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Abstract

This thesis explores methodologies for scanpath prediction on images using deep learning
frameworks.

As a preliminary step, we analyze the characteristics of the data provided by different datasets.
We then explore the use of Convolutional Neural Networks (CNN) and Long-Short-Term-Memory
(LSTM) newtworks for scanpath prediction. We observe that these models fail due to the high
stochastic nature of the data.

With the gained insight, we propose a novel time-aware visual saliency representation named
Saliency Volume, that averages scanpaths over multiple observers.

Next, we explore the SalNet network and adapt it for saliency volume prediction, and we find
several ways of generating scanpaths from saliency volumes.

Finally, we fine-tuned our model for scanpaht prediction on 360-degree images and successfully
submitted it to the Salient360! Challenge from ICME. The source code and models are publicly
available at https://github.com/massens/saliency-360salient-2017.
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Resum

Aquesta tesi explora diverses metodologies per a la predicció de scanpaths en imatges utilitzant
llibreries de deep learning.

Com a pas previ, s’analitzen les caracteŕıstiques de les dades proporcionades per diferents bases
de dades. A continuació, explorem l’ús de Xarxes Neuronals Convolucionals (CNN) i xarxes Long
Short Term Memory (LSTM) per a la predicció de scanpaths. Observem que aquests models
fracassen a causa de la gran naturalesa estocàstica de les dades.

Amb el coneixement adquirit, proposem una nova representació d’atenció visual que inclou
una dimensió temporal anomenada Volum d’atenció visual, que fa la mitjana dels scanpaths de
múltiples observadors.

A continuació, explorem la xarxa de SalNet i l’adaptem per a la predicció de volums d’atenció
visual i trobem diferents formes de generar scanpath a partir de volums d’atenció visual.

Finalment, hem fet fine-tunning del nostre model per a la predicció de scanpaths en imatges
de 360 graus i l’hem enviat al Salient360! Challenge. El codi font i els models estan disponibles
públicament a https://github.com/massens/saliency-360salent-2017.
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Resumen

Esta tesis se exploran las diferentes metodoloǵıas para la predicción de scanpaths en imágenes
utilizando libreŕıas de deep learning.

Como paso preliminar, analizamos las caracteŕısticas de los datos proporcionados por las difer-
entes bases de datos. A continuación, exploramos el uso de Redes Neuronales Convolucionales
(CNN) y de redes Long-Short-Term-Memory (LSTM) para la predicción de scanpaths. Estos
modelos fallan debido a la alta naturaleza estocástica de los datos.

Con el conocimiento adquirido, proponemos una nueva representación de la atención visual que
incluye infomración temporal llamada Volumen de atención visual, que promedia los scanpaths
sobre múltiples observadores.

A continuación, exploramos la red SalNet y la adaptamos para la predicción de volúmenes de
atención visual, y encontramos diferentes formas de generar scanpaths a partir de volúmenes de
atención visual.

Por último, hemos adaptado nuestro modelo para la predicción de scanpaths en imágenes de
360 grados y lo hemos enviamos al Salient360! Challenge del ICME. El código fuente y los modelos
están disponibles públicamente en https://github.com/massens/saliency-360salient-2017.
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Chapter 1

Introduction

1.1 Teaching computers where to look

One of the most important features of the human species is the ability to process and under-
stand visual information from the environment. Computer Vision (CV) is the research field that
studies how computers can be made for gaining high-level understanding from digital images or
videos. It seeks to mimic tasks that the human visual system can do such as object recogni-
tion, video tracking, semantic segmentation, saliency prediction, etc. This project focuses on the
subdomain of saliency prediction (sometimes called visual attention).

The field of saliency estimation consists of predicting human eye fixations, and highlights
regions of interest for human observers. The positions where human observers look at an image
provides insight about human scene understanding: what are the important parts, where actions
are happening, what participants are involved, etc. Saliency estimation is a relevant field because
it provides insight into the human visual system, and improves other CV related tasks such as
object recognition [1]. A recent study suggests that when people are captured on an image,
human observers spend time trying to figure out where are those people looking and why [4].

If you think of humans as if they are computers, when a human observes an image, he shifts his
gaze and spends more time observing certain subsets of the visual input. Therefore, allocating
more processing resources to those subsets. Saliency prediction studies how humans allocate
processing resources for visual input [5].

There are two main ways of representing saliency information: saliency maps and scanpaths.
Saliency maps represent the probability of each corresponding pixel in the image of capturing
human attention and have received much attention by the research community over the last
years. If saliency maps tell where do humans look, scanpaths tell when do humans look at each
of the relevant regions of the visual input. They represent a sequence of timestamped and ordered
fixations on an image. There has been little research on this later topic.

Many researchers stress the urgent need to investigate scanpaths [37][8][17][16][36]. Moreover,
recent advances in fields like Virtual Reality and Augmented Reality have arisen the need for
models estimate scanpaths for rendering purposes.

If we want computers to be able to see like humans, we have to teach them to allocate
processing resources on the right places, at the right time.
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This thesis has focused on adding the temporal dimension to saliency prediction. The main
contributions of this thesis are:

• Insight about scanpath data We have found that individual scanpaths have a very
stochastic nature and their beginning is usually biased towards the center.

• A model for scanpath prediction We propose a model that is able to generate scanpaths
from any given image.

Figure 1.1: High-level architecture of the model that we wanted to build. The example shown is
a real sample of the SALICON dataset.

• Saliency Volumes A novel time-aware saliency representation named Saliency Volume,
that averages scanpaths over many observers. Scanpaths can be extracted from this rep-
resentation.

• Implementation of SalNet with the Keras framework In the process of creating our
model, we found the need to port the architecture of SalNet[30] (originally implemented
in Caffe) to Keras and retrain it from scratch. This is a popular saliency prediction model,
and the Keras implementation had already been asked by some members. The code is live
in a github repository1.

• Contribution to an open source project We implemented the Meanshift algorithm using
a multivariate Gaussian kernel in a popular open source repository2.

1.2 Requirements and Specifications

The requirements for this project are:

• Understand the data Explore and analize the data of the available datasets and gain
insights to develop better models.

• Create a model Develop software that can generate scanpaths from any given image.

• Participate in the Salient360! Challenge Adapt our model to predict scanpaths for 360
images and present it to the Salient360! Challenge that takes place at the ICME conference

1todo
2https://github.com/mattnedrich/MeanShift_py/pull/3
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• If the results are satisfactory, contribute to the dissemination of this work.

The specifications of this project are the following:

• Use the programming language Python in the best possible way.

• Use the deep learning frameworks Keras and Tensorflow to implement the models.

• Create a replicable programming environment using Docker. This allows much better
portability and reusability of the project and code.

