
VIDEO UNDERSTANDING THROUGH THE
DISENTANGLEMENT OF APPEARANCE AND

MOTION

A Master’s Thesis
Submitted to the Faculty of the

Escola Tècnica Superior d’Enginyeria de Telecomunicació de
Barcelona

Universitat Politècnica de Catalunya

By

Carlos Arenas Gallego

In partial fulfilment
of the requirements for the degree of

MASTER IN TELECOMMUNICATIONS ENGINEERING

Advisors:

Xavier Giró-i-Nieto, Sebastian Palacio, V́ıctor Campos

Barcelona, October 2018

Video Understanding through the Disentanglement of Appearance and Motion

Author: Carlos Arenas

Advisors: Xavier Giró-i-Nieto, Sebastian Palacio, V́ıctor Campos

Abstract

Understanding the inner workings of deep learning algorithms is key to efficiently exploit the
large number of videos that are generated every day. For the self-supervised learning of the spatio-
temporal information contained within these videos, there are several types of algorithms based
on convolutional neural networks (CNNs) following an auto-encoder style architecture. However,
we have checked that this type of models, trained for the frame prediction task, learn jointly
these spatio-temporal information, so the model is not able to recognize appearance-motion
combinations not seen during training. Our proposed model, called DisNet, can learn separately
the appearance and motion through disentanglement, so that it solves the generalization and
scalability problems. To demonstrate this, we conducted numerous experiments under highly
controlled conditions, generating specific datasets that make the “conventional” model fails for
the appearance and motion classification tasks, and analyzing how well our proposal behaves
under the same conditions.

Keywords: deep learning, convolutional neural networks, auto-encoders, disentanglement,
motion, appearance.

i

Resumen

Entender el funcionamiento de los algoritmos de aprendizaje profundo es clave para poder
explotar de manera eficiente la gran cantidad de v́ıdeos que se generan cada d́ıa. Para el apren-
dizaje auto-supervisado de la información espacio-temporal contenida en los v́ıdeos se emplean
diversos tipos de algoritmos basados en redes neuronales convolucionales (CNNs) siguiendo una
arquitectura de tipo auto-encoder. Sin embargo, hemos comprobado que este tipo de modelos,
entrenados para la tarea de predicción de frames, aprenden de forma combinada esta información
espacio-temporal, de modo que el modelo no es capaz de reconocer combinaciones apariencia-
movimiento no vistas durante el entrenamiento. Nuestro modelo propuesto, denominado DisNet,
es capaz de aprender de forma separada la apariencia y el movimiento mediante disentangle-
ment, de modo que resuelve el problema de generalización y escalabilidad. Para demostrarlo,
realizamos numerosos experimentos bajo condiciones muy controladas, generando bases de datos
espećıficas que hagan fallar al modelo “convencional” para la tarea de clasificación de aparien-
cia y movimiento, y analizando cómo de bien se comporta nuestra propuesta bajo las mismas
condiciones.

Keywords: aprendizaje profundo, redes neuronales convolucionales, auto-encoders, disentan-
glement, movimiento, apariencia.

ii

Acknowledgements

This project supposes the culmination of my master’s degree, in which it allowed me to
implement the knowledge learned in some of the lectures given, as well as those acquired during
its development.

Thanks to Xavier Giró-i-Nieto, for the effective work in the guidance of the project that is
now presented, allowing me to progress constantly in the right direction. It is also important
to mention its teaching and organization of lectures, seminars, conferences and research lines,
which woke up my interest to know more about this exciting field.

To V́ıctor Campos, for the support and advice received, allowing me to understand in a more
rigorous way the actual reasons of some of the problems that arose or results obtained, making
possible the implementation, development and debugging of the proposed model.

To Sebastian Palacio, for the constant dedication and time invested in solving all the doubts
that came to me, as well as allowing me the integration and familiarization in the host research
center.

Finally, thanks to my parents for all the help and understanding received which, even in the
distance, have been present every day, supporting and encouraging me to continue forward.

iii

Revision history and approval record

Revision Date Purpose

0 14/09/2018 Document creation

1 17/10/2018 Document revision

2 17/10/2018 Document approval

DOCUMENT DISTRIBUTION LIST:

Name e-mail

Carlos Arenas carlosargal@gmail.com

Xavier Giró-i-Nieto xavier.giro@upc.edu

Sebastian Palacio sebastian.palacio@dfki.de

V́ıctor Campos victor.campos@bsc.es

Written by: Reviewed and approved by:

Date 14/09/2018 Date 17/10/2018

Name Carlos Arenas Name Xavier Giró-i-Nieto

Position Project Author Position Project Supervisor

iv

Contents

1 Introduction 1

1.1 Motivation and Objectives . 1

1.2 Hardware and Software Resources . 2

1.3 Work Plan . 3

1.4 Document Structure . 4

2 Artificial Intelligence 5

2.1 Machine Learning . 5

2.2 Deep Learning . 7

3 Multimedia Data Analysis 8

3.1 Basics of Images and Videos . 8

3.2 Computer Vision . 10

3.2.1 Optical Flow . 11

3.3 Deep Learning for Video Analysis . 13

3.3.1 Convolutional Neural Networks . 13

3.3.2 Auto-Encoders . 14

4 Methodology 16

4.1 Datasets . 17

4.2 Architectures . 19

4.2.1 Input Pipeline . 19

v

4.2.2 Frame Prediction Models . 20

4.2.2.1 Vanilla Frame Predictor . 21

4.2.2.2 Disentangled Frame Predictor 22

4.2.3 Appearance and Motion Classification Models 23

5 Experimental Results 25

5.1 Frame Prediction Task . 25

5.1.1 Quantitative Analysis: BCE Loss Function 25

5.1.2 Baseline: Copy Frame Predictor . 26

5.1.3 Qualitative Analysis: VisualRepresentations 27

5.2 Appearance and Motion Classification Task . 27

6 Budget 30

7 Conclusions and Future Development 31

Bibliography 31

vi

List of Figures

3.1 Rods and cones distribution in the HVS. 9

3.2 The electromagnetic spectrum. 10

4.1 Graphic representation of MovingSymbols2 datasets. Orange arrows: kind of
motion seen in training; Blue arrows: kind of motion seen in validation. 18

4.2 Time cost associated between sequential map and parallel map. 20

4.3 Time cost associated to the use of prefetch transformation. 21

4.4 Frame Prediction Models. 22

4.5 Appearance and Motion Classification Models. 23

5.1 Binary cross entropy loss function on both models and datasets. 26

5.2 Ground truth vs Predicted frames. Each row represents the video sequence from
the 11th to the 19th frame, where in each one the prediction is represented in red
color and the GT in cyan. The white color indicates the coincidence between both
representations (true positives). The first and third rows correspond to vanillaFP.
The second and fourth rows correspond to disentangledFP. The models in the
first two rows are trained with MovingSymbols2 Seen and in the following two
with MovingSymbols2 NotSeen. 28

vii

List of Tables

1.1 Hardware resources specs . 2

4.1 MovingSymbols2 datasets specs. 17

5.1 Binary Cross entropy at pixel level. The CopyFP values are the averaged BCE loss
for all the dataset videos. In VanillaFP and DisentanfledFP the training values
are the averaged BCE loss of the video batch in the final step (after 100 epochs).
Validation values of VanillaFP and DisentanfledFP are the averaged BCE loss of
all the dataset videos after 100 epochs. 27

5.2 Appearance and motion classification accuracy on validation set after training
(50 epochs). It shows a comparison between vanilla and disentangled models for
the appearance and motion classification tasks when there are combinations of
appearance-motion seen and not seen during training process. 29

6.1 Estimated financial cost of the project. 30

viii

List of Abbreviations

AE Auto-Encoder

AI Artificial Intelligence

API Application Program Interface

BCE Binary Cross Entropy

BoW Bag of Words

CNN Convolutional Neural Network

CPU Central Processing Unit

CV Computer Vision

DFD Displacement Frame Difference

DL Deep Learning

DNN Deep Neural Network

ETL Extraction/Transformation/Loading

FC Fully Connected

GPU Graphics Processing Unit

GT Ground Truth

HOG Histogram of Gradients

HSL Hue, Saturation, Lightness

HSV Hue, Saturation, Value

HVS Human Visual System

LBP Local Binary Patterns

ML Machine Learning

ix

NLP Natural Language Processing

NN Neural Network

OF Optical Flow

RNN Recurrent Neural Network

SIFT Scale Invariant Feature Transform

VAE Variational Auto-Encoder

x

Chapter 1

Introduction

1.1 Motivation and Objectives

We need large-scale datasets for training any deep learning (DL) algorithm and even more
when we talk about videos. For this case, there are plenty of input data x in any website (e.g.
YouTube). However, almost all these inputs lack of a target output y. That is why arises the need
to use self-supervised learning algorithms, such as auto-encoders (AE), since the main advantage
this entails is that input data do not need predefined target outputs, due to they are generated
automatically during training process an adequate use of their own inputs. Thus, videos become
an almost unlimited data source that we can exploit to train deep neural networks (DNNs) in
order to not only analyzing videos themselves but also to pre-train a wide range of models, so
that we only need to fine-tune on a few data points for their target tasks. Moreover, videos have
a remarkable advantage with respect to images; they present a temporal coherence, that is, they
follow a logical order. This temporary information learned by the network can be used later on
in target tasks such as detecting whether a sequence is ordered or not [24]. However, the main
problem these type of models presents is they learn jointly these spatio-temporal information.

