

Notes: Top-down approach 

3 

MAX queue Starting from the root node, descending through the 
highest node and analysing its sibling. At the same time 
storing in a queue the node analysed. When a leave is 
reached, pull maximum element in the queue and 
descend through it. 

Notes: Top-down approach 

4 

 

 
Figure 20: Configurations from 0 to 4, and random configuration. Plot with 15 regions. 
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Figure 21: Configurations from 0 to 4, and random configuration. Plot with 25 regions. 

 
Figure 22: Configurations from 0 to 4, and random configuration. Plot with 150 regions. 
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2. Based on Costs  

Name Explanation Code 

𝑚𝑎𝑥!(𝑐!) Maximize c, i.e. the difference between the 
cost of the father and the cost of the node. 

5 

𝑚𝑎𝑥!(𝑐!   −   (𝑎! + 𝑏!)) Maximizing the difference between the 
father' cost and the cost of the node, and 
minimizing the differences of the node and 
its siblings' costs.  

6 

𝑚𝑎𝑥!
𝑐!

𝑎!×  𝑏!
 Maximizing the difference between the 

father' cost and the cost of the node, and 
minimizing the differences of the node and 
its siblings' costs. 

7 

𝑚𝑎𝑥!(𝑚𝑎𝑥(𝑎! , 𝑏!)) Maximizing the maximum distance between 
the cost of the node and the cost one of its 
descendants. 

8 

𝑚𝑎𝑥!
𝑚𝑎𝑥(𝑎! , 𝑏!)

𝑐!
 

Maximizing the maximum distance between 
the cost of the node and the cost of one of 
its descendants and minimizing the 
difference between the cost of the father 
and the cost of the node. 

9 

𝑚𝑎𝑥!(𝑚𝑎𝑥(𝑎! , 𝑏!)  ×  𝑐!   ) Maximizing the maximum distance between 
the cost of the node and the cost of one of 
its descendants and maximizing the 
difference between the cost of the father 
and the cost of the node. 

10 

𝑚𝑎𝑥!(𝑚𝑖𝑛(𝑎! , 𝑏!)) Maximizing the minimum distance between 
the cost of the node and the cost of one of 
its descendants. 

11 

𝑚𝑎𝑥!
  𝑥!
𝑦!

 Maximizing the ratio between the cost of the 
father and the cost of the node. 

12 

𝑚𝑎𝑥!
  𝑥!  ×  𝑘!   ×  𝑧!

𝑦!!
 

Maximizing the ratio between the cost of the 
father and the cost of the node, multiplied 
by the ratio of the cost of a descendant' cost 
and the cost of the node, and multiplied by 
the same factor for the other sibling. 

13 

𝑚𝑎𝑥!(𝑐!   −𝑚𝑖𝑛(𝑎! , 𝑏!)) Maximizing the difference between the cost 
of the father and the cost of the node and 
minimizing the minimum difference between 

14 
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the node and either of its siblings. 

𝑚𝑎𝑥!
𝑐!   −𝑚𝑖𝑛(𝑎! , 𝑏!)

𝑦!
 

Maximizing the difference between the cost 
of the father and the cost of the node and 
minimizing the minimum difference between 
the node and either of its siblings, divided 
by the node cost. 

15 

𝑚𝑎𝑥!((𝑐!   −𝑚𝑖𝑛(𝑎! , 𝑏!))×𝑦!) Maximizing the difference between the cost 
of the father and the cost of the node and 
minimizing the minimum difference between 
the node and either of its siblings, multiplied 
by the node cost. 

16 

𝑚𝑎𝑥!
𝑐!
𝑦!
  −𝑚𝑖𝑛

𝑎!
𝑧!
   ,
𝑏!
𝑘!

 
Second derivative, as in previous 
configuration, normalizing by second 
operand of every first derivative. 

17 

𝑚𝑎𝑥!
𝑐!
𝑦!
  −𝑚𝑖𝑛

𝑎!
𝑧!
   ,
𝑏!
𝑘!