1.3 Work Plan

This project was developed in collaboration with the GPI research group3 of the Universitat
Politècnica de Catalunya and the Insight Center for Data Analytics4 of the Dublin City University.
Weekly meetings were held with the supervisors to disscuss the progress and decisions made.

Below we present the work plan and its deviations from the original plan. The changes made
to the work plan are detailed in section 1.4 Incidents and Modifications.

1.3.1 Work Packages

• WP 1: Dataset analysis

• WP 2: Model architecture

• WP 3: Performance test

• WP 4: Writing of the thesis

3https://imatge.upc.edu/web/
4https://www.insight-centre.org
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Figure 1.2: Work packages
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1.3.2 Gantt Diagram

Figure 1.3: Gantt Diagram of the Degree Thesis

15



1.4 Incidents and Modifications

The work plan has suffered some changes as the project has advanced.

• Apply to the Salient360! Challenge We decided to apply to one of the Grand Chal-
lenges of the IEEE International Conference on Multimedia and Expo 2017 (ICME). The
submission of the model was added to the work plan as a milestone.

• Added a work package for writing Although all the progress was documented on a weekly
basis, I decided to create a separate work package to allocate time for the writing of the
thesis. This work package included sending preliminary versions of the thesis to different
persons for review.
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Chapter 2

State of the art

Predicting where a human observer might fixate when viewing an image in a freeviewing
scenario has been of interest in the computer vision community for the last decades. Signifi-
cant progress has been made due to simultaneous advances in computing infrastructure, data
gathering, and algorithms.

2.1 Saliency prediction

The first predictive models were biologically inspired and based on a bottom-up computational
model that extracted low-level visual features such as intensity, color, orientation, texture and
motion at multiple scales. Itti et al. [13] proposed a model that combines multiscale low-level
features to create a saliency map. Harel et al. [9] presented a graph-based alternative that starts
from low-level feature maps and creates Markov chains over various image maps, treating the
equilibrium distribution over map locations as activation and saliency values.

Although these models did well qualitatively, they had limited use because they frequently did
not match actual human saccades from eye-tracking data. It seemed that humans not only base
their attention on low-level features, but also on high-level semantics [4] (e.g., faces, people,
cars, etc.). Judd et al. introduced in [18] an approach that used low, mid and high-level image
features to define salient locations. This features were used in combination with a linear support
vector machine to train a saliency model. Borji [2] also combined low-level features with top-
down cognitive visual features and learned a direct mapping to eye fixations using Regression,
SVM and AdaBoost classifiers.

Recently, the field of saliency prediction has made significant progress due to the advance of
deep learning, and its applications on the task of Image Recognition [19] [33]. This advances
suggest that these models can capture high-level features. As stated in [4], in March of 2016
there were six deep learning models among the top 10 results in the MIT300 saliency Benchmark
[3]. In [25] Pan et al. compared shallow and deeper CNNs. Following the idea of modeling
bottom-up and top-down features at the same time, Liu et al. [26] presented a multiresolution
convolutional neural network (Mr-CNN) that combines predictions at different resolutions using
a final logistic regression layer to predict a saliency map.

The enormous amount of data necessary to train these networks makes them difficult to learn
directly for saliency prediction. With the aim of allowing saliency models to capture these high-
level features, some authors have adapted well-known models with good performance in the task
of Image Recognition (this technique is called transfer learning). DeepGaze [20] achieved state
of the art performance by reusing the well-known AlexNet [19] pretrained on ImageNet [7] with
a network on top that reads activations from the different layers of AlexNet. The output of
the network is then blurred, center biased and converted to a probability distribution using a
softmax. A second version called DeepGaze 2 [22] used features from VGG-19 [34] trained for
image recognition. In this case, they did not fine-tune the network. Rather, some readout layers
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were trained on top of the VGG features to predict saliency maps with the SALICON dataset
[15]. These results corroborated that deep architectures trained on object recognition provide a
versatile feature space for performing related visual tasks.

In [35], Torralba et al. studied how different scenes change visual attention and discovered
that the same objects receive different attention depending on the scene where they appear (i.e.
pedestrians are the most salient object in only 10% of the outdoor scene images, being less
salient than many other objects. Tables and chairs are among the most salient objects in indoor
scenes). With this insight, Liu et al. proposed DSCLRCN [25], a model based on CNNs that
also incorporates global context and scene context using RNNs. Their experiments have obtained
outstanding results in the MIT Saliency Benchmark.

Recently, there has been interest in finding appropriate loss functions. Huang et al. [11] made
an interesting contribution by introducing loss functions based on metrics that are differentiable,
such as NSS, CC, SIM and KL divergence to train a network (see [32] and [21]).

Other advances in deep learning such as generative adversarial training (GANs) and attentive
mechanisms have also been applied to saliency prediction: Pan et al. recently introduced Sal-
GAN [29], a deep network for saliency prediction trained with adversarial examples. As all other
Generative Adversarial Networks, it is composed of two modules, a generator and a discrimina-
tor, which combine efforts to produce saliency maps. Cornia et al. presented in [6] a model
that incorporates neural attentive mechanisms. The model includes a Convolutional LSTM that
focuses on the most salient regions of the image to iteratively refine the predicted saliency map.
Additionally, they tackle the center bias present in human eye fixations by learning a set of prior
map produced by Gaussian functions.

2.2 Scanpath prediction

In contrast with the related task of saliency map prediction, there has not been much progress
in the task of scanpath prediciton over the last years. Cerf et al. [5] discovered that observers,
even when not instructed to look for anything particular, fixate on a human face with a probability
of over 80% within their first two fixations. Furthermore, they exhibit more similar scanpaths
when faces are present. Recently, Hu et al. [10] have introduced a model capable of selecting
relevant areas of a 360 video and deciding in which direction should a human observer look at
each frame. An object detector is used to propose candidate objects of interest and a RNN
selects the main object at each frame.

We believe this line of research is meaningful and it has not received much attention by the
research community over the last years.

2.3 Metrics

As stated in section 2.1 Saliency Prediction, most of the research has focused on generating
and measuring saliency maps (also known as attention maps). This representations can be
evaluated using a broad range of metrics, which all ignore sequence and temproral information.
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In contrast, metrics that take into account sequence and temporal information have received
less attention, and we can differentiate three types:

• String-edit measures It replaces fixations that are in areas of interest (AOIs) with charac-
ters that form a string that can be compared. The similarity between two or more strings is
reduced to counting edit operations (insertions, deletions, or substitutions). This measure
only takes into account the order of the fixations, but not the time. In this category, the
Levenshtein distance [24] is the most common.

• Mannan distance It compares scanpaths by their spatial properties rather than time, and
the order of fixations is completely ignored. It measures the similarity between scanpaths
by calculating the distance between each fixation in one scanpath and its nearest neighbor
in the other scanpath [27].

