
2D-to-3D Lifting of Sign Language Body Poses
with Recurrent Neural Networks

Jordi Aguilar
jordi.aguilar.larruy@estudiantat.upc.edu

Abstract

This paper aims at improving the quality of a dataset
that contains multiple sequences of 3D poses extracted from
American Sign Language videos. Each pose consists of 147
points with three coordinates each. We propose an algo-
rithm able to correct missing points as well as to add some
constraints such as the length of the bones. To prove the
quality of the algorithm’s outcome, we evaluate the task of
lifting 2D to 3D poses with a deep learning model trained
on raw data, and another one trained with the preprocessed
data.

1. Introduction
Sign languages are languages that use the visual-manual

modality to convey meaning. This means that they are ex-
pressed by movements of the hands, face or even small
movements of the body. There are an estimated amount of
466 million people that are deaf or hard-of-hearing whose
primary means of communication are sign languages [1].
Moreover, there are different sign languages all over the
world just as there are different spoken languages, and they
are not an ungrammatical form of the respective language,
but a separate language with its own rules for pronunciation,
word formation and word order.

Over the years, there has been a release of language mod-
els based on deep learning that enable communication be-
tween persons that speak or write with different languages
[7, 12, 2, 8], but, for now, there are not consistent works
that perform sign language translation or automatically gen-
erated sign language videos [15] good enough for the Deaf
community to understand them.

As stated in [4], creating scalable automated systems that
enable the continuous translation of speech into sign lan-
guage is therefore a very important issue with high poten-
tial impact. Nonetheless, this is a difficult task that com-
prises hard problems such as speech recognition, contin-
uous translation and sign language animation generation.
Moreover, in order to build models that are able to achieve
these tasks, large datasets that can feed data-driven meth-

ods are required independently if we tackle the problem in
a supervised or self-supervised approach.

However, collecting large datasets is challenging in its
most basic format of standard 2D video as it requires
a recording studio with controlled conditions such as a
solid background or fixed camera poses. The difficulty of
such recordings grows exponentially when considering a
dataset with 3D poses. For this reason, the present work
is build over the How2Sign Dataset, a large-scale multi-
modal dataset in American Sign Language constructed to
deal with the lack of datasets to properly implement sign
language models. Nevertheless, finger joints are sometimes
misplaced or even missing, and these errors are far from
ideal when we use this data as ground truth. Moreover,
hands play a central role in sign language understanding.
Our main goal is to analyse this dataset and elaborate an al-
gorithm able to correct sequences of 3D keypoints. This
algorithm creates a new skeleton assuming fixed lengths
for each bone, and then applies a gradient-descend-based
method that mitigates too rapid movement between frames
and undesirable bone positions.

In this paper we also describe a second task, consisting in
2D to 3D lifting. That is, given a 2D representation of the
keypoints of a skeleton, predicting the depth of each key-
point. This task could serve as a tool to estimate the depth
of any given 2D labelled sign language dataset, enriching
the information contained by the skeleton poses [14]. To
do so, we train a simple model composed of a LSTM and
a fully connected layer. In this work, we are going to use
this task to show the differences in performance, if any, be-
tween training the very same model with the data as it is
and the data once the preprocessing has been applied. The
evaluation will be made using cleaned data.

Our main contribution in this paper is the proposition of
an algorithm designed to preprocess the How2Sign Dataset
to avoid missing or misplaced coordinates. Thus, enhancing
the quality of this data and making one step forward to con-
tribute to the irruption of translation and synthesis models
for Sign Language.

1

2. Related work

The main influence of this work is the How2Sign Dataset
[5]. This dataset consists of a parallel corpus of 80 hours
of instructional videos and their corresponding American
Sign Language translation. Eleven signers participated on
it, recording in two different sets: the green screen studio
and the Panoptic Studio [6]. The first one was equipped
with two HD cameras, one placed in front of the signer with
a green screen as background, and the other at a lateral view.
The Panoptic Studio is a system of hundreds of cameras
placed at a geodesic dome, providing 3D skeletons poses
of the interpreters. A total of 3 hours are recorded in the
Panoptic Studio. This is the subset that we are going to be
using for this work and will be better explained in the next
section.