Although some of the nomenclatures and concepts used in machine learning (ML) are inspired
by the brain, does not mean that these models “learn” or “think” in the same way as the human
being does. Nevertheless, being aware of their real behavior (based on statistics and algebra) and
their limitations or possibilities that this entails, it is possible to infer certain human skills, such
as breaking down the information captured and learning it independently. This ability is known
as learning disentangled representations and is the subject of study for many researchers during
the last few years [4, 18, 35, 26, 16, 13].

Focusing visual scenes understanding, it is interesting to know how people are able, at a
glance and automatically, to recognize the objects we are visualizing, the actions they perform
and under what circumstances they are. This is due to the ability to disentangle what we observe
and individually analyze that information (i.e. foreground, motion and background respectively).
Based on this assumption, we highlight the work done by Lin et al.[21], since through the extension
of such work I took my first steps as a researcher in this field, as well as it inspired me to tackle
the problem around which this new project is developed.

1

In this context, the present Master’s Thesis addresses the study of learning disentangled
representations (specifically appearance and motion) through the development of a model based
on AE called DisNet, which is able to alleviate and even solve some of the limitations that
vanilla AE models entail when they try to acquire such information jointly, as is the case of
generalization and scalability. This kind of self-supervised learning algorithms, are able to find
patterns of similarity (features) in a reduced dimensionality space (latent space) from the input
data. In case of videos, that information is usually extracted by predicting future frames based
on the observation of the previous sequence. Therefore, to verify the benefits of our proposal
and demonstrate our hypothesis, both models (DisNet and vanilla AE) undergo through some
experiments under controlled conditions. This aims to achieve the following objectives:

• Be able to disentangle and learn individually the information of appearance and motion
contained in videos with our proposal.

• Understand the internal behavior of the models presented, by simplifying the problem as
much as possible so that its study is easier and more evident.

• Show that our proposal is able to generalize to appearance-motion combinations not seen
during training.

• Address the scalability problem with respect to the number of appearances and motions
learned.

1.2 Hardware and Software Resources

For the training of any DNN is highly recommended the use of powerful hardware devices
that allow us to run several experiments without the need to wait for a long time between each
of them, as it would considerably slow down the work of the researcher. These components are
the aforementioned GPUs, responsible for efficiently computing large blocks of input data within
the models, as well as updating their weights. In addition to GPUs, we need another kind of
components, the so-called central processing units (CPUs) which are necessary to access memory,
load and manage the input data to feed the network, although they are not as powerful as GPUs.
In this way, the combination of both in a proper way speeds up the process, since it releases the
GPU for those tasks, focusing only on the heavy computations.

All hardware resources are provided by the German Research Center for Artificial Intelligence
(DFKI), where I mainly developed my thesis. These resources are grouped into 5 compute nodes,
whose specs are summarized in table 1.1.

Name (alias) GPU RAM (GiB) CPU RAM (GiB)

kasan 8x GTX 1080 TI 8x 11.17 Xeon E5-2683W v4 (32+32HT x 2.1GHz) 512

kansas 2x GTX 1080 TI 2x 11.17 Xeon E5-2687W v3 (20+20HT x 3.1GHz) 256

kiew 2x GTX 1080 2x 8.11 Opteron 6348 (24x 2.8Ghz) 128

koeln 2x GTX 1080 2x 8.11 Opteron 6180 (24x 2.5GHz) 128

kassel GTX 1080 + Titan Black 8.11+11.17 Opteron 6172 (24×2.1GHz) 64

Table 1.1: Hardware resources specs

2

Although our architectures are efficient and fast enough to run on a single GPU, access to
all these resources allowed us to run in parallel the numerous experiments needed to design and
adjust the configuration of them, as well as to generate the datasets used in their training.

The development of the entire project (i.e. generation of datasets, design and adjustment
of the different architectures used, as well as the execution of the numerous experiments) were
carried out through the use of high level APIs from TensorFlow1 framework, which offer flexibility,
efficiency and simplicity during work. In order to speed up the process through the GPUs com-
putations, CUDA platform and cuDNN libraries supported by this framework were also needed.
All these software resources were completely integrated within all the previous mentioned com-
pute nodes, running on openSUSE 42.3/x86 64 operating system . Finally, the interaction with
all the aforementioned resources (both hardware and software) was done through the PyCharm
development environment. All code generated during this project is publicly available at:

https://github.com/carlosargal/DisNet-2018-tfm/

1.3 Work Plan

For the completion of my Master’s Thesis I invested around 9 months (from 02/18 to 11/18).
Since it is a research-oriented project of a certain temporal extension it is very difficult to establish
a previous complete work plan, because many of the objectives and motivations of this (and any
other) research line are evolving along with the development of the project over time. That
is why, the planning of the numerous tasks carried out were established in a short term. The
dynamics consisted of a couple of weekly meetings, one with the department of the host research
center (DFKI), where each member explained their progress, and another with the members of
this project, where we proposed the tasks to be done for next week.

The first month implied adapting both to the lifestyle of the destination country (Germany)
and to the work dynamics in the DFKI, in terms of familiarization with colleagues and the
hardware and software resources mentioned in section 1.2.

During the next two months I focused on settle the basis of this project, through the bib-
liographic consultation of many works carried out up to date in areas such as unsupervised
learning, video analysis and learning disentangled representations. This allowed me to establish a
well-defined research line, based on the motivation and objectives described in section 1.1, from
which start to develop the problem.

Throughout the following 3 months, both the datasets and architectures described in chapter
4 were implemented. During this period I devoted a lot of effort and time to understand and
gain experience programming with the Tensorflow APIs, which I had not used until then and with
which I finally generated all the code from scratch.

After the internship in Germany, I was able to continue using all resources remotely, which
allowed me to carry out the experiments that validated the established hypothesis and draw
different conclusions. This was carried out during the first two months after my return, so the
last month was devoted to writing this document, which structure is detailed in the next and last
section of this chapter.

1https://www.tensorflow.org/

3

https://github.com/carlosargal/DisNet-2018-tfm/
https://www.tensorflow.org/

1.4 Document Structure

Chapter 1 has allowed the reader to have a clear idea, on both what the implementation of
this project entailed and the magnitude of it, as well as what will be discussed throughout the
document.

Chapter 2 defines the fundamentals and basic notions which holds the field of artificial intel-
ligence, contextualizing and generating a well-defined conceptual map.

Chapter 3 details everything related to the multimedia data analysis (images and videos) and
the evolution since their beginnings until now.

Chapter 4 describes the methodology followed to generate the synthetic videos datasets, as
well as the architectures used for their subsequent analysis by performing a set of experiments.

Chapter 5 analyzes some of the experimental results obtained during the code development,
after making several adjustments and validations (both to improve the results and to solve some
of the problems that arose), until achieving the final version of it. These results lead us to
different conclusions and future development, which are summarized in Chapter 7.

Chapter 6 details the estimated costs, associated to the time spent along with resources, both
human and material).

Finally, all the bibliography is provided at the end of this document.

4

Chapter 2

Artificial Intelligence

It is extraordinary to see how the field of artificial intelligence (AI) has evolved in the last
decade and how it has been fully integrated into society in practically all the areas of our daily
lives. Although the concept of AI has been used for decades, today we still finding multiple
definitions of it. The reason for this ambiguity is due to the fact that this concept depends on
the definition of intelligence, which can be interpreted from different points of view. If we extract
a common idea of all these definitions we could say that “artificial intelligence is a sub-discipline
of computer science field, that looks for the creation of machines that can imitate intelligent
behaviors”. When we talk about imitating we refer to the realization of the tasks itself and not
how they do them. Therefore, there are numerous alternatives to perform the same problem,
being all of them valid by definition.

There are many types of intelligent behavior that machines can simulate, where in certain
situations they achieve a higher performance than humans. However, what makes us different
from this kind of intelligence is the ability to perform multiple tasks, since they are limited to
simulating only one of those behaviors or a very small group of them [1] (at least until now). In
this way, AI includes a set of subcategories, which correspond to the different types of intelligent
behaviors to be imitated. Fields such as robotics, natural language processing (NLP) or computer
vision (CV) are some of them. However, if there is a behavior that really defines an agent as
intelligent, it is the ability to learn, that is, machine learning (ML).

2.1 Machine Learning

Some of the processes that occur in the brain continue being a great mystery to neuroscientists.
Despite this, in fields such as ML, the brain has been a source of inspiration on which many of
the most important concepts have been developed.

By definition, machine learning “is the branch of artificial intelligence that seeks to equip
machines with learning capacity”. When talk about learning we refer to the mechanisms that
allow us to generate knowledge from a set of experiences. All the algorithms and techniques
within this field can be classified into three large groups, depending on the learning paradigm
they are applying. These three groups are:

5

• Supervised learning: y = f(x)

• Unsupervised learning: f(x)

• Reinforcement learning: y = f(x); z

Supervised learning is based on discovering the relationship between some input and output
variables. In other words, learning arises from teaching these algorithms what is the result we
want to obtain for a given input value. Therefore, the key of supervised learning is to generalize
the knowledge learned through observation, being the paradigm that has had the most practical
application during the last decades.