• Vector based Jarodzka et al. [14] has recently proposed a metric that views scanpaths
as a sequence of geometric vectors that correspond to the saccades of the scanpath. This
similarity metric compares scanpaths across several dimensions: shape, fixation position,
length, direction, and fixation duration.

In this project, we have evaluated our models using the vector-based metric proposed by
Jarodzka. This is also the metric used in the 360 Salient Challenge.
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Chapter 3

Methodology

This section presents the methodology used to develop this project and explains how we
produced the results. It also provides insight into the decisions that were made to design the
final architecture of the model.

3.1 Setting up the working environment

3.1.1 Programming languages and frameworks

The main languages we initially considered were Python, Lua, C++, and Octave. Neverthe-
less, several frameworks written in Python like Theano or Tensorflow have appeared over the
last few years, and it seems the research and developer community is moving towards them. We
decided to use the Python programming language to code the project. We considered this was
the best programming language regarding documentation available and development speed.

We were also recommended to use the high-level framework Keras to speed up prototyping.
Keras provides implementations and examples of the leading deep learning architectures, and it
can be used with Tensorflow or Theano as backend. In some cases, we also had to use pure
Tensorflow to accomplish the tasks.

3.1.2 A reproducible environment with Docker

Setting up a working environment for deep learning research is challenging because the frame-
works are constantly changing, and all the computation has to be processed by a GPU. We used
Docker1 to isolate our working environment and make it reproducible on any computer.

3.1.3 A command line utility for fast prototyping

After one month of research, the number of carried out experiments grew, and we faced some
challenges regarding the organization of our experiments and their respective inputs and outputs.
We decided to create a command line utility that helped organize our prototyping workflow. We
called it TidyBot, and it is available at https://github.com/massens/tidybot.

The command $ tidybot init creates a folder structure for each experiment containing /input,

/output, /testing, /evaluation. The command $ tidybot model creates a new Python file with
some boilerplate code, and creates I/O folders for this model under /input and /output.

1https://www.docker.com
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The folder /testing was included taking inspiration from Test Driven Development 2 (TDD).
For each model, a Jupyter Notebook is created inside that folder to test that all the parts are
working correctly before the model is trained.

3.2 Understanding the data

To the knowledge of the authors, the task of scanpath prediction has not been addressed
before. Therefore, we decided that the first step towards building a model was to analize the
properties of scanpaths and understand what data is available. We chose datasets that have been
previously used for the related task of saliency map prediction such as iSUN [39] and SALICON
[15].

3.2.1 Properties of scanpaths

After analysing the datasets using Jupyter Notebooks, we observed the following properties:

• Scanpaths have a stochastic nature If we explore individual scanpaths qualitatively, we
observe that they do not always fixate in very salient regions.

• Scanpaths of different users can be very different If we compare scanpaths from various
users produced with the same stimuli we observe that while they can share a similar pattern,
they can also be very different.

Figure 3.1: Scanpaths of different users on an example image of the SALICON dataset

• Center bias of the first fixation Most of the users start their fixations at the center of
the picture. This property has also been observed by other authors [6].

2https://www.agilealliance.org/glossary/tdd/

21



Figure 3.2: Architecture of Object-Scene Convolutional Neural Network for event recognition

• Scanpaths diverge and converge over time We observed that while most users start at
the same place, their fixations can diverge and converge while they explore the image.

Figure 3.3: Above we have fixation maps, where colors represent the number of each fixation
(i.e. red squares represent the first fixation of different users). The image on the left shows that
users fixate first on the center, and the second fixation is usually at the top of the image. Finally,
different users start looking at different places. On the picture on the right, we observe that while
most of the users fixate on the center at the beginning, the 2nd-4th fixations are very different
across users. Nevertheless, at the end of the scanpaths they tend to return to the center (red
circles and black squares).

• We can average multiple scanpaths to get a consistent representation Given that
scanpaths have a high random component, we can average them to obtain a more consistent
representation. This concept is explained in detail in section 3.4.1 Introducting saliency
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volumes.

• How many scanpaths do we need for a consistent representation? It is very imperative
to know how many scanpaths are needed to produce a consistent representation. Our
results show that we need as little as 3-4 scanpaths. More information in the section 3.4.1
Introducing saliency volumes.

3.2.2 Differences between saliency maps and scanpaths

A saliency map is a single-channel image that represents the probability of each point being
fixated by a user. It is generated by aggregating fixation points of different users and convolving
with a Gaussian kernel. Therefore, they present saliency information averaged from multiple
users. The MIT benchmark of saliency [3] predicted how well a single user predicts fixations of a
group of users. As depicted in Figure 3.4, they found that there is a gap between the accuracy
of the prediction of a single user, and the accuracy of a prediction averaged over multiple users.

This suggests that in the domain of saliency prediction, it might make more sense to work
with representations that average fixations over multiple users.

Figure 3.4: Accuracy of different models measured with the ROC metric. Source: MIT Bench-
mark of Saliency.

In contrast, scanpaths represent the sequence of saccades that a single user generates for a
given stimuli. It is not averaged over multiple users.

3.3 A toy model to directly predict scanpaths

With the knowledge we had gained in the section 3.2 Understanding the Data, we decided
to implement a supervised deep learning model that predicts scanpaths using an off-the-shelf
network and LSTMs.
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3.3.1 Dataset and preprocessing

To train this model we used the 6, 000 images from the iSUN Dataset [39]. This dataset
provides all the raw eye positions recorded as well as fixation points (clusters of positions) obtained
with the Meanshift algorithm3. While the positions are timestamped, the fixation points are
provided without order (they have an intrinsic order, but it was not included in the dataset by
the authors).

It was important to retrieve the order of the fixation points because our model had to learn
from a sequence of ordered fixation points. We used the same method used by the authors to
associate each fixation point with its respective timestamped eye positions. Then, we calculated
the timestamp of each fixation point by averaging the timestamps of its respective positions.
Finally, we ordered the fixation points with the calculated timestamps.

The authors used the Meanshift algorithm with a multivariate Gaussian kernel, but we could
not find an implementation online with this characteristics. We had to implement it ourselves,
and the code in Python was committed to a popular open source repository 4.

Moreover, the pixel values of the images were centered by substracting to each channel the
mean of the dataset’s channel. The fixation points were normalized to [0,1] to be able to use a
sigmoid activation. Some experiments were done normalizing the fixation points to [-1, 1] and
using a linear activation at the end of the network, but they did not show a performance increase.

3.3.2 Model architecture

This network consists of three main blocks: 1) extracts features with VGG16, 2) Convolutional
LSTMS and 3) a fully-connected layer with two units and linear activation. The two units of the
last layer represent the two components of a spatial coordinate (x,y). The scanpath problem is
treated as a regression problem and the Mean Squared Error loss function is used for training.