This work has also benefited from 2D to 3D body pose
estimation for sign language with Deep Learning [11], one
of the first publications exploiting the 3D skeletons pro-
vided by the How2Sign dataset. This work tackled the 2D
to 3D skeleton lifting, so it can be applied to annotate not
only to rest of the How2Sign dataset, but any given 2D la-
belled sign language dataset. The approach taken was the
construction of a model consisting of a Long Short-Term
Memory layer and a fully connected layer. Furthermore,
a normalization of each axes in the [-1, 1] range was ap-
plied, followed by a normalization by mean and standard
deviation. Two different set ups were tested, a regression
approach where the output was a continuous value and a
classification approach where the output space was parti-
tioned in bins. Best results were achieved using the regres-
sion approach, but the paper also highlights the difficulty
to estimate the depth of the hands and the lack of improve-
ment when using more complex models with more parame-
ters. Our work mimics the architecture used in this paper to
model the 2D to 3D lifting, but differs in the normalization
applied to the data.

Finally it is worth mentioning the paper [17], a work
dealing with text-to-video language synthesis in Czech Sign
Language. The authors worked with Czech SL synthesis
without relying on any explicit SL translation and devel-
oped a simple but robust feed-forward translator, but more
importantly for our work, they designed a method for the
skeletal keypoints correction that creates 3D skeletal mod-
els from the 2D models to achieve geometrical consistency.
In particular, they construct a 3D skeleton while taking into
account plausible bone lengths. Then, they use the projec-
tion of the constructed 3D skeleton to achieve a cleaned
and robust 2D skeleton. This algorithm will be the baseline
method for our preprocessing algorithm. We will follow the
same ideas proposed in this paper and explained in section
4, adapting them to allow 3D skeletons input.

3. The Dataset

In this section we will present the main characteristics of
the subset of the How2Sign dataset we are working with.

The How2Sign Panoptic Studio sub-dataset is structured
in folders, each corresponding to a recording. It contains
24 videos where two signers translate instructional videos
from the existing How2 dataset [13] to American Sign Lan-
guage videos. The videos are recorded at 24 or 30 frames
per second and their duration is about 290 seconds in total,
resulting in 5 videos with a span of around 7000 frames and
19 videos with a span of around 8700 frames.

Inside each folder we can also find a JSON file for each
frame of the videos. It contains the keypoints of all the
persons that appear in that frame. In some cases we can
find persons belonging to the organization that appear in the
video, but we are just going to ignore their keypoints and fo-
cus on the two signers that appear in each of the videos.

The number of keypoints or joints for each individual is
137. They are divided in three parts: the body (25 keypoints)
the hands (21 keypoints each, 42 in total) and the face (70
keypoints). Each keypoint has 3 coordinates which we call
x, y and z, but it is important to recall that the orientation
of the skeleton is arbitrary and depends on the camera per-
spective, which is not frontal in this case. Moreover, for
each keypoint we have a confidence score in the interval [0,
1] that indicates the reliability of the set of coordinates, be-
ing 1 absolute certainty and 0 very bad precision. This latter
aspect will be of high importance for our goal since we aim
at having a more robust dataset without misplaced points
and a consistent confidence for all the frames.

During the development of this project, we have taken
special attention to the understanding and examination of
the data. In particular, we focused on characterising the
missing points to have an approximate idea of their amount.
In table 1, we summarize two findings:

Body Face Left hand Right hand
a) 0.2% 0.005% 1.6% 1.8%
b) 0.47 0.69 0.69 0.68

Table 1: a) Percentage of frames with more than 20% of
missing points among all the videos. b) Mean of the confi-
dence score. Computed among all videos and interpreters

We can see how the percentage of missing points in the
hands is higher than in the other parts. This is not surprising
since they involve a lot of fast movements and are the part
of the body that is most likely to suffer occlusion. However,
the confidence scores are much lower in the body keypoints.

2

4. Skeletal model correction
In this section we are going to introduce the preprocess-

ing algorithm to correct the data and achieve important im-
provements to its consistency. It is divided in two parts:
the first one tries to obtain reasonable confidence scores for
each frame by means of a weighted mean between the clos-
est neighbours, and the second part makes use of an invari-
ant factor such as the length of the bones to provide robust-
ness to the skeletons while preserving smoothness between
frames. It is applied to the whole skeleton at the same time.

This method was proposed in the paper Words are our
glosses [17], but we have adapted it to fit 3D skeletons in-
stead of 2D ones. The main difference is that in their al-
gorithm they have to obtain a 3D skeleton in order to scale
each bone to the corresponding length whereas there is no
need to do this step in our algorithm.