On the other hand, unsupervised learning is able to produce knowledge only from the data
that is provided as input, without the need to explain to the system what result we want to
obtain. To do this, it looks for similarity patterns within the input data and groups them based
on it (clustering), so that for a new entry the algorithm is able to classify it within one of these
groups based on the similarity of its features. Despite the difficulty that this entails, one of the
main advantages that can be deduced is obtaining large-scale datasets without much effort, since
it is not necessary to carry out any kind of manual labeling. That is why scientific community
around ML field admits that the future of it goes through this paradigm.

Finally, in reinforcement learning, there is an agent that learns to make decisions based on
observations to maximize a future reward (or minimize a penalty). Although it can be applied to
a wide range of tasks, this learning has always been closely related to the use in traditional video
games, due to its great similarity in terms of performance dynamics.

We already know that ML is another discipline contained within the field of AI. However, unlike
the others, it stands out for how it performs a certain task (i.e. the system learns to perform that
task, instead of being programmed in a classical way), regardless the task itself. This difference
makes ML being one step ahead, maintaining a strong connection with the remaining disciplines
that respond to the different intelligent behaviors.

Within ML we find a wide range of techniques that serve to cover different types of applications
(e.g. decision trees, support vector machines, regression and classification models, clustering
techniques). However, the technique that has made the ML field famous during the last decade
has been the neural networks (NN).

What makes NN interesting is that they are able to learn in a hierarchical way, that is,
information is learned by levels, where the first layers learn very basic concepts and in the later
layers the previously learned information is used to learn more abstract concepts. This means
that as we add more layers, the information that is learned is more abstract and interesting. The
increase in the number of layers and complexity is what makes these algorithms are known as
deep learning (DL) algorithms.

6

2.2 Deep Learning

The massive increase in data that is continuously generated from more sources, the social
awareness of its importance and the cheapening prices on storage devices, have caused a trend
to accumulate large amounts of data, which is well known as Big Data. This, along with the
access to increasingly powerful graphic processing units (GPUs), which are able to perform a
large number of computational operations in a short period of time, are the reasons that have
led to the development and implementation of powerful and complex algorithms, called deep
neural networks (DNN). The joint growth of these three essential components (i.e. big data,
big computation and complex algorithms) have created tools and applications that make our
lives much easier on a personal and professional level. All these clear benefits have made these
algorithms widely accepted for all of us, although the lack of knowledge about their performance
can generate distrust among the most skeptical.

Within the scientific community that studies and develops these powerful algorithms, called
deep learning (DL) algorithms, this lack of knowledge is not so evident. However, since its nature
is based on hierarchical architectures of large depth and dimensionality (hence the name of deep
neural networks or DNN), sometimes the researcher who has developed a model is not fully aware
about its inner workings.

Over the last years, it has been a common practice to develop deep learning models capable of
improving the results of previous works, by the ”simple” fact of increasing its complexity thanks
to the addition of more levels of abstraction (layers) and/or the combination of several methods.
However, this trend is changing, since in a certain way it is increasingly difficult to overcome the
state-of-the-art in some tasks. Therefore, the current concern is not that the model obtains very
good results, but rather doing it efficiently and in a way so that we are able to understand what
and how the network learns.

So far we have focused on familiarizing with many of the concepts that are heard today,
which in some cases they are overlapped or interpreted in a wrong way, leading in many cases
to a greater confusion. This contextualization allows us to clearly see where is located one of
the most demanded fields in the last decade. It is in section 3.3, where we explain some of
the DL algorithms that are directly related to this thesis. Worth noting the work of the author
Goodfellow et al. [11] which includes in an extensive way the most important concepts on which
DL is based.

7

Chapter 3

Multimedia Data Analysis

3.1 Basics of Images and Videos

All groups of animals, even the most primitive, need mechanisms to perceive and interact with
their environment. This allows them to adapt to adverse changes, feed themselves, interact with
other individuals or avoid risky situations, etc.

Well-known as sensory organs, there are several types of them from the simplest, as chemical
receptors, to others that react to physical stimuli (e.g. light or sound). Eyes can be considered
one of the most complex sensory organs. There is a set of photoreceptor cells located in the
retina which are stimulated by electromagnetic radiations. These stimuli are sent to the brain as
nerve impulses, where the reconstructions of the images are finally performed.

Objects perception, in terms of shape and color, known as illumination of the object I(λ),
depends on three essential factors:

• Spectral density of a source L(λ).

• Reflectivity of the object material r(x, y, λ).

• Sensitivity of the photoreceptors to that illumination. In the human visual system (HVS)
we find two kinds of them; rods, sensitive even at low light intensity although with black
and white vision (achromatic vision) and cones, which receive color information (chromatic
vision) although they need a higher light intensity (fig.3.1).

This chromatic vision is composed by the combination of three colors: red, green and blue
(RGB) according to the Young–Helmholtz Theory, in which “any color can be reproduced with
an adequate mixture of three primary colors” [42]. This theory postulates the existence of three
different types of cones (shown for the first time in 1956 by Gunnar Svaetichin [36]), where each
of them is defined by a sensitivity curve centered around the wavelength that characterizes each
of the three mentioned colors.

Therefore, the radiation absorbed by the eyes comes from the radiation reflected by objects
that are exposed to a light source I(x, y, λ) = r(x, y, λ)L(λ). For HVS, that light source must
be within the wavelength range [380, 780]nm, known as visible light spectrum (fig.3.2).

8

Figure 3.1: Rods and cones distribution in the HVS.

Since the HVS is quite limited in terms of wavelength ranges, we find certain limitations that
make it impossible for us to observe the totality of our environment or with the accuracy we
would like to. That is why science has always devoted great efforts in the development of tools
that overcome these barriers, to progress in the research of fields as diverse as medicine, biology,
physics, astronomy, meteorology or signal theory, among others. Although these tools are very
relevant for research, there are other industry sectors such as photography, television, cinema or
even motor industry in which the acquisition and treatment of images are of special interest.

Current devices, like microscopes, telescopes, photo and video cameras, as well as viewers
and scanners that allow visualizing all kinds of invisible spectra to our eyes, differ in the way
they capture, process and represent images. However, most of them have a common feature, the
transformation of the signal from analog to digital domain.

A digital image is basically a multidimensional matrix in which each cell contains a discrete
numerical value representing a small spatial region of the original image. These cells are called
pixels (picture elements) and their values are obtained by a procedure of sampling and quan-
tization of the original image, characterized by a continuous and analog function f(x, y). The
quality of a digital image depends on two main factors:

• Resolution: Number of pixels per unit area. The higher the resolution, the smaller the
size of each pixel, which leads to an image with more detailed elements in terms of shape.
This property is closely related to the sampling process.

• Value range: Amount of values each pixel can take. The higher the range, the more
natural and textured the elements of the image. This property is closely related to the
quantization process.

It is possible to choose between several types of color spaces to represent the images, depending
on their nature and application. The RGB space is one of the most widespread in the use of
devices for capturing and representing color images (e.g. digital cameras or screens), where
each digital image is represented by a three-dimensional matrix in which the x, y components
determine the spatial position of the cell in the image and the z component contains the intensity
value for each of the three primary colors, also known as “channels”.

9

Figure 3.2: The electromagnetic spectrum.

The perceptual space is another color space where the values of the z component are deter-
mined by the luminance and chrominance of the image. In this space we find different types like
HSV (Hue, Saturation, Value) or HSL (Hue, Saturation, Lightness).

Digital videos are a set of digital images (a.k.a. frames) arranged sequentially and ordered in
time, so they add an extra dimension (time) to the matrix described above. In addition to the
resolution and the value range of each image, the digital video quality depends on the amount
of frames per second (fps) represented, so the higher the fps, the more fluent the video. This
property depends on the temporary sampling of the analog video.

With current devices, it is possible to capture and process all kinds of representations of the
environment for different ranges of frequency spectrum. In case of images, these representations
correspond to a specific instant, so the information we can extract is limited to the spatial domain.
However, in case of videos such representations evolve over time, so the information obtained is
much higher (spatial and temporal information).

3.2 Computer Vision

“Vision” is a much wider concept than simply capturing and processing images or videos. It
is also necessary to extract and analyze the information contained within such representations to
obtain a coherent interpretation of our environment and thus be able to make decisions based
on it. computer vision arose from the need to provide that interpretation from visual information
to machines since, until then, it was a task performed only by humans.

Common situations for us such as recognizing objects or actions become a big challenge for
computers, where any external factor that modify the perception of representations (e.g. objects
partial occlusion, presence of reflections and shadows, changes in illumination and object pose or
even inter-class variability) make this tasks even more difficult.

10

Computers are unable to recognize an entire object from a digital image without a previous
processing. However, through the use of feature extraction techniques, they are able to detect
edges, contours, corners, interesting points or parameterizable shapes.

These techniques are widely varied in terms of methodology, complexity and application. For
instance, one of the simplest ways to obtain edges is computing the first derivative (gradients)
or second derivative of an image through the use of linear filters (e.g. Sobel, Prewitt, Roberts,
laplacian, difference of Gaussian), which detect discontinuities in the image intensity. Including
other processes to the use of filters results in more sophisticated edge detectors, like Canny (adds
noise reduction, thresholding and binarization) or gPb (adds color and texture information [14]).
Another example is obtaining invariant local features (descriptors), which capture the information
around detected interesting points. There is a wide variety of algorithms in charge of detecting
and extracting many kinds of descriptors, such as SIFT (scale invairant feature transform) [22],
LBP (local binary patterns) [25], HOG (histograms of gradient orientations) [6], etc. Since these
features are local and invariant to some image parameters (e.g. translations, rotations, scaling)
they are robust against some phenomena, like occlusion and clutter. Combining some of these
techniques/algorithms allow computers to scale and generalize the problem to recognize from
basic and parameterizable shapes (linear regression, Hough transform, RANSAC) to increasingly
complex and varied objects (generalized Hough transform [2], sliding window [41], bag of words
[19]).