This network has a total of 72.3 million free parameters. The optimizer used was stochastic
gradient descent with a learning rate of 0.001. The input images are resized to [224 × 224] to
decrease the number of free parameters. We used a batch size of 2 images to avoid overflowing
the memory of our GPU.

3http://scikit-learn.org/stable/modules/generated/sklearn.cluster.MeanShift.html
4https://github.com/mattnedrich/MeanShift py/pull/3
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Figure 3.5: First model architectre

3.3.2.1 Transfer learning with VGG16

When there is not a lot of training data available, it is a common practice to reuse a pre-trained
model for a similar task. In this case, we decided to use the well known VGG16 [34] network
trained for image recognition. This model uses 16 weighted layers and has 138 million parameters.
This allows us to reuse low level and high-level features. We used the keras implementation of
VGG165.

During training, we fine-tuned this layers with our parameters.

3.3.2.2 Convolutional LSTMs

The feature maps extracted using the VGG16 network are fed into a sequence of three stacked
Convolutional LSTMs [38] (ConvLSTMs). These layers are responsible for generating a sequence
of fixation points that form a scanpath. They have ’memory,’ and each fixation points is condi-
tioned to all the previous ones. Moreover, they are capable of generating a variable number of
fixation points.

We decided to use Convolutional LSTMs instead of regular LSTMs do decrease the number
of parameters of the model. Using a regular LSTM increased the number of parameters to the
point that the model did not fit into memory. It is a common practice to alternate ConvLSTMs
with batch normalization[12] layers to accelerate the training.

3.3.3 Where to go from here?

The observation of the outputs of this first toy example gave us very interesting insight. We
observed that the model usually predicts most of the fixation points in the center of the image.
This suggests that due to the stochastic nature of scanpaths (mentioned in 3.2.1 Properties of
Scanpaths), there are many possible scanpaths a single image. The use of the MSE loss results

5https://github.com/fchollet/keras/blob/master/keras/applications/vgg16.py
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in predicting an average scanpath over possible scanpaths, instead of a possible scanpath. This
effect has also been recently studied by Yann LeCun et al. [28].

Nevertheless, we want a possible scanpath. Not an averaged and non-realistic scanpath.

Figure 3.6: The model learns very fast to predict most of the fixation points of the scanpath in
the center of the image.

With this insight, we evaluated two new possibilities:

1. Adversarial Training is an approach that has already proved useful in similar situations
[28]. It is easy for an adversary to detect unrealistic examples. The downside of this method
is that adversarial models are usually difficult to train and it might not have been a wise
decision given our time constraints.

2. Predicting a less stochastic representation There are reasons to search a time-aware
saliency representation that describes the mean behavior of multiple users. In other words,
that describes where in the image, and when most of the users look. This representation
might be more useful than scanpaths.

Our final decision was to find a less stochastic representation and will be presented in section
3.4.1 Introducing saliency volumes. A model should be more successful at predicting this repre-
sentation, as it is more consistent than single user scanpaths. We decided to predict a volume
instead of using an adversarial model due to our tight schedule, and because we believe it can be
useful in many applications. Besides, we will have to find the best way of generating scanpaths
from this new saliency representation.

3.4 A model that predicts saliency volumes

With the insight gained from the previous model, we propose a novel time-aware saliency
representation named Saliency Volume that is capable of expressing saliency information with
spatial and temporal dimensions. In other words, it can tell where and when do users look at
an image. Then, we propose an architecture based on SalNet [30] that is capable of predicting
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saliency volumes. Finally, we present different strategies to generate individual scanpaths from
saliency volumes.

This model was trained on the SALICON dataset, which has 9000 training examples. We
used this dataset because its data facilitated the generation of saliency volumes.

3.4.1 Introducing: Saliency Volumes

Saliency volumes aim to be a suitable representation of spatial and temporal saliency infor-
mation for images. They have three axes that represent the width and height of the image, and
the temporal dimension.

Saliency volumes are generated from information already available in current fixation datasets.
In these datasets, each fixation has a position (width, height) and a timestamp. First, the
timestamps of the fixations are quantized. The length of the time axis is determined by the
longest timestamp and the quantization step. Second, a binary volume is created by placing ’1’
on the fixation points and ’0’ on the rest of the positions. Third, a multivariate Gaussian kernel
is convolved with the volume to generate the saliency volume. The values of each temporal slice
can be normalized, converting the slice into a probability map that represents the probability of
each pixel being fixated by a user at each timestep.

Figure 3.7: Saliency volumes can be generated from fixations, and scanpaths can be generated
from saliency volumes.

Figure 3.8 shows how saliency volumes are a meta-representation of saliency information and
other saliency representations can be extracted from them. Saliency maps can be generated by
performing an addition operation across all the temporal slices of the volume and normalizing
the values to ensure they add to one. A similar representation is temporally weighted saliency
maps, which are generated by performing a weighted addition operation of all the temporal
slices. Finally, scanpaths can also be extracted by sampling fixation points from the temporal
slices. Sampling strategies that aim to generate realistic scanpaths are will be discussed in the
3.4.3 Sampling strategies to generate scanpaths from saliency volumes.
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Figure 3.8: Scanpaths, saliency maps, and temporally weighted saliency maps can be generated
from a saliency volume.

3.4.2 Model architecture

Once we have generated the saliency volumes from the data available in the iSUN dataset,
they are represented as matrices with three dimensions. These matrices are the target of our
model. Our model is based on an encoder-decoder architecture.

This network adapts the filters learned to predict flat saliency maps to predict saliency volumes.
Figure 3.9 illustrates the architecture of the convolutional neural network, composed of 10 layers
and a total of 25.8 million parameters. Each convolutional layer is followed by a rectified linear
unit non-linearity (ReLU). Excluding the last three layers, the architecture follows the proposal
of SalNet [30], whose first three layers were at the same time extracted from the VGG-16 model
[34] trained for image classification. Our final sigmoid layer has three dimensions corresponding
to the ones of the saliency volume.

Originally, SalNet used the deep learning framework Caffe, which nowadays lacks many features
of modern DL libraries. Because of this, we decided to port the architecture of SalNet to
Keras and retrain it. The code and weights can be found at https://github.com/massens/

salnet-keras6.

The model was designed considering the amount of training data available. Different strategies
were introduced to prevent overfitting. The model was previously trained on the similar task of
saliency map prediction, and the obtained weights were fine-tuned for the task of saliency volume
prediction. We used the stochastic gradient descent optimizer with a learning rate of 0.001, and
a batch size of two samples.

6This repository also has intrinsic value, as there have already been requests for a Keras implementation of
SalNet by the community.
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Figure 3.9: Architecture of our second model.