Next, we are going to explain each one of the steps to
implement this method.

4.1. Pruning

This step filters frames that are not reliable or extremely
inconsistent. Skeletal models with a lot of missing or mis-
placed parts are replaced by uninitialized skeletal models.
Fortunately, in the next section it is explained how they are
going to be reconstructed. The filtering of a frame is done
by putting a minimum threshold to the mean of the confi-
dence score of a specific subset of keypoints. The keypoints
selected are those from the torso and arms, since they are
the root of the other parts of the skeleton and we can’t af-
ford to have an skeleton that will present global misplacing
issues due to poor confidence in these key parts.

4.2. Interpolation

The interpolation step applies a filter to each keypoint in
the temporal domain to avoid missing parts and to gain a bit
of smoothness in the sequence. Previous to the implemen-
tation of the current method, we tried to apply well-known
windows such as a flat window, the Hamming window or
the Bartlett window [9]. The idea behind this strategy was
to smooth the sequence by averaging each keypoint with its
temporal neighbours. The flat window performs an arith-
metic average between the neighbours at a maximum dis-
tance window length/2, while the other two can be inter-
preted as a weighted mean, where the further the distance to
the current point, the lower the weight assigned to the neigh-
bour. However, two problems arose: the first one being that
good quality measurements were affected by poor quality
neighbours or even by 0 values. The second one was when
we had consecutive missing values wider than the window
length, since the result of the filter in these sections was still
unprofitable.

The solution proposed to fight this problem was to use
variable window lengths based on the confidence score of

the keypoints. For each joint we create a symmetric win-
dow long enough so that the sum of confidence scores of
the neighbours is at least 1. This means that if a keypoint
has a confidence score of 1, it will remain unaffected. Nev-
ertheless, if there is a sequence of consecutive 0 values, the
window will be long enough so that at least we are taking
into consideration keypoints with enough confidence to sum
1. Moreover, once we have defined the window length, a
weighted mean by the confidence score is applied, causing
that the 0 values or the misplaced ones have almost no in-
fluence in the outcome of the filtering.

4.3. Reconstruction

In this phase a skeleton with fixed bone lengths is cre-
ated. This allows us to have consistency in the skeleton
poses and corrects points that may be misplaced. The first
step is to get the length of each bone. To do so, we compute
the distance between pairs of consecutive joints among all
the frames of a video and we apply the median. It should be
noted that we are considering symmetry between bones of
the skeleton, meaning that symmetric bones from the left
and right shoulders, arms, hands and legs must have the
same length.

The main difference between the original paper comes
in this section. To achieve equal bone length in 2D skele-
tons, they were required to work with a 3D skeleton. To
do so, they relied on the vectors vi between joints. Start-
ing from the head keypoint k0 in the coordinate (0, 0, 0),
the following keypoint k1 was forced to be at the same dis-
tance as the corresponding bone length L. One can see
that this problem has one or two possible solutions. If L
is shorter than the norm of the vector between the joints,
the following keypoint will be placed at k1 = k0 +

L
||v0||v0.

Note that the z coordinate will remain 0. If L > ||v0||
we will assume that in order to meet the length constraint
the point has to be lifted, so the coordinates of k1 are go-
ing to be x1 = x0 + vx0 , y1 = y0 + vy0 and z1 will
have the value that satisfies the bone length. Given that
L2 = (x1 − x0)2 + (y1 − y0)2 + (z1 − z0)2, the solution
for z1 is:

z1 = z0 ±
√
L2 − (x1 − x0)2 − (y1 − y0)2 (1)

Because it is not know which solution is more admissi-
ble, they chose the smaller one. This procedure is applied
recursively through consecutive bones. The output is a 3D
skeleton where the bone length requirements are met.

Our problem does not require to transform a 2D skeleton
to a 3D skeleton given that we already have it. Thus, fol-
lowing the same recursive approach we are going to scale
each vector accordingly to meet the bone length while pre-
serving the angle between joints. If we call k0 to an already
fixed keypoint, k1 to the next keypoint, L the length of the

3

corresponding bone and v0 the vector from the point k0 to
k1, the equation to find k1 is as follows:

k1 = k0 +
L

||v0||
v0 (2)

This procedure is also applied recursively through con-
secutive bones. The output is a 3D skeleton where each
bone has its defined length.