Something similar happens with videos. Pre-processing techniques are needed to model the
object temporal evolution within the sequence of images. The most common technique to extract
and model this motion is well known as optical flow.

3.2.1 Optical Flow

Once computers are able to recognize objects, arises the need to know the state of them,
that is, the action they perform. This is possible thanks to the extraction of motion contained
within the temporal domain. But how is possible to know the real motion of an object in
the 3D space from a sequence of 2D images? Actually, this is not possible, since the spatial
dimensionality reduction makes we lose valuable information about the action that is being carried
out. Therefore, we can only make estimates from the intensity variability of the pixels along the
temporal sequence of images. This estimate is known as apparent motion or optical flow. If we
consider that changes in pixel values are only due to the motion in the scene, any intensity value
I(x′, y′) at time t + ∆t can always be found (and associated to a pixel) in the image at time t
(and vice versa). This hypothesis is reflected in the brightness constancy equation:

I(~r′, t+ ∆t) = I(~r′ − ~D(~r), t) (3.1)

Where ~r′ = (x′, y′) = (x + ∆x, y + ∆y) is the position vector at time t + ∆t and ~D(~r) =
(∆x(~r),∆y(~r)) is the displacement vector containing the optical flow values of all pixels of the
image at time t.

The main drawback of this kind of motion is the inclusion of ”noise” due to the camera
motion as well as the lighting changes. However, having enough knowledge about that noise it
is possible to compensate or even mitigate it from videos [39]. For that reason, it is necessary to
relax the constraint of the previous hypothesis, assuming optical flow cannot always fulfill it:

11

I(~r′, t+ ∆t) ≈ I(~r′ − ~D(~r), t) (3.2)

To measure the quality of the estimate we simply subtract both terms from the previous
equation, obtaining an “image” where each pixel contains the difference between the intensity
value of the estimated pixel at time t+ ∆t and the intensity value of its associated pixel (ground
truth) at time t. This image is known as DFD (displaced frame difference) and the closer to zero
are their values, the more accurate is the estimated optical flow.

Optical flow optimization focuses on minimizing DFD and is usually approached in two ways:

• Direct exploration methods: Only the values of the original functions (images) are used.
This is the case of Block Matching.

• Differential methods: The values of the original functions as well as their derivatives are
used. This is the case of Lukas-kanade.

All of them assume that images can be segmented into small regions (which differ between
models), where all the pixels within that region have a small and homogeneous motion defined
by a given parametric model. The complexity of such a parametric model will not always make
the estimate more reliable, as well as it is computationally more expensive (number of regions x
number of parameters). The most common types of parametric motion models are translation
and affine mode.

Regarding the differential methods (Lukas-kanade) there are two main problems that can lead
to an error in the optical flow estimation:

• Aperture problem: All regions are defined by a sliding window centered on each pixel of
the image. Therefore, when the window is not large enough it is possible that during the
exploration of the image, the component of the flow perpendicular to the gradient (i.e.
parallel to the edge) can not be measured. The solution to this problem is displacing the
window in more than one direction.

• Large motion problem: Small motion assumption does not hold in practice. To solve it,
we use a multi-resolution algorithm, in which downsampling the image we also reduce the
motion magnitude.

The state of the art regarding optical flow is quite obsolete [3], due to its limitations in
terms of flexibility, computational cost and scaling. The culmination of this whole process comes
when computers go from interpreting this visual information to learning that understanding for
themselves. This is where deep learning algorithms come in, as we will see below. However,
optical flow is a powerful tool that is still being used to improve the results of these novel and
more advanced algorithms [9, 29, 32, 43, 5, 27]. In other cases, what is tried is to obtain the
same benefits as OF, completely avoiding its use as as shown in Fan et. al [10] work.

12

3.3 Deep Learning for Video Analysis

DL algorithms used for videos are very similar to those used for images, since videos are
essentially a set of images arranged sequentially, as we discussed in section 3.1.The most used
DL algorithm to extract and learn features contained in images and videos are the convolutional
neural networks (CNNs), which we describe below.

3.3.1 Convolutional Neural Networks

In general, the number of connections for each of the neurons that the input layer contains in
a traditional neural network (multilayer perceptron) is equivalent to the number of parameters
that each sample has. For images each pixel is considered as a parameter, so they have a high-
dimensionality, which increases substantially with a higher resolution/size. This dimensionality
supposes a very high computational cost for the network. That is why CNNs emerged, which
manage to reduce this dimensionality through the use of convolutional filters, so that the network
learns more efficiently and quickly. In this way, the feature extraction is obtained through the
convolution of images with a set of filters, which are learned during training.

Since the nature of images presents a grid-like topology (as explained in section 3.1), there
are three factors that motivate the use of this kind of architecture:

• Local connectivity: Each neuron is only connected to a region (patch) of the input image,
where the size of the patch is equivalent to the filter dimension (a.k.a. receptive field). In
this way, the coordinated combination of different neurons allow to “visualize” the input
image with a smaller number of connections, which leads to a reduction in the number of
parameters as well as a faster computation of the activation function in every neuron.

• Parameter sharing: Once we can “visualize” the whole image through a set of neurons it is
possible to share its parameters, so that these reduction is even greater. Thus, the number
of parameters to convolve an image corresponds to the number of elements contained in
the convolutional filter matrix. All the neurons that share their parameters (i.e. use the
same filter) are grouped within the same ”feature map”. There are as many feature maps
as filters are applied to the image in each layer, so the total amount of parameters is equal
to the number of filter elements times the number of filters applied.

• Pooling and subsampling: Between convolutional layers a reduction of the number of
neurons within the same neighborhood is made. This again reduces the dimensionality
while providing invariance to small changes.

Following these 3 essential principles we find numerous models with very varied complexity
(i.e. size and number of filters as well as number and types of layers, such as convolutional,
sub-sampling, fully connected, or batch normalization layers), depending both on their target
tasks and their inputs. The model that gave fame to this type of architectures was designed by a
group of students in 2012 [17], with which they achieved much higher classification results than
the previous one on ImageNet dataset [7], following a framework similar to that proposed by
Lecun et al. [20] in 1988. Since then, constant improvements were made every year, achieving
better and better results with models such as VGGNet [30], GoogLeNet [33] or ResNet [12].

13

There are several ways to extend its use to a sequence of images (videos), which can be
summarized in 4 main types:

• Single frame models: It consists of performing a spatial 2D convolution for each frame
of the video individually, in the same way that we would do with a single image, but finally
we combine all the outputs on top of a pooling operation (e.g. max, sum, average). This
combination can be done in many ways as Ng et al. [43] showed. This is a fairly simple
implementation in which we can exploit the content of the whole video and what is more
interesting to reuse pre-trained models for images. However, the main drawback of this
method is that it does not contain temporal information about it, since pooling is not aware
of the temporary order.

• CNN + RNN: To solve this lack of temporal information, instead of pooling the output of
the frame by frame convolutions, we replace it with another type of algorithm commonly
used for the exploration of sequential information, called recurrent neural networks (RNN)
[8]. The problem is that we can not parallelize the learning process in the same way as we
do with the previous method, which implies limitations in terms of storage, so for videos
with very long sequences this strategy is not valid.

• 3D CNN: If we think of an image as a N-dimensional matrix, a video is basically a matrix
of dimensions N + 1. Therefore, it is possible to perform convolutions through the use of
filters with an extra dimension. This is how the 3D convolutional networks (C3D) arise [37],
which jointly perform a spatial and temporal convolution of all the video at the same time.
In this way we solve the problem of the sequentiality that the previous method presented.
The main drawback is its high computational cost, so the problem of very long sequences
still exists. To mitigate this it is necessary to split the video into chunks (also known as
clips), where the number of frames must always be the same in order to feed the network
properly. Therefore, C3D can work with videos of any length. However, these clips usually
have 16 frames (in videos with a frame rate of 30 fps, their clips last approximately half a
second), so the temporary information captured by the network is too short, since it does
not exceed a longer length than the input clips.

• Two-stream CNN: Thanks to the use of OF it is possible to obtain from the original clip
another clip that represents the motion contained within the image (e.g. instead of having
3 channels for the RGB color representation, we have 2 channels representing vertical and
horizontal motion). In this way, with the original clip we feed a CNN frame by frame, which
learns the temporal information, and in parallel we use the generated clip that contains the
OF as input of another replicated CNN, which learns the motion (temporal) information
[29]. The main drawback is the bottleneck produced by the OF, which makes the network
not scalable due to the computational and memory cost.

3.3.2 Auto-Encoders

There are different architectures that exploit the benefits of unsupervised (or self-supervised)
learning, based on the assumption that there is a relationship between input data that allows them
to be grouped in a space of characteristics lower than the input space (manifold assumption).
Among all of them we highlight the auto-encoder (AE) models. This type of algorithms consist
essentially of two blocks, encoder and decoder, which are characterized by having a mirrored
symmetric topology, that is, the decoder reverses the operations performed by the encoder.