3.4.3 Sampling strategies to generate scanpaths from saliency volumes

To sample scanpaths from a saliency volume we have to take into consideration a couple of
things. Firstly, we have to decide how many fixations will a scanpath have. Then, each fixation
has to have a position (width, height), and a duration (in seconds). To decide the number of
fixations and their durations, we sampled values from the data distribution on the training set
plotted in Figure 3.10.

Figure 3.10: Probability distribution of the number of fixations per scanpaths (top) and duration
of each fixation (bottom).

Regarding the spatial location of the fixation points, three different strategies were explored:

1. Naive sampling strategy The simplest approach consists of taking one fixation for each
temporal slice of the saliency volume. Through qualitative observation, we noticed that
scanpaths were unrealistic, as the probability of each fixation is not conditioned to previous
fixations.

2. Limiting distance between fixations When we look at images, each fixation we generate
is usually close to previous one. Thus, a more elaborated sampling strategy consists of
forcing fixations to be closer to their respective previous fixation. This is accomplished
by multiplying a temporal slice (probability map) of the saliency volume with a Gaussian
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kernel centered at the previous fixation point. This suppresses the probability of positions
that are far from the previous fixation point.

3. Avoiding fixating on same places It is reasonable to think that if we have already fixated
on an area, we won’t fixate again. The third sampling strategy we assessed consisted on
suppressing the area around all the previous fixations using Gaussian kernels.

As we will discuss in section 4.4.1 Creating a baseline, our results show that the best performing
sampling strategy is the second one: limiting distance between fixations.

3.5 Final model: fine tuning for 360 images

We decided to fine tune our model with the purpose of participating at the Salient360!: Visual
attention modeling for 360 Images Grand Challenge 7 from the IEEE International Conference on
Multimedia and Expo 2017.

This meant fine tuning our second model (section 3.4 A model that predicts saliency volumes)
with the dataset provided by the Salient360 organization, and adding little improvements to the
architecture. The different blocks are depicted in Figure 3.11.

Figure 3.11: Architecture of our third model that is able to predict scanpaths from omni-
directional images.

3.5.1 Dataset

To train a model using supervised learning we need a tremendous amount of data. This data
are examples of input-output pairs. In this case, the inputs are omni-directional images (360
images), and the outputs are saliency volumes.

For this last model, we have used the dataset provided by the Salient360 organization, which
is the first dataset of omni-directional images for saliency prediction. Each data sample is an
input-output pair, where the input is an omni-directional image, and the output is a group of
forty scanpaths. The training subset is composed of 40 images, along with heat maps and 1500
scanpaths; the test set is composed of 25 images and 1000 scanpaths. The whole explanation
on how the dataset was created and how it is organized can be found in their paper [31].

7http://www.icme2017.org/grand-challenges/
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The fact that this dataset is very small makes it only suitable for fine tuning a pre-trained
model, and not for training a model from scratch.

3.5.2 Transfer learning

Because the dataset only has 40 training examples, we had to perform transfer learning. We
reused the model trained in section 3.4 and added a few more layers at the end.

During training, the weights of the first layers were initialized with the ones obtained in section
3.4, while the weights of the last two layers were initialized randomly. Moreover, due to the lack
of training samples, we did not fine tune the parameters of the first layers to avoid overfitting
the training set.

3.5.3 Deconvolutional layers

The original architecture of SalNet [30] used a learned upsample (deconvolution layer) to
produce an output with the same dimensions as the input. This seemed to be a reasonable
feature to add to our model. As depicted in Figure 3.11, the deconvolutional layer is nothing
more than an upsampling layer followed by a convolutional layer. In this case, the upsampling
layer had a stride of 4, and the convolutional layer had a kernel size of 9.

Secondly, the input images were resized to [300× 600], a much smaller dimension than their
initial size [3000×6000]. The last layer of the network outputs a volume with size [12×300×600],
with three axis that represent time, and height and width of the image.
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Chapter 4

Results

The models presented in 3. Methdologies for scanpath prediction were assessed and compared
from different perspectives. First, we evaluate the impact of different sampling strategies to gen-
erate scanpaths from saliency volumes. Finally, we show quantitative and qualitative performance
results of the model.

4.1 Evaluation Metric

Scanpath prediction evaluation has received attention lately and it is a very active field of
research [23][14]. For this work, we have used a metric proposed by the Salient 360 Challenge
organization that compares the similarity of 40 generated scanpaths with the ground truth scan-
paths. The similarity metric used is the Jarodzka algorithm, where the similarity criteria was
slightly modified to use equirectangular distances in 360 degrees instead of euclidean distances.
Also, the generated and ground truth scanpaths are matched 1 to 1 using the Hungarian optimizer
to get the least possible final cost.

The Jarodzka algorithm views scanpaths as a sequence of geometric vectors that correspond to
the saccades of the scanpath. This similarity metric not only compares scanpaths on the spatial
dimension, but also on any dimension available in saccade vectors (shape, fixation position,
length, direction, and fixation duration).

The algorithm has two parts: 1) temporal alignment of scanpaths, and 2) Scanpath compari-
son.

4.1.1 Temporal alignment of scanpaths

In this first step, scanpaths are temporally aligned to each other based on their shape and
characteristics. We will denote the two scanpaths as a series of vectors (corresponding to the
saccades) S1 = {v1, v2, ..., vn} and S2 = {u1, u2, ..., un}.

The alignment is performed following these steps:

1. Saccade similarity matrix Compute how similar each saccade is to the others using a
similarity metric such as saccade amplitude. The results are collected in a matrix M(i, j).

2. Create a graph where the matrix elements are called nodes.

3. Find the shortest path from the node 1 to the last node in the graph using the Dijkstra
algorithm [Dijkstra 1959]1. Align scanpaths along the shortest path. On the original paper

1https://www.ssucet.org/old/pluginfile.php/2121/mod resource/content/1/21-dijkstra.pdf
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the scanpaths are aligned based on their shapes. Nevertheless, the alignment may be
performed in other dimensions.

4.1.2 Scanpath Comparison

For each pair of fixation and saccade vectors the following measures are computed (average):

1. Difference in shape Computed using ui − vj
2. Difference in amplitude between saccade vectors ||ui − vj ||

3. Distance between fixations

4. Difference in direction (angle) between saccade vectors

5. Difference in duration between fixations between saccade vectors

These measures indicate how similar two scanpaths are along different dimensions. With the
objective of obtaining a unique similarity metric with values between [0, 1], the first three measures
are normalized by the screen diagonal. Direction is normalized by π, whereas the difference in
duration is normalized against the maximum duration of the two durations compared

4.2 Model architectures and setups

In the following sections, we will refer to the different models developed by an identifier. The
descriptions of the models and their respective identifiers are found in Table 4.1.

id Description of the model

0
The first toy model that aims to directly predict
scanpaths. Described in 3.3 and schema in Fig
3.5.

1
Model based on SalNet that predicts saliency vol-
umes. Described in 3.4 and schema in Fig 3.9.

2
Predicts 360 saliency volumes using the dataset
form the 360 Salient Challenge. Described in 3.5
and schema in Fig 3.11.