4.4. Regularization

The skeleton obtained in the previous procedure is al-
ready helpful because the bone lengths are fixed, but taking
this skeleton as the final outcome may be undesirable since
we have relied on the correctness of the angles between
joints, and this can lead to misplacement of some parts of
the body and discontinuities between frames. To solve these
issues, one final regularization step is done. Taking as input
the scaled skeletons x and as target the skeleton after the
interpolation has been done y, we build the following loss
function based on MSE:

L(x) =
T∑

t=1

K∑
k=1

(ykt –x
k
t)

2

t · k
(3)

Where T is the number of frames and K the number
of keypoints. It is clear that 0 value of the MSE can be
found by simply reaching the y coordinates, but we would
find undesired bone lengths, so we are going to add two
regularization factors in order to find a mid-point between
both sets. Hence, our loss function will look like this:

L(x) =
T∑

t=1

K∑
k=1

(xkt –y
k
t)

2

t · k
+ α ·R1 + β ·R2 (4)

Where T is the number of frames and K the number of
keypoints,R1 is the length of the bones andR2 is the differ-
ence between keypoint coordinates of consecutive frames.
α and β are weights for the respective regularizations. It is
interesting to notice thatR1 affects the keypoints in the spa-
tial domain K, while R2 influences the keypoints in tempo-
ral domain T . After optimizing the loss function, the final
result of the preprocessing is achieved.

5. Evaluation
The present task consists in building a system that takes a

sequence of vectors as input, in which each vector contains
the x and y coordinates of every keypoint in a given frame,
and outputs another sequence of vectors, in which each vec-
tor contains the estimated z coordinate of every keypoint in
the given frame.

The purpose of this task is not to beat the current state-of-
the-art work in 3D generation or to find new mechanisms to

tackle this task. Instead, we are interested in comparing the
performance of the same model trained with two different
sets of data. Data quality and abundance are two factors re-
ally well appreciated in machine learning and deep learning
since they are the basis for any data-modelling approach.
Moreover, one of the wills that numerous authors express
when their experiments underperform or do not generalize
properly is the need for more and cleaner data.

Given the preprocessing method described in the previ-
ous section, we are being presented with a good opportunity
to check if the cleaned data generated by the algorithm has
a positive impact in the 2D to 3D lifting task with respect
to the very same model trained with the unprocessed or raw
data.

Before beginning with the model introduction, the data
preparation steps based on [3] are going to be explained.
First, all the skeletons are scaled so that the length of the
bone between the neck and the mid-hip is equal to 1. It is
important to notice that the three coordinates are scaled with
the same factor, so we are preserving the ratios between di-
mensions. Then the mid-hip joint is moved to the origin.
Finally, we make sure that the line between the neck and
the mid-hip is over the y axis and that the skeleton is fac-
ing along the z axis. This ensures that by predicting the z
coordinate, we are predicting the depth of the skeleton.

5.1. Model

To achieve the proposed task, we are going to build a
deep learning model similar to the one developed in [11].
The approach consists of a Long Short-Term memory layer
followed by a feed-forward layer. A LSTM network is re-
ally useful when dealing with time series or other kinds of
sequences. In each time step, it receives not only the cor-
responding input features but also feedback from previous
time-steps. This feedback is formed by a hidden-state and a
cell state. The first one is the output from the previous time
step and is simply concatenated to the current input. How-
ever, the second one is the core idea behind LSTMs. The
cell state is a vector that runs through the entire sequence
that is updated in each time step by the input of this one. It
is the memory of this architecture and the one that enables
the computation of outputs based on previous time steps.

5.2. Training the model

The data are split into two sets: train and validation. The
first one contains 19 videos while the second one contains
5 videos. This means that approximately 80% of the frames
belong to the training set and 20% of the frames belong to
the test set. This solution ensures a good generalization of
the model and may be preferable than using other options
such us taking always the last 20% fraction of each video
or splitting randomly the videos because we may change
the distributions of poses between both sets. For example,

4

there may be some movements specific to the end of videos
such as putting the hands together that are less seen in other
parts of the video. To fasten the process and keep it simple,
only one interpreter from the two available has been chosen
to train and test the model.

One of the limitations that training LSTM exhibits is
the length of the sequence accepted by the network . Our
videos contain thousands of frames, but the sequence length
of LSTM must be a low value so that the gradient propa-
gates along all the sequence. Otherwise, the gradient might
achieve very high values, a problem known as exploiting
gradient. If we cut each video in fragments of seq length,
the problem arises when the internal states of the LSTM is
reset between batches. This means that in practice, each
video is split in num frames/seq length clips, and no
information is shared between consecutive clips. To solve
this problem a special configuration has to be set: the videos
must be carefully placed so that each clip is placed one after
the other in different batches, but at the same batch position,
as depicted in 1. Then, the internal states of the LSTM are
not reset between batches and the next clip can exploit all
the accumulated information. This feature is adopted both
at training time and at test time.