14

The main function of the encoder is the extraction of features contained in a space of reduced
dimensionality (latent space) from the direct exploration of typically unlabelled inputs data x.
In the case of image analysis, this exploration is based on CNNs models, where the combination
of convolutional and pooling layers allow reducing the dimensionality of the input. The decoder,
located just after the encoder, is generally responsible for reconstructing the input x of the model
from the feature vector that the encoder has generated for that input, so that the network learns
to interpret that information. Certain types of AE also introduce random noise to the encoding-
decoding process, which has been shown to improve the robustness of the resulting patterns,
well-known as variational auto-encoders (VAE).

Therefore, thanks to the combined work of encoders and decoders, the AEs are able to
generate a latent space between both blocks of great value. In this way, through the pre-training
of AEs for a reconstruction task, it is possible to do transfer learning for a final task (such as
classification), so that we can obtain good results without the need of a very large labeled dataset.
However, in order to learn the temporal information of the videos, it is not enough simply to
do a reconstruction of the input, but rather that more semantically rich tasks are required, such
as the prediction of future frames. However, we can not learn the temporal information of the
videos simply by doing a reconstruction of the input, but we need more semantically rich tasks,
such as the prediction of future frames [32, 23, 28, 38, 40, 15]. For this, AEs exploit some of
the techniques already discussed in the previous section, such as the use of CNN + RNN, C3D
or two CNN stream as the structure of the encoder.

15

Chapter 4

Methodology

As we have seen in the previous chapter, the appropriate use of convolutional (and also
recurrent) layers, following an AE style architecture, allows us to exploit the temporal and spatial
information from videos without the need of target outputs for their training.

The main problem with this type of vanilla AE is that the appearance and motion information
learned (and contained in the latent space) is directly related. In this way, it is highly probable
that the network learns to associate that a certain object always performs one motion and not
another, since the use of real videos datasets can not assure that the network sees all the
possible combinations during training (generalization problem). In addition, not generalizing for
unseen appearance-motion combinations, makes the learning complexity of the model increases
in a multiplicative factor when we scale to more types of appearance and motions, since it is
necessary to previously learn all the possible combinations (scalability problem).

Therefore, if we want to further exploit the advantage of large amount of unlabeled videos
that arise constantly, we must eliminate the relation between appearance and motion learned,
generating two completely independent latent spaces, such as makes our proposed DisNet model.
Thanks to disentangling we alleviate the problem of scaling the space of possibilities (regarding
the combinations of appearance and motion), so that by increasing the number of possible
appearances and possible motions the complexity increases in an additive factor, since learning is
independent. This implicitly leads to solve the generalization problem, so it is not necessary to see
all the appearance-motion combinations during training, but it is enough seeing such appearance
and motion, even if they are not explicitly in the same video.

Given this hypothesis, we are going to validate that vanilla AEs really have these problems
and how our proposal can solve them. That is why we designed the Seen/NotSeen benchmark,
forcing the vanilla AE to fail and seeing how our proposal of disentangling behaved under the same
conditions. To do this, we generated a couple of datasets of synthetic videos, under controlled and
very restricted conditions (MovingSymbols2 Seen and MovingSymbols2 NotSeen). This allowed
us to pre-train both models for the task of predicting the t + 1 frame (vanilla frame predictor
and disentangled frame predictor). Once this is done, we adapt the architectures for the task of
classifying appearance and motion (vanilla classifier and disentangled classifier) and we fine-tune
on the classifier part, freezing the rest of the architecture in order to maintain the latent space
features unchanged.

16

4.1 Datasets

The objectives set by a research line largely determine the required dataset, so that its correct
choice allows to demonstrate and justify the results obtained to validate the proposed hypothesis.
For the development of DL algorithms applied to videos there is a wide range of datasets well
known by the entire community of scientists around this field (e.g. UCF101 [31], HMDB-51,
KTH). All of them, besides using them to train the proposed model, are used as benchmarks to
compare how good the model is for a given task with respect to other proposals. However, given
the nature of their videos, these datasets are not recommended to analyze the internal behavior of
the network. For this purpose, we need more simple ones, usually composed of synthetic videos,
such as Moving MNIST dataset.

The problem of Moving MNIST is the lack of flexibility when generating it. As a direct
alternative we have the Moving Symbols dataset [34], which offers greater control over the
parameters that we want to modify, such as rotating, scaling, changing the objects appearance,
changing the motion speed, adding different backgrounds, etc. This allows highly different
between training and testing datasets as much as you want. However, it is not possible to
define the type of motion made by the symbols, key aspect to carry out our experiments. The
symbols start randomly (both in position and direction) with a linear motion, which bounce with
a certain angle when reaching any of the limits of the image. Therefore, it was necessary to
modify the moving symbols.py source code , defining the different types of motions performed
by the symbols, as well as the creation of a new file (generate MovingSymbols.py) responsible
for giving the order to the source code to generate the dataset with the desired parameters.

Since we want to check how vanilla AE and DisNet models behave when they are validated
on combinations of appearance-motion both seen and not seen during training, we generate two
datasets which we call MovingSymbols2 Seen and MovingSymbols2 NotSeen. The number 2
corresponds to the types of symbols that can be shown (appearance) and the types of motions
they can perform. All the specifications of both datasets are collected in table 4.1. As we can
see, they are simplified as much as possible and share most of the customization parameters.

MovingSymbols2 Seen MovingSymbols2 NotSeen

Training Validation Training Validation

Number of videos 5000 500 5000 500

Appearance-motion (0 or 3)-Horizontal 0-Horizontal 0-Vertical

combinations (0 or 3)-Vertical 3-Vertical 3-Horizontal

Bounding angle 180o

Number of symbols 1

Symbol scale 1:1

Symbol speed 8 pixels/frame

Video resolution 64x64 pixels

Video length 20 frames

Color output True

Pixel values [0, 255]

Table 4.1: MovingSymbols2 datasets specs.

17

(a) MovingSymbols2 Seen (b) MovingSymbols2 NotSeen

Figure 4.1: Graphic representation of MovingSymbols2 datasets. Orange arrows: kind of motion
seen in training; Blue arrows: kind of motion seen in validation.

What really differentiates these datasets is the combination of appearance-motion seen in
training and validation. Thus, in MovingSymbols2 Seen we have the four possible combinations
both in training and validation, so that half of the dataset performs horizontal motions and
the other half vertical motions, where the symbol which executes that motion in each video
is chosen randomly among the digits 0 and 3 (See figure 4.1(a)). However, in case of Mov-
ingSymbols2 NotSeen, the horizontal motion in training is always performed by the digit 0 and
the vertical motion by the digit 3, whereas in validation it happens just the reverse, (0 only per-
forms vertical motions and 3 just horizontal), as shown in figure 4.1(b). This carefully selected
configuration facilitates the subsequent results analysis for the following reasons:

• Simplicity and similarity intra-datasets: We reduce the uncertainty of the results to
the maximum, since the behavior of the videos is restricted to very specific conditions and
common to all of them. In this way, the error is only conditioned by the type of appearance
and motion.

• Similarity inter-datasets: The increase in difficulty from MovingSymbols2 Seen to Mov-
ingSymbols2 NotSeen is only conditioned by the appearance-motion combinations that we
stopped seeing during training.

The files generated for each dataset are stored following a directory structure as follows:

MovingSymbols2 (Seen/NotSeen) > (train/test) > (Horizontal/V ertical) (4.1)

For each video, a file of the form “motion” video “# video”.avi, contained in the corresponding
directory is generated. Additionally, 3 types of .npy files (arrays) are generated, in addition to
the aforementioned video files:

• List of the appearance label ids: This list is filled out at the same time that the videos
are generated, so to reference each label, it is enough to look at its position in the list
thanks to the number provided by the video.

18

• List of background label ids: The creation and selection procedure is the same as for the
appearance labels. However, its use is out of scope of this project, since our objective is
not learning to disentangle and classify backgrounds, leaving this as future development.

• Binary Bounding box: Same size and position as the symbol contained in each video,
which are used as a mask to segment the foreground from the background. Since in our
case the background is black, its use is not necessary, and it is especially important when a
different background is applied. This allows us to extend this project for the segmentation
task, leaving this also as future work.

The main performance bottleneck that makes it hard to use the GPU at 100% efficiency is the
sequential reading of the data between training steps, because the GPU has to wait for new data
to work on. Since the generated videos are not very heavy, it is specially interesting to store large
blocks of them in another file format that allows faster access and loading of the input data that
feed the models. We are talking about the TFRecords format, a simple record-oriented binary
format that many TensorFlow applications use. This format allows to add in a structured way
relevant information of the videos (e.g. labels, size, length, filename), as well as to parallelize
the reading of the data so new training / validation data is always available whenever the GPU is
ready. Therefore, the final databases with which we feed the network are composed of this type
of files, which are generated with the code generate MovingSymbols tfrecord.py.

4.2 Architectures

The models described below are the culmination of a large developing and debugging process,
in which new ideas and implementations constantly emerged. Some of them were necessary to
solve the problems that were arising. However, others were used to improve the results of our
study, sometimes successfully and sometimes not so much.

Following the same reasoning for the development of MovingSymbols2 Seen and MovingSym-
bols2 NotSeen datasets, the structure and inner workings of both vanilla AE and DisNet models
are similar, always seeking the efficiency and simplicity of the model. In this way, we ensure that
the benefits offered by our proposal are only reflected by the disentangling of the appearance
and motion into two different latent spaces. Before explaining the architecture of each model
individually, we focus on explaining (whenever possible) the processes that they all share, starting
with the process of feeding the model.