Table 4.1: Description of the models and their ids.

4.3 Training and validation losses

One of the metrics that helped us evaluate the how well our models were learning was the
training and validation losses. It helped us to monitor the convergence of the models and guess
if they were overfitting or underfitting the dataset.
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Figure 4.1: On the left, we have the learning curves of model 0. On the right, we have an
example of an output.

In the case of model 0, we observe that the model learns very fast in the first two epoch to
always predict fixations in the center (see Figure 3.6) and then stops learning. The loss function
gets stuck at a very high value. This was caused by the model learning to produce fixations at
the center of the image.

Figure 4.2: Learning curves of model 1.

With model 2, the learning rate was normalized by half each five epoch. This effect is notable
and improves convergence. We also observe that the validation loss becomes flat in the end while
the training loss slowly decreases. This suggests that the model might have started to overfit the
training data.
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Figure 4.3: Learning curves of model 2.

Althought the dataset of model 3 is not very large, we don’t observe overfitting. The network
just stops learning in the end.

4.4 Quantitative results

4.4.1 Creating a baseline

At the time being, the field of scanpath prediction doesn’t have a clear baseline that we can
compare against. Therefore, we had to create a baseline. Using the metric that the Salient
360 challenge provided, we decided to compute the accuracies of: 1) random scanpaths, 2)
the ground truth scanpaths, 3) scanpaths sampled from a ground truth saliency map, and 4)
scanpaths sampled from a ground truth saliency volumes.

We observe that with completely random scanpaths get an accuracy of 4.942. In contrast,
if we compare the ground truth scanpaths with themselves, we obtain an accuracy of 1.2e-8,
which approaches zero.

Sampling scanpaths from the ground truth saliency map has an accuracy of 1.89. The
accuracy is improved up to 1.79 if we sample the ground truth saliency volume.

The obtained baseline is coherent with our expectations, and it is presented in Table 4.2.

4.4.2 Model evaluation

Once we had a model capable of predicting saliency volumes, we evaluated different sampling
strategies to generate scanpaths. An overview of these strategies can be found in 3.4.3 Sampling
strategies to generate scanpaths from saliency volumes.

The results are presented in Table 4.2, where we can see that the best performing sampling
strategy limits the distance between fixations.

2Less is better
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Jarodzka↓
Random scanpaths 4.94

(1) Naive sampling strategy 3.45
(3) Avoiding fixating on same places 2.82
(2) Limiting distance between fixations 2.27
Sampling with (2) from ground truth saliency map 1.89
Sampling with (2) from ground truth saliency volume 1.79
Ground truth scanpaths 1.2e-8

Table 4.2: Comparison between the three considered spatial sampling strategies. Lower is better.

4.5 Qualitative results

Below we will present some qualitative examples of the results obtained by our model. These
results are from the test set. We will also compare the different sampling strategies.

These examples have been chosen randomly from the results in order to obtain a sample as
representative as possible of the whole dataset.

Figure 4.4: Examples of predicted and ground truth scanpaths on omi-directional photos from
the 360Salient! dataset.
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Figure 4.5: Examples of predicted and ground truth saliency volumes using the 360Salient!
dataset.
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Chapter 5

Budget

This project has been developed using the resources provided by the Insight Center for Data
Analytics in the Dublin City University. Thus, this cost will not be reflected in the budget.

The main costs of the project are due to the salaries of the researchers that worked on it. I
will consider that my salary is equivalent to the one of a junior engineer, and the salaries of my
supervisors are equivalent to the ones of senior engineers.

Regarding the software that was used in the project, all of it was open source and it does
not have costs associated. I will consider that the total duration of the project was 25 weeks, as
depicted in the Gantt diagram in Figure 1.3.

Amount Wage/hour Dedication Total

Junior engineer 1 8,00 e/h 30 h/week 6,000 e

Senior engineer 2 20,00 e/h 4 h/week 4,000 e

Total 10,000 e

Table 5.1: Budget of the project
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Chapter 6

Conclusions

In this work, we have studied the time dimension of visual attention. First, we present a model
capable of predicting scanpaths on 360-degree images. Second, we introduce a novel temporal-
aware saliency representation that is able to generate other standard representations such as
scanpaths, saliency maps or temporally weighted saliency maps. Our experiments show that it
is possible to obtain realistic scanpaths by sampling from saliency volumes, and the accuracy
greatly depends on the sampling strategy.

We successfully submitted our model to the 360Salient! challenge from the ICME conference,
and we have been notified by the organization that we are expected to recieve an award. Marc
will be presenting our model at Hong Kong next July.

We have also encountered the following limitations to the generation of scanpaths from
saliency volumes: 1) the probability of a fixation is not conditioned to previous fixations; 2)
the length of the scanpaths and the duration of each fixation are treated as independent random
variables. We have tried to address the first problem by using more complex sampling strategies.
Nevertheless, these three parameters are not independently distributed and therefore our model
is not able to accurately represent this relationship.

An obvious next step would be to generate realistic scanpaths using generative adversarial
models. This work was also shared with the scientific community through a preprint paper in
arXiv and the publication of the source code and trained models at https://github.com/

massens/saliency-360salient-2017. In addition, we plan to submit this paper at the ICCV
2017 workshop on ego-centric perception, interaction and computing.

Finally, in the process of developing the project we have also made three small open source
contributions to the scientific community123.

1https://github.com/massens/salnet-keras
2https://github.com/mattnedrich/MeanShift py/pull/3
3https://github.com/massens/tidybot
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Chapter 7

Appendices

As appendices, we attach the paper that we have presented at the ICCV workshop on ego-
centric perception, interaction and computing.
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Abstract

We introduce a deep neural network for scan-path pre-
diction trained on 360 degree images, and a temporal-
aware novel representation of saliency information named
saliency volume. The first part of the network consists of a
model trained to generate saliency volumes, whose weights
are learned by back-propagation computed from a binary
cross entropy (BCE) loss over downsampled versions of the
saliency volumes. Sampling strategies over these volumes
are used to generate scan-paths over the 360 degree images.
Our experiments show the advantages of using saliency vol-
umes, and how they can be used for related tasks. Our source
code and trained models available at https://github.
com/massens/saliency-360salient-2017.