×𝑦!  
Second derivative, as in previous 
configuration, normalizing by second 
operand of every first derivative, multiplied 
by the cost of the node. 

18 

𝑚𝑎𝑥! 𝑚𝑖𝑛
𝑎!
𝑧!
   ,
𝑏!
𝑘!

 
Maximizing the minimum first derivative 
normalized by the second operand. 

19 

𝑚𝑎𝑥! 𝑚𝑎𝑥
𝑎!
𝑧!
   ,
𝑏!
𝑘!

 
Maximizing the maximum first derivative 
normalized by the second operand. 

20 

𝑚𝑎𝑥!(𝑚𝑎𝑥(𝑎! , 𝑏!)  ×  𝑦!   ) Maximizing the maximum first derivative 
multiplied by the node cost. 

21 

𝑚𝑎𝑥!(𝑐!  + 𝑎! − 𝑏! ) 

 

Maximizing the sum of the first derivative 
with the father and the absolute difference 
of the first derivatives with the siblings. 

22 

𝑚𝑎𝑥!((𝑐!  + 𝑎! − 𝑏! )  ×  𝑦!) 

 

Maximizing the sum of the first derivative 
with the father and the absolute difference 
of the first derivatives with the siblings, 
multiplied by the cost of the node. 

23 

𝑚𝑎𝑥!(( 𝑎! − 𝑏! )  ×  𝑦!) 

 

Maximizing the absolute difference of the 
first derivatives with the siblings, multiplied 
by the cost of the node 

24 
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Figure 23: Configurations from 5 to 11. Plot of 15 regions. 

 

Figure 24: Configurations from 5 to 11. Plot of 25 regions. 
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Figure 25: Configurations from 5 to 11. Plot of 150 regions. 

 

Figure 26: Configurations from 12 to 17. Plot of 15 regions. 
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Figure 27: Configurations from 12 to 17. Plot of 25 regions. 

 

Figure 28: Configurations from 12 to 17. Plot of 150 regions. 
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Figure 29: Configurations from 18 to 24. Plot of 15 regions. 

 

 

Figure 30: Configurations from 18 to 24. Plot of 25 regions. 
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Figure 31: Configurations from 18 to 24. Plot of 150 regions. 

The best configurations of all that consider costs are plotted in the plots below. These 
configurations are 16, 23, 21 and 10.  

 

Figure 32: Best configurations that consider costs. Plot of 15 regions. 
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Figure 33: Best configurations that consider costs. Plot of 25 regions. 

 

Figure 34: Best configurations that consider costs. Plot of 150 regions. 
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3. Mix of indexes and costs 

Once the previous configurations have been tested, a mixture of both criteria can be 
considered.  

Top-down approach with 
(𝑐 −𝑚𝑖𝑛(𝑎, 𝑏)) ∗ 𝑦   only when a 
leave is reached 

This approach mixes both criteria exposed 
previously, costs and indexes. From root 
node, the algorithm decides to descend 
through the descendant whose index is 
maximum. When a leave node is reached, 
the algorithm descend through the sibling 
whose (𝑐 −𝑚𝑖𝑛(𝑎, 𝑏)) ∗ 𝑦 is maximum. 

25 

First derivative of the consecutive 
fusions' costs 

The first derivative of the costs of the 
consecutives regions generated in the 
hierarchical partition is computed. 

26 

Second derivative of the 
consecutive fusions' costs 

The second derivative of the costs respect 
to their indexes, so that the differences 
between costs of regions merged 
consecutively are analysed. This does 
not mean that consecutive merged regions 
have a hierarchical relation. 

27 

 

 

Figure 35: Configurations from 25 to 27. Plot of 15 regions. 
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Figure 36: Configurations from 25 to 27. Plot of 25 regions. 

 

Figure 37: Configurations from 25 to 27. Plot of 150 regions. 
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The second derivative of the consecutive fusions' costs of the image 2008_003876 of 
PASCAL VOC and indexes of the regions analysed: 

 

Figure 38: Second derivative of regions' costs respect to their regions' indexes.  