4.2.1 Input Pipeline

Beside the benefits of feeding the models with the TFRecords files, the use of the Tensorflow
tf.data and tf.estimator APIs make it possible to optimize the combined (and asynchronous)
use of CPUs and GPUs for extraction/transformation/loading (known as ETL process) of the
data, as well as the training/validation/prediction of the model, respectively. In this way, we
generate an input pipeline where the CPU is responsible for the ETL process, which consists of
the following steps:

19

Figure 4.2: Time cost associated between sequential map and parallel map.

• Extract: Access the TFRecords files stored on disk of any of the datasets previously
generated.

• Transform: During training, read a buffer of the given size and randomly shuffle it, re-
peating the data according to the number of epochs (100 in frame prediction task and 50
in classification task). In validation, do not shuffle the data and only go through the data
eleven. Once this is done, the videos are decoded and stored in tensors, rescaling the value
ranges from [0, 255] to [0, 1] and taking a single channel (grayscale), all in parallel (see
figure 4.2) . Prefetch transformation to decouple the time data is produced by CPU from
the time it is consumed by GPU (see figure 4.3).

• Load: Feeds the neural network with batches of BS = 20 videos in each training step. In
addition to the videos, appearance and motion labels are provided.

Once the models have been fed, the first step taken by all of them is to binarize and standardize
inputs to take values -1 or 1. The reason for this transformation is because the loss function
associated to the frame prediction task is obtained through binary cross entropy (BCE) between
the predicted frame and the ground truth input frame. So each pixel of the predicted image
is “classified” for the possible values -1 or 1 (in other words, black or white pixels). Given the
nature of these datasets, the binarization of the videos does not lead to a drastic change in their
representation.

4.2.2 Frame Prediction Models

Formally, we are trying to predict future frames given a window of previous ones:

Prob (xt+K |xt, xt−1, . . . , xt−N) (4.2)

where this probability is approximated with one of the two aforementioned proposals. Note that
we have two hyperparameters: K controls how long into the future we are trying to foresee,
whereas N determines the memory of the system (i.e. how much previous information we
leverage to emit the predictions). This is easily extended to predict individually more than one
frame to exploit the video content as much as possible, just sliding the window from t = N to

20

(a) Without using prefetch

(b) Using prefetch mapping

Figure 4.3: Time cost associated to the use of prefetch transformation.

(t = T −K), where T is the video length. This extension is very useful to speed up and optimize
the training process even more.

In our case, we have N = 10 and K = 1, so that from the previous 10 frames we are
able to predict the next one. Given the video length is T = 20 frames, the model is able to
predict individually 10 frames (from 11th to 20th). Thus, in each step the loss function required
to optimize the model by gradient descent (adamOptimizer), is the averaged loss of the batch
where, in turn, the loss of each video is the averaged loss of the 10 predicted frames:

loss =
BS∑
i=1

T∑
t=N+K

BCE(x̂i,t, xi,t) (4.3)

Since vanilla AE and DisNet models were designed to predict the xt+K frame, from now on
we call them vanilla frame predictor (or vanilaFP) and disentangled frame predictor (or DisFP)
respectively, in order to differentiate them later on from their respective adaptations to the
classification task.

Both models (vanillaFP and DisFP) follow an auto-encoder style architecture where, in general,
the encoder part is responsible for extracting spatial and temporal information from a window
of input frames, (xt, xt−1, . . . , xt−N), while the decoder is responsible for emitting the future
frame xt+K from the feature vector extracted by the encoder. Despite their similarities, the
architecture and performance of both encoder and decoder are different in each model, as shown
in figure 4.4

4.2.2.1 Vanilla Frame Predictor

Encoder: It consists of a 2D CNN whose weights are shared across time steps, followed by a
1D causal CNN squashing the N features coming from each frame into a single latent feature
vector:

et = CNN1D (CNN2D(xt), CNN2D(xt−1), . . . , CNN2D(xt−N)) (4.4)

21

(a) Vanilla Frame Predictor

(b) Disentangled Frame Predictor

Figure 4.4: Frame Prediction Models.

The 2D CNN acts on the spatial dimensions, so at the output we obtain the spatial information
of the frames within the window [t−N, t]. This sub-NN consists of 6 customized layers, where
each of them contains a couple of 2D conv layers, the first with stride = 1 to explore the content
of the image and the second with stride = 2 to reduce the dimensionality. Between layers batch
normalization (BN) is applied and the residual connections of the previous layer are added to
avoid the vanishing gradient problem.

Decoder: This is a 2D CNN that recovers the frame from the latent feature vector, x̂t+K =
CNN2D(et). This sub-NN reverses the operations performed by the 2D CNN (i.e. 2D spatial
deconvolution), so that both the number of layers and filters are identical. However, to upsam-
pling the tensor dimensions corresponding to the spatial dimensions of the video, the combined
use of NN-Resize + conv2D layers (stride=1) is used. Both in 1D causal conv and in 2D deconv,
BN layers are applied but not residual connections.

4.2.2.2 Disentangled Frame Predictor

Encoder: For every window of input frames, the encoder emits two feature vectors: one which
depends only on the current frame (appearance features, ea,t), and another one which depends
on the current and previous frames (motion features, em,t). The NNs used to get these two
vectors share the spatial 2D CNN as a common backbone:

et = CNN2D(xt) (4.5)

ea,t = FC(et) (4.6)

em,t = CNN1D (et, et−1, . . . , et−N) (4.7)

CNN2D y CNN1D are identical to those used in vanillaFP encoder. Regarding FC, we have
two custom layers composed of fully connected + dropout layers.

22

(a) Vanilla Classifier

(b) Disentangled Classifier

Figure 4.5: Appearance and Motion Classification Models.

Decoder: We have a couple of 2D CNN with identical specs to the one contained inside the
vanillaFP decoder. The one after the FC is in charge of recovering the frame x̂t through the
current appearance features ea,t. The other one recovers the frame x̂t+K , through the appearance
of future frames estimated from current appearance and motion features: êa,t+K = f(ea,t, em,t).
Function f could have different implementations (e.g. MLP, spatial transformer networks, cross-
convolutions, addition or product). In this project the fusion method used is multiplicative. In
order that the appearance latent space is not conditioned by the future frame prediction, we
block the respective gradients flow in the back propagation phase (see figure 4.4(b)).

4.2.3 Appearance and Motion Classification Models

Once models have been pre-trained for the frame prediction task, we adapt them so that,
taking advantage of the information contained in their latent spaces, they are able to classify
both the appearance and motion of the datasets previously used.

To obtain these models (called vanilla classifier and disentangled classifier) we simply remove
the decoder part and, instead, insert two fully connected layers, the first one with 512 neurons
and the second one equal to the number of classes. Since the number of symbols (0, 3) and
motions (horizontal, vertical) are two, both the appearance and motion classifiers are binary.
Therefore, we require a BCE loss function. This kind of loss function is the one we already use
for the frame prediction task, but in this case the computed error is between the logits obtained
by the appearance and motion classifiers and their respective ground truth labels.

23

To ensure the latent spaces are not affected by the classification task, we freeze the pre-trained
weights of the encoder, so that the training is only performed on the classifier part (i.e. only
the weights of the new fully connected layers are updated). This fine-tuning process on the
classification task allows to speed up the training process, requiring a smaller number of epochs
and data, although in this case the volume of data used is the same as for the pre-training.

The only difference between both models are the feature vectors that feed each classifier. With
vanilla classifier, the same latent feature vector et is used to classify appearance and motion.
However, with the disentangled classifier, each one is fed with its corresponding feature vector,
that is, the appearance classifier with the appearance features ea,t and the motion classifier with
the motion features em,t, as shown in figure 4.5.

24

Chapter 5

Experimental Results

As in many other works, one of the main goals for any researcher is to obtain satisfactory results
that justify the time and effort employed. However, in a field as complex as deep learning, studying
the models behavior and understanding the meaning of their results is as relevant as obtaining
good results itself. That is why, during the development of this project numerous experiments
were carried out, both to calibrate the correct functioning of the implemented models as well as
to verify the proposed hypothesis. These experiments allow us to study and understand how a
neural network behaves when is forced to learn disentangled representations, as is the appearance
and motion contained in videos.

5.1 Frame Prediction Task

In this section we analyze the quantitative and qualitative results obtained when we trained
the final version of vanillaFP and DisFP models described in section 4.2.2. The experiment
consists of predicting the next frame from the observation of the previous 10 frames [t− 10, t]],
using MovingSymbols2 Seen and MovingSymbols2 NotSeen datasets.

5.1.1 Quantitative Analysis: BCE Loss Function

The quantitative results correspond to the BCE loss function evolution during the training
process. This training was carried out for each model in the two previously designed datasets,
so that figure 5.1(a) shows the loss curves for the MovingSymbols2 Seen dataset, while figure
5.1(b) shows the corresponding curves for the MovingSymbols2 NotSeen dataset.

In both cases we see that the BCE loss in vanillaFP is lower than in DisFP, both in training
and validation. This is because DisFP, apart from learning to predict the frame t + 1 (as in
VanillaFP), it also learns to reconstruct the current frame, so the total loss function is the sum
of two losses, one for each task. Something interesting that happens in VanillaFP is that the
validation curve remains flat from epoch 50 in MovingSymbols2 NotSeen dataset, while the
training curve continues decreasing, generating a gap between both quite evident. This behavior
happens when NNs start overfitting, which gives us a cue to start thinking that the model is not
learning to generalize for appearance-motion combinations not seen during training.