1. Motivation
Visual saliency prediction is a field in computer vision

that aims to estimate the areas of an image that attract the
attention of humans. This information can provide important
clues to human image understanding. The data collected for
this purpose are fixation points in an image, produced by a
human observer that explores the image for a few seconds,
and are traditionally collected with eye-trackers [30], mouse
clicks [13] and webcams [15]. The fixations are usually
aggregated and represented with a saliency map, a single
channel image obtained by convolving a Gaussian kernel
with each fixation. The result is a gray-scale heatmap that
represents the probability of each pixel in an image being
fixated by a human, and it is usually used as a soft-attention
guide for other computer vision tasks.

Saliency maps as a representation only describe saliency
information with respect to image locations. Some recent
studies have arised the need for a representation of saliency
information that is dependent on time, and expresses how
salient regions change with time [3]. Understanding the
order by which humans scan through the content of an image
or video has also stirred interest in the industry [29], as

Figure 1: Scan-paths, saliency maps and temporally
weighted saliency maps can be generated from a saliency
volume.

it can help in relevant areas of computer vision such as
rendering devices to improve the quality of VR/AR content.
In particular, we focus on 360◦ images, which represent the
amount of visual data available to a human in a given context.
Although a huge number of algorithms have been developed
over the last years to gauge visual attention in flat-2D images
and videos, attention studies in 360 scenarios are absent.

This paper aims to formulate a model that is able to pre-
dict scan-paths in 360◦ images, and uses a novel temporal-
aware saliency representation named saliency volume to
accomplish the task.

Saliency map = f(x, y)

Saliency volume = f(x, y, t)
(1)

2. Related Work
The first models for saliency prediction were biologically

inspired and based on a bottom-up computational model that
extracted low-level visual features such as intensity, color,
orientation, texture and motion at multiple scales. Itti et al.
[11] proposed a model that combines multiscale low-level
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Figure 2: Overall architecture of the proposed scan-path estimation system.

features to create a saliency map. Harel et al. [8] presented
a graph-based alternative that starts from low-level feature
maps and creates Markov chains over various image maps,
treating the equilibrium distribution over map locations as
activation and saliency values.

Though this models did well qualitatively, the models
had limited use because they frequently did not match actual
human saccades from eye-tracking data. It seemed that
humans not only base their attention on low-level features,
but also on high-level semantics [3] (e.g., faces, humans,
cars, etc.). Judd et al. introduced in [14] an approach that
used low, mid and high-level image features to define salient
locations. This features where used in combination with
a linear support vector machine to train a saliency model.
Borji [1] also combined low-level features with top-down
cognitive visual features and learned a direct mapping to eye
fixations using Regression, SVM and AdaBoost calssifiers.

Recently, the field of saliency prediction has made great
progress due to advance of deep learning and it’s applications
on the task of Image Recognition [16] [26]. The advances
suggest that this models are able to capture high-level fea-
tures. As stated in [3], in March of 2016 there where six
deep learning models among the top 10 results in the MIT300
saliency Benchmark [2]. In [25] Pan et al. compared shallow
and deeper CNNs. Following the idea of modeling bottom-
up and top-down features at the same time, Liu et al. [22]
presented a multiresolution convolutional neural network
(Mr-CNN) that combines predictions at different resolutions
using a final logistic regression layer to predict a saliency
map.

The enormous amount of training data necessary to train
these netowrks makes them difficult to train directly for
saliency prediction. With the objective of allowing saliency
models to capture this high-level features, some authors have
adapted well-known models with good performance in the
task of Image Recognition. DeepGaze [17] achived state
of the art performance by reusing the well-known AlexNet

[16] pretrained on ImageNet [7] with a network on top that
reads activations from the different layers of AlexNet. The
output of the network is then blurred, center biased and
converted to a probability distribution using a softmax. A
second version called DeepGaze 2 [19] used features from
VGG-19 [27] trained for image recognition. In this case, they
did not fine-tune the network. Rather, some readout layers
were trained on top of the VGG features to predict saliency
with the SALICON dataset [13]. This results corroborated
that deep features trained on object recognition provide a
versatile feature space for performing related visual tasks.

In [28], Torralba et al. studied how the scene modules
visual attention and discovered that the same objects recieve
different attention depending on the scene where they appear
(i.e. pedestrians are the most salient object in only 10% of
the outdoor scene images, being less salient than many other
objects. Tables and chairs are among the most salient objects
in indoor scenes). With this insight, Liu et al. proposed
DSCLRCN [21], a model based on CNNs that also incorpo-
rates global context and scene context using RNNs. Their
experiments have obtained outstanding results in the MIT
Saliency Benchmark.

Recently, there has been interest in finding appropiate
loss functions. Huang et al. [10] made an interesting contri-
bution by introducing loss functions based on metrics that
are differentiable, such as NSS, CC, SIM and KL divergence
to train a network (see [25] and [18]).

Other advances in deep learning such as generative adver-
sarial training (GANs) and attentive mechanisms have also
been applied to saliency prediction: Pan et al. recently intro-
duced SalGAN [23], a deep network for saliency prediction
trained with adversarial examples. As all other Generative
Adversarial Networks, it is composed by two modules, a gen-
erator and a discriminator, which combine efforts to produce
saliency maps. Cornia et al. presented in [6] a model that in-
corporates neural attentive mechanisms. The model includes
a Convolutional LSTM that focuses on the most salient re-
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gions of the image to iteratively refine the predicted saliency
map. Additionally, they tackle the center bias present in
human eye fixations by learning a set of prior map generated
by Gaussian functions.

2.1. Scanpath prediction

Unlike with the related task of saliency map prediciton,
there hasn’t been much progress in the task of scanpath
prediciton over the last years. Cerf et al. [4] discovered that
observers, even when not instructed to look for anything par-
ticular, fixate on a human face with a probability of over 80%
within their first two fixations. Furthermore, they exhibit
more similar scanpaths when faces are present. Recently,
Hu et al. [9] have introduced a model capable of selecting
relevant areas of a 360◦ video and deciding in which direc-
tion should a human observer look at each frame. An object
detector is used to propose candidate objects of interest and
a RNN selects the main object at each frame.

3. Architecture
The architecture of the presented model is based on a

deep convolutional neural network (DCNN), that predicts
a saliency volume for a given input image. This section
provides detail on the structure of the network, the loss
function, and the strategy used to generate scanpaths from
saliency volumes.

3.1. Saliency Volumes

Saliency volumes aim to be a suitable representation of
spatial and temporal saliency information for images. They
have three axes that represent the width and height of the
image, and the temporal dimension.

Saliency volumes are generated from information already
available in current fixation datasets. First, the timestamps
of the fixations are quantized. The length of the time axis is
determined by the longest timestamp and the quantization
step. Second, a binary volume is created by placing ’1’
on the fixation points and ’0’ on the rest of the positions.
Third, a multivariate Gaussian kernel is convolved with the
volume to generate the saliency volume. The values of each
temporal slice are normalized, converting the slice into a
probability map that represents the probability of each pixel
being fixated by a user at each timestep.