 

Figure 39: Selected regions' indexes according this criterion. 

3. By Prediction 

Prediction Top-down approach, descend through the branch 
which has better prediction for any of the classes 

28 

 

Figure 40: Configuration 28. Plot of 150 regions. 
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Now a set of plots of the best configurations of UCM compared to CPMC using O2P will 
be plotted. The best configurations using UCM are 16, 23, 28, 4 and 27.  

 

Figure 41: Best configurations of UCM compared to CPMC. Plot of 15 regions. 

 

Figure 42: Best configurations of UCM compared to CPMC. Plot of 50 regions. 
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Figure 43: Best configurations of UCM compared to CPMC. Plot of 150 regions. 

Now only the two best configurations of UCM compared to CPMC using o2p will be 
plotted. These two configurations are 16 and 28. 

 

Figure 44: Two best configurations of UCM compared to CPMC. Plot of 15 regions. 
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Figure 45: Plot of two best configuration of UCM compared to CPMC. Plot of 25 regions. 

 

Figure 46: Plot of the two best configurations with UCM compared to CPMC. Plot of 150 regions. 
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• SDS descriptors 

In the plots from below the best configurations of UCM compared to CPMC using SDS 
descriptors will be plotted. These configurations are the same as when using o2p. 

 

Figure 47: Best configurations of UCM compared to CPMC using SDS descriptors. Plot of 15 regions. 

 

Figure 48: Plot of best configurations of UCM compared to CPMC using SDS descriptors. Plot of 25 
regions. 
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Figure 49: Best configurations of UCM compared to CPMC using SDS descriptors. Plot of 150 regions. 

Now only the two best configurations of UCM compared to CPMC using o2p will be 
plotted. These two configurations are 23 and 28. 

 

 

Figure 50: Two best configurations of UCM compared to CPMC using SDS descriptors. Plot of 15 
regions. 
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Figure 51: Two best configurations of UCM compared to CPMC using SDS descriptors. Plot of 25 
regions. 

 

Figure 52: Two best configurations of UCM compared to CPMC using SDS descriptors. Plot of 150 
regions. 
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Appendix II: Example of an ucm and a dendrogram 

In the report there's an example of a picture of the PASCAL VOC data set ucm partition 
and dendrogram with a set of masks associated to different nodes of the partition. In the 
following example a picture of the same data set whose partition generation is not that 
ideal illustrated. Notice that in this case the trains of the image have a strong contour that 
confuses the algorithm and separates the trains into two different parts really separated in 
the tree as depicted in the dendrogram. 

 

 
Figure 53: The picture of the left corresponds to a picture of the PASCAL VOC dataset, and the 

picture of the right is its ucm partition. 

 
Figure 54: Dendrogram of the tree partition generated from this same picture. 
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Appendix III: Extended Abstract for WiCV in CVPR 
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1. Motivation

The motivation of this work is the exploration of hier-
archical image partitions for an efficient object recognition
within an image. While many efforts have been focused on
efficient image search in large scale databases, few works
have addressed the problem of locating and recognizing ob-
ject in the large amount of pixels contained in an image.
My work considers as an input a multiscale and hierarchical
partition of an image that defines a set of regions as candi-
date locations to contain an object. Given this partition, two
problems are addressed in my research: (a) a bottom-up fea-
ture extraction to describe the regions in the hierarchy and,
(b) a top-down intra-image search to detect and recognize
objects at a local scale. This work is an extension on my
advisor’s Phd thesis [5].

2. Related Work

The traditional local analysis of an image is based on
scanning with a sliding window different locations and
scales of an image. This exhaustive approach was com-
bined with an efficient feature extraction in the classic work
by Viola and Jones [14] and is also at the core of popular
convolutional neural networks (convnets) [11, 10].