25

(a) MovingSymbols2 Seen (b) MovingSymbols2 NotSeen

Figure 5.1: Binary cross entropy loss function on both models and datasets.

5.1.2 Baseline: Copy Frame Predictor

In order to delimit the problem and know the maximum error that the models are allowed to
make (reference error), we generate the simplest possible baseline, which does not require prior
learning for the task of predicting frames.

The experiment consists of predicting the frame t + 1 knowing only the frame t. Given that
the temporal evolution of the symbol is unknown, we assume that the minimum error we can
make is “copying” the values of frame t to the instant t + 1, understanding that the symbol is
static, so that the error corresponds to the BCE between the frame t and the frame t+ 1.

Given the nature of videos from our datasets, in which the motion is constant and linear, the
BCE between consecutive frames is the same. Therefore, this experiment gives us an idea of the
similarity degree between consecutive frames, so that the error made by the baseline is directly
related to the motion speed. It is easy to understand that for a displacement of 1 pixel/frame
the difference between consecutive frames is less than if the displacement of the symbol is 8
pixels/frame (as in our case). Therefore, the motivation to apply such relatively high speed is to
evidence the motion contained between frames. In this way we avoid that the network becomes
“lazy” and learn to associate that the next state is very simmilar to the current state, so that it
does not learn the motion information.

Although the BCE between consecutive frames within one of these videos is the same, we
do not get the same error between different videos. This is because the overlap of the symbol
between consecutive frames depends on the appearance of the symbol itself, (in addition to the
motion speed, as we mentioned above). That is why we must average the error of all the videos
within the dataset in order to know a more accurate value of this reference error. Within the
same subset of videos this error is always the same (no matter how many times it is computed),
but given the randomness of the MNIST symbols appearance, this error differ between subsets,
although the difference is not very high, as shown in table 5.1. As we can see the BCE losses
obtained by both models are one order of magnitude below the baseline results, so our assumption
is confirmed.

26

MovingSymbols2 Seen MovingSymbols2 NotSeen

Training Validation Training Validation

Baseline: Copy Frame Predictor 0.35889 0.35841 0.35727 0.36041

Vanilla Frame Predictor 0.01214 0.02780 0.01179 0.06176

Disentangled Frame Predictor 0.08405 0.06602 0.07720 0.08461

Table 5.1: Binary Cross entropy at pixel level. The CopyFP values are the averaged BCE loss
for all the dataset videos. In VanillaFP and DisentanfledFP the training values are the averaged
BCE loss of the video batch in the final step (after 100 epochs). Validation values of VanillaFP
and DisentanfledFP are the averaged BCE loss of all the dataset videos after 100 epochs.

5.1.3 Qualitative Analysis: VisualRepresentations

For the qualitative study of the frame prediction task, we analyze how good the reconstruction
of the frames has been in terms of the symbols’ shape and position along the sequence of frames
from 11th to 19th. As explained in the previous chapter, it is very easy to extend the prediction
of the next frame for the entire video. This, in addition to optimizing the learning process, allows
us to visualize how the reconstruction of the predicted frames evolves, in order to verify that the
computed loss was not affected by the bad reconstruction of a particular frame.

This is how we discovered an error in the last frame of all the videos (20th), which showed
how the overlap between the prediction and the ground truth was not as good as in the remaining
frames. After analyzing the copyFP representations, we conclude that frame 20 was identical to
19, since in these representations the overlap was perfect. Therefore, the error was caused by a
failure in the generation of the videos, which was impossible to detect due to the complexity of
the code moving symbols.py (the only one that was not designed by us). Therefore, the fastest
solution was to train the models in the same way we were doing, using all the frames except the
last one. That is why the frames represented range from 11th to 19th.

In order to improve the accuracy of its analysis, the RGB channels were used to superimpose
in the same frame the ground truth and the prediction of the model. Thus, the prediction of the
frame is inserted in the red channel, while the other two resulting channels are occupied by the
ground truth (duplicating its values), so that it is represented in cyan color (combination of green
and blue). Figure 5.2 shows 4 sequences of frames predicted in validation set corresponding to
each model trained for both databases.

We can see how the predictions are fairly accurate to their respective GTs, in terms of position
and appearance, being in the case of validating on unseen appearance-motion combinations (rows
3 and 4) where there is not much coincidence. These visual results support those already shown
in the table, where the BCE loss of validation is slightly higher in both models.

5.2 Appearance and Motion Classification Task

It is in the classification task where we really know if all our effort dedicated to the design
and implementation of both the datasets and the models have served to validate our hypothesis.

27

Figure 5.2: Ground truth vs Predicted frames. Each row represents the video sequence from the
11th to the 19th frame, where in each one the prediction is represented in red color and the GT
in cyan. The white color indicates the coincidence between both representations (true positives).
The first and third rows correspond to vanillaFP. The second and fourth rows correspond to
disentangledFP. The models in the first two rows are trained with MovingSymbols2 Seen and in
the following two with MovingSymbols2 NotSeen.

Before analyzing the classification results, we had to pre-train and adapt the networks, obtain-
ing the vanilla classifier and disentangled classifier models. The first model is asked to classify
with the help of the latent vector et both, the appearance (i.e. knowing whether the symbol is
0 or 3) and motion (i.e. knowing whether the symbol moves horizontally or vertically) of the
input video. In the case of disentangled classifier, it is firstly asked to classify appearance and
motion with its specified latent vectors (i.e. ea,t and em,t respectively), and then perform the
same classification again, but inverting the vectors (i.e. ea,t classifies motion and em,t classifies
appearance). Once the encoder part is frozen and fine-tune is done on the classifier part, we
obtain the accuracy values on validation set that are shown in table 5.2.

We see that, while all the possible combinations of appearance and motion are shown during
training (MovingSymbols2 Seen), both models classify without any problem (or at least under
these controlled conditions). However, despite the simplicity of the dataset, when some of the
combinations are not shown during training (MovingSymbols2 NotSeen), the vanilla classifier
only gets a 0.02% appearance accuracy, whereas when it classifies motion the accuracy rises up
to 99.98%. In fact, we can see how these results are complementary, so that the error rate for
motion matches exactly the success rate for appearance.

Since the appearance and motion information is within the same latent space, the model has
learned to generalize only for motion, so that the appearance is basically bounded to the learned
motion. That is why when the network is asked to classify the appearance of a new input during
validation, What it really does is to observe the motion that the symbol performs and, based
on that, it assigns to the input the appearance that the network saw performing such motion
during the training process. Due to these appearance-motion combinations are never seen during
validation, each time the model success the input motion, it fails its appearance and vice versa.
Then when there is no disentangling the problem of generalization inevitably appears.

28

MovingSymbols2 Seen MovingSymbols2 NotSeen

Appearance Motion Appearance Motion

Vanilla Classifier 99.26 100.00 0.02 99.98

Disentangled Classifier 98.20 100.00 85.97 97.46

Inv. Disentangled Classifier 99.99 65.22 2.60 14.12

Table 5.2: Appearance and motion classification accuracy on validation set after training (50
epochs). It shows a comparison between vanilla and disentangled models for the appearance and
motion classification tasks when there are combinations of appearance-motion seen and not seen
during training process.

In the case of disentangled classifier it also happens that the latent space associates the
appearance based on the learned motion when we refer to em,t, in the same way that ea,t associates
the motion with the learned appearance. This cross-complementarity of the accuracies is also
shown in the table, so that when the motion vector fails to classify motion, the appearance is
correct and when the appearance vector fails to classify appearance, the motion is systematically
correct.

Leaving aside these internal residual associations, we see that our proposal has learned to
generalize both appearance and motion in each of its respective latent spaces, obtaining very
good results for the case of motion (97.46%), while the appearance, although clearly it is evident
that it has learned to classify (85.97%), it does not do it really well. This may be due to a weak
adjustment of the part of the network that learns appearance, leaving the improvement of it as
future work.

29

Chapter 6

Budget

Many times, public bodies or private companies are reluctant to support certain research lines
for the excessive time it would take to obtain results with practical applications. In many other
cases, it is due to the uncertainty that comes with any investigation, where the expected results
are not always obtained. Therefore, the required time for the execution of a project is very
important when we are evaluating its cost and, often, it is crucial for the viability of the project
itself. Then, for the quantification of the financial costs of any project we must take into account
three main factors;

• Working time

• Human resources

• Material resources

Based on that, table 6.1 shows an estimate of the financial cost that the completion of this
project entailed. Although the time that I have dedicated for the development of this project
has been greater than the carried out as traineeship, in order to estimate the time spent and
its associated cost, we will base on it. Thus, during the 6 months I spent as a researcher
assistant (HIWI) in the destination research center (DFKI) I registered an amount of 720 hours
(6 months x 4 weeks/month x 20h/week), being paid e10/h. Throughout the 9-month duration
of this project I had a one-hour weekly meeting with the 3 members of my team (all considered
senior engineers), so that the time spent by each of them was 36 hours. The material resources
estimation is based on the facilities, materials and services provided by the research center, as
well as the computation time of the available hardware resources.

Amount Cost/hour Time Total

Junior engineer 1 $10.00 480h $4,800

Senior engineer 3 $30.00 36h $1,080

Other equipment - - - $7,000

Total $12,880

Table 6.1: Estimated financial cost of the project.