Figure 5 shows how saliency volumes are a meta-
representation of saliency information and other saliency
representations can be extracted from them. Saliency maps
can be generated by performing an addition operation across
all the temporal slices of the volume, and normalizing the
values to ensure they add to one. A similar representation are
temporally weighted saliency maps, which are generated by
performing a weighted addition operation of all the temporal
slices. Finally, scan-paths can also be extracted by sampling
fixation points from the temporal slices. Sampling strategies

that aim to generate realistic scan-paths are will be discussed
in the 4.Experiments section.

3.2. Neural network

We propose a network that adapts the filters learned to
predict flat saliency maps to predict saliency volumes. Fig-
ure 6 illustrates the architecture of the convolutional neural
network, composed of 10 layers and a total of 25.8 million
parameters. Each convolutional layer is followed by a rec-
tified linear unit non-linearity (ReLU). Excluding the last
layer, the architecture follows the proposal of SalNet [24],
whose first three layers were at the same time extracted from
the VGG-16 model [5] trained for image classification.

Our network was designed considering the amount of
training data available. Different strategies where introduced
to prevent overfitting. Firstly, the model was previously
trained on the similar task of saliency map prediction, and
the obtained weights were fine-tunned for the task of saliency
volume prediction. Secondly, the input images where resized
to [300× 600], a much smaller dimension than their initial
size [3000 × 6000]. The last layer of the network outputs
a volume with size [12 × 300 × 600], with three axis that
represent time, and height and width of the image.

3.3. Scan-path sampling

The generation of scan-paths from the saliency volumes
requires determining: 1) number of fixations of each scan-
path; 2) the duration in seconds of each fixation; and 3) the
location of each fixation point. The first two values were
sampled from their probability distributions learned from the
training data. The location of each fixation point was also
generated by sampling, this time from the corresponding
temporal slice from the predicted saliency volume. Different
strategies were explored for this purpose, presented together
with their performance in Section 5.

4. Training

We trained our network on 36 images of the 40 training
images provided by the Salient360 dataset [29], leaving aside
4 images for validation. We normalized the values of the
saliency volumes to be in the interval of [0, 1]. Both the
input images and the saliency volumes were downsampled
to 600× 300 prior to training. The saliency volumes where
generated from fixations using a multivariate Gaussian kernel
with bandwidths [4, 20, 20] (time, height, width).

The network was trained using stochastic gradient descent
with Cross Entropy loss using a batch size of 1 image during
90 epoch. During training, results on the validation set were
tracked to monitor convergence and overfitting problems.
The L2 weight regularizer (weight decay) was used to avoid
overfitting. Our network took approximately two hours to
train on a NVIDIA GTX Titan X GPU running the Keras
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Figure 3: Training curves for our model with Binary Cross
entropy loss.

framework with Theano backend. The learning rate was set
to α = 0.001 during all the training.

LBCE = − 1

N

N∑

j=1

Sj log(Ŝj) + (1− Sj) log(1− Ŝj).

(2)

Due to the small size of the training dataset, we performed
transfer learning to initialize the weights of the network
using related tasks. First, the network was trained to predict
saliency maps using the SALICON dataset [10] using the
same architecture of SalNet [24]. Then, the network was
trained to predict saliency volumes generated from the iSUN
dataset [31] that contains 6000 training images. Finally, the
network was fine-tuned using the images provided by the
360◦ Salient challenge [29].

5. Experiments
The presented model for scan-path prediction was as-

sessed and compared from different perspectives. First, we
assess the impact of different sampling strategies to gen-
erate scan-paths from saliency volumes. Finally, we show
quantitative performance results of the model.

5.1. Sampling strategies

The sampling of the number of fixations and their dura-
tions were drawn from the data distribution on the training
set plotted in Figure 4.

Regarding the spatial location of the fixation points, three
different strategies were explored. The simplest approach
(1) consists on taking one fixation for each temporal slice
of the saliency volume. Through qualitative observation we
noticed that scan-paths were unrealistic, as the probability of

Figure 4: Probability distribution of the number of fixations
per scan-paths (top) and duration of each fixation (bottom).

each fixation is not conditioned to previous fixations. A more
elaborated sampling strategy (2) consists on forcing fixations
to be closer to their respective previous fixation. This is
accomplished by multiplying a temporal slice (probability
map) of the saliency volume with a Gaussian kernel centered
at the previous fixation point. This suppresses the probability
of positions that are far from the previous fixation point.
The third sampling strategy (3) we assessed consisted on
suppressing the area around all the previous fixations using
Gaussian kernels. As shown in Table 1, we observe that the
best performing model is the one using the sampling strategy
(2).

5.2. Results

Scan-path prediction evaluation has received attention
lately and it is a very active field of research [20][12]. For
this work, we have used a metric proposed by the Salient
360 Challenge [29] organization that compares the similarity
of 40 generated scan-paths with the ground truth scan-paths.
The similarity metric used is the Jarodzka algorithm [12],
where the similarity criteria was slightly modified to use
equirectangular distances in 360 instead of euclidean dis-
tances. Also, the generated and ground truth scanpaths are
matched 1 to 1 using the Hungarian optimizer to get the least
possible final cost. Table 1 exposes the performance results
of our model using different sampling strategies (discussed
in the section below). Due to the lack of a baseline from
other scan-path prediction models, we have compared our
results with the accuracy that would obtain a model that out-
puts random fixations, and a model that outputs the ground
truth fixations.
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Jarodzka↓
Random scanpaths 4.94

(1) Naive sampling strategy 3.45
(3) Combined sampling strategy 2.82
(2) Limiting distance between fixations 2.41

Ground truth 1.2e-8

Table 1: Comparison between the three considered spatial
sampling strategies.

6. Conclusions
In this work we have presented a model capable of pre-

dicting scan-paths on 360◦ images. We have also introduced
a novel temporal-aware saliency representation that is able to
generate other standard representations such as scan-paths,
saliency maps or temporally weighted saliency maps. Our
experiments show that it is possible to obtain realistic scan-
paths by sampling from saliency volumes, and the accuracy
greatly depends on the sampling strategy.

We have also found the following limitations to the gener-
ation of scan-paths from saliency volumes: 1) the probability
of a fixation is not conditioned to previous fixations; 2) the
length of the scan-paths and the duration of each fixation are
treated as independent random variables. We have tried to
address the first problem by using more complex sampling
strategies. Nevertheless, this three parameters are not inde-
pendently distributed and therefore our model is not able to
accurately represent this relationship.

Our results can be reproduced with the source code
and trained models available at https://github.com/
massens/saliency-360salient-2017.
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