An alternative to exhaustive search is using class-
agnostic image processing to estimate the most feasible lo-
cations in an image to contain an object. A first family of
solutions is based on the saliency maps [9], which typically
assign to each pixel a likelihood value that predicts the user
attention. These solutions though do not directly provide a
region of support for the object.

A different approach aims at reducing the amount of pos-
sible locations for an object by clustering the pixels with a
segmentation algorithm. In these cases, a reduced set of
regions are automatically defined with precise boundaries.
However, flat segmentations typically focus their analysis
at a certain spatial scale, which is not rich enough when the
size of the object is unknown. As an alternative, hierarchi-
cal segmentations [12, 1] provide a nested set of regions
that capture a broad range of scales.

A last group of techniques are based on generating a
ranked list of object candidates in the image, whether as
bounding boxes [13] or accurate segments [4, 2]. These
techniques try to model the generic appearance of an object
so that class-specific detectors are trained on them. For ex-
ample, selective search boxes [13] were trained on convnets
in [6], CPMC regions were used to extract O2P features in
[3], or MCG boxes and segments [2] were also processed
by convnets in [7].

My work aims at comparing the performance of hierar-
chical partitions when compared with object candidate ap-
proaches in terms of efficiency, both during feature extrac-
tion and intra-image search.

3. Bottom-up feature extraction
Hierarchical partitions are excellent structures to prop-

agate features from the finer to the coarser regions. Each
node in the hierarchy represents not only a region but the
smaller region it contains, that is, the ones defined in the
hierarchy below.

We aim at exploring two approaches for efficient feature
extraction. The first one is based on the O2P features pro-
posed in [3]. They are based on an average or max pooling
of the SIFT features densely generated from a region.

In addition, we also aim at extending the efficient fea-
ture extraction on convnets for spatial pyramids presented
in [8], where the arbitrary partition used would be replaced
by UCMs [1].

4. Top-down intra-image search
The top-down intra-image search is performed by train-

ing and assessing in each node two different classifiers. The
first classifier will aim at estimating if an instance of the
modeled class is contained in the region under analysis.
This classifier will drive an efficient search as all regions
in the discarded sub-trees will be discarded. A second clas-
sifier will actually aim at assessing whether the region un-
der analysis actually represents an instance of the modeled
class.
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Figure 1. Accuracy per Category in CPMC depending on number
of object candidates.

Given that in many cases the regions defined in the hi-
erarchical partitions do not perfectly match the object but
a part of them, when a high confidence is achieved on a
region, unions with neighbouring regions will also be as-
sessed for detection.

5. Experiments

In the interest of assessing the strategy defined through
this abstract, a series of experiments are programmed to
compare its performance to state of the art techniques with
the benchmark defined by PASCAL VOC project and based
in the Matlab implementation published in [3]. This will
enable us to compare the Average Accuracy per Cate-
gory (AAC) obtained by different algorithms using different
numbers of object candidates, since this is the key to assess
efficiency.

The first experiment in Figure 1 tests how the number
of object candidates used to segment images with CPMC
affects the accuracy obtained. The results prove that though
increasing the number of object candidates raises the quality
of the semantic segmentation, the quality is mainly achieved
with the first candidates of the sorted list given by CPMC.

6. Conclusions

Further experiments will compare CPMC to UCM parti-
tions. First a naive order of the UCM regions will be tested,
and then UCM regions will be smartly sorted considering
which branches should be discarded in order to drive an ef-
ficient search through the tree.

Our expectations are that a top-down intra-image search
in hierarchical partitions could be beneficial in terms of ef-
ficiency without substantially affecting the accuracy.
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Appendix IV: Post in Bitsearch blog about Semantic labelling of 
CPMC object candidates 

This blog reviews how the work of Joao Carreira et al in "Semantic Segmentation with 
Second-Order Pooling" (ECCV 2012) uses object candidates to generate a semantic 
segmentation of an image. In order to differentiate between object segmentation and 
semantic segmentation, we present the present example in Figure 1 extracted from the 
examples provided by PASCAL.  