Figure 1: Graphical representation of how the data is sorted
in batches. Image extracted from [10]

It is inevitable that the end of some videos will fall inside
a batch. This could cause a problem since there won’t be
any relation between the last frame of a video and the first
frame of the next video. This situations are also taken into
account and the hidden state and the cell state are reset to 0
(its default value) inside a sequence whenever this happens.
Luckily since we have a low number of videos this situation
is not very frequent. The low amount of videos also implies
that if we want to have a batch size bigger than the number
of videos, some of them are going to be inevitably cut since
we only have 22 of them.

The loss function used to train the network has been the
Mean Absolute Error (MAE) L = 1

n

∑n
i=0 |yi − h(xi)| in-

stead of the Mean Squared Error (MSE) L = 1
n

∑n
i=0(yi −

h(xi))
2. These functions are also called L1 and L2 respec-

tively. We can find two main differences between these

methods. L1 loss is less sensitive to outliers which makes
it more robust against them, but more importantly L1 loss
gradients are the same throughout all the training process
whereas gradients of L2 loss are big when the predictions
are really bad but get smaller as the predictions get closer to
the local minimum. This means two things: L1 loss takes
longer to decrease but its gradients are larger for small pre-
diction errors. Although this last fact may be harmful at the
end of the training because there is a lack of precision, it
has been seen in works working with keypoint coordinates
from skeletons [16] that L2 yielded too small gradients due
to the quadratic decrease, causing the models to struggle to
achieve convergence.

6. Results
The results are divided in two parts. First we are go-

ing to evaluate the output of the preprocessing algorithm
described in section 4. This will be done comparing quali-
tatively the output of the preprocessing algorithm when it is
applied to some skeletons. Then we will present the results
of the models trained to transform 2D skeletons to 3D ones.
We will compare the accuracy of the models trained with
unprocessed data versus the model trained after the data has
been preprocessed.

6.1. Qualitative results

The following pairs of figures show the differences ob-
tained when preprocessing the data. All of them are fo-
cused on hands correction given that it is the part of the
body that suffers more errors. The following examples have
been hand-picked to better show situations where the algo-
rithm has corrected missing points or inaccurate joint po-
sitions. Although there has been a meticulously evaluation
of multiple pairs, these examples have been extracted from
one unique video (190611 asl2) and one of the two signers.
With this, we want to express that there may be plenty of
other examples where our algorithm has an impact on the
data and that the following examples are not remote.

In figure 2, we observe one of the main causes of missing
points: the signer puts their hands together, making it really
hard to predict the keypoints of the hand that it is being hid-
den. In this case, we are only detecting one finger of the
right hand. The result of applying the algorithm is the re-
construction of the right hand, achieving a natural position.

In figure 3, we are seeing an occlusion phenomena. The
signer is performing a gesture that hides the left hand. This
causes that three of the fingers are not properly retrieved and
are missing in this particular frame. The algorithm outputs
a reconstructed hand which fits with the existing fingers and
with the other hand. We can appreciate how the hands are
now perpendicular to each other.

Finally, in figure 4 we show an example of correction of
a bone length. Since both hands are together, we have added

5

(a) Before preprocessing (b) After preprocessing

Figure 2: Example of skeleton seen frontally. Missing key-
points correction

(a) Before preprocessing (b) After preprocessing

Figure 3: Example of skeleton seen from above. Occlusion
correction

(a) Before preprocessing (b) After preprocessing

Figure 4: Example of hand skeleton. Keypoint misplace-
ment correction

a few labels to illustrate where the fingers are. L refers to
left hand, R to right hand and the numbers are the ordered
fingers where number 1 is the thumb. We can see that in
the initial frame the second finger is missing and moreover
the third finger is ridiculously long. When we apply the
algorithm, the length of the third finger is reduced to an ac-
ceptable size, and we generate new keypoints for the second
finger. In this case, the position of the second finger is a bit
unnatural, but it is definitely desired against having missing
keypoints.