30

Chapter 7

Conclusions and Future Development

Thanks to the results obtained and the adequate justification based on their analysis, we can
conclude that our proposed DisNet model, based on the disentangling of appearance and motion,
is able to generalize for appearance-motion combinations not seen during training. In this way,
our hypothesis is validated, since we have been able to demonstrate the problem of generalization
that conventional models present (as well as to solve it with our proporsal), at the same time we
alleviate the problem of scalability, since the learning of appearance and motion has been totally
independent.

The effort and special attention devoted to the creation of a source code of easy to use and
understand, allows the possibility for future researchers to continue developing this open research
line, which is still in its initial phase. Given the benefits of a code that uses resources efficiently,
while being versatile and scalable at the same time, it is possible to perform more complex tasks
without fear of finding inconsistency problems. Below, some of the possible tasks are summarized
as a proposal for future development:

• Explore different architectures that improve the appearance classification performance.

• Generate datasets of greater complexity and analyze the behavior of the model trained on
them.

• Use bounding boxes and background labels to extend the learning disentangled represen-
tations to foreground, background and motion, as well as to deal with the segmentation
task.

• Export the experiments to some of the well-known datasets such as KTH or UCF 101 and
compare its results with the state-of-the-art.

• Pre-train the part of the network that learns appearance through some of the most used
image datasets (e.g. ImageNet). In this way, when we train in a video dataset (e.g.
UCF101), the network should only learn how that previously learned appearance evolves
throughout the video, that is, its motion.

31

Bibliography

[1] Relja Arandjelovic and Andrew Zisserman. Look, listen and learn. In ICCV. IEEE, 2017.

[2] Dana H Ballard. Generalizing the hough transform to detect arbitrary shapes. Pattern
recognition, 1981.

[3] Thomas Brox, Christoph Bregler, and Jitendra Malik. Large displacement optical flow. In
CVPR. IEEE, 2009.

[4] Christopher P Burgess, Irina Higgins, Arka Pal, Loic Matthey, Nick Watters, Guillaume
Desjardins, and Alexander Lerchner. Understanding disentangling in \beta −vae. arXiv
preprint arXiv:1804.03599, 2018.

[5] Joao Carreira and Andrew Zisserman. Quo vadis, action recognition? a new model and the
kinetics dataset. In CVPR. IEEE, 2017.

[6] Navneet Dalal and Bill Triggs. Histograms of oriented gradients for human detection. In
CVPR. IEEE, 2005.

[7] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-
scale hierarchical image database. In CVPR. Ieee, 2009.

[8] Jeffrey Donahue, Lisa Anne Hendricks, Sergio Guadarrama, Marcus Rohrbach, Subhashini
Venugopalan, Kate Saenko, and Trevor Darrell. Long-term recurrent convolutional networks
for visual recognition and description. In CVPR, 2015.

[9] Alon Faktor and Michal Irani. Video segmentation by non-local consensus voting. In BMVC,
2014.

[10] Lijie Fan, Wenbing Huang, Stefano Ermon Chuang Gan, Boqing Gong, and Junzhou Huang.
End-to-end learning of motion representation for video understanding. In CVPR, 2018.

[11] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press, 2016.

[12] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In CVPR, 2016.

[13] Jun-Ting Hsieh, Bingbin Liu, De-An Huang, Li Fei-Fei, and Juan Carlos Niebles. Learn-
ing to decompose and disentangle representations for video prediction. arXiv preprint
arXiv:1806.04166, 2018.

[14] Bela Julesz. Textons, the elements of texture perception, and their interactions. Nature,
1981.

32

[15] Nal Kalchbrenner, Aaron van den Oord, Karen Simonyan, Ivo Danihelka, Oriol Vinyals, Alex
Graves, and Koray Kavukcuoglu. Video pixel networks. arXiv preprint arXiv:1610.00527,
2016.

[16] Hyunjik Kim and Andriy Mnih. Disentangling by factorising. arXiv preprint
arXiv:1802.05983, 2018.

[17] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep
convolutional neural networks. In NIPS, 2012.

[18] Abhishek Kumar, Prasanna Sattigeri, and Avinash Balakrishnan. Variational inference of
disentangled latent concepts from unlabeled observations. arXiv preprint arXiv:1711.00848,
2017.

[19] Svetlana Lazebnik, Cordelia Schmid, and Jean Ponce. Beyond bags of features: Spatial
pyramid matching for recognizing natural scene categories. In null. IEEE, 2006.

[20] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 1998.

[21] Xunyu Lin, Victor Campos, Xavier Giro-i Nieto, Jordi Torres, and Cristian Canton Fer-
rer. Disentangling motion, foreground and background features in videos. arXiv preprint
arXiv:1707.04092, 2017.

[22] David G Lowe. Distinctive image features from scale-invariant keypoints. IJCV, 2004.

[23] Michael Mathieu, Camille Couprie, and Yann LeCun. Deep multi-scale video prediction
beyond mean square error. arXiv preprint arXiv:1511.05440, 2015.

[24] Ishan Misra, C Lawrence Zitnick, and Martial Hebert. Shuffle and learn: unsupervised
learning using temporal order verification. In ECCV. Springer, 2016.

[25] Timo Ojala, Matti Pietikäinen, and David Harwood. A comparative study of texture mea-
sures with classification based on featured distributions. Pattern recognition, 1996.

[26] Giambattista Parascandolo, Mateo Rojas-Carulla, Niki Kilbertus, and Bernhard Schölkopf.
Learning independent causal mechanisms. arXiv preprint arXiv:1712.00961, 2017.

[27] Deepak Pathak, Ross B Girshick, Piotr Dollár, Trevor Darrell, and Bharath Hariharan.
Learning features by watching objects move. In CVPR, 2017.

[28] MarcAurelio Ranzato, Arthur Szlam, Joan Bruna, Michael Mathieu, Ronan Collobert, and
Sumit Chopra. Video (language) modeling: a baseline for generative models of natural
videos. arXiv preprint arXiv:1412.6604, 2014.

[29] Karen Simonyan and Andrew Zisserman. Two-stream convolutional networks for action
recognition in videos. In NIPS, 2014.

[30] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556, 2014.

[31] Khurram Soomro, Amir Roshan Zamir, and Mubarak Shah. Ucf101: A dataset of 101
human actions classes from videos in the wild. arXiv preprint arXiv:1212.0402, 2012.

[32] Nitish Srivastava, Elman Mansimov, and Ruslan Salakhudinov. Unsupervised learning of
video representations using lstms. In ICML, 2015.

33

[33] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov,
Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper with convolu-
tions. In CVPR, 2015.

[34] Ryan Szeto, Simon Stent, German Ros, and Jason J Corso. A dataset to evaluate the
representations learned by video prediction models. arXiv preprint arXiv:1802.08936, 2018.

[35] Valentin Thomas, Emmanuel Bengio, William Fedus, Jules Pondard, Philippe Beaudoin,
Hugo Larochelle, Joelle Pineau, Doina Precup, and Yoshua Bengio. Disentangling the
independently controllable factors of variation by interacting with the world. arXiv preprint
arXiv:1802.09484, 2018.

[36] T Tomita, A Kaneko, M Murakami, and EL Pautler. Spectral response curves of single
cones in the carp. Vision research, 1967.

[37] Du Tran, Lubomir Bourdev, Rob Fergus, Lorenzo Torresani, and Manohar Paluri. Learning
spatiotemporal features with 3d convolutional networks. In ICCV, 2015.

[38] Carl Vondrick, Hamed Pirsiavash, and Antonio Torralba. Generating videos with scene
dynamics. In NIPS, 2016.

[39] Heng Wang and Cordelia Schmid. Action recognition with improved trajectories. In ICCV,
2013.

[40] Tianfan Xue, Jiajun Wu, Katherine Bouman, and Bill Freeman. Visual dynamics: Proba-
bilistic future frame synthesis via cross convolutional networks. In NIPS, 2016.

[41] Ming-Hsuan Yang, David J Kriegman, and Narendra Ahuja. Detecting faces in images: A
survey. TPAMI, 2002.

[42] Thomas Young. Ii. the bakerian lecture. on the theory of light and colours. Philosophical
transactions of the Royal Society of London, 1802.

[43] Joe Yue-Hei Ng, Matthew Hausknecht, Sudheendra Vijayanarasimhan, Oriol Vinyals, Rajat
Monga, and George Toderici. Beyond short snippets: Deep networks for video classification.
In CVPR, 2015.

34

	Introduction
	Motivation and Objectives
	Hardware and Software Resources
	Work Plan
	Document Structure

	Artificial Intelligence
	Machine Learning
	Deep Learning

	Multimedia Data Analysis
	Basics of Images and Videos
	Computer Vision
	Optical Flow

	Deep Learning for Video Analysis
	Convolutional Neural Networks
	Auto-Encoders

	Methodology
	Datasets
	Architectures
	Input Pipeline
	Frame Prediction Models
	Vanilla Frame Predictor
	Disentangled Frame Predictor

	Appearance and Motion Classification Models

	Experimental Results
	Frame Prediction Task
	Quantitative Analysis: BCE Loss Function
	Baseline: Copy Frame Predictor
	Qualitative Analysis: VisualRepresentations

	Appearance and Motion Classification Task

	Budget
	Conclusions and Future Development
	Bibliography