 
 Figure 1: Object segmentation and class segmentation that are different 

 
Figure 1 shows the object segmentation of an image that contains two buses. As the 
class category for both objects is the same, when performing object segmentation we 
obtain two different objects, but if we perform a class or semantic segmentation, the 
result is two objects tagged by the same category, for this reason colored with the same 
color. 
 
Some works aiming at the automatic segmentation of objects from images have adopted 
a pipeline based on object candidates. These candidates correspond to segments in the 
image which may potentially represent a semantic object. The output of these algorithms 
is typically a list of a predefined amount of object regions, ranked according to the 
confidence of representing a semantic object. For example, Constrained Parametric Min-
Cuts - CPMC (Carreira 2010) or Multiscale Combinatorial Grouping-MCG (Arbelaez 
2014) are two examples of such techniques. Figure 2 shows an example of the CPMC 
object candidates proposed by Carreira. 

 
Figure 2: Ranked list of object candidates with CPMC 

 
The process of generating a class segmentation from the object candidates of an image 
is explained in detail by Joao Carreira in Object Recognition by Sequential Figure-Ground 
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Ranking. The pipeline of this process in presented in Figure 3. 
 

 
Figure 3: Semantic segmentation pipeline 

 
First of all, a set of object candidates are generated, which is explained in detail in our 
previous post "Object Candidates with Constrained Parametric Min-Cuts". Next step is 
ranking object candidates by means of a class independent scoring system, which 
detects segments with object-like regularities. After that, a confidence score for each 
class is computed over each object candidate. This prediction is generated after training 
a regressor with those object candidates from the training set with a high overlap with the 
labelled regions in the ground truth. The object candidates are ranked based on their 
maximum score obtained on any of the 20 classes. Finally, a confidence threshold is 
learned from the training dataset to maximize the final evaluation metric. This threshold is 
applied on each test image to keep only those object candidates with a higher score. 
Finally, the class segmentation is obtained by painting the kept candidates with their 
highest class label in increasing order. Figure 4 shows two different object candidates 
generated from a very tricky image depicting two buses. For each object candidate, the 
likelihood that this candidate belongs to a certain class is predicted. The object 
candidates are ranked based on their segment score and, by learning a threshold on that 
score, only the top candidates would be kept. 
 

 
Figure 4: Sorting object candidates 
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Glossary 

Ground-Truth: Annotations of the training set of a dataset. 

Handcrafted features: Features that describe images using techniques developed by 
humans. In contrast learned features are features learned using machine learning. 

Min-Cut: In graph theory, a minimum cut of a graph is a cut whose cut set has the 
smallest number of edges or smallest sum of weights possible. 

LSUN: Large-scale Scene Understanding Challenge. 

WiCV: Women in Computer Vision Workshop. 

CVPR: Premier annual Computer Vision event. 

CNN: Convolutional Neural Network. A CNN is similar to a neural network, i.e. a family of 
statistical models inspired by biological neural networks that are configured to recognize 
patterns or to classify data through a learning process. CNN architectures are adapted for 
images, so that certain characteristics of images are encoded in the same architecture. 

Fine-tuning: Fine-tuning is the technique that fine-tunes the CNN weights using the in-
domain data.   

SVM:  Support Vector Machines are supervised learning methods that can be applied to 
classification or regression. 

SVR: Support Vector Regression is the version of SVM for regression. 

Dendrogram: It is a tree diagram used to illustrate the arrangement of the clusters 
produced by hierarchical clustering. 

Pruned tree: A tree whose size has been reduced by removing sections of the tree. 

Fully-grown tree: A tree that is not pruned. 

Leave: A leave of a tree partition is a node that has no descendants. 

Root node: The root node is the node from which all the tree partition is developed. 

Top - down approach: A top-down approach is an approach that descends through the 
partition starting at the root node. 

LIFO: Last In First Out. 

FIFO: First In First Out. 

 

 

 

 

 

 

 

 