6.2. Quantiative results

As described in section 5, we have trained a neural net-
work with two different sets of data. The first model will

be trained with the raw data and the second one will be
trained with the preprocessed data. Both models have the
same architecture and the same number of parameters. The
evaluation will be done using a set of preprocessed data
unseen by any of the models. This has been done to test
them in skeletal models without missing keypoints, which
are more admissible and close to the ground truth than a set
with missing keypoints.

Despite having trained the models using the Mean Ab-
solute Error loss function, we will compare them by means
of a metric called Percentage of Correct Key-points (PCK).
This metric considers a keypoint correct if the distance be-
tween the predicted and the true joint is within a certain
threshold. The threshold can be arbitrarily chosen, but it is
common to use a certain fraction of a given bone. In or-
der to ease the interpretation of the results, we have taken
the bone from the mid-hip to the neck which was scaled to
have a length of 1, as stated at the beginning of section 5 .
We have taken several values α to compute the fraction of
this bone, starting from α = 0.01 to α = 0.5. There is no
need to go higher since we will have a very decent accuracy
within this thresholds.

Figure 5: PCK computation of raw and preprocessed mod-
els for different values of alpha

α 0.02 0.05 0.1 0.2

Raw 0.418 0.707 0.882 0.967
Prep. 0.389 0.681 0.877 0.974

Table 2: PCK of both models for the values 0.02, 0.05, 0.1
and 0.2 of α

Figure 5 illustrates that both models have a very simi-
lar behaviour and the differences are minimal. At the end,
they are the same model trained with almost the same data.
When looking closely, we can observe that if the thresh-
old is very low, the model trained with raw data performs
slightly better than the model trained with preprocessed

6

data. However, if we keep increasing the threshold, there is
a point where the model trained with cleaned data is slightly
better. From this point, the preprocessed model always out-
performs the raw model.

From these results we can extract two outcomes: 1) The
model trained with the preprocessed data from our algo-
rithm has less variance than the model trained with the raw
data. This means that in general, most of the points pre-
dicted by the preprocessed model are close to the target
even though for small thresholds, the model trained with
raw data performs better. This makes sense since our al-
gorithm brings misplaced or missing points close to their
correct position to fulfill the restriction of the length of the
bones. Hence, we are reducing the variance of the data and
this feature is reflected in our experiment. 2) The model
trained with raw data is still able to predict the depth of the
coordinates without being influenced by raw input data. The
reasons to explain this phenomena may be the low amount
of outliers and their systematic ”behaviour”: when there is
a missing point, the x, y and z coordinates have the very
same value, so it is easy to predict the third one given the
first two. Also, these keypoints are well differentiated from
good keypoints (since all three coordinates are equal), so
they don’t perturb the data for this specific task because the
model can guess that a given point is an outlier if x and y
coordinates are already outliers. This is added to the fact
that the model trained with preprocessed data do has points
that have been reconstructed with an automatic algorithm
and may not correspond to the nature of real bones.

7. Conclusions and future work
In this paper we perform an analysis of the How2Sign

dataset focused on the sequences of skeleton coordinates.
We show the distribution and amount of missing points as
well as an explanation of the details and characteristics that
this data contains. These mainly occur in the hands key-
points, specifically when they are put together or really
close, causing occlusions that do not allow the prediction
of a keypoint.

We present an implementation of a method for correct-
ing skeleton poses and for interpolating missing skeleton
parts when dealing with 3D data. It exhibits realistic re-
sults and reduces the number of outliers when applied to
the How2Sign dataset. It works well to scale the bones,
but it relies in the correctness of the angles between them.
This may cause loss of homogeneity in some reconstruc-
tions, usually when there are large gaps with missing key-
points.

Finally we propose a deep learning model based on re-
current neural networks to predict the depth of 2D skele-
tons. This task is used to evaluate two identical models
trained with different data. One is trained with raw data
and the other one with clean data. The results show that the

model trained with raw data does not perform worse than
the model trained with clean data even when evaluating it
with cleaned data. Nevertheless, the variance of the output
is reduced when using the cleaned data. From these results
we conclude that for this specific task, the neural network
is able to generalize properly and disregard the missing and
misplaced points without needing cleaned data.

7.1. Future work

This work can be followed in two different paths. The
first one is to adopt the results obtained by the preprocess-
ing algorithm to perform other tasks than 2D to 3D lifting
that may be more sensible to missing keypoints. This could
include skeletal models synthesis from text / speech, sign
language translation or extraction of poses from rgb im-
ages. Another interesting area of work would be to pursuit
a model to obtain a proper 2D to 3D lifting. This contribu-
tion could be very powerful since it would allow to enrich
the 2D skeletons contained in the How2Sign dataset. Thus,
enhancing the information contained in the sequences and
rising the potential of the models trained with it.

8. Acknowledge

I would like to thank my two advisors, Dr Xavier Giró-
i-Nieto and PhD Student Amanda Duarte for guiding and
teaching me during this project. Their advice and enthusi-
asm has been very valuable to achieve the final result of this
work.

References
[1] World Health Organization 2019. Deafness and hear-

ing loss. https://www.who.int/news-room/fact-sheets/detail/
deafness-and-hearing-loss.

[2] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Sub-
biah, Jared Kaplan, Prafulla Dhariwal, Arvind Neelakan-
tan, Pranav Shyam, Girish Sastry, Amanda Askell, Sand-
hini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom
Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler,
Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen,
Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish, Alec Rad-
ford, Ilya Sutskever, and Dario Amodei. Language models
are few-shot learners, 2020.

[3] Dylan Drover, Rohith MV, Ching-Hang Chen, Amit
Agrawal, Ambrish Tyagi, and Cong Phuoc Huynh. Can 3d
pose be learned from 2d projections alone?, 2018.

[4] Amanda Duarte. Cross-modal neural sign language transla-
tion. In Jordi Torres and Xavier Giró i Nieto, editors, Pro-
ceedings of the 27th ACM International Conference on Mul-
timedia - Doctoral Symposium, Nice, France, 10/2019 2019.
ACM, ACM.

[5] Amanda Duarte, Shruti Palaskar, Deepti Ghadiyaram, Ken-
neth DeHaan, Florian Metze, Jordi Torres, and Xavier Giro i

7

https://www.who.int/news-room/fact-sheets/detail/deafness-and-hearing-loss
https://www.who.int/news-room/fact-sheets/detail/deafness-and-hearing-loss

Nieto. How2sign: A large-scale multimodal dataset for con-
tinuous american sign language, 2020.

[6] H. Joo, H. Liu, L. Tan, L. Gui, B. Nabbe, I. Matthews, T.
Kanade, S. Nobuhara, and Y. Sheikh. Panoptic studio: A
massively multiview system for social motion capture. In
2015 IEEE International Conference on Computer Vision
(ICCV), pages 3334–3342, 2015.

[7] Jungil Kong, Jaehyeon Kim, and Jaekyoung Bae. Hifi-gan:
Generative adversarial networks for efficient and high fi-
delity speech synthesis, 2020.

[8] Liang Lu, Naoyuki Kanda, Jinyu Li, and Yifan Gong.
Streaming end-to-end multi-talker speech recognition, 2020.

[9] B. Meddins. Introduction to Digital Signal Processing. Elec-
tronics & Electrical. Newnes, 2000.

[10] Alberto Montes, Amaia Salvador, Santiago Pascual, and
Xavier Giro i Nieto. Temporal activity detection in
untrimmed videos with recurrent neural networks, 2017.

[11] Pol Pérez-Granero. 2d to 3d body pose estimation for sign
language with deep learning. Master’s thesis, 2020.

[12] Kaizhi Qian, Zeyu Jin, Mark Hasegawa-Johnson, and Gau-
tham J. Mysore. F0-consistent many-to-many non-parallel
voice conversion via conditional autoencoder. ICASSP 2020
- 2020 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), May 2020.

[13] Ramon Sanabria, Ozan Caglayan, Shruti Palaskar, Desmond
Elliott, Loı̈c Barrault, Lucia Specia, and Florian Metze.
How2: A large-scale dataset for multimodal language un-
derstanding, 2018.

[14] Denis Tome, Chris Russell, and Lourdes Agapito. Lifting
from the deep: Convolutional 3d pose estimation from a sin-
gle image. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), July 2017.

[15] Lucas Ventura, Amanda Duarte, and Xavier Giro i Nieto.
Can everybody sign now? exploring sign language video
generation from 2d poses, 2021.

[16] Márton Véges and András Lőrincz. Absolute human pose
estimation with depth prediction network, 2019.

[17] Jan Zelinka and Jakub Kanis. Neural sign language syn-
thesis: Words are our glosses. In Proceedings of the
IEEE/CVF Winter Conference on Applications of Computer
Vision (WACV), March 2020.

8

